《高等数学A》课程教学大纲

合集下载

(完整word版)同济大学高等数学教学大纲

(完整word版)同济大学高等数学教学大纲

《高等数学A》课程教学大纲(216学时,12学分)一、课程的性质、目的和任务高等数学A是理科(非数学)本科个专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。

通过本课程的学习,要使学生获得:1、函数与极限;2、一元函数微积分学;3、向量代数与空间解析几何;4、多元函数微积分学;5、无穷级数(包括傅立叶级数);6、微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。

在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题的能力。

二、总学时与学分本课程的安排三学期授课,分为高等数学A(一)、(二)、(三),总学时为90+72+54,学分为5+4+3。

三、课程教学基本要求及基本内容说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。

高等数学A(一)一、函数、极限、连续、1. 理解函数的概念及函数奇偶性、单调性、周期性、有界性。

2. 理解复合函数和反函数的概念。

3. 熟悉基本初等函数的性质及其图形。

4. 会建立简单实际问题中的函数关系式。

5. 理解极限的概念,掌握极限四则运算法则及换元法则。

6. 理解子数列的概念,掌握数列的极限与其子数列的极限之间的关系。

7. 理解极限存在的夹逼准则,了解实数域的完备性(确界原理、单界有界数列必有极限的原理,柯西(Cauchy),审敛原理、区间套定理、致密性定理)。

会用两个重要极限求极限。

8. 理解无穷小、无穷大、以及无穷小的阶的概念。

会用等价无穷小求极限。

9. 理解函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判别间断点的类型。

10. 了解初等函数的连续性和闭区间上连续函数的性质(介值定理,最大最小值定理,一致连续性)。

《高等数学AⅠ》课程教学大纲

《高等数学AⅠ》课程教学大纲

《高等数学AⅠ》课程教学大纲一、课程基本信息二、课程教学目标本课程为理工科本科生的必修课。

通过系统学习,使学生掌握高等数学的基本知识,使学生计算能力和解决问题的能力进一步提高,逐步培养学生抽象思维和概括问题的能力、逻辑推理能力、量化思维能力、自学能力、较熟练的运算能力和综合运用所学知识分析和解决问题的能力,为学习后续课程奠定数学基础。

第一,通过课程学习,学生的计算能力要进一步提高,主要是求极限、求导数、求积分的能力要达到一定的熟练程度。

第二,通过课程学习,学生的自学能力要进一步提高,主要是培养学生的自主学习意识和学习习惯。

第三,通过课程学习,学生的分析和解决问题的能力要进一步提高,主要是要培养学生的学以致用的能力,把高等数学的知识用到后续的专业课程中去的能力。

第四,通过课程学习,学生的抽象思维和逻辑推理能力要进一步提高。

三、教学学时分配《高等数学AⅠ》课程理论教学学时分配表理论学时包括讨论、习题课等学时。

四、教学内容和教学要求第一章函数与极限(22学时)(一)教学要求1.掌握集合、实数与数轴、绝对值及其性质、区间等内容。

2.理解邻域的概念。

3.理解函数的概念、表示法及性质。

4.理解反函数及其图形。

5.理解复合函数的概念,掌握复合函数的分解与复合过程。

6.掌握基本初等函数的定义域、性质及图形。

7.掌握数列及数列极限的ε-N定义。

8.掌握函数极限的ε-N、ε-δ定义和左右极限及保号性定理。

9.掌握无穷大、无穷小的概念、无穷小性质及极限与无穷小的关系的等价性定理。

10.掌握极限的运算法则。

11.理解极限存在准则,掌握两个重要极限及其运用。

12.掌握无穷小的比较及其运用。

13.掌握函数连续性与间断点的概念。

理解连续函数的运算及反函数和复合函数的连续性。

14.掌握基本初等函数的连续性及初等函数的连续性。

15.理解闭区间上连续函数的性质。

16.会建立简单实际问题的数学模型。

(二)教学重点与难点重点:函数概念。

《高等数学A一》教学大纲

《高等数学A一》教学大纲

《高等数学A(一)》教学大纲一、课程基本情况课程中文名称:高等数学A(一)课程英文名称:Advanced Mathematics A (I)课程代码:GG31001学分/学时:4/102开课学期:第一学期课程类別:必修;1年级;公共基础适用专业:理工科(非数学类)对数学要求较高的各专业先修课程:无后修课程:高等数学A(二)、A(三)开课单位:数学科学学院大学数学教学中心二、课程教学大纲(一)课程性质与教学目标1. 课程性质:《高等数学A(一)》是理工科(非数学)专业必修的公共基础课程,为后续学习其他专业课程提供数学基础知识和工具.2. 教学目标:通过《高等数学A(一)》课程的学习,使学生掌握单变量微积分学的基础知识,同时培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题的能力.3. 本课程知识与能力符合下列毕业要求指标点:(1)能够运用数学与自然科学基础知识,理解理工科专业工作过程中涉及的相关科学原理(1_1);(2)能够将数学与自然科学的基本概念运用到复杂工程问题的适当表述之中(2_1).(二)教学内容及基本要求:第1章函数(3学时)§1.1 集合§1.2 函数§1.3 函数的几种特性§1.4 复合函数§1.5 参数方程,极坐标与复数本章的重点是函数概念,复合函数概念,基本初等函数的性质及其图形.难点是参数方程的概念基本初等函数的性质及其图形.本章要求学生掌握函数的表示方法,基本初等函数的性质,参数方程、极坐标及复数的概念.本章习题:见配套习题册.第2章极限与连续(20学时)§2.1 数列的极限§2.2 函数的极限§2.3 两个重要极限§2.4 无穷小量与无穷大量§2.5 函数的连续性§2.6 闭区间上连续函数的性质本章的重点是极限概念,极限四则运算法则,两个重要极限,连续概念.利用无穷小量代换求极限.难点是极限的ε-N定义、ε-δ定义,闭区间上连续函数的性质的应用.本章要求学生掌握极限的性质及四则运算法则.极限存在的准则,并会利用它求极限.数列的极限与其子数列的极限之间的关系.两个重要极限及应用.无穷小的比较方法,利用等价无穷小求极限,判断间断点的类型.本章习题:见配套习题册.第3章导数与微分(9学时)§3.1 导数的概念§3.2 导数的运算法则§3.3 初等函数的求导问题§3.4 高阶导数§3.5 函数的微分§3.6 高阶微分本章的重点是导数和微分的概念,导数的几何意义及函数的可导与连续之间的关系,导数的四则运算法则和复合函数的求导法,基本初等函数的导数公式,初等函数的一阶、二阶导数的求法.难点是复合函数的求导法,隐函数和参数式所确定的函数的高阶导数.本章要求学生掌握导数的四则运算和复合函数的求导法则,隐函数和由参数方程所确定的函数的一、二阶导数,掌握基本初等函数的导数公式,利用一阶微分形式的不变性求微分.本章习题:见配套习题册.第4章微分中值定理及其应用(24学时)§4.1 微分中值定理§4.2 L’Hospital法则§4.3 Taylor公式§4.4 函数的单调性与极值§4.5 函数的凸性和曲线的拐点、渐近线§4.6 平面曲线的曲率本章的重点是Lagrange中值定理及其几何意义,L’Hospital法则求未定式极限,利用导函数判断函数的单调性,极值,凸性与拐点.难点是各种中值定理与Taylor公式的应用.本章要求学生掌握各种中值定理的应用,用L’Hospital法则求未定式极限,用导数判断函数的单调性和求函数极值.求函数最值的方法及其简单应用,利用导数判断函数的凸性,拐点和渐近线,函数作图.本章习题:见配套习题册.第5章不定积分(14学时)§5.1 不定积分的概念与性质§5.2 换元积分法§5.3 分部积分法§5.4 几种特征类型函数的不定积分本章的重点是不定积分的定义,基本公式与性质,第一类换元积分法,第二类换元积分法,分部积分法.难点是不定积分的常见技巧,有理函数的积分,几种不定积分方法的综合应用.本章要求学生掌握有理函数、三角函数有理式和简单无理函数的不定积分.本章习题:见配套习题册.第6章定积分(12学时)§6.1 定积分的概念§6.2 定积分的性质与中值定理§6.3 微积分基本公式§6.4 定积分的换元法与分部积分法§6.5 定积分的近似计算§6.6 广义积分本章的重点是定积分的概念及性质,定积分的换元法与分部积分法,Newton-Leibniz公式.难点是变上限函数概念与求导,两种广义积分的收敛性判别与计算,几种求定积分方法的综合应用.本章要求学生掌握定积分的性质及其与不定积分的联系,掌握换元积分法,分部积分法和Newton-Leibniz公式.本章习题:见配套习题册.第7章定积分的应用(10学时)§7.1 微元法的基本思想§7.2 定积分在几何上的应用§7.3 定积分在物理上的应用本章的重点是微元法,定积分在几何上的应用,求平面图形的面积,平面曲线的弧长,空间几何体的体积.难点是微元法的基本思想.本章要求学生掌握直角坐标系﹑极坐标系下平面图形的面积公式,平面曲线的弧长公式.已知平行截面积的立体体积公式,旋转体的体积公式,旋转体的侧面积公式.本章习题:见配套习题册.第8章微分方程(10学时)§8.1 微分方程的基本概念§8.2 几类简单的微分方程§8.3 一阶微分方程§8.4 全微分方程与积分因子§8.5 二阶常系数线性微分方程本章的重点是变量可分离方程及一阶线性方程的解法,二阶常系数齐线性微分方程解的结构,二阶常系数齐次线性微分方程的解法.难点是二阶常系数非齐次线性微分方程的求解.通过代换法将一些特殊的微分方程化成可求解的微分方程(变量分离方程,一阶线性方程,二阶常系数线性方程).本章要求学生掌握变量分离方程及一阶线性微分方程的解法.会用代换法解齐次方程.二阶常系数线性方程的解法.全微分方程的解法.本章习题:见配套习题册.(三)教学方法:以课堂教学为主,结合习题课、讨论课与自学.(1)课堂教学主要讲解高等数学的基本概念、基本理论以及基本分析方法,并将未来专业学习中可能遇到的相关高数问题等融入基本理论的讲解,使学生更好地熟悉或掌握知识,学习运用数学思维方式和研究方法.(2)对难点和重点例题和习题安排在习题课和讨论课中讲解.(3)对比较容易理解的章节让学生自学,以培养学生自主学习的意识、自主学习的能力和抓住要点的能力.(四)考核内容及方式考核方式为闭卷考试,实行教考分离.成绩由平时成绩(30%)和期末考试(70%)两部分组成.平时成绩含考勤、作业、课堂提问、小测验等.(五)教学安排及方式:(六)教材与参考资料:1.教材《高等数学(上)》(理工类,第3版),杜先能,孙国正等,安徽大学出版社,2011年.2.参考书目(1)《高等数学(上册)》(第7版),同济大学数学系编,高等教育出版社,2014年.(2)《高等数学习题全解指南(上册)》(第7版),同济大学数学系编,高等教育出版社,2014年.撰写人:郑婷婷审核人:。

《高等数学B转修高等数学A》课程教学大纲

《高等数学B转修高等数学A》课程教学大纲

附件二:《高等数学B转修高等数学A》课程教学大纲一、课程性质、目的和任务高等数学是高等学校工科类最重要的基础理论课之一。

通过本课程的学习,使学生系统地获得微积分、空间解析几何、级数及常微分方程的基础理论知识和常用的运算方法。

通过各教学环节逐步培养学生具有比较熟练的分析问题和解决问题的能力。

为学习后继课程及今后的专业工作奠定必要的数学基础。

二、教学基本要求1、要正确理解以下概念:函数、极限、连续性、导数、微分、偏导数、全微分、函数的极值。

不定积分、定积分、二重积分、三重积分、曲线积分、曲面积分、无穷级数的敛散性、无穷级数的和、有关空间解析几何及常微分方程的基本概念。

2、要掌握下列基本理论、基本定理和公式:基本初等函数的性质及图形,基本初等函数的导数公式,微分中值定理(罗尔定理、拉格朗日定理),不定积分基本公式,变上限积分及其求导定理、牛顿-莱布尼兹公式,偏导数的几何意义,极值存在的必要条件,格林公式,几何级数和P级数的收敛性,级数敛散性的判定条件,直线与平面的方程,典型的二次曲面、二阶线性常微分方程解的结构。

3、熟练掌握下列运算法则和方法:求函数和数列极限的方法与运算法则,导数和微分的运算法则,复合函数求导法,初等函数一阶、二阶导数的求法,用导数判断函数的单调性及求极值方法,多元函数复合函数的偏导数求法,不定积分、定积分的换元与分部积分法,正项级数的比值审敛法,求幂级数的收敛半径和收敛区域,函数展开成幂级数的间接展开法,函数展开成傅里叶级数,一阶可分离变量微分方程的求解,二阶常系数齐次线性微分方程的解法。

4、应用方面:用定积分和常微分方程方法求解一些简单的几何和物理问题,用极值方法求解最大值最小值的应用问题。

三、教学内容第一章多元函数微积分学1、教学内容(1)理解方向导数与梯度的概念并掌握其计算方法。

(2)理解三重积分的概念,了解三重积分的性质。

(3)掌握三重积分(直角坐标、柱面坐标、球面坐标)的计算方法。

高等数学A1、A2课程教学大纲-山东建筑大学

高等数学A1、A2课程教学大纲-山东建筑大学

目录序号编码课程名称页码1.LX1001-2 高等数学A1、A2 (1)2.LX1003-4 高等数学B1、B2 (4)3.LX1005-6 高等数学C1、C2 (8)4.LX1007 Matlab语言与数学实验 (10)5.LX2001-2 大学物理 (12)6.LX2003 大学物理B (19)7.LX3001 材料力学 (25)8.LX3002 理论力学A (29)9.LX3003 理论力学B (32)10.LX3004 基础力学 (35)11.LX3005 工程力学(LX) (39)12.LX3006 基础力学1 (42)13.LX3007 基础力学2 (44)14.LX3008 建筑力学 (47)15.LX5001-3 数学分析1-3 (51)16.LX5004-5 高等代数1、2 (55)17.LX5006 空间解析几何 (60)18.LX5007 概率论与数理统计(理) (62)19.LX5008 概率论与数理统计 (65)20.LX5009 概率论 (67)21.LX5011 复变函数 (69)22.LX5012 复变函数与积分变换 (72)23.LX5013 运筹学 (74)24.LX5014 数值计算A (76)25.LX5015 数值计算B (79)26.LX5016 常微分方程 (81)27.LX5017 C语言 (83)28.LX5018 数据库原理与应用 (86)29.LX5019 计算机组成原理 (90)30.LX5020 信息论基础 (93)31.LX5021 最优化方法 (95)32.LX5022 计算机图形学A (97)33.LX5023 数学模型 (99)34.LX5024 离散数学A (101)35.LX5025 数理方程 (104)36.LX5027 组合数学A (106)37.LX5028 数学物理方法 (110)38.LX5101 高等代数选讲 (112)39.LX5102 数学分析选讲 (114)40.LX5103 实变函数 (117)41.LX5104 近世代数概论 (119)42.LX5105 微分几何 (122)43.LX5201 宏观经济学 (126)44.LX5202 证券与投资 (129)45.LX5203 应用统计学 (132)46.LX5204 微观经济学 (135)47.LX5205 工程经济分析 (138)48.LX5206 风险管理 (141)49.LX5207 国际贸易 (143)50.LX5301 密码学与网络安全 (145)51.LX5302 现代密码学 (148)52.LX5303 信息安全数学基础 (151)53.LX5304 电子商务安全技术 (153)54.LX5305 计算机网络基础 (156)55.LX5306 计算机技术与应用 (159)56.LX5307 网页设计与制作 (161)57.LX5308 数字图像处理 (163)58.LX5401 面向对象的程序设计 (166)59.LX5402 JAVA程序设计 (169)60.LX5403 软件工程 (171)61.LX5404 DELPHI程序设计 (174)62.LX5405 最新软件分析及应用 (178)63.LX5406 PYTHON程序设计 (180)64.LX5407 专业英语 (182)65.LX5408 数学实验 (184)66.LX5502 C语言课程设计 (187)67.LX5503 毕业实习 (190)68.LX5504 认识实习 (196)69.LX5505 应用软件训练 (199)70.LX5506 信息与计算科学专业毕业论文(设计) (201)71.LX5508 密码学与网络安全课程设计 (208)72.LX5509 联想网御信息安全防火墙设计训练 (210)73.LX6001 量子力学 (212)74.LX6002 电动力学 (214)75.LX6003 固体物理学 (216)76.LX6005 原子物理 (218)77.LX6006 科技写作 (220)78.LX6007 应用物理学专业毕业设计(论文) (222)79.LX6008 创新训练 (224)80.LX6009 半导体器件与工艺 (225)81.LX6010 光电子技术 (227)82.LX6011 光电测试技术 (229)83.LX6012 网页设计 (231)84.LX6013 应用物理学专业毕业实习 (233)85.LX6014 认识实习 (235)86.LX6016 光学信息技术 (237)87.LX6017 创新与专利 (239)88.LX6021 太阳能电池原理与工艺 (241)89.LX6022 太阳能电池测试与表征 (243)90.LX6023 光电照明工程 (245)91.LX6025 单片机原理与技术 (247)92.LX6026 传感器原理及应用 (249)93.LX6027 专业英语 (253)94.LX6028 LED制造技术与应用 (255)95.LX7001 力学 (257)96.LX7003 电磁学 (260)97.LX7004 光学 (263)98.LX7005 激光原理 (267)99.LX7006 光信息科学与技术专业毕业论文 (269)100.LX7007 毕业实习 (273)101.LX7010 导波光学 (275)102.LX7011 光纤通信 (278)103.LX7012 光显示原理与技术 (283)104.LX7016 光信息存储原理 (285)105.LX7019 晶体光学 (288)106.LX7020 光学机械基础 (290)107.LX7021 物理光学与应用光学 (293)108.LX7024 计算机网络 (297)109.LX7025 信号与系统 (300)110.LX7028 认识实习 (303)111.LX7029 光纤光学 (305)112.LX7032 热学 (308)113.LX7033 数字图像处理 (311)114.LX7034 太阳能光伏原理与技术 (314)115.LX7036 物理仿真实验训练 (316)116.LX7039 热力学与统计物理 (319)117.LX7040 量子信息 (323)118.LX7041 半导体物理 (325)119.LX7042 太赫兹科学技术和应用 (328)120.LX7043 光学测量技术与应用 (331)121.LX7044 光纤通讯网络与安全 (333)122.LX7045 创新训练 (335)123.LX7047 理论力学 (336)124.LX7050 专业英语 (339)125.LX7051 信息光学 (341)高等数学A1、A2课程教学大纲课程编号:LX1001、LX1002课程名称:高等数学A1、A2 Higher Mathematics (A1)(A2)先修课程:初等数学总学时:176学时(授课学时:88 , 88 ;上机学时:0 实验学时:0)一、课程的性质和任务高等数学是工科院校中一门重要的公共基础理论课,是工科院校学生学习专业基础理论、专业知识及技能必备的课程。

《高等数学A》课程教学大纲44981

《高等数学A》课程教学大纲44981

《高等数学A》课程教学大纲、《高等数学B》课程教学大纲《高等数学C》课程教学大纲、《高等数学D》课程教学大纲《高等数学A》课程教学大纲(216学时,12学分)一、课程的性质、目的和任务高等数学A是理科(非数学)本科个专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。

通过本课程的学习,要使学生获得:1、函数与极限;2、一元函数微积分学;3、向量代数与空间解析几何;4、多元函数微积分学;5、无穷级数(包括傅立叶级数);6、微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。

在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题的能力。

二、总学时与学分本课程的安排三学期授课,分为高等数学A(一)、(二)、(三),总学时为90+72+54,学分为5+4+3。

三、课程教学基本要求及基本内容说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。

高等数学A(一)一、函数、极限、连续、1. 理解函数的概念及函数奇偶性、单调性、周期性、有界性。

2. 理解复合函数和反函数的概念。

3. 熟悉基本初等函数的性质及其图形。

4. 会建立简单实际问题中的函数关系式。

5. 理解极限的概念,掌握极限四则运算法则及换元法则。

6. 理解子数列的概念,掌握数列的极限与其子数列的极限之间的关系。

7. 理解极限存在的夹逼准则,了解实数域的完备性(确界原理、单界有界数列必有极限的原理,柯西(Cauchy),审敛原理、区间套定理、致密性定理)。

会用两个重要极限求极限。

8. 理解无穷小、无穷大、以及无穷小的阶的概念。

会用等价无穷小求极限。

9. 理解函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判别间断点的类型。

《高等数学(A)》课程教学大纲精品文档15页

《高等数学(A)》课程教学大纲精品文档15页

《高等数学(A)》课程教学大纲Advanced Mathematics (A)学时数:180学分数:18适用专业:理工科各本科专业执笔者:吴赣昌编写日期:2000年8月课程的性质、目的和任务高等数学课程是高等学校工科本科各专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量建设人才服务的。

通过本课程的学习,要使学生获得:1.一元函数微积分学,2.向量代数和空间解析几何,3.多元函数微积分学,4.无穷级数(包括傅里叶级数),5.常微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

在课程的教学过程中,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力和自学能力,并注意培养学生的数学建模能力和用所学理论解决简单应用问题的能力,培养学生具有比较熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力。

课程教学的基本要求一、 函数、极限与连续1. 理解函数的概念.2. 了解函数的单调性、周期性和奇、偶性.3. 了解反函数和复合函数的概念.4. 熟悉基本初等函数的性质及其图形.5. 能列出简单实际问题中的函数关系.6. 了解极限的N -ε、δε-定义(对于给出ε求N 或δ不作过高耍求),并能在学习过程中逐步加深对极限概念的理解.7. 掌握极限四则运算法则.8. 了解两个极限存在准则(夹逼准则和单调有界准则)会用两个重要极限求极限.9. 了解无穷大、无穷小的概念. 掌握无穷小的比较.10.理解函数在一点连续的概念, 会判断间断点的类型.11.了解初等函数的连续性. 知道在闭区间上连续函数的性质(介值定理和最大值最小值定理).二、导数于微分1. 理解导数和微分的概念.了解导数的几何意义及函数的可导性与连续性之间的关系,能用导数描述一些物理量.2. 熟悉导数和微分的运算法则(包括微分形式不变性)和导数的基本公式. 了解高阶导数概念. 能熟练地求一阶二阶导数.3. 掌握隐函数和参数式所确定的函数的一阶、二阶导数的求法。

《高等数学A、B、C》教学大纲

《高等数学A、B、C》教学大纲

《高等数学A 、B 、C 》教学大纲一、课程的任务与目的本课程是高等工科院校理工科各专业必修的一门重要基础理论课。

通过本课程的学习,要使学生系统地获得微积分、空间解析几何与向量代数、无穷级数、常微分方程等方面的基本知识、基础理论和方法,逐步培养学生的抽象思维、逻辑推理、空间想象等方面的能力。

初步培养学生解决实际问题的能力,培养学生的自学与创造能力,为学习后继课程和进一步学习其它数学知识奠定必要的数学基础。

本课程的教学目标如下:1.培养学生具有比较熟练的基本运算能力、空间想象能力;2.培养学生具有一定的自学能力;3.使学生具有综合运用所学知识分析问题和解决问题的能力;4.使学生具有初步的抽象概括问题的能力以及一定的逻辑推理能力。

课程教学目标对专业培养要求的支撑二、理论教学要求(一).函数、极限、连续1.理解函数的定义并掌握其表示法;了解函数的有界性、单调性、奇偶性与周期性;了解反函数,理解复合函数的概念;了解基本初等函数和初等函数;知道双曲函数。

2.了解数列极限的“N ε-”定义,函数极限的“εδ-”和“X ε-”定义,理解函数的左右极限,了解极限的性质;了解无穷小与无穷大的定义,了解无穷小的性质,无穷小与函数极限的关系;掌握极限的四则运算法则、了解极限存在的两个准则, 掌握两个重要极限;了解无穷小的比较及等价无穷小。

3.理解函数连续的定义,了解函数间断点及其分类,会判断其类型;掌握连续函数的四则运算性质;了解连续函数的反函数的连续性及复合函数的连续性;了解初等函数的连续性;了解闭区间上的连续函数的性质。

(二).一元函数微分学1.理解导数的定义和导数的几何意义;了解函数的可导性与连续性的关系;掌握函数的求导法则(包括函数的和、差、积、商的求导法则和复合函数的求导法则,了解反函数的求导法则);掌握基本初等函数的导数公式;了解高阶导数的概念,掌握二阶导数的求法;会求隐函数及由参数方程所确定的函数的一阶和简单的二阶导数;理解函数微分的概念,会求函数的微分,了解微分的应用;会求相关变化率。

《高等数学A》课程教学大纲

《高等数学A》课程教学大纲

《高等数学A》课程教学大纲(216学时,12学分) 点击下载点击下载一、课程的性质、目的和任务高等数学A是理科(非数学)本科各专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。

通过本课程的学习,要使学生获得:1、函数与极限;2、一元函数微积分学;3、向量代数与空间解析几何;4、多元函数微积分学;5、无穷级数(包括傅立叶级数);6、微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。

在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题的能力。

二、总学时与学分本课程的安排三学期授课,分为高等数学A(一)、(二)、(三),总学时为90+72+54,学分为5+4+3。

三、课程教学基本要求及基本内容说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。

高等数学A(一)一、函数、极限、连续、1. 理解函数的概念及函数奇偶性、单调性、周期性、有界性。

2. 理解复合函数和反函数的概念。

3. 熟悉基本初等函数的性质及其图形。

4. 会建立简单实际问题中的函数关系式。

5. 理解极限的概念,掌握极限四则运算法则及换元法则。

6. 理解子数列的概念,掌握数列的极限与其子数列的极限之间的关系。

7. 理解极限存在的夹逼准则,了解实数域的完备性(确界原理、单界有界数列必有极限的原理,柯西(Cauchy),审敛原理、区间套定理、致密性定理)。

会用两个重要极限求极限。

8. 理解无穷小、无穷大、以及无穷小的阶的概念。

会用等价无穷小求极限。

9. 理解函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判别间断点的类型。

10. 了解初等函数的连续性和闭区间上连续函数的性质(介值定理,最大最小值定理,一致连续性)。

《高等数学A》课程教学大纲

《高等数学A》课程教学大纲

《高等数学A》课程教学大纲Advanced Mathematics A课程简介(中文):高等数学是高等学校工科各专业学生的一门必修的重要基础理论课,其思想、方法和技术已经广泛深入到自然科学、工程技术、管理学、经济学及社会科学等各个领域。

高等数学A是工科专业课程的基础和工具,也是一种现代科学语言,它的内容包括:函数、极限、连续;一元和多元函数微积分;常微分方程;空间解析几何和向量代数;无穷级数。

课程简介(英文):Advanced mathematics is a compulsory public basic theory course for all majors of science and engineering. Its idea, methodology and technique have made wide effect on various fields such as natural science, engineering, management science, economics and social science. Advanced Mathematics A is not only the basis and a tool for engineering courses, but also a modern scientific language. Its content includes: functions, limits and continuity, calculus of unary and multivariate functions, ordinary differential equations, the geometry of space and vector algebra, infinite series, etc.一、课程目的高等数学是为培养我国社会主义现代化建设所需要的高质量专门人才服务的,通过本课程的学习,要使学生获得:1.函数、极限、连续,2.一元函数微积分学,3.常微分方程,4.向量代数和空间解析几何,5.多元函数微积分学,6.无穷级数(包括傅里叶级数),等方面的基本概念、基本理论、基本思想、基本方法和基本运算技能,为后继课程的学习和进一步获得数学知识奠定必要的数学基础。

《高等数学A(Ⅱ)》课程教学大纲

《高等数学A(Ⅱ)》课程教学大纲

《高等数学A(Ⅱ)》课程教学大纲课程编号: 90902002学时:64学分:4适用专业:土木工程、工程管理、道桥、电子信息、计算机科学、通信工程、工业设计、车辆工程、交通运输、材料、电气工程、机械电子、机械设计开课部门:建筑工程学院、信息工程学院、机电工程学院一、课程的性质与任务高等数学A(Ⅱ)课程是应用型本科院校理工类专业的一门专业基础课。

本课程讲授向量代数与空间解析几何、多元函数微分学、重积分和无穷级数的基本内容,通过该课程的学习,使学生掌握高等数学A(Ⅱ)的基本概念、基本理论和基本方法,培养学生的抽象思维能力、逻辑推理能力、空间想象能力,为学生解决专业领域的实际问题奠定基础。

三、实践教学的基本要求(无)四、课程的基本教学内容及要求第五章向量代数与空间解析几何1.教学内容(1)向量及其线性运算;(2)点的坐标与向量的坐标;(3)向量的数量积与向量积;(4)平面及其方程;(5)空间直线及其方程;(6)曲面与曲线。

2.重点与难点重点:空间直角坐标系,向量及其线性运算,向量的坐标形式,向量数量积、向量积,曲面及其方程,平面及其方程,空间直线及其方程。

难点:向量积,曲面及其方程,空间曲线及其方程,平面及其方程,空间直线及其方程,二次曲面及其方程。

3.课程教学要求了解空间曲线的参数方程及一般方程,平面与平面、直线与直线、平面与直线相交、平行及垂直的关系;理解向量的概念,向量的坐标表达式,向量的共线与共面关系,曲面方程的概念;掌握向量的运算,两个向量的夹角与垂直和平行的条件,平面方程与直线方程的求法,会正确地使用向量运算规则,会利用坐标表达式进行向量的运算,能根据已知条件求平面方程与直线方程,二次曲面的标准方程,以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程,会求空间曲线在一个坐标面上的投影。

在教学中,教师应借用实物模型或多媒体手段。

要把教学重心放在空间解析几何部分。

教师要注重培养学生的空间想象能力。

《高等数学》课程教学大纲

《高等数学》课程教学大纲

《高等数学》课程教学大纲高等数学课程教学大纲1. 引言高等数学是大学理工类专业中一门重要的基础课程,它为学生提供了深入理解数学概念和方法的机会。

本教学大纲旨在明确高等数学课程的目标、内容和教学方式,以帮助教师和学生在学习过程中更好地掌握知识和技能。

2. 课程目标2.1 知识目标通过本课程的学习,学生应能够:- 掌握高等数学的基本概念、原理和公式;- 理解和运用微积分的基本思想和方法;- 熟悉常微分方程的求解技巧;- 理解多元函数的极限、连续性和偏导数等概念;- 掌握重要的高等数学定理和定理的证明方法。

2.2 技能目标通过本课程的学习,学生应能够:- 运用高等数学知识解决实际问题;- 熟练使用数学工具(如计算器和数学软件)进行计算和绘图;- 能够进行简单的数学推理和证明;- 培养数学建模和问题求解的能力。

3. 课程内容3.1 函数与极限- 函数的概念与性质- 极限的定义与运算法则- 连续与间断3.2 微积分- 导数与微分- 函数的极值与最值- 曲线的图形与函数的分析- 不定积分与定积分- 微分方程的基本概念与求解方法3.3 多元函数与偏导数- 多元函数的极限与连续性- 偏导数与全微分- 多元函数的极值与最值- 多元函数的泰勒展开4. 教学方式4.1 授课教师通过讲授基本概念、原理和公式,引导学生理解和掌握数学知识。

4.2 讨论与互动教师组织学生进行小组讨论、问题解答和数学实例演练,促进学生之间和教师之间的互动。

4.3 实践与实验教师引导学生进行数学建模和实际问题的求解,通过实践和实验帮助学生巩固和应用所学知识。

4.4 作业与课堂测试教师布置作业和组织课堂测试,帮助学生及时巩固所学知识,并提供反馈和指导。

5. 教材及参考资料- 主教材:《高等数学教程》(或其他适合的教材)- 辅助教材:《高等数学习题集》(或其他适合的教材)- 参考资料:相关数学期刊、学术论文和互联网资源6. 考核方式6.1 平时成绩包括作业、实验报告、课堂表现等6.2 期中考试考察学生对前期知识的掌握和理解能力6.3 期末考试考察学生对所有学习内容的整体掌握和应用能力7. 教学评价通过课程问卷调查、评估反馈和学生学业成绩等多种方式对教学效果进行评价,不断改进教学方法和内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学A》课程教学大纲课程编号:GE03025,GE03026课程名称:高等数学A英文名称:Advanced Mathematics学时:课堂讲授160 (小班讨论 32)学分:10适用专业:全校理工学科(非数学类)各专业课程类别:理工学科通识教育平台A组课程先修课程:初等数学一、课程的性质及教学目标高等数学课程是理工类学科各专业一门必修的重要的基础理论课程,它是为培养我国社会主义现代化建设所需要的高质量人才服务的。

通过本课程的学习,要使学生获得:1.函数、极限、连续;2.一元函数微积分学;3.向量代数和空间解析几何;4.多元函数微积分学;5.无穷级数(包括傅里叶级数);6.常微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象概括问题的能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生具有比较熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力。

二、课程的教学内容及基本要求教学基本要求的高低用不同的词汇加以区分,对概念、理论从高到低用“理解”、“了解”、“知道”三级区分,对运算、方法从高到低用“熟练掌握”、 “掌握”、“会”或“能”三级区分。

“熟悉”一词相当于“理解”并“熟练掌握”。

(一)函数、极限、连续1.理解函数的概念。

2.了解函数的单调性、有界性、奇偶性和周期性。

3.了解反函数和复合函数的概念。

4.熟悉基本初等函数的性质及其图形。

5.能列简单实际问题中的函数关系。

6.了解极限的N -ε、δε-定义(对于给出ε求N 或δ不作过高要求),并能在学习过程中逐步加深对极限思想的理解。

7.掌握极限四则运算法则。

8.了解两个极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限。

9.了解无穷小、无穷大的概念。

掌握无穷小的比较。

10.理解函数在一点连续的概念,会判断间断点的类型。

11.了解初等函数的连续性。

知道在闭区间上连续函数的性质(介值定理和最大值最小值定理)。

(二)一元函数微分学1.理解导数和微分的概念。

了解导数的几何意义及函数的可导性与连续之间的关系。

能用导数描述一些物理量。

2.熟悉导数和微分的运算法则(包括微分形式不变性)和导数的基本公式。

了解高阶导数概念。

能熟练地求初等函数的一阶、二阶导数。

3.掌握隐函数和参数式所确定的函数的一阶、二阶导数的求法。

4.理解罗尔(Rolle)定理和拉格朗日(Lagrange)定理。

了解柯西(Cauchy)定理和泰勒(Taylor)定理。

会应用拉格朗日定理。

5.理解函数的极值概念。

掌握求函数的极值,判断函数的增减性与函数图形的凹性,求函数图形的拐点等方法。

求描绘函数的图形(包括水平和铅直渐近线)。

会解较简单的最大值和最小值的应用问题。

6.掌握罗必塔(L’Hospital)法则。

7.知道曲率和曲率半径的概念,并会计算曲率和曲率半径。

8.知道求方程近似解的二分法和切线法。

(三)一元函数积分学1.理解不定积分和定积分的概念及性质。

2.熟悉不定积分的基本公式。

熟练掌握不定积分、定积分的换元法和分部积分法。

掌握较简单的有理函数的积分。

3.理解变上限的定积分作为其上限的函数及其求导定理。

熟悉牛顿(Newton)-莱布尼兹(Leibniz)公式。

4.了解广义积分的概念。

5.知道定积分的近似计算法(梯形法和抛物线法)。

6.熟练掌握用定积分来表达一些几何量和物理量(如:面积、体积、弧长和功等等)的方法。

(四)向量代数和空间解析几何1.理解向量的概念。

2.掌握向量的运算(线性运算、点乘法、叉乘法)。

掌握两个向量夹角的求法与垂直、平行的条件。

3.熟悉单位向量、方向余弦及向量的坐标表达式。

熟练掌握用坐标表达式进行向量运算。

4.熟悉平面的方程和直线的方程及其求法。

5.理解曲面方程的概念。

掌握常用二次曲面的方程及其图形。

掌握以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。

6.知道空间曲线的参数方程和一般方程。

(五)多元函数微分学1.理解多元函数的概念。

2.知道二元函数的极限、连续性等概念,以及有界闭域上连续函数的性质。

3.理解偏导数、全微分等概念。

了解全微分存在的必要条件和充分条件。

4.了解方向导数与梯度的概念,并掌握它们的计算方法。

5.熟练掌握复合函数的求导法。

会求二阶偏导数。

6.会求隐函数(包括由方程组确定的隐函数)的偏导数。

7.了解曲线的切线与法平面及曲面的切平面与法线,并掌握它们方程的求法。

8.理解多元函数极值的概念,会求函数的极值。

了解条件极值的概念,会用拉格朗日乘数法求条件极值。

会求解一些较简单的最大值和最小值的应用问题。

(六)多元函数积分学1.理解二重积分、三重积分的概念,知道重积分的性质。

2.熟练掌握二重积分的计算方法(直角坐标、极坐标)。

掌握三重积分的计算方法(直角坐标、柱坐标、球坐标)。

3.理解两类曲线积分的概念。

知道两类曲线积分的性质。

4.掌握两类曲线积分的计算方法。

5.熟悉格林(Green )公式,会运用平面曲线积分与路径无关的条件。

6.知道两类曲面积分的概念及高斯(Gauss )公式、斯托克斯(Stokes )公式,并会计算两类曲面积分。

7.知道散度、旋度的概念。

8.能用重积分、曲线积分及曲面积分来表达一些几何量与物理量(如体积、质量、重心等等)。

(七)无穷级数1.理解无穷级数收敛、发散以及和的概念。

了解无穷级数收敛的必要条件。

知道无穷级数的基本性质。

2.熟悉几何级数、调和级数和P 级数的敛散性。

3.掌握正项级数的比较审敛法。

熟练掌握正项级数的比值审敛法。

4.掌握交错级数的莱布尼兹定理,并能估计交错级数的截断误差。

5.了解无穷级数绝对收敛与条件收敛的概念,以及绝对收敛与收敛的关系。

6.知道函数项级数的收敛域及和函数的概念。

7.熟练掌握较简单幂级数的收敛域的求法(可不考虑端点的收敛性)。

8.知道幂级数在其收敛区间内的一些基本性质。

9.知道函数展开为泰勒级数的充要条件。

10.掌握x e 、x sin 、x cos 、)1ln(x +和μ)1(x +的麦克劳林(Maclaurin )展开式,并能利用这些展开式将一些简单的函数展成幂级数。

11.会用幂级数进行一些近似计算。

12.知道函数展开为傅里叶(Fourier )级数的充分条件,并能将定义在],[ππ-和],[l l -上的函数展开为傅里叶级数。

能将定义在],0[l 上的函数展开为正弦或余弦级数。

(八)常微分方程1.了解微分方程、解、通解、初始条件和特解等概念。

2.会识别下列几种一阶微分方程:变量可分离的方程、齐次方程、一阶线性方程、伯努利(Bernoulli )方程和全微分方程。

3.熟练掌握变量可分离的方程及一阶线性方程的解法。

4.会解齐次方程和伯努利方程,从中领会用变量代换求解方程的思想。

5.会解较简单的全微分方程。

6.知道下列几种特殊的高阶方程)()(x f y n =,),(y x f y '=''和),(y y f y '=''的降阶法。

7.了解二阶线性微分方程解的结构。

8.熟练掌握二阶常系数齐次线性微分方程的解法,并知道高阶常系数齐次线性微分方程的解法。

9.掌握自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与乘积的二阶常系数非齐次线性微分方程的解法。

10.知道微分方程的幂级数解法。

11.会用微分方程解一些简单的几何和物理问题。

三、课内学时安排四、教学及考核方式本课程教学一般安排在第一学年,分上、下两个学期进行。

期末课程考试可采用闭卷方式或其他形式;课程总评成绩应包括平时的考核。

五、推荐教材与主要参考书目1.教材:1) 湖南大学数学与计量经济学院组编:大学数学1(第二版),高等教育出版社,2008.62) 湖南大学数学与计量经济学院组编:大学数学2(第二版),高等教育出版社,2009.22.主要参考书:1) Finney,Weir,Giordano:托马斯微积分(第10版),高等教育出版社,20032) 湖南大学数学与计量经济学院组编:大学数学学习辅导与习题选解(上、下),高等教育出版社,20043) 盛祥耀、葛严麟、胡金德、张元德:高等数学辅导(第二版)(上、下册),清华大学出版社,19924) 同济大学应用数学系:高等数学习题集(1996年修订本),高等教育出版社,19965) 同济大学数学系:高等数学(第六版)(上、下册),高等教育出版社,20076) 同济大学数学系:高等数学附册—学习辅导与习题选解,高等教育出版社,2007。

相关文档
最新文档