六年级奥数举一反三第30周抽屉原理

合集下载

抽屉原理 小学数学

抽屉原理  小学数学

六年级奥数知识讲解:抽屉原理
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算
由狼犬工作室提供。

六年级奥数 第30讲 抽屉原理(2)

六年级奥数   第30讲  抽屉原理(2)

第30讲抽屉原理(2)讲义专题简析在抽屉原理的第二条原理中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。

例1、幼儿园里有120个小朋友,各种玩具有364件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?练习:1、一个幼儿园大班有40名小朋友,班里有各种玩具125件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16支铅笔放入三个笔盒内,至少有一个笔盒里的笔不少于6支。

这是为什么?3、把25个球最多放在几个盒子里,才能保证至少有一个盒子里有7个球?例2、布袋里有4种不同颜色的球,每种都有10个。

最少取出多少个球,才能保证其中一定有3个球的颜色一样?练习:1、布袋中有足够多的5种不同颜色的球。

最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白本块、10块蓝木块,它们的形状、大小都一样。

当你被蒙上眼去取出容器中的木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1~13点各有4张,还有两张王。

至少要取出几张牌,才能保证其中必有4张牌的点数相同?例3、某班共有46名学生,他们都参加了课外兴趣小组。

活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。

问班级中至少有几名学生参加的项目完全相同?练习:1、某班有37名学生,他们都订阅了《小主人报》《少年文艺》《小学生优秀作文》三种报刊中的一、二、三种。

其中至少有几名学生订的报刊相同?2、学校开办了绘画、笛子、足球和电脑四个课外学习班,每名学生最多可以参加两个(也可以不参加)。

某班有52名学生。

问至少有几名学生参加课外学习班的情况完全相同?3、库房里有一批篮球、排球、足球和铅球,每人任意搬运两个。

六年级奥数抽屉原理

六年级奥数抽屉原理

如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。

如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。

如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。

这些简单内的例子就是数学中的“抽屉原理”。

基本的抽屉原理有两条:(1)如果把x+k (k ≥1)个元素放到x 个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。

(2)如果把m ×x ×k (x >k ≥1)个元素放到x 个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。

利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a 、构造抽屉,指出元素。

b 、把元素放入(或取出)抽屉。

C 、说明理由,得出结论。

本周我们先来学习第(1)条原理及其应用。

某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?把一年中的天数看成是抽屉,把学生人数看成是元素。

把367个元素放到366个抽屉中,至少有一个抽屉中有2个元素,即至少有两个学生的生日是同一天。

平年一年有365天,闰年一年有366天。

把天数看做抽屉,共366个抽屉。

把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。

1、某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?2、某校有30名学生是2月份出生的,能否至少有两个学生生日是在同一天?3、15个小朋友中,至少有几个小朋友在同一个月出生?某班学生去买语文书、数学书、外语书。

买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。

要保证至少有一个抽屉里有2人,那么去的人数应大于抽屉数。

六年级奥数分册:第30周 抽屉原理

六年级奥数分册:第30周  抽屉原理

第三十周抽屜原理(二)專題簡析:在抽屜原理的第(2)條原則中,抽屜中的元素個數隨著元素總數的增加而增加,當元素總數達到抽屜數的若干倍後,可用抽屜數除元素總數,寫成下麵的等式:元素總數=商×抽屜數+餘數如果餘數不是0,則最小數=商+1;如果餘數正好是0,則最小數=商。

例題1:幼稚園裏有120個小朋友,各種玩具有364件。

把這些玩具分給小朋友,是否有人會得到4件或4件以上的玩具?把120個小朋友看做是120個抽屜,把玩具件數看做是元素。

則364=120×3+4,4<120。

根據抽屜原理的第(2)條規則:如果把m×x×k(x>k≥1)個元素放到x個抽屜裏,那麼至少有一個抽屜裏含有m+1個或更多個元素。

可知至少有一個抽屜裏有3+1=4個元素,即有人會得到4件或4件以上的玩具。

練習1:1、一個幼稚園大班有40個小朋友,班裏有各種玩具125件。

把這些玩具分給小朋友,是否有人會得到4件或4件以上的玩具?2、把16枝鉛筆放入三個筆盒裏,至少有一個筆盒裏的筆不少於6枝。

這是為什麼?3、把25個球最多放在幾個盒子裏,才能至少有一個盒子裏有7個球?例題2:布袋裏有4種不同顏色的球,每種都有10個。

最少取出多少個球,才能保證其中一定有3個球的顏色一樣?把4種不同顏色看做4個抽屜,把布袋中的球看做元素。

根據抽屜原理第(2)條,要使其中一個抽屜裏至少有3個顏色一樣的球,那麼取出的球的個數應比抽屜個數的2倍多1。

即2×4+1=9(個)球。

列算式為(3—1)×4+1=9(個)練習2:1、布袋裏有組都多的5種不同顏色的球。

最少取出多少個球才能保證其中一定有3個顏色一樣的球?2、一個容器裏放有10塊紅木塊、10塊白木塊、10塊藍木塊,它們的形狀、大小都一樣。

當你被蒙上眼睛去容器中取出木塊時,為確保取出的木塊中至少有4塊顏色相同,應至少取出多少塊木塊?3、一副撲克牌共54張,其中1—13點各有4張,還有兩張王的撲克牌。

六年级奥数抽屉原理含答案

六年级奥数抽屉原理含答案

抽屉原理知识框架一、 知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、 抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、 抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11xn -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.重难点抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。

本讲的主要教学目标是: (1) 理解抽屉原理的基本概念、基本用法; (2) 掌握用抽屉原理解题的基本过程; (3) 能够构造抽屉进行解题;(4)利用最不利原则进行解题;(5)利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

例题精讲(一)、直接利用公式进行解题(1)求结论【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【考点】抽屉原理【难度】1星【题型】解答【解析】6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的.利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,6511÷=,112+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子.【答案】对【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【考点】抽屉原理【难度】1星【题型】解答【解析】略.【总结】题目中并没有说明什么是“抽屉”,什么是“物品”,解题的关键是制造“抽屉”,确定假设的“物品”,根据“抽屉少,物品多”转化为抽屉原理来解.【答案】从题目可以看出,这道题显然与月份有关.我们知道,一年有12个月,把这12个月看成12个抽屉,这道题就相当于把13个苹果放入12个抽屉中.根据抽屉原理,至少有一个抽屉放了两个苹果.因此至少有两个同学在同一个月过生日.【例 2】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

六年级奥数分册第30周 抽屉原理【最佳】

六年级奥数分册第30周  抽屉原理【最佳】

第三十周抽屉原理(二)专题简析:在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。

例题1:幼儿园里有120个小朋友,各种玩具有364件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?把120个小朋友看做是120个抽屉,把玩具件数看做是元素。

则364=120×3+4,4<120。

根据抽屉原理的第(2)条规则:如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。

可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。

练习1:1、一个幼儿园大班有40个小朋友,班里有各种玩具125件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。

这是为什么?3、把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球?例题2:布袋里有4种不同颜色的球,每种都有10个。

最少取出多少个球,才能保证其中一定有3个球的颜色一样?把4种不同颜色看做4个抽屉,把布袋中的球看做元素。

根据抽屉原理第(2)条,要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。

即2×4+1=9(个)球。

列算式为(3—1)×4+1=9(个)练习2:1、布袋里有组都多的5种不同颜色的球。

最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。

当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。

小学六年级奥数抽屉原理含答案

小学六年级奥数抽屉原理含答案

小学六年级奥数抽屉原理含答案Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】抽屉原理知识要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。

它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。

(2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。

它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。

2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。

例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后背面朝上放。

一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。

如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。

点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。

点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。

解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。

解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。

(2)要保证有5人的属相相同的最少人数为4×12+1=49(人)不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。

六年级奥数知识讲解抽屉原理

六年级奥数知识讲解抽屉原理

六年级奥数知识讲解:抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

六年级抽屉原理奥数专题1、从1,2,3,…,1988,1989这些自然数中,最多可以取出多少个数,使得其中每两个数的差不等于4?2、从1至1993这1993个自然数中最多能取出多少个数,使得其中任意的两数都不连续且差不等于4?3、从1,2,3,4,5,6,7,8,9,10,11,12中最多能选出几个数,使得在选出的数中,每一个数都不是另一个数的2倍?4、证明:任给12个不同的两位数,其中一定存在着这样的两个数,它们的差是个位与十位数字相同的两位数.5、某班有16名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任意两个学生总有某个月份是分在不同的小组里?抽屉原理测试卷答案1、六年级抽屉原理习题答案:【分析与解】1,2,3,4,9,10,1l,12,17,18,19,20,25,…,这些数中任何两个数的差都不为4,这些数是每8个连续的数中选取前4个连续的数.有1989÷8=248……5,所以最多可以选248×4+4=996个数.评注:对于这类问题,一种方法是先尽可能的多选择,然后再找出这些数的规律,再计算出最多可以选出多少个.2、四年级抽屉原理问题习题答案:【分析与解】1,3,6,8,11,13,16,18,21,…,这些数中任何两个数不连续且差不等于4,这些数是每5个连续的数中选择第1、3个数.1993÷5=398……3.所以最多可以选398×2+2=798个数.评注:当然还可以是1,4,6,9,11,14,16,19,21,…,这些数满足条件,是每5个连续的数中选择第1、4个数.但是此时最多只能选出398×2+l=797个数.3、六年级抽屉原理问题答案:【分析与解】方法一:直接从1开始选1,3,4,5,7,9,11,12,这样可以选出8个数;而从2开始选2,3,5,7,8,9,11,12,这样也是可以选出8个数.3包含在组内,因此只用考虑这两种情况即可.所以,在满足题意情况下,最多可以选出8个数.方法二:我们知道选多少个奇数均满足,有1,3,5,7,9,11均为奇数,并且有偶数中4的倍数,但不是8的倍数的也满足,有4,12是这样的数.所以,在满足题意情况下最多可以选出8个数.4、六年级抽屉原理问题答案:【分析与解】因为两个不同的两位数相减得到的差不可能为三位或三位以上的数.如果这个差是1l的倍数,那么一定有这个差的个位与十位数字相同.两个数的差除以1l的余数有0、1、2、3、…、10这11种情况.将这11种情况视为11个抽屉.将12个数视为12个苹果,那么必定有两个苹果在同一抽屉,也就是说有两个数除以11的余数相同,那么它们的差一定是11的倍数.而两个两位数的差一定是一个两位数,如果这个差是11的倍数,那么就有个数与十位数字相等.问题得证.评注:抽屉原理一:将n+1个元素放到n个抽屉中去,则无论怎么放,必定有一个抽屉至少有两个元素.抽屉原理二:将nr+1个元素放到n个抽屉中去,则无论怎么放,必定有一个抽屉至少有r+1个元素.5、六年级抽屉原理问题答案:【分析与解】经过第一个月,将16个学生分成两组,至少有8个学生分在同一组,下面只考虑这8个学生.经过第二个月,将这8个学生分成两组,至少有4个学生是分在同一组,下面只考虑这4个学生.经过第三个月,将这4个学生分成两组,至少有2个学生仍分在同一组,这说明只经过3个月是无法满足题目要求的.如果经过四个月,将每个月都一直保持同组的学生一分为二,放人两个组,那么第一个月保持同组的人数为16÷2=8人,第二个月保持同组的人数为8÷2=4人,第三个月保持同组人数为4÷2=2人,这说明,照此分法,不会有2个人一直保持在同一组内,即满足题目要求,故最少要经过4个月.。

小学六年级奥数第30讲 抽屉原理(二)(含答案分析)

小学六年级奥数第30讲 抽屉原理(二)(含答案分析)

第30讲抽屉原理(二)一、知识要点在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。

二、精讲精练【例题1】幼儿园里有120个小朋友,各种玩具有364件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?把120个小朋友看做是120个抽屉,把玩具件数看做是元素。

则364=120×3+4,4<120。

根据抽屉原理的第(2)条规则:如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。

可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。

练习1:1、一个幼儿园大班有40个小朋友,班里有各种玩具125件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。

这是为什么?3、把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球?【例题2】布袋里有4种不同颜色的球,每种都有10个。

最少取出多少个球,才能保证其中一定有3个球的颜色一样?把4种不同颜色看做4个抽屉,把布袋中的球看做元素。

根据抽屉原理第(2)条,要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。

即2×4+1=9(个)球。

列算式为(3—1)×4+1=9(个)练习2:1、布袋里有组都多的5种不同颜色的球。

最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。

当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。

六年级数学抽屉原理

六年级数学抽屉原理

抽屉原理是数学中的一种基本原理,也被称为鸽巢原理。

它是由德国数学家德尔塔尔提出的,用来解决判断物品和盒子、袜子和鞋子等是否有空置的问题。

抽屉原理的内容可以用以下几个步骤来描述:1.抽屉原理的第一层含义是:当$n+1$个物品放入$n$个盒子时,至少有一个盒子里会有两个或两个以上的物品。

举例来说,假设有6个物品和5个盒子,按抽屉原理,必定有2个物品放在同一个盒子里。

2.抽屉原理的第二层含义是:如果将$n$+个物体放入$n$个抽屉中,而至少有一个抽屉中的物体大于$n$个,那么一定会有至少两个物体放置在同一个抽屉中。

举例来说,如果有7匹马放入6个马槽,那么至少有一个马槽里会有2匹马。

抽屉原理的应用十分广泛,可以用于解决许多实际问题。

下面,我们将分别用两个例子来展示抽屉原理的应用。

例子1:班级选学化学课在一个班级里,有20个学生,他们需要选择是否学习化学课。

为了方便安排课程,学校准备了15个班级,每个班级安排一个化学课。

按照学生和班级的数量,若每个班级至少有2个学生选择学习化学,那么至少需要多少个班级?解:根据抽屉原理的第一层含义,当20个学生放入15个班级时,至少有一个班级里会有2个或2个以上的学生选择学习化学。

所以,最少需要15个班级。

例子2:袜子和鞋子假设有8只袜子和8只鞋子,它们被放到8个抽屉里,每个抽屉只能放一只袜子或一只鞋子。

那么至少有多少个抽屉里既有袜子又有鞋子?解:根据抽屉原理的第二层含义,如果8只袜子和8只鞋子放入8个抽屉中,至少有一个抽屉里会有2只或2只以上的物体。

因此,至少有一个抽屉里既有袜子又有鞋子。

通过以上两个例子的讲解,我们可以看出抽屉原理在解决数学问题中的重要性和实用性。

它不仅能帮助我们判断物体和容器之间的关系,还可以引导我们对问题进行合理的分析和推理,从而得出准确的结论。

需要注意的是,虽然抽屉原理在许多情况下都是有效的,但在一些特殊情况下,可能会存在一些例外。

因此,在应用抽屉原理解决问题时,我们要注意问题的具体条件和要求,灵活运用抽屉原理来分析问题,以得出准确的结论。

六年级上册奥数第30讲 抽屉原理(2)

六年级上册奥数第30讲  抽屉原理(2)

第30讲抽屉原理(2)讲义专题简析在抽屉原理的第二条原理中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。

例1、幼儿园里有120个小朋友,各种玩具有364件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?练习:1、一个幼儿园大班有40名小朋友,班里有各种玩具125件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16支铅笔放入三个笔盒内,至少有一个笔盒里的笔不少于6支。

这是为什么?3、把25个球最多放在几个盒子里,才能保证至少有一个盒子里有7个球?例2、布袋里有4种不同颜色的球,每种都有10个。

最少取出多少个球,才能保证其中一定有3个球的颜色一样?练习:1、布袋中有足够多的5种不同颜色的球。

最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白本块、10块蓝木块,它们的形状、大小都一样。

当你被蒙上眼去取出容器中的木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1~13点各有4张,还有两张王。

至少要取出几张牌,才能保证其中必有4张牌的点数相同?例3、某班共有46名学生,他们都参加了课外兴趣小组。

活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。

问班级中至少有几名学生参加的项目完全相同?练习:1、某班有37名学生,他们都订阅了《小主人报》《少年文艺》《小学生优秀作文》三种报刊中的一、二、三种。

其中至少有几名学生订的报刊相同?2、学校开办了绘画、笛子、足球和电脑四个课外学习班,每名学生最多可以参加两个(也可以不参加)。

某班有52名学生。

问至少有几名学生参加课外学习班的情况完全相同?3、库房里有一批篮球、排球、足球和铅球,每人任意搬运两个。

六年级奥数第30讲抽屉原理

六年级奥数第30讲抽屉原理

抽屉原理是数学中一个非常重要的概念,也被称为鸽巢原理。

它的含义是:如果有n+1个物体放入n个容器中,那么至少有一个容器中会有两个或两个以上的物体。

这个概念有时候在解决问题中起到了非常重要的作用。

现在我们来看一个具体的例子。

问题:小明有7双袜子,每双袜子的颜色都不同。

他忘记了每双袜子的颜色,但他想知道他至少要在袜子抽屉中拿出几只袜子,才能确保他至少拿到一双相同颜色的袜子?解答:根据抽屉原理,我们知道如果小明至少要拿出8只袜子,那么他肯定能拿到一双相同颜色的袜子,因为他只有7种颜色的袜子,但有8只袜子。

如果小明只拿出7只袜子,那么可能出现以下情况:(1)他一直拿的是不同颜色的袜子,直到拿完7只,这种情况下他没有拿到一双相同颜色的袜子;(2)他拿到了两只相同颜色的袜子,这种情况下他拿到了一双相同颜色的袜子。

通过这个例子,我们可以看到抽屉原理的应用。

抽屉原理告诉我们,当我们将一些物体放入一些容器中时,如果物体的数量超过了容器的数量,那么就一定存在至少一个容器中有两个或两个以上的物体。

这个原理可以帮助我们解决很多有关排列和组合的问题。

现在我们来应用抽屉原理解决一个稍微复杂一些的问题。

问题:有9本不同的书放在3个抽屉里,每个抽屉至少有一本书,问一共有多少种放法?解答:根据题目的要求,我们可以知道每个抽屉至少有一本书,所以第一个抽屉必须放书,我们把第一个抽屉放好书的情况列举出来:(1)第一个抽屉放1本书,剩下8本书放在剩下的两个抽屉中;(2)第一个抽屉放2本书,剩下7本书放在剩下的两个抽屉中;(3)第一个抽屉放3本书,剩下6本书放在剩下的两个抽屉中;(4)第一个抽屉放4本书,剩下5本书放在剩下的两个抽屉中;(5)第一个抽屉放5本书,剩下4本书放在剩下的两个抽屉中;根据抽屉原理,我们知道在剩下的两个抽屉中至少有一个抽屉中有两本及以上的书。

所以这个问题就变成了,把剩下的书放入两个抽屉的问题。

(1)第二个抽屉放1本书,剩下3本书放在第三个抽屉中;(2)第二个抽屉放2本书,剩下2本书放在第三个抽屉中;(3)第二个抽屉放3本书,剩下1本书放在第三个抽屉中;根据抽屉原理,我们知道在剩下的第三个抽屉中至少有一本书。

小学六年级奥数-抽屉原理(含答案)

小学六年级奥数-抽屉原理(含答案)

抽屉原理学问要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必定有一个抽屉中至少有2个苹果。

它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。

(2)若把3个苹果放入4个抽屉中,则必定有一个抽屉空着。

它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。

2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。

例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后反面朝上放。

一次至少抽取张牌,才能保证其中必定有2张牌的点数与颜色都一样。

假如要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。

点拨对于第一问,最不利的状况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都一样。

点拨对于第二问,最不利的状况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。

解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相一样;(2)要保证有5人属相一样,但不保证有6人属相一样,那么人的总数应在什么范围内?点拨可以把12个属相看做12个抽屉,依据第一抽屉原理即可解决。

解(1)因为37÷12=3……1,所以,依据第一抽屉原理,至少有3+1=4(人)属相一样。

(2)要保证有5人的属相一样的最少人数为4×12+1=49(人)不保证有6人属相一样的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。

例3有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色一样?(2)四种花色都有?点拨首先我们要弄清晰一副扑克牌有2张王牌,四种花色,每种有13张。

六年级奥数分册第30周 抽屉原理【提升练习】

六年级奥数分册第30周  抽屉原理【提升练习】

第三十周抽屉原理(二)专题简析:在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。

例题1:幼儿园里有120个小朋友,各种玩具有364件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?把120个小朋友看做是120个抽屉,把玩具件数看做是元素。

则364=120×3+4,4<120。

根据抽屉原理的第(2)条规则:如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。

可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。

练习1:1、一个幼儿园大班有40个小朋友,班里有各种玩具125件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。

这是为什么?3、把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球?例题2:布袋里有4种不同颜色的球,每种都有10个。

最少取出多少个球,才能保证其中一定有3个球的颜色一样?把4种不同颜色看做4个抽屉,把布袋中的球看做元素。

根据抽屉原理第(2)条,要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。

即2×4+1=9(个)球。

列算式为(3—1)×4+1=9(个)练习2:1、布袋里有组都多的5种不同颜色的球。

最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。

当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。

举一反三:小六年级下册数学抽屉原理复习教案帮你拓展数学思维

举一反三:小六年级下册数学抽屉原理复习教案帮你拓展数学思维

举一反三:小六年级下册数学抽屉原理复习教案帮你拓展数学思维。

一、小六年级下册数学抽屉原理复习教案小学数学抽屉原理不是新的概念,可以追溯到上世纪。

简单来说,抽屉原理就是指如果有m个物品放进n个箱子,其中m>n,则至少有一个箱子里面必然有两个或两个以上的物品。

在小六年级下册数学教学中,老师通常会采用例题让学生理解抽屉原理。

例如:一根长度为6的木棒,可以分割成若干小段,这些小段的长度都是整数,并且这些小段的长度加起来恰好等于6。

问:可以把这根长度为6的木棒分割成几段?引导学生先设想最多的可能情况,6个小段(每个小段长度为1),计算一下发现这不可能成立。

接着让学生思考下面几种情况:1、如果这根长度为6的木棒可以只分割成5小段,最多有几种情况?2、如果这根长度为6的木棒可以只分割成4小段,最多有几种情况?3、如果这根长度为6的木棒可以只分割成3小段,最多有几种情况?通过这样一个例题,学生可以了解到,当物品不能均分到所有的箱子里时,必然会有至少一个箱子里放了两个或两个以上的物品。

这就是抽屉原理。

在小六年级下册数学教学中,通过学习这样的例题,学生可以较为深入地理解抽屉原理,并学会应用抽屉原理解决问题。

二、举一反三:抽屉原理在数学中的应用抽屉原理虽然看起来简单,但其应用范围很广,下面举几个例子,来看看抽屉原理在数学中的应用。

1、约数例如,在100到199之间选取11个数,必然有两个数的差是10的倍数。

我们把100到199之间的每个数对10取余数,得到0到9这10个余数,而我们要选取的11个数不可能出现两个数对10取余相同的情况,所以必然存在一对数,它们之间的差是10的倍数。

2、鸽笼原理如果一个房间里有16个人,那么其中至少有3个人的生日在同一个月。

这样的结论有点出乎想象,但如果我们把12个月看成12个抽屉,每个人的生日看成一个球,这个问题就可以很自然地解决了。

3、进制如果将一个n位数分别在十进制和二进制下列成数字,并相互比较后发现二进制中的1的个数大于等于n/2,则可以推断这个数是一种超过十进制的进制数。

六年级奥数题答案解析:抽屉原理

六年级奥数题答案解析:抽屉原理

六年级奥数题答案解析:抽屉原理
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
抽屉原理:(高等难度)
一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?
抽屉原理答案:
扑克牌中有方块、梅花、黑桃、红桃4种花色,2张牌的花色可以有:2张方块,2张梅花,2张红桃,2张黑桃,1张方块1 张梅花,1张方块1张黑桃,1张方块1张红桃,1张梅花1张黑桃,1张梅花1张红桃,1张黑桃1张红桃共计_种情况.把这_种花色配组看作_个抽屉,只要苹果的个数比抽屉的个数多1个就可以有题目所要的结果.所以至少有_个人。

六年级奥数题答案解析:抽屉原理.到电脑,方便收藏和打印:。

小学六年级奥数题抽屉原理答案

小学六年级奥数题抽屉原理答案

小学六年级奥数题抽屉原理答案
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
抽屉原理:(高等难度)
一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?
抽屉原理答案:
扑克牌中有方块、梅花、黑桃、红桃4种花色,2张牌的花色可以有:2张方块,2张梅花,2张红桃,2张黑桃,1张方块1 张梅花,1张方块1张黑桃,1张方块1张红桃,1张梅花1张黑桃,1张梅花1张红桃,1张黑桃1张红桃共计_种情况.把这_种花色配组看作_个抽屉,只要苹果的个数比抽屉的个数多1个就可以有题目所要的结果.所以至少有_个人。

小学六年级奥数题抽屉原理答案.到电脑,方便收藏和打印:。

六年级奥数举一反三第30周抽屉原理

六年级奥数举一反三第30周抽屉原理

六年级奥数举一反三第30周抽屉原理专题简析;在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式;元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。

例题1;幼儿园里有120个小朋友,各种玩具有364件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?把120个小朋友看做是120个抽屉,把玩具件数看做是元素。

则364=120×3+4,4<120。

根据抽屉原理的第(2)条规则;如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。

可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。

练习1;1·一个幼儿园大班有40个小朋友,班里有各种玩具125件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2·把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。

这是为什么?3·把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球?例题2;布袋里有4种不同颜色的球,每种都有10个。

最少取出多少个球,才能保证其中一定有3个球的颜色一样?把4种不同颜色看做4个抽屉,把布袋中的球看做元素。

根据抽屉原理第(2)条,要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。

即2×4+1=9(个)球。

列算式为(3—1)×4+1=9(个)练习2;1·布袋里有组都多的5种不同颜色的球。

最少取出多少个球才能保证其中一定有3个颜色一样的球?2·一个容器里放有10块红木块·10块白木块·10块蓝木块,它们的形状·大小都一样。

当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3·一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数举一反三第30周抽
屉原理
专题简析;
在抽屉原理的第【2】条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式;
元素总数=商×抽屉数+余数
如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。

例题1;
幼儿园里有120个小朋友,各种玩具有364件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?
把120个小朋友看做是120个抽屉,把玩具件数看做是元素。

则364=120×3+4,4<120。

根据抽屉原理的第【2】条规则;如果把m×x×k【x>k≥1】个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。

可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。

练习1;
1·一个幼儿园大班有40个小朋友,班里有各种玩具125件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?
2·把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。

这是为什么?
3·把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球?
例题2;
布袋里有4种不同颜色的球,每种都有10个。

最少取出多少个球,才能保证其中一定有3个球的颜色一样?
把4种不同颜色看做4个抽屉,把布袋中的球看做元素。

根据抽屉原理第【2】条,要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。

即2×4+1=9【个】球。

列算式为
【3—1】×4+1=9【个】
练习2;
1·布袋里有组都多的5种不同颜色的球。

最少取出多少个球才能保证其中一定有3个颜色一样的球?
2·一个容器里放有10块红木块·10块白木块·10块蓝木块,它们的形状·大小都一样。

当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?
3·一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。

至少要取出几张牌,才能保证其中必有4张牌的点数相同?
例题3;
某班共有46名学生,他们都参加了课外兴趣小组。

活动内容有数学·美术·书法和英
语,每人可参加1个·2个·3个或4个兴趣小组。

问班级中至少有几名学生参加的项目完全相同?
参加课外兴趣小组的学生共分四种情况,只参加一个组的有4种类型,只参加两个小组的有6个类型,只参加三个组的有4种类型,参加四个组的有1种类型。

把4+6+4+1=15【种】类型看做15个抽屉,把46个学生放入这些抽屉,因为46=3×15+1,所以班级中至少有4名学生参加的项目完全相同。

练习3;
1·某班有37个学生,他们都订阅了《小主人报》·《少年文艺》·《小学生优秀作文》三种报刊中的一·二·三种。

其中至少有几位同学订的报刊相同?
2·学校开办了绘画·笛子·足球和电脑四个课外学习班,每个学生最多可以参加两个【可以不参加】。

某班有52名同学,问至少有几名同学参加课外学习班的情况完全相同?
3·库房里有一批篮球·排球·足球和铅球,每人任意搬运两个,问;在31个搬运者中至少有几人搬运的球完全相同?
例题4;
从1至30中,3的倍数有30÷3=10个,不是3的倍数的数有30—10=20个,至少要取出20+1=21个不同的数才能保证其中一定有一个数是3的倍数。

练习4;
1·在1,2,3,……49,50中,至少要取出多少个不同的数,才能保证其中一定有一个数能被5整除?
2·从1至120中,至少要取出几个不同的数才能保证其中一定有一个数是4的倍数?
3·从1至36中,最多可以取出几个数,使得这些数中没有两数的差是5的倍数?
例题5;
将400张卡片分给若干名同学,每人都能分到,但都不能超过11张,试证明;找少有七名同学得到的卡片的张数相同。

这题需要灵活运用抽屉原理。

将分得1,2,3,……,11张可片看做11个抽屉,把同学人数看做元素,如果每个抽屉都有一个元素,则需1+2+3+……+10+11=66【张】卡片。

而400÷66=6……4【张】,即每个周体都有6个元素,还余下4张卡片没分掉。

而这4张卡片无论怎么分,都会使得某一个抽屉至少有7个元素,所以至少有7名同学得到的卡片的张数相同。

练习5;
1·把280个桃分给若干只猴子,每只猴子不超过10个。

证明;无论怎样分,至少有6只猴子得到的桃一样多。

2·把61颗棋子放在若干个格子里,每个格子最多可以放5颗棋子。

证明;至少有5个格子中的棋子数目相同。

3·汽车8小时行了310千米,已知汽车第一小时行了25千米,最后一小时行了45千米。

证明;一定存在连续的两小时,在这两小时内汽车至少行了80千米。

答案;
练1
1·把40名小朋友看做40个抽屉,将125件玩具放入这些抽屉,因为125=3×40+5,根据抽屉原理,可知至少有一个抽屉有4件或4件以上的玩具,所以肯定有人会得到4件或4件以上的玩具。

2·把三个笔盒看做3个抽屉,因为16=5×3+1,根据抽屉原理可以至少有一个笔盒里的笔有6枝或6枝以上。

3·把盒子数看成抽屉,要使其中一个抽屉里至少有7个球,那么球的个数至少应比抽屉个数的【7-1】倍多1,而25=4×【7-1】+1,所以最多方子4个盒子里,才能保证至少有一个盒子里有7个球。

练2
1·最少应取出【3-1】×5+1=11个球
2·至少取出【4-1】×3+1=10块木块。

3·如果没有两张王牌,至少要取【4-1】×13+1=40张,再加上两张王牌,至少要摸出40+2=42张,才能保证其中必有4张牌点数相同。

练3
1·小学六年中最多有2个闰年,共366×2+365×4=2191天,因为13170=6×2192+18,所以其中一定有7人是同年同月同日生的。

2·参加课外兴趣小组的学生共分四种情况,只参加一个组的有4种类型,只参加两个组的有6种类型,只参加三个字的有4种类型,参加四个组的有1种类型。

把4+6+4+1=15种类型看作15个抽屉,把46个学生放入这些抽屉,因为46=15×3+1,所以班级中至少有4名学生参加的项目完全相同。

3·全班订阅报刊的类型共有3+3+1=7种,因为37=5×7+2,所以其中至少有6位学生订的报刊相同。

练4
1·在1~50中,5的倍数有50÷5=10个,不是5的倍数的就有50-10=40个,至少要取出40+1=41个不同的数才能保证其中有个数能贝5整除。

2·在1~120中,4的倍数有120÷4=30个,不是4的倍数有120-30=90个,正是要取出90+1=91个不同的数才能保证其中一定有一个数是4的倍数。

3·差是5的两数有下列5组;1·6,11·16,21·26,31·36;2·7,12·17,22·27;
3·8,13·18,23·28·33;4·9,14·19,24·29,34;5·10,15·20,25·30·35。

要使取出的数中没有两个数的差是5的倍数,最多只能从每组中各取1个数,即最多可以取5个数。

练5
1、把11秒钟看做11个抽屉,把100米看作100个元素,因为100=9×11+1,所以必有1
个抽屉里超过9米,即必有某一秒钟,他跑的距离超过9米。

2、如图答30-1,把边长为2的等边三角形分成四个边长为1的小等边三角形。

把它看作
4个抽屉,5个点看作5个元素,则一定有一个小三角形内有2个点,这2个点之间的距离不超过1。

3·先把长方形的每边剪去宽1厘米的长条,余下一个50×40的长方形,它的面积为2000平方厘米,再把每个圆的半径放大1厘米成为3厘米的圆,若剪去后的长方形至少有一个点
未被70个镶边后的圆盖住的话,那么原来的长方形中就能放进一个以这点为圆心的圆。

因为∏×32×70的值就小于630×3,15=1984,5<2000,所以在原来的长方形中一定可以放进一个半径为1厘米的圆。

相关文档
最新文档