第一节原子结构模型
1-1-1 原子结构模型
编号:01第1节原子结构模型(第1课时学案)2010年2月19日班级__________ 姓名__________【学习目标】(1)了解“玻尔原子结构模型”,知道其合理因素和存在的不足。
(2)知道原子光谱产生的原因。
(3)能利用“玻尔原子结构模型”解释氢原子的线状光谱。
【学案导学过程】一、原子结构理论发展史:1803年提出原子是一个“实心球体”建立原子学说的是英国化学家__ ;1903年汤姆逊在发现电子的基础上提出原子结构的“”模型,1911年英国物理学家卢瑟福提出了原子结构的模型;1913年丹麦科学家玻尔提出的原子结构模型;建立于20世纪20年代中期的模型已成为现代化学的理论基础。
二、氢原子光谱和玻尔的原子结构模型1、氢原子光谱知识支持:光谱是研究原子结构的重要方法光谱:。
连续光谱:。
线状光谱:。
利用上述知识回答下列问题:①图1 是连续光谱还是线状光谱?为什么?②图2是氢原子光谱,是连续光谱还是线状光谱?为什么?③你能用以上原子结构模型解释吗?2、玻尔原子结构模型的基本观点(1)原子中的电子在具有________的圆周轨道上绕原子核运动,并且______能量。
(2)在不同轨道上运动的电子具有不同的能量(E),而且能量是_________的,即能量是“一份一份”的。
轨道能量依n值(1,2,3,……)的增大而___________。
①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:能量高于基态的状态。
处于激发态的原子称为激发态原子。
(3)只有当电子从一个轨道(能量为E i)跃迁到另一个轨道时,才会_______或______能量。
如果辐射或吸收的能量以光的形式表现并记录下来,就形成了______________。
该理论重大贡献在于指出了原子光谱源自____________在能量不同的________之间的跃迁,而电子所的处轨道的能量是_________的。
利用上述知识回答下列问题:①玻尔理论是假设吗?②原子中的电子有确定的轨道吗?③你是如何理解“电子具有的能量是量子化的”?量子化的条件的内涵是什么?④n值不同能量不同,E1,E2,E3,有怎样的关系?④何为基态原子?激发态原子?⑤电子跃迁时伴随能量变化吗?⑥试用玻尔理论解释氢原子光谱是线状光谱?。
氢原子光谱和波尔的原子结构模型
我们知道了核外电子排布,那核外电子 是如何运动的呢?
模
型
原子中心有一个带正电荷的核,它的质量几 乎等于原子的全部质量,电子在它的周围沿着不同 的轨道运转,就象行星环绕太阳运转一样。
卢瑟福的原子结构理论遇到的问题
根据已经知道的电磁运动的规律,电子在运动的时候会放出电 磁波(能量)。因此,绕着原子核旋转的电子,因为能量逐渐减小 ,应当沿着一条螺旋形的轨道转动,离中心的原子核越来越近,最 后碰在原子核上。这样一来,原子就被破坏了。
100年后:汤姆逊用发现了电子,并且在各种元素的 原子中都有电子。这样看来,原子就不是不可再分的 了!也就是说,原子不是最最基本的物质粒子了!
1903
汤 姆 逊( 原 子年 模) 型
原子是一个平均分布着正电荷的粒子,其中镶嵌 着许多电子,中和了正电荷,从而形成了中性原子。
1911
卢
瑟
福(
原
子
年 )
3、洪特规则
在能量相同的轨道上排布时,电子尽可能分占不 同的轨道,且自旋状态相同
练习:写出:碳、硫、钛(22Ti)的轨道表示式
练习:请写出下列元素原子的电子排布图。
钪21Sc, 铬24Cr, 铁26Fe, 铜29Cu, 砷33As
洪特规则的特例:
对于能量相同的轨道(同一电子亚层),当电子排布处 于全满(s2、p6、d10、f14)、半满(s1、p3、d5、f7)、全 空(s0、p0、d0、f0)时比较稳定,整个体系的能量最低。
【现学现用】焰火、霓虹灯探密
用镁粉、碱金属盐及碱土金属盐等可以做成焰火。燃放 时,焰火发出五颜六色的光,请用原子结构的知识解释 发光的原因: __燃__烧__时__,__电__子__获__得__能__量__,__从__能__量__较__低__的__轨__道__向__能__量__较__ _高__的__轨__道__跃__迁__,__跃__迁__到__能__量__较__高__的__轨__道__的__电__子__处__于__一___ _种__不__稳__定__的__状__态__,__它__随__即__就__会__跃__达__到__能__量__较__低__的__轨__道___ _,__并__向__外__界__以__光__能__的__形__式__释__放__能__量_。
高一化学原子结构
第一节原子结构模型一.课标解读:1.认识原子核的结构,懂得质量数和的含义,掌握构成原子的微粒间的关系,知道元素、核素、同位素的涵义。
3.掌握原子核外电子排布的基本规律,能画出1~18号元素的原子结构示意图。
4.了解原子的最外层电子排布与元素的原子得、失电子能力和化合价的关系;掌握常见元素的电子排布式。
5.了解原子结构模型的发展历史了解氢原子光谱和玻尔的结构模型了解原子“基态”、“激发态”的概念。
6.了解原子核外电子的运动特征及四个量子数的具体含义,能用四个量子数描述原子核外电子的运动状态。
7.了解s,p,d轨道电子云的不同。
二.知识点精讲(知识再现)1.原子的构成:2.原子中有关量的关系:质子数=核电荷数=核外电子数=原子序数离子电荷数=质子数—核外电子数质量数(A)=质子数(Z)+中子数(N)质子数(Z)=离子的核外电子数+离子的电荷数(阳离子为正,阴离子为负)3.同位素:4.相对原子质量=元素的一个原子的质量/1个12C原子的质量×1/125.几种特殊粒子的结构特点:⑴离子的电子层排布:主族元素阳离子跟上一周期稀有气体的电子层排布相同;阴离子跟同一周期稀有气体的电子排布相同,如O2-、F-与Ne相同⑵等电子粒子(注意主要元素在周期表中的相对位置)①10电子粒子:CH4、N3-、NH2-、NH3、NH4+、O2-、OH-、H2O、H3O+、F-、HF、Ne、Na+、Mg2+、Al3+等②18电子粒子:SiH4、P3-、PH3、S2-、HS-、H2S、Cl-、HCl、Ar、K+、Ca2+、等(F2、H2O2、C2H6、CH3OH)③核外电子总数及质子总数均相同的阳离子有:Na+、NH4+、H3O+等;阴离子有:F-、OH-、NH2-、HS-、Cl-等。
6.氢原子光谱:广义上讲光即,可见光的真空波长在之间。
可见光的视觉颜色不同,根本原因是。
氢气在高压分解为原子后得到的光谱特点是,这种光谱是,原子光谱即为;而阳光形成光谱为,这种光谱特点是。
第一章 原子结构
即原子中电子的位置误差比原子半径大10倍,电子 在原子中无精确的位置可言。
第二节 氢原子结构的量子力学模型
三. 量子数 1. 波函数ψ (wave function) 原子中电子具有波动性,奥地利物理学家 Schrödinger导出Schrödinger方程,方程的解是 波函数ψ ,用来描述电子的运动状态。 2. |ψ |2的意义 ψ本身物理意义并不明确,但|ψ |2却有明 确的物理意义。表示在原子核外空间某点处电 子出现的概率密度(probability density),即 在该点处单位体积中电子出现的概率。
n
对应电 层
1
层
2
层
3
层
4
层
5
层
··· ···
第二节 氢原子结构的量子力学模型
三. 量子数
6. • •
轨道角动量量子数(orbital angular momentum quantum number) 符号 l ,它只能取小于 n 的正整数和零 l = 0、1、2、3 … (n – 1),共可取n个值 它决定原子轨道的形状。
4s 4p 4d 4f
第二节 氢原子结构的量子力学模型
三. 量子数 7. • • 磁量子数(magnetic quantum number) 符号 m ,可以取 –l 到 +l 的 2l+1个值,即 m = 0、±1、±2,…,±l 它决定原子轨道的空间取向。 l 亚层共有 2l+1 个不同空间伸展方向的原子轨道。例如 l =1时, m = 0、±1,p轨道有三种取向,或 l 亚层有3 个p轨道。 相同能级的轨道能量相等,称为简并轨道或等 价轨道(equivalent orbital)。
2.3 原子结构的模型 (第1课时)
解析:α粒子轰击原子核时,受到同种电荷相互排斥的影响,应该 是背离原子核发生偏转,故选A。
随堂练习
考点二、构成原子各微粒之间的关系
3.下列关于原子中各种粒子的数量关系的说法中,不正确的是( D ) A.核内质子数一定等于核电荷数 B.原子序数一定等于核外电子数 C.核外电子数一定等于核内质子数 D.原子序数一定等于中子数 解析:根据原子,质子数=核电荷数=原子序数=核外电子数。从该等 式中我们可以知道A、B、C都是正确的,而中子数不一定等于质子数, 故中子数也不一定等于原子序数,因此D选项错误,选择D选项。
新知学习
二、揭开原子核的秘密
① 原子的构成及各微粒的质量
质子 带1个单位的正电荷 1.6726×10-27千克 原子核
(带正电)
原子
中子 不带电 1.674×10-27千克
(电中性)
电子 带1个单位的负电荷 9.1176×10-31千克
(带负电)
② 原子中电子的质量在整个原子质量中所占比重极小,原子的质 量主要集中在原子核上。
丹麦物理学家玻尔
新知学习
一、原子结构模型的建立——原子结构模型的建立历程
道尔顿实心球模型 汤姆生的西瓜模型 卢瑟福行星绕太阳模型
波尔分层模型
建立模型往往需要一个 不断完善、不断修正的 过程,以使模型更接近 实物的本质。
电子云模型
新知学习
一、原子结构模型的建立——原子的构成
✓ 原子是由一个居于中心的带正电荷的原子核以及带负电荷 的核外电子构成的。
新知学习
一、原子结构模型的建立——原子结构模型的建立历程
③卢瑟福原子模型(行星模,说明原 子中存在着很大空间。少部分α粒子方向 发生了偏转,说明原子核带正电。极少 数α粒子被反弹,说明原子核体积小,质 量大。
第一章_第1节_原子结构模型知识点及练习[选修3]鲁科版
第1节原子结构模型一、原子结构模型的提出1、道尔顿原子模型(1803年):原子是组成物质的基本的粒子,它们是坚实的、不可再分的实心球。
2、汤姆生原子模型(1904年):原子是一个平均分布着正电荷的粒子,其中镶嵌着许多电子,中和了正电荷,从而形成了中性原子。
(“葡萄干布丁模型”)3、卢瑟福原子模型(1911年):在原子的中心有一个带正电荷的核,它的质量几乎等于原子的全部质量,电子在它的周围沿着不同的轨道运转,就像行星环绕太阳运转一样。
(“卢瑟福核式模型”)4、玻尔原子模型(1913年):电子在原子核外空间的一定轨道上绕核做高速的圆周运动。
(“玻尔电子分层排布模型”)5、电子云模型(1927年~1935年):现代物质结构学说。
(“量子力学模型”)【例1】下列对不同时期原子结构模型的提出时间排列正确的是()①电子分层排布模型②“葡萄干布丁”模型③量子力学模型④道尔顿原子学说⑤核式模型A、①③②⑤④B、④②③①⑤C、④②⑤①③D、④⑤②①③二、原子光谱和波尔的原子结构模型1、原子光谱:光(辐射)是电子释放能量的重要形式之一,不同元素的原子发生跃迁时会吸收或释放不同的光,可以用光谱仪摄取各种元素电子的吸收光谱或发射光谱,总称原子光谱。
(1)通常所说的光是指人的视觉所能感觉到的在真空中波长介于400~700nm之间的电磁波。
不同波长的光在人的视觉中表现出不同的颜色,按波长由长到短依次为红橙黄绿青蓝紫。
实际上,广义的光即电磁波,除了可见光外,还包括红外光、紫外光、X射线等。
(2)人们在真空放电管内充入低压氢气,并在放电管两端的电极间加上高压电时,氢气会放电发光,利用三棱镜可观察到不连续的线状光谱。
(3)光谱分为连续光谱和线状光谱,氢原子光谱为线状光谱。
线状光谱:具有特定波长、彼此分离的谱线所组成的光谱(图1-1)锂、氦、汞的发射光谱锂、氦、汞的吸收光谱图1-1连续光谱:由各种波长的光所组成,且相近的波长差别极小而不能分辨所得的光谱,如阳光形成的光谱。
人教版高二化学《第一章 原子结构》精品教案10页
高二化学《第一章原子结构》精品教案本章教学目标1.了解原子结构的构造原理,知道原子核外电子的能级分布,能用电子排布式表示常见元素(1~36号)原子核外电子的排布。
2.了解能量最低原理,知道基态与激发态,知道原子核外电子在一定条件下会发生跃迁产生原子光谱。
3.了解原子核外电子的运动状态,知道电子云和原子轨道。
4.认识原子结构与元素周期系的关系,了解元素周期系的应用价值。
5.能说出元素电离能、电负性的涵义,能应用元素的电离能说明元素的某些性质。
6.从科学家探索物质构成奥秘的史实中体会科学探究的过程和方法,在抽象思维、理论分析的过程中逐步形成科学的价值观。
相关考纲要求:必修部分(1)了解元素、核素和同位素的含义。
(2)了解原子构成。
了解原子序数、核电荷数、质子数、中子数、核外电子数以及它们之间的相互关系。
(3)了解原子核外电子排布。
(4)掌握元素周期律的实质。
了解元素周期表(长式)的结构(周期、族)及其应用。
(5)以第3周期为例,掌握同一周期内元素性质的递变规律与原子结构的关系。
(6)以IA和VIIA族为例,掌握同一主族内元素性质递变规律与原子结构的关系。
(7)了解金属、非金属在元素周期表中的位置及其性质递变的规律。
(8)了解化学键的定义。
了解离子键、共价键的形成。
选修部分: 1.了解原子核外电子的能级分布,能用电子排布式表示常见元素(1~36号)原子核外电子的排布。
了解原子核外电子的运动状态。
2.了解元素电离能的含义,并能用以说明元素的某些性质。
3.了解原子核外电子在一定条件下会发生跃迁,了解其简单应用。
4.了解电负性的概念,知道元素的性质与电负性的关系。
本章内容的课时安排:(教参安排)第一节原子结构模型 4课时第二节原子结构与元素周期表 3课时第三节原子结构与元素性质 2课时本章复习 2课时第一节第一节原子结构模型【教学目标】1.了解氢原子光谱的特点和玻尔原子结构模型的基本观点及其对原子结构理论的贡献。
2022-2023学年鲁科版新教材选择性必修二 第1章第1节原子结构模型 课件(52张) (1)
基态原子中有多少个核外电子就有多少种电子的运动状态
3.量子力学原子结构模型中的原子轨道是用来描述核外电子空间运动 状态的。下列关于原子轨道的叙述正确的是( )
A.原子轨道就是原子核外电子运动的轨道,这与宏观物体运动轨道的 含义相同
B.第 n 电子层上共有 2n2 个原子轨道 C.任意电子层上的 p 能级都有 3 个伸展方向相互垂直的原子轨道 D.处于同一原子轨道上的电子,运动状态完全相同 解析 原子轨道与宏观物体的运动轨道不同,它是指电子出现的主要 区域,而不是电子运动的实际轨迹,A 错误;第 n 电子层上共有 n2 个原子 轨道,B 错误;原子核外每个电子的运动状态均不同,D 错误。 解析 答案
能级 级,分别用符号 s、p、d、f 等表示。在无外加磁场的条件下,处于 同一能级的电子能量相同
原子 原子轨道用来描述单个电子的空间运动状态,第 n 电子层中所含原 轨道 子轨道的数目为 n2 自旋 处于同一原子轨道上的电子自旋状态只有两种,分别用符号“↓” 状态 和“↑”表示
2.量子数 n 值所对应的能级和原子轨道的情况
解析 答案
探究二 量子力学对原子核外电子运动状态的描述
1.为什么在通常条件下,钠原子中处于 n=4 的电子跃迁到 n=3 的状 态时,在高分辨光谱仪上看到的不是一条谱线,而是两条谱线?
提示:原子的线状光谱产生于原子核外的电子在不同的、能量量子化 的轨道之间的跃迁。多电子原子光谱中原有的谱线之所以能分裂为多条谱 线,可能是量子数 n 标记的核外电子运动状态包含多个能量不同的“轨 道”,电子在不同能量的“轨道”之间跃迁时产生的谱线就会增多。
1.原子核外电子运动状态的描述 电子层用来描述电子离核的远近,取值为正整数 1、2、3、4、5、6
《原子结构模型》 讲义
《原子结构模型》讲义一、引言原子,这个构成物质世界的基本单位,一直以来都是科学家们探索和研究的重要对象。
而对于原子结构的理解,我们经历了一个漫长而曲折的过程。
从最初的简单猜测到如今相对完善的理论,原子结构模型的发展见证了人类科学的不断进步。
二、早期的原子观念在古代,人们对于物质的构成已经有了一些初步的思考。
古希腊哲学家德谟克利特提出了“原子”这个概念,他认为原子是不可分割的、坚实的、微小的粒子,物质是由这些原子的不同组合而成。
然而,这种早期的原子观念更多的是一种哲学上的思辨,缺乏科学的实验依据。
三、道尔顿的原子学说到了 19 世纪初,英国科学家约翰·道尔顿提出了较为系统的原子学说。
道尔顿认为:化学元素是由不可再分割的原子组成的;同种元素的原子性质和质量都相同,不同元素原子的性质和质量各不相同;不同元素化合时,原子以简单整数比结合。
道尔顿的原子学说为化学的发展奠定了重要的基础,使人们对物质的构成有了更为清晰的认识。
但道尔顿的原子模型仍然是比较简单和粗糙的,没有考虑到原子内部的结构和电子的存在。
四、汤姆逊的“葡萄干布丁”模型19 世纪末,随着科学技术的发展,人们开始能够通过实验研究原子的结构。
英国物理学家约瑟夫·约翰·汤姆逊发现了电子,并提出了原子的“葡萄干布丁”模型。
他认为,原子是一个带正电的球体,电子像葡萄干一样镶嵌在其中,整个原子呈电中性。
这个模型虽然在一定程度上解释了原子的一些性质,但很快就被新的实验发现所挑战。
五、卢瑟福的核式结构模型1911 年,新西兰物理学家欧内斯特·卢瑟福通过著名的α粒子散射实验,对原子结构有了全新的认识。
实验中,卢瑟福用一束高速的α粒子(氦核)轰击金箔。
结果发现,大部分α粒子能够顺利穿过金箔,但有少数α粒子发生了较大角度的偏转,甚至有的被直接反弹回来。
基于这个实验结果,卢瑟福提出了原子的核式结构模型。
他认为,原子的中心有一个很小的原子核,原子核带正电,几乎集中了原子的全部质量;而电子则在原子核外的空间绕核运动,就像行星围绕太阳运转一样。
第一节原子结构模型xm
谢谢!再见
p 轨道 (l = 1, m = 0, +1, -1) m 三种取值, 三种取向, 三条等价(简并) p 轨道.
d 轨道(l = 2, m = +2, +1, 0, -1, -2) m 五种取值, 空间五种取向, 五条等价(简并) d 轨道.
f 轨道 ( l = 3, m = +3, +2, +1, 0, -1, -2, -3 ) m 七种取值, 空间七种取向, 七条等价(简并) f 轨道.
时,以不同的浓淡代表概率的大小,
其结果如同电子在原子核周围形成 了云雾,所以叫电子云。
也就是说,原子中的、受束缚
的电子不是像行星绕太阳运转那样 在确定的时刻处于确定的位置的。
“光”背景知识
• 光是一种电磁波,根据波长的长短分为 γ射线 X射线 紫外光 可见光 红外光 微波 光学光谱
• 不同波长的光具有不同能量E=hυ,υ=c/λ
• 大多数物质能吸收或释放出光;其光的波长可以用 光谱仪记录,形成光谱。
人的视觉所能感觉到的是在真空中波长介于400-700nm之间的电磁波。
光谱的测定仪器
线状光谱--具有特定波长、彼此分离的谱线所组成的光谱
实验结果
氢光谱实验表明:氢原子在一般情况下并不辐射电磁 波;氢原子光谱不是连续光谱,而是线状光谱。
电子云模型-统计与概率
电子云这个名词是用来描述原 子或分子中电子在原子核外围各区 域出现的概率的。为了直观,把电 子的这种概率分布状况用图像表示 高手笔记:电子云是电子在核外空间 各处出现概率密度大小的形象化描述。 注意:①电子云是一个形象化描述 ② 一个小黑点不代表一个电子③电子云 的疏密代表电子在那里出现的概率密 度的大小
1-1-2 原子结构模型
角量子数l和磁量子数m地关系即能级与原子轨道个数地关系.对于一个确定地l值,m值个数值.
②原子轨道地表示方法
s能级只有_____个原子轨道,可表示为s.
p能级有_____个原子轨道,可表示为px、py、pz.
d能级有_____个原子轨道,f能级有_____个原子轨道.
③对于第n层地s轨道,可记作_______,对于第n层地3个p轨道,可记作__________________.
请写出下列电子层各有哪几个能级:
K:__________
L:__________
M:__________
N:__________
3磁量子数m
当氢原子由n=2跃迁到n=1,可以观察到两条靠得很近地谱线,用角量子数ι无法解释这个现象,因此还必须引入新地量子数.
磁量子数即原子轨道个数.原子轨道是指一个电子空间运动状态.根据光谱现象,科学家发现同一能级电子空间运动状态不尽相同,一个能级包含着一个或若干个原子轨道.
4自旋磁量子数ms
氢原子上地电子由n=2地状态跳回到n=1地状态,会产生两条靠得很近地谱线,为什么?
自旋磁量子数ms表示同一轨道中电子地二种自旋状态
ms=
ms=
总结
1、原子轨道是由那几个量子数ห้องสมุดไป่ตู้定地?
2、电子地运动状态包括自旋状态是由那几个量子数决定地?
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.
<6)知道四个量子数决定地内容
【学案导学过程】
原子轨道及四个量子数
钠原子光谱由n=4地状态跃迁到n=3地状态,会产生多条谱线,以上事实能用玻尔理论解释吗?
玻尔原子模型地成功之处:
原子结构第一节原子结构模型
第1节原子结构模型[课标要求]1.了解原子核外电子的运动状态。
2.知道原子核外电子在一定条件下会发生跃迁,了解其简单应用。
1.能级符号及所含轨道数:s、1,p、3,d、5,f、7。
2.每个电子层所含能级类型:K:s;L:s、p;M:s、p、d;N:s、p、d、f。
3.s轨道呈球形,p轨道呈“∞”形。
4.原子轨道能量高低关系:同电子层不同能级:n f>n d>n p>n s;不同电子层同能级:n s>(n-1)s>(n-2)s>(n-3)s;同电子层同能级:n p x=n p y=n p z。
氢原子光谱和玻尔的原子结构模型1.不同时期的原子结构模型原子结构理论发展史:1803年提出原子是一个“实心球体”建立原子学说的是英国化学家,1903年汤姆逊提出原子结构的“”模型,1911年卢瑟福提出了原子结构的模型,1913年玻尔提出的原子结构模型,建立于20世纪20年代中期的模型已成为现代化学的理论基础。
1.道尔顿原子模型(1803年):原子是组成物质的基本粒子,它们是坚实的、不可再分的实心球。
2.汤姆逊原子模型(1903年):原子是一个平均分布着正电荷的粒子,其中镶嵌着许多电子,中和了正电荷,从而形成了中性原子。
3.卢瑟福原子模型(1911年):在原子的中心有一个带正电荷的核,它的质量几乎等于原子的全部质量,电子在它的周围沿着不同的轨道运转,就像行星环绕太阳运转一样。
4.玻尔原子模型(1913年):电子在原子核外空间的一定轨道上绕核做高速的圆周运动。
5.原子结构的量子力学模型(20世纪20年代中期):现代物质结构学说。
2.光谱和氢原子光谱(1)光谱①概念:利用仪器将物质 或 的波长和强度分布记录下来的谱线。
②形成原因:电子在不同轨道间 时,会辐射或吸收能量。
(2)氢原子光谱:属于 光谱。
过渡:为了解释原子的稳定性和 的实验事实,丹麦科学家玻尔在 原子模型的基础上提出了 的原子结构模型,3.玻尔原子结构模型的基本观点[(1)基态原子吸收能量释放能量激发态原子。
第一节原子结构
2、洪特规则
• 基态多电子原子中同一能级的轨道能量相 等,称为简并轨道。基态多电子原子的电 子总是首先自旋平行地、单独地填入简并 轨道。
• 【例】C N O
3、能量最低原理 • 核外电子排布总是尽可能使整个原子能量
处于最低状态。
• K的核外电子排布:2 8 8 1 【原因】 能层能量→能级能量
3、电子的自旋
• 电子绕自己的轴自旋(像地球绕地轴旋转 一样)
• 自旋方向:只有2种自旋方向——顺时针方 向和逆时针方向
• 在轨道中用↑↓两个箭头来表示电子自旋方 向
【4个量子数】
• (1)主量子数n n可取的数为1,2, 3,4,5,6,7, 分别表示为K, L, M, N, O, P, Q 在同一原子内,具有相同主量子数的电子,
→基态正离子的电子组态符合(n+0.4l)的顺序
【钻穿效应、屏蔽效应】
• 屏蔽效应:由于内层的s 电子距核较近而 有效地减弱了核电荷对外层电子的相互作 用的现象。s电子对同层的d、f 轨道电子也 有屏蔽效应。
• 钻穿效应:s轨道电子云出现在较内层空间, 从而受到核电荷的有效吸引而降低能量的 现象。
l对应的原子轨道的形状
l =0 —— s能级——球形 l =1 ——p能级——双纺锤形 l =2 ——d能级——多纺锤形 l =3 ——f能级——…… l =4 ……
• l取值为0,1,2,……(n-1) 当n=1时, l =0……s能级 当n=2时, l =0,1……s能级,p能级 当n=3时, l =0,1,2……s,p,d能级
第一节 原子结构
一. 光谱、基态、激发态、跃迁
【微观解释】
• 基态:电子能量最低的状态 • 激发态:电子能量高于基态的状态
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节原子结构模型知识结构梳理:(一)、原子结构的演变:1、原子结构模型的演变过程:古代原子学说→道尔顿原子模型→汤姆孙原子模型→卢瑟福原子模型→玻尔原子模型→电子云模型。
道尔顿原子模型:1808年英国自然科学家约翰·道尔顿提出了世界上第一个原子的理论模型。
他的理论主要有以下三点:①原子都是不能再分的粒子②同种元素的原子的各种性质和质量都相同③原子是微小的实心球体汤姆生葡萄干布丁模型:1904年汤姆生在发现电子的基础上提出了原子的葡萄干布丁模型,汤姆生认为:①电子是平均的分布在整个原子上的,就如同散布在一个均匀的正电荷的海洋之中,它们的负电荷与那些正电荷相互抵消。
②在受到激发时,电子会离开原子,产生阴极射线。
卢瑟福核式模型:1911年以经典电磁学为理论基础,提出了卢瑟福行星模型主要内容有:①原子的大部分体积是空的②在原子的中心有一个很小的原子核③原子的全部正电荷在原子核内,且几乎全部质量均集中在原子核内部。
带负电的电子在核空间进行绕核运动。
卢瑟福的原子结构理论遇到的问题:根据卢瑟福的原子结构模型和经典的电磁学观点,围绕原子核高速运动的电子一定会自动且连续地辐射能量,其光谱应是连续光谱而不应是线状光谱。
那么,氢原子的光谱为什么是线性光谱而不是连续光谱呢?(氢原子从一个电子层跃迁到另一个电子层时,吸收或释放一定的能量,就会吸收或释放一定波长的光,所以得到线状光谱)波尔的轨道模型:1913年为了解释氢原子线状光谱这一事实,玻尔在行星模型的基础上提出了核外电子分层排布的原子结构模型。
玻尔原子结构模型的基本观点是:①原子中的电子在具有确定半径的圆周轨道上绕原子核运动,不辐射能量;②在不同轨道上运动的电子具有不同的能量(E),轨道能量值依n(1,2,3,...)的增大而升高。
而不同的轨道则分别被命名为K(n=1)、L(n=2)、M(n=3)、N(n=4)、O(n=5)、P(n=6)。
(电子的能量是量子化的。
)③当且仅当电子从一个轨道跃迁到另一个轨道时,才会辐射或吸收能量。
如果辐射或吸收的能量以光的形式表现并被记录下来,就形成了光谱。
2、基态:电子处于能量最低的状态,称为基态。
激发态:电子能量处于高于基态的状态,称为激发态。
基态原子和激发态原子的相互转化:基态原子吸收能量激发态原子;激发态原子释放能量基态原子【例题精讲】1、道尔顿的原子学说曾经起了很大的作用。
他的学说中包含有下述三个论点:①原子是不能再分的粒子;②同种元素的原子的各种性质和质量都相同;③原子是微小的实心球体。
从现代的观点来看,你认为这三个论点中不确切的是A.只有③B.只有①③C.只有②③D.①②③2、人们对原子结构的认识,同其他科学事实一样经历了一个不断探索,不断深化的过程,下列关于原子结构模型的演变过程中,正确的是()A.汤姆逊原子模型→道尔顿原子模型→卢瑟福原子模型→玻尔原子模型→量子力学模型B.汤姆逊原子模型→卢瑟福原子模型→玻尔原子模型→量子力学模型→道尔顿原子模型C.道尔顿原子模型→卢瑟福原子模型→汤姆逊原子模型→玻尔原子模型→量子力学模型D.道尔顿原子模型→汤姆逊原子模型→卢瑟福原子模型→玻尔原子模型→量子力学模型3、光谱技术是人们在研究物质的结构、性质,尤其是微观粒子的结构的过程中广泛使用的一种技术。
原子的吸收光谱或发射光谱是线状的而不是连续的,其根本原因在于()A.原子中电子能量的高低不同B.外界条件的影响C.仪器设备的工作原理D.原子轨道的能量是量子化的4、在实验室中可以用光谱仪得到氢原子光谱,实验证明该光谱为线状光谱,该光谱的发现在原子结构的认识过程中,有极为重要的意义,根据它产生了()A.卢瑟福核式原子模型B.汤姆逊“葡萄干布丁”模型C.玻尔核外电子分层排布模型D.原子结构的量子力学模型5、首次将量子化概念应用到原子结构,并成功解释了氢原子光谱是线状光谱的科学家是()A.道尔顿B.爱因斯坦C.玻尔D.普朗克6、玻尔理论中的一个重要观点是电子能量的“量子化”,即在不同轨道上运动的电子是“一份一份”的,不连续变化的,下列实验中能证明该观点的是()A.线状光谱B.连续光谱C.粒子的散射实验D.电子脱离原子实验(二)、量子力学对原子核外电子运动状态的描述:1、原子轨道:量子力学中单个电子的空间运动状态称为原子轨道。
每个原子轨道可由三个只能取整数的量子数n、l 、m共同描述。
2、四个量子数:n、l 、m、m s①主量子数n: 描述电子离核的远近.(n 所表示的运动状态称为电子层)n取值为正整数1,2,3,4,5,6…对应符号为K,L,M,N,O,P…②角量子数l : 描述(电子云)原子轨道的形状.l 取值为0,1,2,3…(n-1).共n个数值.符号为s,p,d, f 等.若电子n、l 的相同,则电子的能量相同。
在一个电子层中,l 的取值有多少个,表示电子层有多少个不同的能级.③磁量子数m:描述磁场中原子轨道的能量状态m可以取0、±1、±2 …±l共(2l +1) 个数值.如l = 0, m只可以取0,对应的谱线只有一条.如l = 1, m可以取0, ±1,对应的谱线有三条.n、l 、m确定,原子轨道就确定了.④自旋量子数m s:描述在能量完全相同时电子运动的特殊状态(简称为电子自旋状态).处于同轨道上的电子的自旋状态只有两种:分别用ms =+1/2(通常用符号↑表示).ms= -1/2 (通常用符号↓表示).小结:决定电子能量的量子数是:n、l描述原子轨道的量子数是:n、l、m.描述电子运动的量子数是:n、l、m 、m s.n、l、m 、m s的取值与原子轨道数,可容纳的电子数的关系:每层的能级数= 电子层数(n)每层的轨道数= 电子层数的平方( n2 )每层最多容纳的电子数为= 2 ×电子层数的平方( 2n2 )多电子原子中四个量子数的关系为n>l>=m , m s = ±1/2量子数和原子轨道的关系:n l m 原子轨道m s取值符号取值符号取值符号取值1 K 0 s 0 1s ±1/22 L 0 s 0 2s ±1/21 p 0, ±1 2p x ;2p y ;2p z±1/23 M 0 s 0 3s ±1/21 p 0, ±1 3p x3p y3p z±1/22 d0, ±1±23d xy3d yz3d xz3d x2-y23d z2±1/23、能层与能级:能层:原子核外的电子是分层排布的,对多电子原子的核外电子,按能量的差异将其分成不同的能层(n) 。
根据电子的能量差异,可将核外电子分层不同的能层。
每层最多容纳的电子为2n2个。
离核越近的能层能量越低。
能级:对于同一能层里能量不同的电子,将其分成不同的能级(l);能级类型的种类数与能层数相对应;同一能层里,能级的能量按s、p、d、f的顺序升高,即E(s)<E(p)<E(d)<E(f)。
各能层所包含的能级类型及各能层、能级最多容纳的电子数见下表:能层(n) 一二三四五六七符号K L M N O P Q能级(l) 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s ………最多电子数2 2 6 2 6 10 2 6 10 14 2 ………2 8 18 32 ……2n2①、每个能层中,能级符号的顺序是ns、np、nd、nf……②、任一能层,能级数=能层序数③、s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍4、电子云和原子轨道:(1)电子运动的特点:①质量极小②运动空间极小③极高速运动。
因此,电子运动来能用牛顿运动定律来描述,只能用统计的观点来描述。
我们不可能像描述宏观运动物体那样,确定一定状态的核外电子在某个时刻处于原子核外空间如何,而只能确定它在原子核外各处出现的概率。
通常用小圆点的疏密程度来表示电子在原子核外出现概率的大小。
点密集的地方,表示电子在那里出现的概率大;点稀疏的地方,表示电子在那里出现的概率小。
概率分布图看起来像一片云雾,因而被形象地称作电子云。
常把电子出现的概率约为90%的空间圈出来,人们把这种电子云轮廓图成为原子轨道。
S电子的原子轨道是球形的,能层序数越大,原子轨道的半径越大。
这是由于1s,2s,3s……电子的能量依次增高,电子在离核更远的区域出现的概率逐渐增大,电子云越来越向更大的空间扩展。
P的原子轨道是纺锤形的,每个P能级有3个轨道,它们互相垂直,分别以P x、P y、P z为符号。
P原子轨道的平均半径也随能层序数增大而增大。
n d能级各有5个原子轨道;n f能级各有7个原子轨道。
5、各原子轨道能量的高低:①、相同的电子层上原子轨道能量的高低:ns<np<nd<nf;②、形状相同的原子轨道能量的高低:1s<2s<3s<4s③、电子层和形状相同的原子轨道的能量相等,如2p x ; 2p y ; 2p z【例题精讲】1、下列各电子层,不包含d能级的是()。
A. N电子层B. M电子层C. O电子层D. K电子层2.下列能级中,轨道数为5的是()。
A.s能级B.p能级C.d能级D.f能级3.下列几组量子数能够同时存在的是()。
A. 3、2、2、-1/2B. 3、0、-1、+1/2C. 2、2、2、 2D. 1、0、0、04.下列电子层中,原子轨道的数目为4的是()A.K层B.L层C.M层D.N层5.如果每个轨道只能容纳2个电子,那么L电子层最多可容纳的电子数为( ) A.3个B.8个C.9个D.18个6.P轨道电子云形状正确的是()。
A.球形对称B.圆形对称C.极大值在x、y、z轴上的纺锤形D.互相垂直的花瓣形7、下列说法中正确的是()A.一个原子轨道上只能有一个电子B.处在同一原子轨道上的电子运动状态完全相同C.处在同一电子层上的电子(基态)能量一定相同D.处在同一能级中的电子(基态)能量一定相同8、下列关于氢原子电子云图的说法正确的是A.黑点密度大的区域电子的数目大B.黑点密度大的区域电子出现的概率大C.该图表达了电子呈球形的客观事实D.该图表达的是氢原子所特有的原子云9、以下各能级能否存在?如果能存在,各包含多少轨道?(1)2s (2)2d (3)4p (4)5d课后练习:1.下列关于电子云的说法不正确的是( )A 电子云是描述核外某空间电子出现的几率密度的概念;B 电子云是│Ψ│2的数学图形;C 电子云有多种图形,黑点图只是其中一种;D电子就象云雾一样在原子核周围运动,故称为电子云.2.P轨道电子云形状正确叙述为( )A 球形对称;B 对顶双球;C 极大值在X.Y.Z轴上的双梨形;D 互相垂直的梅花瓣形.3.描述一确定的原子轨道(即一个空间运动状态),需用以下参数( )D 只需nA n.lB n.l.mC n.l.m.ms4.n=4时m的最大取值为( )A 4B ±4C 3D 05.2p轨道的磁量子数可能有( )A 1.2B 0.1.2C 1.2.3D 0.+1.-16.原子中电子的描述不可能的量子数组合是( )A 1.0.0.+½B 3.1.1.-½C 2.2.0.-½D 4.3.-3.-½7、玻尔理论不能解释()A.H原子光谱为线状光谱B.在一给定的稳定轨道上,运动的核外电子不发射能量----电磁波C.H原子的可见光区谱线D.H原子光谱的精细结构8、2p轨道的磁量子数可能有( )A. 1.2B. 0.1.2C. 1.2.3D. 0.+1.-19、描述核外电子空间运动状态的量子数组合是( )A. n.lB. n.l.mC. n.l.m.m sD. n.l.m s10、n.l.m确定后,仍不能确定该量子数组合所描述的原子轨道的( )A. 数目B. 形状C. 能量D. 所填充的电子数目11\对于原子中的电子,下面哪些量子数组是容许的?( )A. n=3,l=1,m=-1B. n=3,l=1,m=2C. n=2,l=2,m=-1D. n=4,l=-2,m=112、关于下列对四个量子数的说法正确的是( )A. 电子的自旋量子数是½,在某一个轨道中有两个电子,所以总自旋量子数是1或是0;B. 磁量子数m=0的轨道都是球形的轨道;C. 角量子数l的可能取值是从0到n的正整数;D. 多电子原子中,电子的能量决定于主量子数n和角量子数l.13、在主量子数为4的电子层中,能容纳的最多电子数是( )A. 18B. 24C. 32D. 3614、多电子原子中,在主量子数为n,角量子数为l的分层上,原子轨道数为( )A. 2l+1B. n-1C. n-l+1D. 2l-115、对于多电子原子来说,下列说法正确的是( )A. 主量子数n决定原子轨道的能量;B.主量子数n是决定原子轨道能量的主要因素;C. 主量子数n值愈大,轨道能量正值愈大;D. 主量子数n决定原子轨道的形状.。