卢同善实变函数青岛海洋大学出版社第二章习题答案

合集下载

实变函数论课后答案第二章2

实变函数论课后答案第二章2

实变函数论课后答案第二章2第二章第二节习题1.证明点集F 为闭集的充要条件是F F =. 证明:因为'F F F = ,若F 为闭集,则'F F ⊂ 所以'F F F F F F F =⊂=⊂ 故F F =反过来,若'F F F F =⊂ ,则必有'F F ⊂ 从而F 为闭集.2.设()f x 是(),-∞∞上的实值连续函数,证明对于任意常数a ,(){};x f x a >都是开集,(){};x f x a ≥都是闭集.证明:任取常数a ,若 (){}0;x x f x a ∈>,则()0f x a >,由于()f x 连续,0,0a x δ∃>,使()(){}00,,;a xx N x x f x a δ∈⊂≥.这表明(){};x f x a >是开集.任取常数a ,若{}(){};n x x f x a ∈≥,且0n x x →,则从()n f x a ≥和()f x 连续知 ()()0lim n n f x f x a →∞=≥故(){}0;x x f x a ∈≥这表明(){}(){}';;x f x a x f x a ≥⊂≥. 故(){};x f x a ≥是闭集.3.证明任何邻域(),N p δ都是开集,而且()(){}'',;,N p p p p δρδ=<(N 通常称为一闭邻域)证明:()0,p N p δ∀∈,则()00,p p ηρδ≤<()0,Q N p δη∀∈-,()()()00,,,Q p Q p p p ρρρηδηδ≤+<+-=故()()0,,N p N p δηδ-⊂. 故(),N p δ是开集得证.(){}(){}'''';,,;,n p p p p p p p p ρδρδ∀∈≤∈≤且 n p p → 则 ()(),0,,n n p p p p ρρδ→≤() ()() (),,,,n n n p p p p p p p p ρρρρδ≤+≤+. 令n →∞得 (),0p p ρδ≤+. 故(){}(){}''''';,;,p p p p p p ρδρδ≤⊂≤.表明(){}'';,p p p ρδ≤是闭集.又 (){}'';,p p p p ρδ∀∈≤令 11k px p k k ⎛⎫=+- ⎪⎝⎭, 则() ()111,1,1,1k px p p p p p k k k k ρρρδδ⎛⎫⎛⎫⎛⎫⎛⎫=+-=-≤-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.()()1,,0k x p p p kρρ=→故(),,k k x N p x p δ∈→ 这表明(){}()()''';,,,p p p N p Np ρδδδ≤⊂⊂而()(){}'',;,N p p p p δρδ⊂≤故()(){}(){}()'''',;,;,,N p p p p p p p N p δρδρδδ⊂≤=≤⊂这表明()(){}'',;,N p p p p δρδ=≤.4.设∆是一有限闭区间,()1,2,3,n F n = 都是∆的闭子集,证明如果1n n F ∞==∅ ,则必有正整数N ,使1Nn n F ==∅ .证明:令1n n i i S F == ,则显知11n n n n F S ∞∞=== ,且12n S S S ⊃⊃⊃⊃ (),1i n F i n ∀≤≤为闭集,故n S 也为闭集.下证 N ∃,使1Nn N n F S ===∅ .反证,设,n n S ∀≠∅,则n n x S ∃∈⊂∆,由于∆是有限闭区间,{}n x 是有界点列,若{},1,2,3,n x n = 为无限集合,则由聚点原理{}n x ∃的子列{}00,,kkn n x xx x →∈∆由于12n S S S ⊃⊃⊃⊃故任取,m N k ∈充分大时kkn n m x S S ∈⊂,又m S 为闭集,且0kn m x x S →∈由m 的任意性知,011m n m m x S F ∞∞==∈==∅ 得矛盾. 若{},1,2,3,n x n = 为有限集合,则0n ∃,当()00max ,n n m ≥时,0n n m x x S S =∈⊂,故 011m n m m x S F ∞∞==∈==∅ 得矛盾.所以∃ N ,使得1NN n n S F ===∅ .证毕.设,n E R μ⊂是一族完全覆盖E 的开邻域,则有μ中的(或有限)多个邻域12,,,m N N N ,它们也完全覆盖了E ( Lindelof 定理)证明:设{};,I αμα=∈ΛΛ为某指标集,则E I αα∈Λ⊂ .,x E ∀∈∃ x α∈Λ,使得x x I α∈.由于I Λ是开集,0x δ∃>使(),x N x I δΛ⊂.由有理点在n R 的稠密性易知,存在有理点nx a Q ∈和有理数0x r >,使()(),,x x x x N a r N x I δΛ∈⊂⊂,而n R 中全体以有理点为心,有理数为半径的球作成集合与nQ Q ⨯的一个子集对等,故这些(){},;x x N a r x E ∈至多是一个可数集,从而相应的{};xIx E α∈也是至多可数集.而这些{};xI x E α∈显然为E 的一个开覆盖,因为(),xx x x E x EE N a r I α∈∈⊂⊂因为每一个上述(),x x N a r 包含在某个I α中,故存在至多可数个i I M ∈,使{};i I i ∈Λ成为E 的一个开覆盖.1. 证明nR 中任何开集G 可表成()1ni i G I ∞== 的形式,其中()()()(){}12;,,,,,1,2,3,,n i i in j j j I p p x xx c x d j n ==<<=证明:(注意这里并为要求()ni I 互不相交)设G 为n R 中的任意开集,则0x G ∀∈,由开集的定义,∃一个球形邻域()()000,0x x N x G δδ⊂>,令()00001200,,,;x x x n j x j I x x x x x x n n δδδ⎧⎫==-<<+⎨⎬⎩⎭则显然()000,x xx I N x G δ∈⊂⊂,且x x GG I G ∈⊂⊂ .故x x GG I ∈= ,x I 显然是开区间,也是开集,{},x I x G μ=∈为G 的一个开覆盖.由本节习题5,μ中的至多可数个123,,,,,n I I I I 完全覆盖了G所以1i i G I G ∞=⊂⊂ .所以1i i G I ∞== ,i I 都是开区间.故本题结论得证.2. 试根据B orel 有限覆盖定理证明Bolzano-Weierstrass 定理.证明:反证,设E 为有限无穷点集而无聚点,则'E =∅,从而'E E =∅⊂, 故E 为有界闭集,且任意p E ∈,都是E 的孤立点.故0p δ∃>使(){},p Np E p δ= ,所以(),p p EE N p δ∈⊂.(){},pN p δ形成E 的一个开覆盖,由于E 为有界闭集,由Borel 有界覆盖定理,∃有限个()()11,,,,,m p mp Np N pδδ ,使()1,imip i E Np δ=⊂()(){}111,,iimmmip ip ii i i E E Np E N p p δδ====== .前已知(){},ii p i N p E p δ= .故{}1mi i E p == 为一有限集合,这与E 为有界无穷集矛盾.8. 证明nR 中任意非空开集的基数都是c .证明:∀开集n U R ⊂,显从n U R ⊂知n U R c ≤=.又存在一个点()00,0,,p U N x U δδ∈∃>⊂,()0,N x c δ=, 故()0,U N x c δ≥≥. 所以Berrstein 定理知U c =. 证毕9. 证明对任意n E R ⊂,E 都是n R 中包含E 的最小闭集.证明:任取n E R ⊂,设F 是包含E 的人一闭集,则E F ⊂,''E F ⇒⊂ 所以''E E EF F F =⊂= ,因为F 为闭集 所以''E F F ⊂=,所以E 是n R 中包含E 的最小闭集. 10. 对于1R 定义的实函数()f x ,令()()()'''',lim sup liminfx x x x W f x fx fx δδδδ++→→-<-<=-.证明:对任意的(){}0,;,x W f x εε>≥都是闭集.进而证明()f x 的全体不连续点作成一F δ集.证明:首先 ,当δ单调下降趋于0时,()''sup x x f x δ-<也单调下降趋于某极限(有限或无限)而()''inf x x f x δ-<单调上升地趋于某极限.故()()()'''',lim sup liminfx x x x Wf x fx fx δδδδ++→→-<-<=-是有确切定义的(可为无限值)先证明:()f x 在0x x =连续()0,0W f x ⇔=.证:先设()0,0Wf x =,则()00,0εδε∀>∃>使00δδ<<时()()''''sup infx x x x fx fx δδε-<-<-<所以y ∀满足0y x δ-<时()()()()''''0sup infx x x x fy f x fx fx δδε-<-<-≤-<故f 在0x 处连续.反过来,若()f x 在0x x =处连续,则()0000,,0x εδδε∀>∃=>, 当00y x δδ-<<时,()()0fy f x εε-<-<又()000,x δδδε∀<=,''''''00,,,y y y x y x δδδδδδ∃-<-< 且()()()()'''''''sup ,infx x x x f x fy f y fx δδδδεε-<-<-≤≤+所以()()()()'''00sup x x f x f x fy f x δδεε-<--≤-<()()()()''''infx x f xf x f x f y δδεε-<--+≤-<不等式相加得()()()()''''''''sup inf220lim sup liminf4x x x x x x x x fx fx fx fx δδδδδδεεε++-<-<→→-<-<--≤≤-≤即()00,4,0W f x εε≤≤<任意.所以()0,0Wf x =为证(){}0;,x Wf x ε≥为闭集,只用证(){}0;,x W f x ε<为开集. (){}00;,x x Wf x ε∀∈<必有()0,Wf x ε<所以存在()00,0x δδε=>使()00,δδ∀∈时, ()()()()000sup inf ,2N x N x f f W N x δδδεδ-<()02y N x δ∀∈,由三角不等式,则()()02N y N x δδ⊂.故()()()02,,W f N y Wf N x δδε⎛⎫≤< ⎪⎝⎭所以()()02,lim ,Wf y W f N y δδε+→⎛⎫=< ⎪⎝⎭这说明()(){}02;,N x x Wf x δε⊂<故(){};,x Wf x ε<是开集,从而(){};,x W f x ε≥是闭集.由于()f x 在x 不连续的充要条件是(),0Wf x ≥.所以使x 不连续的点集为表为()11;,k F x Wf x k ∞=⎧⎫=≥⎨⎬⎩⎭. 由于()1,;,k x Wf x k ⎧⎫∀≥⎨⎬⎩⎭是闭集,故F 为一F δ集. 同时我们看出,全体使f 连续的点集是()11;,ck F x Wf x k ∞=⎧⎫=<⎨⎬⎩⎭这是一个G δ集合.推广:(1)对1:n f R R →有一样的结论,只不过在定义(),Wf x 时,'x x -理解为n R 中的距离()';x x ρ,其它完全一样,因为三角不等式对().,.ρ成立, (2)若f 是n R 中的开集,G 到1R 的函数,则同样可定义()(),W f x x G ∀∈,因为当(){}0,;,,x x G W f x εε∀>∈<为开集,(){};,x G Wf x ε∈≥为闭集.f 的不连续点集为()11;,k x G Wf x k ∞=⎧⎫∈≥⎨⎬⎩⎭而f 的不连续点集为()11;,k x Wf x k ∞=⎧⎫<⎨⎬⎩⎭. 11. 于n E R ⊂及实数α,定义()(){}1212,,;,,,n n E x x x x x x E αααα=∈ .证明当E 为开集,00,p E αα≠∀∈,则∃ 0E X ∈,使00p α=XE 开集,0E X ∈,故0δ∃>,使()0,N E δX ⊂.则∀()0,y N αδ∈X ,则yy αα=而0001y y y αδααδαααααX -X --=-X <=.故()0,yN E δα∈X ⊂从而yy E ααα=∈这表明()0,N E αδαX ∈,故E α为开集.若E 为闭集,0α=,则(){}0,0,0E α= 为单点集.当然是闭集,若0α≠,则0,n n p E p p α∈→,则0,,,nn n n n n p p E p p αα=X X ∈=X →表明nn p p αα=X →,而E 为闭集,0n p αX →,故np E α∈,从而0p p E ααα=∈.这说明()'E E αα⊂.从而得知E α为闭集.12. 设()fp 是定义于n R 上的实函数,证明()f p 在n R 上连续的充要条件是对于1R 中任何开集G .()(){}1;fG p f p G -∈ 都是1R 中的开集.证明:设1:n f R R →连续,G 为任一1R 中开集. ()10p fG -∀∈,则()0f p G ∈,由G为开集知,0δ∃>,使()()0,Nf p G ε⊂对上述()00,,0p εδδε>∃=>,使当()0,y N p δ∈时()()0fy f p ε-<故()()()0,fy N f p G ε∈⊂即()1y fG -∈.这说明()()10,N p f G δ-⊂故()1fG -为开集.现设对1R 中任意开集,()1,G fG -为开集,0,ε∀>()()0,Nf p ε是1R中的开集.故()()()1,fN f pε-是开集,而()()()100,p fN f pε-∈.故()()()()00,,f N p Nf p δε⊂所以()()()()00,,,y N p fy N f p δε∀∈∈.()()0fy f p ε-<这说明f 在0p 连续 证毕13. nR 上的实函数()f P 称为是下半连续的,若对任意n P R ∈,都有()()()()()0,lim inf lim inf Q PP Q f P f Q f Q δρδ→→<≤ ,证明()f P 下半连续等价于对任意的实数(){},;P f P αα≤都是n R 中的闭集,也等价于(){};P f P α≤是n R 中的开集.现若f 下半连续,1R α∀∈,若(){}0;P P f P α∈>. 则()()()()000lim inf N P f P f Q δδα→<≤∀()00022f P αεε-<<,()0,0p δδε∃=>使()()()00inf N P f P f Q δαε<-<所以()0,y N P δ∀∈,有()()()()00inf N P f P f Q fy δαε<-<≤.所以()(){}0,;N P P f P δα⊂>.故(){};P f P α>为开集.(从而(){};P f P α>为闭集)f 在nR 上下半连续,0,0nP R ε⇔∀∈∀>,()0,0p δδε∃=>.当()0,P N P δ∈时,()()0f P f P ε-<-. 反过来,若(){}1,;R x f x αα∀∈>为开集.则()(){}000,0,;nP R P x f x f P εε∀∈∀>∈>-由于()(){}0;P f P f P ε>-是开集.所以()0,0P δε∃>使()()(){}00,;P N P P f P f P δε∈⊂>-()0,Q N P δ∀∈有()()0f P f P ε>-,即f 在n R 上下连续,故一个等价性得证.而f 在n R 上下连续(){}1,;R P f P αα⇔∀∈≤是闭集(){};P f P α⇔>是开集.下证(){}1,;R P f P αα∀∈≤()(){},;,nP y P Rf P y ⇔∈≤为闭集.先设(){};P f P α≤为闭集,α任意.所以()()(){},,;;n n n n n P y P y P R f P y ∀∈∈≤,00,n n P P y y →→. 所以0,,N ε∀>∃当n N ≥时0n y y ε≤+. 故(){}0;n P P f P y ε∈≤+,这是闭集. 而(){}00;n P P P f P y ε→⇔≤+ 所以()00f P y ε≤+,()0ε∀>故()00f P y ≤.这表明()()(){}00,,;;n P y P y P R f P y ∈∈≤是闭集.若()(){},;;n P y P R f P y ∈≤是闭集,而(){}0;,n n P P f P P P α∈≤→ 则()()(){},,;;nn P P y P Rf P y α→∈≤,()()0,,n P P αα→.因为()(){},;;n P y P R f P y ∈≤为闭集,故()()(){}0,,;;n P P y P R f P y α∈∈≤ 所以()0f P α≤.这说明(){}0;P P f P α∈≤ 故(){};P f P α≤为闭集. 得证.14. 设,A B 是n R 中的有界闭集,01λ<<,证明()(){}121;,,,n A B x x x x λλ+- 有()()1212,,,,,,,n n y y y A z z z B ∈∈ ,使()1,1,2,i i i x y z i λλ=+-= 为有界闭集.举例说明当,A B 无界时,()1A B λλ+-可以不是闭集. 证明:,A B 有界,故存在 M 使()22212,,n x A B x x x x x x M ρ∀∈==+++≤特别地 i x M ≤.()1x A B λλ∀∈+-,有()1x A B λλ∀∈+-使 ()1i i i x y z λλ=+-,故()1x y z λλ=+-.故()()()111x y z y z M M M λλλλλλ∈+-≤+-≤+-=. 所以01λ≤≤时,()1A B λλ+-也有界.为证()1A B λλ+-为闭集,设()1n x A B λλ∈+-,0n x x →, 则,n n y A z B ∃∈∈使()1n n n x y z λλ=+-.由,A B 有界,()1n x A B λλ∈+-, ,n n y A z B ∈∈,由聚点原理,n y ∃的子列k n y 使0k n y y →,{}k n z 有子列{}k l n z 使0k l n z z →,{}k l n x 有子列{}k li n x 使()0k li nx x i →→∞ 从()1k k k lili li n n n x y z λλ=+- 所以()0001x y z λλ=+-,而,A B 为闭集,故00,y A z B ∈∈.从而有()01x A B λλ=+- 这说明()1A B λλ+-是闭集. 若,A B 不全是有界闭集时,()1A B λλ+-可不为闭集,在2R 上考虑()()(){}11,;,0,,,0;1,2,A x y y R x y x B n n ⎧⎫=∈∈∞=⎨⎬⎩⎭=-= B 是全由孤立点组成的集合,显然为闭集,但无界. 任取(),n n x y A ∈,若()()100,,n n x y x y R →∈, 则00,x y 为有限数,故从01n n y y x =→知00x ≠ 所以00010,x y x >=这说明()00,x y A ∈,故A 为闭集合,显然 0x +→时,1y x =→∞,故A 无界. 但1122A B +都不是闭集.取()1,0,,n B n A n ⎛⎫-∈∈ ⎪⎝⎭ 则()111111,0,0,22222n p n n A B n n⎛⎫⎛⎫=-+=∈+ ⎪ ⎪⎝⎭⎝⎭. 显然()0,0n p →,但()110,022A B ∉+. 因为若()110,022A B ∈+,则()0001,0,,n B x A x ⎛⎫∃-∈∈ ⎪⎝⎭使 ()()0001110,0,,022x n x ⎛⎫=+- ⎪⎝⎭故00011,0x n x =≥=得矛盾 所以1122A B +不是闭集.。

实变函数第二章习题解答.docx

实变函数第二章习题解答.docx

第二章习题参考解答1:证明:有理数全体是尺中可测集,且测度为0.证:(1)先证单点集的测度为O.V XG /?\令£ = {X }.V^>0,V HG /Vpp800—尹“莎),因如Sf 专初屮严'人为开区砖00工I I =工= £ .故加*E = 0.m 以E 可测且mE = 0. M = 1 〃 = 1 '"(2)再证:/?'中全体有理数全体Q 测度为0.设匕}羸是只中全体有理数,VneTV,令E n ={r n }.则{乞}是两两不相交的可测集0088列,由可测的可加性冇:加* 0 =加(u &)=工mE n =工0 = 0.n=1n=l n=\法二:设e = {rJL ,Vne/v,令/;=(乙—缶心+希),其中£是预先给定的任意性,加*2 = 0.2. 证明:若E 是/?"有界集,则m*E<+oo.证明:若E 是/?"有界.则日常数M >0,使Vx = (x p x 2,•••%…)€£,有间=<M ,即 Vz (l < z < /2),有 \x]<M ,从而Eu 匚[[兀一M,兀 +M].1=1所以加门比 -M,兀 +M]sf2M =(2M )” <+oo/=i/=i3. 至少含有一个内点的集合的外测度能否为零?解:不能.事实上,设E u R”, E 中有一个內点兀=(坷,…兀”)wEH5〉(),使得” <? C“Q Q0(兀,5)=訂(兀一牙,兀+ 牙)U E .则/??*£ >m*[]^[(x.+ —)] = s n> 0;=i22f=i2 2所以加* E H O.00cor~q与斤无关的正常数,贝ij : m^Q =诚{工I I n \ | U A o Q} <^l I1=工乔之•由£得n=\ J 】 >=1 i=\ 2〃二 1 /=!4•在㈡上]上能否作一个测度为h-a f但乂界于[Q,切的闭集?解:不能事实上,如果有闭集Fu[d,b]使得mF = b-a.不失一般性,可设aeFf\.beF . 事实上,若a 电F,则可作F* 二{a} U F,F* u [G,/?].UmF^ = m[a] + mF = mF .这样, 我们可记F*为新的F ,从而[a,b]-F = (a,b)-F = (a,b)-FCl@劝.如果[a,b]-FH0,即Bxe[a,b]-F = (a,b)-F f而(a,b)_F是开集,故兀是[a,b]-F的一个内点,由3题,([a,b]- F) = m([a,b]- F) = m(a.b)-mF与mF = b-a才盾.故不存在闭集Fcz[a,b]且mF=b — a5.若将§ 1定理6中条件”加(U ®) <0去掉,等式0 /n(limEJ<lim/nE zt是否仍n>k0"TOO "T8成立?解:§ 1定理6中条件*( U £,.)< 00”是不可去掉的.心k()事实上,Vne2V,令E n-[n-l,n),贝U{E”}爲是两两相交的可测集列,由习题一得15 题:iim£n = lim E/? = 0 m(lim £ J = 0,但V” w N , mE n =m[n-l,n) = l.所以"T8 w_>oo mslim mE n = 1 •从而lim mE n丰加(lim E tl).>00 "—>86.设代,E,…是[0,1)中具有下述性质的可测集列:X/£>0, 3k eN使证& >1-£',00证明:7H(U£/)=1/=!证:事实上,Vg〉0,因为mk G N , mE k >\-£1 > m[O,l] > m(U EJ > mE k >\-£i=\7.证明:对任意可测集A,B,下式恒成立.m{A U B) + m( A Pl B) = mA + mB .证明:A^B = (A\JB-A)\JA且(4UB —4)门4 = 0故m(A U B) = m(A U B 一A) + 加4 •即加(力U B) - mA = m(A B - A) = m(B - A)又因为B = (B-A)U(BnA)..E(B-A)n(BnA) = 0,所以mB =m{B一A) + m{B A A)故加(A U 5) - mA = mB -m(A Pl B),从而m{A U B) + m(A Pl B) = mA + mB&设是A,A?是[0,1]屮的两个可测集且满足m\+mA2 >1,证明:m(A^A2)>0.证:m{A{ UA2) + /n(A, 0^2) = /^ +mA2.又因为加(出U A2) < m([0,l]) = 1所以加(A 0 A?) = mA x + mA^ - m(A, U 人)》加人 + ""V -1 > 09.设A2,码是[0,1]中的两个可测集,且皿+叽+叽>2,证明:/n(A] n A2 n A3) > 0证:m(A l U A2 \J A3) + m[(A{ [J A2)C\A3] = m(A] U >42) + mA3 =in(A{) + m(A2) + m(A3) -m{A{ A A2).所以m(A i nA2) + m[(A I\JA2 Pl ^3)] = + m(A2) + m(A3) -m(A} \JA2 U £)又因为m[(A, nA2)u(A2nx3)u(A3 nA,)i=血[(儿AA2)U(AUA2A A3)J=加(Al 0人2)+ 〃[(£ u A2 n A3)J -zn[(A1AA2)D[(A1 U A2 D AJ] =加(儿门仏)* m[(A UA2)n AJ- m[(A{ C\A2H A J .所以加(岀介每门州)= m(A, M)+/7?[(A U A2 A 4 )1 - zn[(A1 HA2)U (A2 n 4)U (A3 AA)]= m(A,) + m(A2) + zn(A3) -zn(4 U A2 U A3)-加[(人A A2) U (A2 A A3)U (A3 A A,)]因为/n(A1UA2UA3)<m[0,l] = l加KA nA2)u(A2n A3)U(A3 nA)]</n[o,i] = 1 .所以加(A D A2 A A.) > 加(A〕)+ m(A2) + m(A3)-l-l = m(A t) + m(A2)-b m(A3) - 2 > 0.1().证明:存在开集G,使加乙>M G证明:设{乙}爲是[0,1]闭区间的一切有理数,对于V HG/V,令人二⑴一肖心+拾),并^G=Ol n是疋中开集Z Z 川=11二二1 C亍1 —— 1mG < Y mI n=S^F =~^T = - Gn[O,l],故mG > /n[O,l] = l>- = mG. n=\ n=\ 2 | _ 丄2 2211.设E是X中的不可测集,4是疋中的零测集,证明:EHCA不町测.证明:若EC\CA可测.因为£AA(= A,所以m*(EC\A)<m^A = QMVm * (E D A) = 0.故E " A可测.从而E = (E D A) U (E fl CA)可测,这与E不可测矛盾.故E"C4不可测.12•若E是[0,1冲的零测集,若闭集E是否也是零测集.解:不一定,例如:E是[0,1]中的冇理数的全体.E = [0,1]. mE = 0,但mE =加[0,1] = 1.13.证明:若E是可测集,则V6' > 0,存在G 〃型集G = E ,你型集F = E,使m{E 一F) < £ , m(G 一F) < £证明:由P51的定理2,对于E u R” ,存在G»型集GnE ,使得mG = m^E.^E 得可测性,m^E = mE .则V^>0.m(G-E) = mG-mE = 0J卩〉0, m(G -F)<£. 再由定理3,有F a型集F使得F =>E .且m{E一F) = mE一mF =0<s15.证明:有界集E可测当且仅当V^>0,存在开集G二E,闭集F = E,使得m(G- F) < £.证明:«=) V HG/V,由己知,存在开集G“ =)E,闭集F” =)E使得m(G n-F n)<~. n00令G=C|G“,则GoE.Vne/V, m * (G - E) < m * (G n - E) < m * (G n - F n)/?=!v丄一>0(〃TOO).所以,加*9一£)=0.即G-E是零测集,可测.n从而,E = G-(G-E)可测(=>)设E是冇界可测集8 00因为加*E = inf{^l//; I | U o £ ,人为开长方体}<+oo.故,0£〉0,存在开长另一方面,由E 得冇界性,存在7T 中闭长方体I 二E.记3 = / —E,则S 是/?"中 冇界nJ 测集.并冃.m S = ml - mE.由S 得有界可测性,存在开集G" nS 有加(G*-S)v?.因为I 二E ,故G"n/z )S.2因此三 > /n(G* A/-5) = m(G* 门 /)—加S = m(G* A /) - (ml -mE)=2mE - {ml 一 77?(G + Cl /))=加E 一 m{I 一 G* Cl /)令,F = /-G*n/,则F 是一个闭集,并且由G*n/=)S = /-E,有£o/-G*n/ = F.因此 m{E -F) = mE - mF = mE - m{I - G* A /) < - > 从而,存2在开集 G 二 E ,闭集 F = E.有 m(G - F) = m((G - E)\J (E - F)) <m{G 一 E)+ m(E -F) < — + — = £ ・2 2由£的任意性知,加*(/?'x{0}) = 0.即Fx{0}是零测集.从而,位于。

实变函数第二章点集答案

实变函数第二章点集答案



13.
用三进位无限小数表示康托集 P 中的数时,完全可以 用不着数字 1,试用此事实证明 P 的基数为 c. (提示:把 P 中的点与二进位无限小数作对应)
先用三进位有限小数来表示集 P 的余区间的端点(都属于 P) 则有
证明
1 2 ( , ) (0.1,0.2), 3 3 1 2 ( , ) (0.01,0.02), 9 9 7 8 ( , ) (0.1,0.2), 9 9
n 1

11.
证明: f ( x )为a, b 上连续函数的充要条件是对任意实数 c , 集 E x f ( x ) c 和E1 x f ( x) c 都是闭集.




证明 若: f ( x )为a, b 上连续函数,用第八题同样的方法得
E 和E1 是闭集. E 若E 和E1 是闭集,若有 x0 a, b ,不是f (x) 的连续点,
n
9. 证明:每个闭集必是可数个开集的交集; 每个开集可以表示成可数个开集的合集.
证明 设 F 是闭集,令 Gn x d ( x, F )

1 ,Gn 是开集 n
1 1 ,所以存在 y 0 F ,使 d ( x 0 , y 0 ) . n n 1 1 (否则,任意 y F , d ( x 0 , y ) ,则 d ( x 0 , F ) inf d ( x 0 , y ) , yF n n 1 与 d ( x0 , F ) 矛盾) 。 n
其中 ai (i 1,2, , n 1) 为 0 到 9 除 7 外的一切自然数,

a1 ,, an1 是取遍满足上述条件的各种可能的n 1 个数
记这些全体开区间为

实变函数(曹广福)1到5章答案

实变函数(曹广福)1到5章答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(inf sup =≥∈x mA nm N b χ ,即)(inf lim x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

胡适耕_实变函数答案

胡适耕_实变函数答案

第一章习题 B36.若A ΔB =A ΔC ,则B =C .证一:(反证)不妨设,∃x 0∈B ,且x 0∉C1) x 0∈A ,则x 0∉A ΔB ,x 0∈A ΔC 这与A ΔB =A ΔC 矛盾 2) x 0∉A ,则x 0∈A ΔB ,x 0∉A ΔC 这与A ΔB =A ΔC 矛盾 所以假设不成立,即B =C . 证二:()B A A ∆∆()[]()[]A B A B A A \\∆∆==()()B A B B A =\同理()C C A A =∆∆,现在已知A B A C ∆=∆故上两式左边相等,从而C B =. 37.集列{A n }收敛⇔{A n }的任何子列收敛.证 由习题8集列{}n A 收敛⇔特征函数列{}nAχ收敛,由数分知识得数列{}nA χ收敛⇔{}nA χ的任一子列{}jnA χ均收敛,又由习题8可得{}jn A 收敛.38.设)2,1}(:/{ =∈=n Z m n m A n ,则lim n nA =Z ,lim n nA =Q .证 显然有lim lim n n nnZ A A Q ⊂⊂⊂1) 假设∃x \,Q Z ∈使x ∈lim n nA∴∃N >0,当n>N 时,有n x A ∈,特别地, n x A ∈,1n x A +∈ ∴∃m 1,m 2∈Z ,使x =1m n,x =21m n + ∴1m n=21m n +从而121,m m m n=+这与m 2∈Z 矛盾,所以假设不成立,即:lim n nA =Z .2)∀x ∈Q,则∃m,n ∈Z,使得x =m n∴x=m n=2m n n⋅=…=1kk m n n+⋅=…∴x ∈kn A ,(k =1,2…),从而x ∈lim n n A ∴lim n nA =Q .39.设0<n a <1<n b ,0n a ↓,1n b ↓,则lim[,]n n na b =(0,1].证 (0,1]x ∀∈1) ∵ 0<n a <1<n b ,0n a ↓,1n b ↓ ∴0,N ∃>当n>N 时,有n a <x <n b ∴当n>N 时,x ∈[n a ,n b ] ∴(0,1]⊂lim[,]n n na b .2) 假设∃y >1,使y ∈lim[,]n n na b ,则y 属于集列{[,]n n a b }中的无限多个集合.又因为y >1, 1n b ↓ ,故0,N ∃>当n>N 时,有n b <y ,当n>N 时,y ∉[,]n n a b 从而y 只会属于集列{[,]n n a b }中的有限多个集合. 这与y 会属于集列{[,]n n a b }中的无限多个集合矛盾. 所以假设不成立,即∀y ∈(1,)∞,有y ∉lim[,]n n na b .显然,∀y ∈(0]-∞,有y ∉lim[,]n n na b ,故]1,0(],[lim ⊂n n nb a .综上所述,lim[,]n n na b =(0,1].40.设n f :R X →(n →∞), n f A χ→(n →∞),求lim (1/2)n nX f ≥.解 1)∀0x A ∈,n f A χ→( n →∞),故0()n f x 0()1A x χ→=( n →∞). ∴0,N ∃>当n>N 时,有0()n f x 1/2>.∴当n>N 时,0(1/2)n x X f ∈≥,从而0x ∈lim (1/2)n nX f ≥.2)∀0cx A ∈,n f A χ→( n →∞),故0()n f x 0()0A x χ→=( n →∞).∴0,N ∃>当n>N 时,有0()n f x 3/1>.∴0lim (1/2)n nx X f ∉≥ ∴ lim (1/2)n nX f ≥=A41.设{n A }为升列,A ⊂ n A ,对任何无限集B ⊂A ,存在n 使B n A 为无限集,则A 含于某个n A .证 假设A 不含于任何n A 中,又{n A }为升列,则对1=n ,11\A A x ∈∃,由于n A A ⊂,故N n ∈∃1,使11n A x ∈,即11\1A A x n ∈;对2=n ,22\A A x ∈∃,又n A A ⊂故N n ∈∃2使⊂⊂∈+1222n n A A x .于是可取12n n >使 22\2A A x n ∈.因此对i n =,1->∃i i n n ,i n i A A x i \∈.令B ={x 1, x 2,… x i …},则B ⊂A 且B 为无限集,但∀i ,B A ni ={x 1, x 2,… x i }为有限集,这与已知条件矛盾. ∴假设不成立,即A 含于某个n A 中.42.设f :2x→2x,当A ⊂B ⊂X 时f (A ) ⊂f (B ),则存在A ⊂X 使f (A )=A .证 因为()X X f ⊂,故子集族()(){}B B f B X P X ⊂∈=∆:20非空,令()X B A XP B ⊂=∈∆0,下证:1()A A f ⊂,即要证()X P A 0∈.首先由定义B A ⊂对每个()X P B 0∈成立,那么由已知就有()()B f A f ⊂对一切()X P B 0∈成立,从而()()()()XP B XP B A BB f A f 00∈∈=⊂⊂.2再证()A f A ⊂.为此,由A 的定义,只要能证()()X P A A f 00∈=∆就可以了.但从 1已证的()A A f A ⊂=0,又由已知f 的单调性应有()()[]()00A A f A f f A f =⊂=,故确定()X P A 00∈.43.设X 是无限集,f :X →X ,则有X 的非空真子集A ,使f (A )⊂A .证 ∀x 1∈X ,若x 1≠x 2,令x 2=f ( x 1)若x 2≠x 3 ,令3x =f (2x )… 若1n n x x -≠,令1()n n x f x -=…1)若存在1i i x x +=,则令A ={x 1,x 2,…x i },显然f (A )⊂A . 2)若不存在1i i x x +=,则令A ={x 1,x 2,…x i ,…},显然f (A )⊂A .44.设|A |>1,则有双射f :A →A ,使得∀x ∈A : f (x )≠x ;当|A |=偶数或|A |ω≥时可要求f (f (x ))=x (∀x ∈A ).证 (1)|A |=2n +1, n ∈N ,则A ={x 1,x 2,…x 2n+1 },作映射:()111221i i x i n f x x i n +≤≤⎧=⎨=+⎩,显然f (x )是双射,且∀x ∈A ,有f (x )≠x .(2)|A |=2n ,n ∈N , 则A ={x 1,x 2,…x 2n },作映射: ⎩⎨⎧=≤∃-=≤∃=-+mi n m x m i n m x x f i i i 2,12,)(11, 显然()f x 是双射,且∀x ∈A ,有()f x x ≠且()()ff x x =.(3) |A |ω≥由A ×{0,1}~A 知,存在一双射{}:0,1h A A ⨯→ 令{}()01⨯=A h A ,{}()12⨯=A h A又{}0⨯A ~{}1⨯A 及h 为双射,{}(){}()01A A ⨯⨯=∅{}(){}(){}010,1A A A ⨯⨯=⨯ ,知1A ~2A 且∅=21A A ,A A A =21 ,故A 可划分为两个互不相交等势的子集A 1和A 2。

实变函数课后题答案第二章

实变函数课后题答案第二章

习题2.11.若E 是区间]1,0[]1,0[⨯中的全体有理点之集,求b E E E E ,,,' . 解 E =∅ ;[0,1][0,1]b E E E '===⨯。

2.设)}0,0{(1sin ,10:),( ⎭⎬⎫⎩⎨⎧=≤<=x y x y x E ,求b E E E E ,,,' .解 E =∅ ;{(,):0,11}.b E E x y x y E E '==-≤≤==3.下列各式是否一定成立? 若成立,证明之,若不成立,举反例说明.(1) 11n n n n E E ∞∞=='⎛⎫'= ⎪⎝⎭; (2) )()(B A B A ''=' ; (3) n n n n E E ∞=∞==⎪⎪⎭⎫ ⎝⎛11 ; (4) B A B A =; (5) ︒︒︒=B A B A )(; (6) .)(︒︒︒=B A B A解 (1) 不一定。

如设12={,,,,}n r r r Q ,{}n n E r =(单点集),则1()n n E ∞=''==Q R , 而1.n n E ∞='=∅ 但是,总有11n n n n E E ∞∞=='⎛⎫'⊃ ⎪⎝⎭ 。

(2) 不一定。

如 A =Q , B =R \Q , 则(),A B '=∅ 而.A B ''=R R =R(3) 不一定。

如设12={,,,,}n r r r Q ,{}n n E r =(单点集),则1n n E ∞===Q R , 而1.n n E ∞==Q 但是,总有11n n n n E E ∞∞==⎛⎫⊃ ⎪⎝⎭ 。

(4) 不一定。

如(,)A a b =,(,)B b c =,则A B =∅ ,而{}A B b = 。

(5) 不一定。

如[,]A a b =, [,]B b c =, 则(,)A a b = , (,)B b c = ,而()(,)A B a c = ,(,)\{}A B a c b = .(6) 成立。

卢同善实变函数青岛海洋大学出版社第二章习题答案

卢同善实变函数青岛海洋大学出版社第二章习题答案

第二章习题答案1. 若y y x x m m →→且,则(,)(,)m m x y x y ρρ→. 特别的, 若x x m →, 则(,)(,).m x y x y ρρ→证明:这实际上是表明(,)x y ρ是n n R R ⨯上的连续函数. 利用三角不等式, 得到(,)(,)(,)(,)(,)(,)(,)(,)0,)m m m m m m m m x y x y x y x y x y x y x x y y m ρρρρρρρρ-≤-+-≤+→→∞(.2. 证明:若()δ,01x O x ∈,则δδ<∃1,使得()()δδ,,011x O x O ⊂.证明:实际上取),(0101x x ρδδ-<<即可,因为此时对任意的()11,δx O x ∈,有δρδρρρ<+≤+≤),(),(),(),(0110110x x x x x x x x ,即()0,x O x δ∈.3. 证明以下三条等价:(1).0x E ∈; (2). 0x 的任意邻域中都有E 中的点;(3). 存在E 中的点列{}n x 收敛到0x . 进而,若0x E ∉,则存在0δ>,使得0(,)O x E δ=∅I .证明:注意到'E E E =U . (i ).若(1)成立,则0x E ∈或0'x E ∈. 若前者成立,显然(2)成立;若后者0'x E ∈成立,由极限点的定义也有(2)成立. 总之,由(1)推出(2). (ii). 若(2)成立,则对任意的n ,有10(,)n O x E ≠∅I ,在其中任选一点记为n x . 这样就得到点列{}n x E ⊂,使得10(,)n n x x ρ<,即(3)成立.(iii). 设(3)成立. 若存在某个n 使得0n x x =,当然有0n x x E E =∈⊂;若对任意的n ,都有0n x x ≠,则根据极限点的性质知0'x E E ∈⊂. 总之,(1)成立. 5. 证明:A B A B ⋃=⋃.证明:因为()'''A B A B =U U ,所以有()()()()()()'''''A B A B A B A B A B A A B B A B ⋃=⋃⋃=⋃⋃=⋃⋃=⋃U U U .6. 在1R 中,设[0,1]E Q =⋂,求',E E . 解: '[0,1]E E ==7. 在2R 中,设{}22(,):1E x y x y =+<,求',E E . 解: {}22'(,):1E E x y x y ==+≤8. 在2R 中,设E 是函数1sin ,0,0,0,x x y x ≠⎧=⎨=⎩的图形上的点的全体所成之集,求'E . 解: {}'(0,):11E E a a =-≤≤U . 因对任意的11a -≤≤,有E 上的点列11,()(0,)2arcsin 2arcsin y a n an a ππ⎧⎫→⎨⎬++⎩⎭. 9. 证明:当E 是不可数集时,'E 也必是不可数集.证明:注意到()()''\E E E E E =I U . 而'\E E 是E 中孤立点的全体,它是一个孤立集,故是至多可数集. 若'E 不是不可数集,则'E 是至多可数集,其子集'E E I 也必为至多可数集,就得到()()''\E E E E E =I U 也是至多可数集(因右边两个都是至多可数集),与题设矛盾. 所以'E 必是不可数集.10. 设1,inf ,sup ,E R E E υμ⊂== 证明,E E υμ∈∈.证明:由确界的定义知有E 中的点列{}n x 收敛到υ,再由第3题即得结果. 11. 证明以下三个命题等价: (1) E 是疏朗集. (2) E 不含任何邻域.(3) cE )(是稠密集.证明: (1)→(2):反证法 假设存在E r x O ⊂),(, 按闭包的等价定义, ),(r x O 中任意点的任意邻域中都含有E 中的点, 与疏朗集的定义矛盾.(2)→(3):由假设, 对x ∀, 0δ∀>, 有E x O ⊄),(δ, 从而()∅≠cE x O I ),(δ,即任一点的任一邻域中都有cE )(中的点,也即cE )(是稠密集.(3)→(1):反证法 若E 不是疏朗集,则存在),(δx O ,使得),(δx O 中没有子邻域与E 不相交. 这实际上意味着对任意的),(),(δx O r y O ⊂都有∅≠⋂E r y O ),(, 由r 的任意小性知道E y ∈, 再由y 的任意性知道E r y O ⊂),(, 由此知道()cE 不是稠密的.由这个命题知道疏朗集的余集是稠密的, 但稠密集的余集不一定是疏朗的, 如Q .12. 设n R E ⊂,证明:E 是疏朗集的充要条件是任一闭区间中均有子闭区间与E 不相交. 证明:因为任一闭区间中必含开区间,而任一开区间中也必含闭区间. 13. 证明:疏朗集的余集必是稠密集,但稠密集的余集未必是疏朗集.证明:由第11题知若E 是疏朗集,则cE )(是稠密集. 而由于E E ⊂,故()cc E E ⊂,从而由cE )(是稠密集得到c E 是稠密的. 反例:Q 和cQ 都是稠密集. 14. 构造反例说明:非稠密集未必是疏朗集,非疏朗集未必是稠密集.反例:]1,0[15. 证明:1R 中的非空闭区间不能表示成可数个疏朗集的并. 证明:反证法. 若否,设Y∞==1],[n n E b a ,其中{}n E 都是疏朗集. 利用12题,因1E 疏朗,故],[b a 中有非空子闭区间],[],[11b a b a ⊂,使111<-a b 且111[,]a b E =∅I ;同样,因2E 疏朗,存在],[],[1122b a b a ⊂,使2122<-a b 并且222[,]a b E =∅I ;一直下去,得到一列闭区间套{}],[n n b a ,使得na b n n 1<-,],[],[11n n n n b a b a ⊂++,且[,]n n n a b E =∅I . 由数学分析中的闭区间套定理,存在唯一的],[b a x ∈含于所有的闭区间{}],[n n b a ,并且成立)(n E x n ∀∉,这与Y∞==∈1],[n n E b a x 矛盾.16. 孤立集nR E ⊂必是至多可数集.证明:令(0,)k E E O k =I ,则{}k E 是有界集列,且1k k E E ∞==U,故只需要证明每个k E 是至多可数集即可. 注意到k E 也是孤立集并且有界,方便起见,不妨仍记k E 为E .这样,问题转为证明:有界的孤立集E 是至多可数集. 任取x E ∈,由孤立性,存在()0x δ>使得{}(,())O x x E x δ=I .(*)得到满足(*)式开球族{}(,()):O x x x E K δ∈=. 明显的,E 和开球族K 对等. 对K 中的球按半径分类.令n K 是K 中半径大于1n的球的全体. 则1n n K K ∞==U ,若能证明每个n K 都是有限集,就得到K 是至多可数集,从而E 是至多可数集.下证明:n K 都是有限集. 注意到n K 中每个球的半径大于1n,且每个球的球心不在其他的球中(由(*)式),这表明各个球心之间的距离大于1n. 另一方面,这些球心是一致有界的. 再结合有界的无限集必有收敛的子列这一命题,知n K 中只能有有限个球. 17. 设n R E ⊂,证明E 是n R 中包含E 的最小闭集.证明:当然,E 是包含E 的闭集. 任取闭集F ,且E F ⊂. 来证E F ⊂. 任取0x E ∈,则存在E 中的点列{}n x 收敛到0x (第3题中闭包的性质). 而E F ⊂,所以点列{}n x 含于F 中且收敛到0x ,这表明0x F ∈. 又F 是闭集,所以F F =,即有0x F ∈. 再由0x E ∈的任意性知E F ⊂,即E 是包含E 的最小闭集.18. 设)(x f 是n R 上的实值连续函数. 证明:对任意的实数a ,集合 {}:()x f x a >是开集, 集合{}a x f x ≥)(:是闭集.证明:(1)任取{}:()x f x a >中的点0x ,则0()f x a >. 由连续函数的性质(保号性)知:0δ∃>,使得当0x x δ-<时,恒有()f x a >,即{}0(,):()O x x f x a δ⊂>,也就证明了0x 是{}:()x f x a >的内点. 由0x 的任意性知{}:()x f x a >是开集. (2)证明{}:()E x f x a =≥是闭集.法一. 类似于(1),知{}:()x f x a <是开集. 由于开集的余集是闭集,所以{}{}:():()cx f x a x f x a ≥=<是闭集.法二. 直接证. 任取'0x E ∈,则存在点列{}n x E ⊂,使得0lim n n x x →∞=. 再由函数的连续性知0lim ()()n n f x f x →∞=. 又()()n f x a n ≥∀,结合连续函数的性质(保号性),必有0()f x a ≥,即0x E ∈. 由'0x E ∈的任意性得到'E E ⊂,也即E 是闭集.19. 证明:1R 中可数个稠密的开集之交是稠密集. 证明:反证法. 设1n n E E ∞==I,其中{}n E 是一列稠密的开集. 若E 不是稠密集,则存在某个邻域0(,)O x δ与E 不相交,这时必有闭区间0022[,]c I x x E δδ=-+⊂. (1)而()11ccc nn n n E E E ∞∞====IU , (2)这里{}c n E 是一列疏朗集(因为稠密开集的余集是疏朗的). {}c n E I I 也是一列疏朗集(疏朗集的子集当然是疏朗的),再由(1),(2)两式得到()11c c c n n n n I I E I E I E ∞∞=====I II U U ,这表明非空闭区间I 可以表示成一列疏朗集{}c n E I I 的并,与第15题矛盾.补:稠密开集E 的余集c E 是疏朗的.证明:反证法. 若c E 不是疏朗集,由疏朗集的等价条件(第11题)知存在邻域0(,)c O x E δ⊂. 又E 是开集,所以c E 是闭集,故c c E E =. 结合起来有0(,)c O x E δ⊂,这表明0(,)O x E δ=∅I ,与E 是稠密集矛盾. 20. 设)(x f 是1R 上的实函数. 令0()lim sup ()inf ().y x y x x f y f y δδδω→-<-<⎡⎤=-⎣⎦证明 :(1)对任意的0>ε,集合{}:()x x ωε≥是闭集.(2))(x f 的不连续点的全体成一σF 集.证明:注意到()''''''0,(,)()lim sup ()()y y O x x f y f y δδω→∈=-,它是)(x f 在x 处的振幅. (1). 等价于证明{}:()E x x ωε=<是开集. 任取0x E ∈,因为0()x ωε<,由极限的性质,存在0δ>,使得()'''0''',(,)sup ()()y y O x f y f y δε∈-<.任取0(,)x O x δ∈,则存在10δ>,使得10(,)(,)O x O x δδ⊂. 显然有()()''''''1'''''',(,),(,)sup ()()sup ()()y y O x y y O x f y f y f y f y δδε∈∈-≤-<.这表明()x ωε<,x E ∈. 故0(,)O x E δ⊂,说明E 中的点全是内点,E 是开集. (2). 注意到连续点的振幅是零,不连续点的振幅大于零. 设不连续点的全体是K . 令11:()n K x R x n ω⎧⎫=∈≥⎨⎬⎩⎭. 则{}n K 是闭集列,且1nn K K ∞==U ,即K 是σF 集.21. 证明:]1,0[中无理数的全体不是σF 集.证明:反证法. 若[0,1]\Q 是σF 集,则1[0,1]\n n Q E ∞==U,其中{}n E 是]1,0[中的闭集列. 因为每个n E 都是闭集且都不含有理数,所以它必是疏朗集(因若不疏朗,则n E 中必有邻域,而任意邻域中都有有理数). 而]1,0[中有理数的全体[0,1]Q I 是可数集,设{}{}121[0,1],,,,n n n Q r r r r ∞===I L K U . 单点集列{}n r 当然是疏朗集列. 结合起来,有()()(){}()11[0,1][0,1]\[0,1]n n n n Q Q E r ∞∞====U I UU U,等式的右边都是疏朗集,故上式表明闭区间]1,0[可表示成一列疏朗集的并,与第15题矛盾. 22. 证明:定义在]1,0[上具有性质:“在有理点处连续,在无理点处不连续”的函数不存在.证明:结合第20题(2)和第21题直接得结论.23. 设n R E ⊂,证明E 的任意开覆盖必有至多可数的子覆盖. (Lindelof 定理)证明:设{}:E αα∈Λ是E 的任一开覆盖. 任取E 中的点x ,必有某α∈Λ,使得x E α∈.存在有理开区间x I ,使得x x I E α∈⊂. (*)就得到E 的有理开区间族覆盖{}:x I x E ∈(称为{}:E αα∈Λ的加细开覆盖),其中x I 对某个E α满足(*)式. 因为有理开区间的全体是可数集,所以{}:x I x E ∈作为集合来看是至多可数集,记为{}n I . 则nn E I⊂U ,对n I ,取满足(*)式的相应E α记为n E ,这时{}n E 是至多可数个且覆盖E .24. 用Borel 有限覆盖定理证明Bolzano-Weierstrass 定理.证明:反证法. 设E 是有界的无限集. 若E 没有极限点,则它是有界闭集,还是孤立集. 由孤立性,对任意的x E ∈,存在()0x δ>使得{}(,())O x x E x δ=I(*)这样,得到满足(*)式的开球族{}(,()):O x x x E δ∈且覆盖E . 因E 是有界闭集,由Borel 有限覆盖定理,存在有限的子覆盖,记为{}():1,,i O x i k =L . 即有1()ki i E O x =⊂U,又E是无限集,所以至少存在一个()i O x 含有E 中的多个点,这与(*)式矛盾.25. 设n E R ⊂是G δ集,且E 含于开集I 之中,则E 可表为一列含于I 的递减开集之交. 证明:设1nn E E ∞==I,其中{}n E 是开集列. 取1n n k k F E ==I ,则{}n F 是递减的开集列(因有限个开集的交是开集),且1n n E F ∞==I. 又I 是开集,故{}n F I I 是含于I 中的递减开集列. 结合E I ⊂,得()()11nn n n E E I F I F I ∞∞=====I I I II .{}n F I I为所求.26. 设{}()n f x 为n R 上的连续函数列. 证明:点集{}:lim ()0n E x f x =>为一F σ集. 证明:注意到对任意的a ,{}[]:()n n x f x a f a ≥=≥都是闭集(第18题). 而{}111:lim ()0n nk N n N E x f x f k ∞∞∞===⎡⎤=>=≥⎢⎥⎣⎦U U I. 又1nn N f k ∞=⎡⎤≥⎢⎥⎣⎦I是闭集(任意多个闭集的交还是闭集),结合上式表明E 为一F σ集. 27. 设G 为Cantor 开集,求'G .解:由Cantor 集是疏朗的,可得'[0,1]G = 28. 证明:1R 中既开又闭的集合只能是1R 或∅.证明:设A 是非空的既开又闭集. 它必有构成区间,不妨设),(b a 是A 的一个构成区间.若a 有限, 则A a ∉; 另一方面,由A 是闭集得A A b a b a a ⊂⊂=∈')',(],[, 得到矛盾. 所以a =-∞,同理得b =+∞. 因此1A R =,所以1R 中既开又闭的集或是空集或是1R .实际上:n R 中既开又闭的集或是空集或是n R .证明: 反证法. 设nR A ⊂是既开又闭的非空又非nR 的集合. 则必存在nx R ∈,但x A ∉. 一方面因为A 是非空闭集, 所以存在A y ∈, 使得()()0,,>=y x A x ρρ. 另一方面, 因为A 又是开集, 所以y 是内点,而取得非零距离的点绝不能是内点(只能在边界上达到非零的距离),就导出了矛盾, 所以n R 中既开又闭的集或是空集或是nR . 29. 1R 中开集(闭集)全体所成之集的势为c .证明:因为开集的余集是闭集、闭集的余集是开集, 且不同集合的余集是不同的, 所以开集全体的势和闭集全体的势是一样的.设开集的全体是F . 由于全体开区间{}b a b a F <=:),(1()(b a 可取负(正)无穷)的势是c , 所以F 的势不小于c . 任取开集A F ∈, 由开集的构造知道Y ),(i i b a A =(是至多可列个并). 作对应{}ΛΛ;;,;,)(2211b a b a A =ϕ(如果是有限并,后面的点全用0代替), 则该对应是从F 到R ∞一个单射(因不同开集的构造不同), 就有F 的势不大于R ∞的势c . 综上所述,直线上开集的全体的势是c .实际上:n R 中开集(闭集)全体所成之集的势为c .证明:设n R 中开集的全体是F ,易知F 的势不小于c . 由n R 中开集的构造,每个开集A F ∈都可表示成可数多个互不交的左闭右开的有理方区间(平行坐标轴,中心的坐标和边长都是有理点,有理数){}():n I A n N ∈的并,且开集不同时表示不完全相同. 有理方区间的全体K 是可数集,所以K 的子集的全体所成之集2K 的势是2ac =. 让开集A 和它的表示{}():n I A n N ∈对应,则该对应是从F 到2K 的单射,这表明F 的势不超过c .30. 证明:nR 中的每个开集或闭集均为F σ集和G δ集.证明:设E 是闭集,它当然是F σ集(取闭集列全是E 自身即可). 令{}1:(,)n nE x x E ρ=<,则{}n E 是包含E 的开集列(第32题). 实际上,有1n n E E ∞==I. (*)显然,左是右的子集. 任取右边的元x ,则()n x E n ∈∀,即1(,)()n x E n ρ<∀,这表明(,)0x E ρ=,因此x E E ∈=,说明右边是左边的子集. 因此(*)式表明闭集E 是G δ集.由对偶性得到开集既是F σ集也是G δ集.31. 非空集合nF R ⊂具有性质:*,nx R y F ∀∈∃∈使*(,)(,)x y x F ρρ=,证明F 是闭集.证明:任取'x F ∈,则存在{}n x F ⊂,使0n x x -→,故 0(,)0n x F x x ρ≤≤-→.因此(,)0x F ρ=. 由题设,存在*y F ∈使得*(,)(,)0x y x F ρρ==,故*x y F =∈. 由'x F ∈的任意性得'F F ⊂,即F 是闭集.由于点到闭集的距离可达, 该性质是F 成为闭集的充要条件.32. 设集合,0nE R d ⊂>,点集U 为{}:(,)U x x E d ρ=<. 证明E U ⊂且U 是开集.证明:E U ⊂是显然的. 法一. 由第34题,()(,)f x x E ρ=是n R 上的连续函数,而{}:()U x f x d =<,再由第18题知U 是开集.法二. 直接证U 中的点全是内点. 任取x U ∈,则(,)x E r d ρ=<. 取正数d r δ<-. 当ny R ∈满足(,)x y ρδ<时,根据集合距离的不等式得(,)(,)(,)y E x E x y r d ρρρδ≤+<+<,即表明(,)O x U δ⊂,故x 是U 的内点. 由x U ∈的任意性知U 是开集.33. 设,nE F R ⊂是不相交的闭集,证明:存在互不相交的开集,U V ,使得,E U F V ⊂⊂.证明:法一. 由第35题,存在n R 上的连续函数()f x 使得{}:()0E x f x ==且{}:()1F x f x ==. 则{}{}1142:(),:()U x f x V x f x =<=>都是开集(由第18题)且不相交,同时还满足,E U F V ⊂⊂.法二. 因为,E F 是互不相交的闭集,所以,ccE F 是开集,且,ccE F F E ⊂⊂. 任取,c x E F ∈⊂ 因c F 是开集,故存在邻域()(,())O x O x x δ=,使得()()cx O x O x F ∈⊂⊂,即 ()O x F =∅I . (1)这样就得到E 开覆盖{}():O x x E ∈,且满足(1). 又集合E 的任一开覆盖一定有至多可数的子覆盖(第23题),所以E 可以用可数个开球()O x 来覆盖,记为{}1n n O ∞=. 即有1n n E O ∞=⊂U 且,()n O F n =∅∀I . (2)同理,存在可数个开球{}1n n B ∞=使得1n n F B ∞=⊂U 且,()n B E n =∅∀I (3)令 11\\n n n n k n k k k U O B O B ====U U , 11\\n nn n k n k k k V B O B O ====U U .则{}{}11,n n n n U V ∞∞==均是开集列(都是开集减闭集),且,(,)n m U V n m =∅∀I . 还由(2)(3)式知{}{}11,n n n n U V ∞∞==还分别是,E F 的开覆盖(因由构造,n O 中去掉的都不是E 中的点). 取11,n n n n U U V V ∞∞====U U ,则它们即为所求.34. 设,nE R E ⊂≠∅,证明(,)x E ρ作为x 的函数在n R 上是一致连续的.证明:命题直接由不等式(,)(,)x E y E x y ρρ-≤-得到.35. 设,E F 为n R 中互不相交的非空闭集,证明存在n R 上的连续函数()f x 使得:(1). 0()1,nf x x R ≤≤∀∈;(2). {}:()0E x f x ==且{}:()1F x f x ==. 证明: 实际上(,)()(,)(,)x E f x x E x F ρρρ=+满足要求.36. 设0,n nE R x R ⊂∈. 令{}{}00:E x x x x E +=+∈,即{}0E x +是集合E 的平移,证明:若E 是开集,则{}0E x +也是开集.证明:因为开球平移后还是开球.。

实变函数第二章习题解答

实变函数第二章习题解答

第二章习题参考解答1:证明:有理数全体是R '中可测集,且测度为0.证:(1)先证单点集的测度为0.R x '∈∀,令}{x E =.0>∀ε,N n ∈∀)2,2(11+++-=n n n x x I εεε,因为E I I E m n n n n ⊃=∞=∞=∑11||inf{* ε,n I 为开区间≤}∑∑∞=∞===112||n n n n I εεε.故0*=E m .所以E 可测且0=mE .(2)再证:R '中全体有理数全体Q 测度为0.设∞=1}{n n r 是R '中全体有理数,N n ∈∀,令}{n n r E =.则}{n E 是两两不相交的可测集列,由可测的可加性有:∑∑∞=∞=∞=====11100)(*n n n n n mE E m Q m .法二:设∞==1}{n n r Q ,N n ∈∀,令)2,2(11+++-=n n n n n r r I εεε,其中ε是预先给定的与n 无关的正常数,则:∑∑∑∞=∞=∞=∞===≤⊃=11)(112||}||inf{*i i nin i i nIQ I IQ m εεε .由ε得任意性,0*=Q m .2.证明:若E 是nR 有界集,则+∞<E m *.证明:若E 是nR 有界.则∃常数0>M ,使E x x x x n ∈=∀),,(21 ,有=EM x x ni i ni i ≤=-∑∑==1212)0(,即)1(n i i <≤∀,有M x i ≤,从而],[1M x M x E i n i i +-⊂∏=.所以+∞<=≤+-≤∑∏==nni ini i M M M x M x m E m )2(2],[**113.至少含有一个内点的集合的外测度能否为零?解:不能.事实上,设nR E ⊂,E 中有一个内点 E x x x n ∈=),(1 .0>∃δ,使得E x x x O i ni i ⊂+-=∏=)2,2(),(1δδδ.则0)]2,2([**1>=+-≥∏=n i ni i x x m E m δδδ所以0*≠E m . 4.在],[b a 上能否作一个测度为a b -,但又异于],[b a 的闭集? 解:不能事实上,如果有闭集],[b a F ⊂使得a b mF -=.不失一般性,可设F a ∈且F b ∈.事实上,若F a ∉,则可作F a F }{*=,],[*b a F ⊂.且mF mF a m mF =+=}{*.这样,我们可记*F 为新的F ,从而),(),(),(],[b a F b a F b a F b a -=-=-.如果∅≠-F b a ],[,即F b a F b a x -=-∈∃),(],[,而F b a -),(是开集,故x 是F b a -],[的一个内点,由3题,0),()],([)],([*≠-=-=-mF b a m F b a m F b a m .这与a b mF -=矛盾.故不存在闭集],[b a F ⊂且a b mF -=5.若将§1定理6中条件")("0∞<≥n k n E m 去掉,等式∀n n n n mE E m ∞→∞→<lim )lim (是否仍成立? 解:§1定理6中条件")("0∞<≥n k n E m 是不可去掉的.事实上,N n ∈∀,令),1[n n E n --,则∞=1}{n n E 是两两相交的可测集列,由习题一得15题:∅==∞→∞→n n n n E E lim lim .故0)lim (=∞→n n E m ,但N n ∈∀,1),1[=-=n n m mE n .所以1lim =∞→n n mE .从而)lim (lim n n n n E m mE ∞→∞→≠.6.设1E , ,2E 是)1,0[中具有下述性质的可测集列:0>∀ε,N k ∈∃使ε->1k mE ,证明:1)(1=∞=i i E m证:事实上,0>∀ε,因为N k ∈∃,ε->1k mEε->≥≥≥∞=1)(]1,0[11k i i mE E m m7.证明:对任意可测集B A ,,下式恒成立.mB mA B A m B A m +=+)()( .证明:A A B A B A )(-=且∅=-A A B A )(故 mA A B A m B A m +-=)()( .即)()()(A B m A B A m mA B A m -=-=-又因为)()(A B A B B -=.且∅=-)()(A B A B ,所以=mB)()(A B m A B m +-故)()(B A m mB mA B A m -=-,从而mB mA B A m B A m +=+)()( 8.设是1A ,2A 是]1,0[中的两个可测集且满足121>+mA mA ,证明:0)(21>A A m .证:212121)()(mA mA A A m A A m +=+ .又因为1])1,0([)(21=≤m A A m所以01)()(21212121>-+≥-+=mA mA A A m mA mA A A m9.设1A ,2A ,3A 是]1,0[中的两个可测集,且2321>++mA mA mA ,证明:0)(321>A A A m证:321321321)(])[()(mA A A m A A A m A A A m +=+ =)()()()(21321A A m A m A m A m -++.所以)()()()()][()(32132132121A A A m A m A m A m A A A m A A m -++=+又因为)]()()[(133221A A A A A A m =)]()[(32121A A A A A m =)][()(32121A A A m A A m +)][()[(32121A A A A A m -=)(21A A m + 321)[(A A A m ]][(321A A A m -.所以=)(321A A A m -+)][()(32121A A A m A A m )]()()[(133221A A A A A A m =)]()()[()()()()(133221321321A A A A A A m A A A m A m A m A m --++因为1]1,0[)(321=≤m A A A m1]1,0[)]()()[(133221=≤m A A A A A A m .所以02)()()(11)()()()(321321321>-++=--++≥A m A m A m A m A m A m A A A m .10.证明:存在开集G ,使mG G m >证明:设∞=1}{n n r 是]1,0[闭区间的一切有理数,对于N n ∈∀,令)21,21(22+++-=n n n n n r r I ,并且n n I G ∞==1是R '中开集2121121212111=-==≤∑∑∞=+∞=n n n n mI mG .而,]1,0[⊃G ,故mG m G m =>=≥211]1,0[.11.设E 是R '中的不可测集,A 是R '中的零测集,证明:CA E 不可测.证明:若CA E 可测.因为A A E ⊂ ,所以0*)(*=≤A m A E m .即0)(*=A E m .故A E 可测.从而)()(CA E A E E =可测,这与E 不可测矛盾.故CA E 不可测. 12.若E 是]1,0[中的零测集,若闭集E 是否也是零测集.解:不一定,例如: E 是]1,0[中的有理数的全体.]1,0[=E .0=mE ,但1]1,0[==m E m .13.证明:若E 是可测集,则0>∀ε,存在δG 型集E G ⊃,σF 型集E F ⊃,使ε<-)(F E m ,ε<-)(F G m证明:由P51的定理2,对于nR E ⊂,存在δG 型集E G ⊃,使得E m mG *=.由E得可测性,mE E m =*.则0>∀ε.0)(=-=-mE mG E G m .即0>∀ε,ε<-)(F G m . 再由定理3,有σF 型集F 使得E F ⊃.且ε<=-=-0)(mF mE F E m15.证明:有界集E 可测当且仅当0>∀ε,存在开集E G ⊃,闭集E F ⊃,使得ε<-)(F G m .证明:)(⇐N n ∈∀,由已知,存在开集E G n ⊃,闭集E F n ⊃使得nF G m n n 1)(<-. 令n n G G ∞==1,则E G ⊃.N n ∈∀,)(*)(*)(*n n n F G m E G m E G m -≤-≤-)(01∞→→<n n.所以,0)(*=-E G m .即E G -是零测集,可测. 从而,)(E G G E --=可测)(⇒设E 是有界可测集因为E I IE m n n n n⊃=∞=∞=∑11||inf{* ,n I 为开长方体+∞<}.故,0>∀ε,存在开长方体序列∞=1}{n n I ,使得E I n n ⊃∞=1.有2*||*1ε+<≤∑∞=E m IE m n n.另一方面,由E 得有界性,存在nR 中闭长方体E I ⊃.记E I S -=,则S 是nR中有界可测集.并且mE mI mS -=.由S 得有界可测性,存在开集S G ⊃*有2)(*ε<-S G m .因为E I ⊃,故S I G ⊃ *.因此mS I G m S I G m -=->)()(2** ε==--)()(*mE mI I G m))((*I G m mI mE --)(*I G I m mE --=令,I G I F *-=,则F 是一个闭集,并且由E I S I G -=⊃ *,有F IG I E =-⊃ *.因此2)()(*ε<--=-=-I G I m mE mF mE F E m ,从而,存在开集E G ⊃,闭集E F ⊃.有))()(()(F E E G m F G m --=- )(E G m -≤)(F E m -+εεε=+<22.由ε的任意性知,0})0{(*=⨯'R m .即}0{⨯'R 是零测集.从而,位于ox 轴上的任意集}0{⨯'⊆R E ,因此,E 为零测集.16.证明:若nm R E ⊂是单调增加集列(不一定可测)且m n E ∞=1,则m m m n E m E m *lim )(*1∞→∞==证明:m n E E ∞==1,即,E 有界并且E E E E E n ⊂⊂⊂⊂⊂⊂ 321故+∞<≤≤≤≤≤≤E m E m E m E m E m n *****321 ,即∞=1}*{m m E m 单调递增有上界.所以,m m E m *lim ∞→存在并且E m E m m m **lim ≤∞→下证:E m E m m m **lim ≥∞→.由于E 有界,可作一个开长方体),(1∏==∆ni iiβα,有N n ∈∀,∆⊂⊂E En.0>∀ε,因为n i n i i n E I I E m ⊃=∞=∞=∑11||inf{* ,i I 为开长方体}.故,存在开长方体序列}{i I 使得n i n E I ⊃∞=1,且ε+<=≤≤∑∑∞=∞=∞=111*||*)(**i n i i i i n n E m I I m I m E m .令∆=∞= )(1i n n I G ,则nG 为有界开集,且∆⊂⊂n n G E ,ε+<≤≤∞=n n i n n E m I m G m E m *)(***1.N n ∈∀,又令=n A k n G ∞=1),2,1( =n .且n n A A ∞==1,则由∆⊂⊂n n A E 知,}{n A 是单调递增的可测序列,由P46的定理4,n n n n mA A m mA E m ∞→∞→==≤lim lim *.又由,)(N n G A n n ∈∀⊂,有ε+<≤n n n E m mG mA *.从而ε+≤∞→∞→n n n n E m mA *lim lim .故ε+≤∞→n n E m E m *lim *.由ε得任意性,即得n n n E m mA *lim ∞→≤.从而,n n n m n E m E m mA *lim )(*1∞→∞=== .17.证明:n R 中的Borel 集类具有连续势.证明:为了叙述方便,我们仅以1=n 为例进行证明:用[,]b a 表示R '上的开区间,用),(b a 表示上的一个点.A 表示R '上的所有开区间的集合;Q 表示R '所有闭集;σρ和δϑ分别表示所有的σF 型集,所有δG 型集.因为R R b a R b a b a R b a b a A '⨯'⊂<'∈'∈=},,|),{(~},[,{],又因为A R a b a R ⊂'∈'}[,{]~.故C R R A R ='⨯'≤≤'.所以C A =.又因为|{O A ⊆存在可数个开区间}{k I ,有}1k k I O ∞== .所以Q A ≤.又定义映射Q A →∞:ϕ,∞=∈∀∏A I ni i 1,有Q I I k k ni i ∈=∞==∏11)( ϕ.故ϕ是一个满射.所以C A A Q A C =≤=≤=∞∞)(ϕ. 故C A =.又定义:→∞Q:ψδϑ,→∞Q :τσρ,i i ni i O O ∞===∏11)( ψ,ci i ni i O O ∞===∏11)( τ则ψ与τ都是满射.所以 C Q Q Q C =≤==≤∞∞)(ψϑδ.即,C =δϑ.同理,C =σρ.记β时R '上的Borel 集的全体.因集合的“差”运算可以化成“交”运算,例如:c B A B A =- .因此,β中的每个元都是δσϑρ 中可数元的并,交后而成.故C C =≤≤=∞)(δσδσϑρβϑρ .∆⊂=⊂=∞=∞=A A E E n n n n 11从而,C =β.即,R '上Borel 集的全体的势为C .18.证明对任意的闭集F ,都可找到完备集F F ⊂1,使得mF mF =1.19.证明:只要0>mE ,就一定可以找到E x ∈,使对0>∀δ,有0)),((>δx O E m .证明:设n R E ⊂,0>mE .首先将n R 划分成可数边长为21的左开右闭的n 维长方体 }|)21,2({1Z m m m i i ni i ∈+= .则}|)21,2({11Z m m m E i i ni i ∈+== β互不相交且至多可数.不妨记为1}{)1(1A k k E ∈=β,N A ⊂1.因)1(1k k E E ==β,则0)1(>=∑kkE m mE .故N k ∈∃1,有0)1(1>k mE .又因}|)21,2({212)1(2Z m m m E i i ni i k∈+== β互不相交且至多可数.故可记2}{)2(2A k k E ∈=β,其中 N A ⊂2,又由,)2(2)1(k k k E E ==β.故0)2()1(>=∑k kk E mE ,所以, N A k ⊂∈∃22,有0)2(>k mE .这样下去得一个单调递减的可测集列 ⊃⊃⊃=)2()1()0(210k k k E E E E ,其中:N j >∀,)]21,2([)]21,2([{111j i n i j i j i ni j i j k jk m m E m m EE j j+=+===- .记)]21,2([1j i ni ji j m m E F +== ,故闭集列∞=1}{j j F 单调递减且N j >∀,)(0)21(21)(0)(+∞→→=≤≤<j mF E m jn nj j k jj . 由闭集套定理,j j F x ∞=∈∃1! .对于0>∀δ,因j nj mF )21(≤,取N j >0,使δ<0)21(j n .则 E x O m m E F x j i ni j i j ),()]21,2([0001δ⊂+=∈=,故0)),((0>≥j mF x O E m δ .20.如果nR E ⊂可测,0>α,记}),,(|),,{(11E x x x x E n n ∈= ααα.证明:E α也可测,且mE E m n⋅=αα)(.证明:(1)先证:E m E m n*)(*⋅=αα因为E I IE m i i i iαα⊃=∞=∞=∑11||inf{)(* ,i I 为开长方体},对于开长方体序列∞=1}{i n I ,若E I i i α⊃∞=1,则E I i i ⊃∞=α11,E I i i ⊃∞=α11也是开长方体序列,且∑∞=≤1|1|*i i I E m α=∑∞=1||1i inIα.即∑∞=≤⋅1||*i i nI E m α.因此≤⋅E m n*αE I I i i i i α⊃∞=∞=∑11||inf{ ,i I 为开长方体}.另一方面,0>∀ε,因为E I IE m i i i i⊃=∞=∞=∑11||inf{* ,i I 为开长方体}.故存在开长方体序列n i i E m I αε+<∑∞=*||1*.所以E I i i αα⊃∞=*1 ,故εαααα+<==∑∑∞=∞=E m I I E m n i i n i i *||||)(*1*1*.由ε得任意性,知E m E m n *)(*αα≤.从而E m E m n *)(*αα=(2)再证:E α可测事实上,nR T ⊂∀,n R T ⊂α1,由E 得可测性,=)1(T m α+)1(*E T m α)1(*CE T m α.故,=)(1T m n α+)(*1E T m n αα )(*1CE T m n αα.因此=T m *+)(*E T m α )(*CE T m α .E α可测. 因此,当E 可测时,mE E m nαα=*.下面是外测度的平移不变性定理.定理(平移不变性)设nR E ⊂,nR x ∈0,记}|{}{00E x x x x E ∈+=+.则E m x E m *}){(*0=+证明:当E 是nR 中开长方体时}{0x E +也是一个开长方体,且其相应的边均相同,故E m E x E x E m *|||}{|}){(*00==+=+.如果E 是nR 中的任意点集,对于E 德任意由开长方体序列∞=1}{i i I 构成的覆盖,∞=+10}}{{i i x I 也是覆盖}{0x E +,且仍是开长方体序列,故≤+}){(*0x E m∑∑∞=∞==+110|||}{|i i i iI x I.所以≤+}){(*0x E m E I I i i i i ⊃∞=∞=∑11||inf{ ,i I 为开长方体}=E m *.即≤+}){(*0x E m E m *.下证:E m *≤}){(*0x E m +令}{01x E E +=,由上面的证明知,}){(*01x E m -+≤1*E m .所以=E m *}){(**}){(*0101x E m E m x E m +=≤-+.从而,E m x E m *}){(*0=+.21.设2)(x x f =,R E '⊂.是零测集,证明:}|)()(2E x x x f E f ∈==也是零测集.证明:设R E '⊂,0=mE(1)当)1,0(⊂E 时,0>∀ε,当0*=E m ,则存在开区间到∞==1)},({i i i i I βα使得)1,0(),(1⊂⊂∞=i i i E βα ,且2)(||11εαβ<-=∑∑∞=∞=i i i i iI.故==∞=)),(()(1i i i f E f βα)1,0(),(221⊂∞=iii βα .))(()(|)(|)(*12211i i i i i iii i i I f E f m αβαβαβ+-=-=≤∑∑∑∞=∞=∞=εεαβ=-=-≤∑∞=22)(21i i i .所以0)(*=E f m .。

实变函数集合标准答案

实变函数集合标准答案

实变函数集合标准答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2第一章 集合一、 內容小结1. 这一章学习了集合的概念、表示方法、集合的运算(并、交、差、补);引入了集合列的上、下极限和极限的运算;对集合运算规则作了仔细的讨论,特别是德摩根公式。

2. 引入了集合对等的概念,证明了判别两个集合对等的有力工具——伯恩斯坦定理。

3. 引入了集合基数的概念,深入地研究了可数基数和连续基数。

二、 学习要点1. 准确熟练地掌握集合的运算法则,特别要注意集合运算既有和代数运算在形式上一许多类似的公式,但也有许多本质。

但是千万不要不加证明地把代数恒等式搬到集合运算中来。

例如:(a+b)-a=b,但是(A+B)-B=A 却不一定成立。

条件为A,B 不交。

2. 可数集合是所有无限集中最小的无限集。

若可数A 去掉可数B 后若还无限则C 必可数。

3. 存在不可数集。

无最大基数集。

以下介绍学习中应掌握的方法4. 肯定方面与否定方面。

B X B X ∉∈与,5. 集合列的上、下限集是用集合运算来解决分析问题的基础,应很好地掌握。

其中用交并表示很重要。

对第四章的学习特别重要。

6. 基数部分重点:集合对等、构造集合的一一对应;利用对等的传递性(伯恩斯坦定理)来进行相应的证明。

7. 集合可数性的证明方法很重要:可排列、与已知可数集对等、利用集合的运算得到可数、第四节定理6.8. 证明集合基数为C 中常用到已知的基数为C 的集合。

∞E R n ,三、 习题解答1. 证明:)()()(C A B A C B A =证明 则若设,).(A x C B A x ∈∈ B A x ∈,得).()(C A B A x ∈若则同样有设,C B x ∈B A x ∈且C A x ∈,得).()(C A B A x ∈因此)()()(C A B A C B A ⊂3设)()(C A B A x ∈则若,.A x ∈当然有)()(C A B A x ∈,若,.A x ∉由B A x ∈且C A x ∈,可知B x ∈若.且c x ∈.,所以,C B x ∈同样有).(C B A x ∈因此⊂)()(C A B A )(C B A ,所以)()()(C A B A C B A = 2. 证明⑴B B A B A A B A -=-=-)()( ⑵)()()(C A B A C B A -=- ⑶)()(C B A C B A -=--⑷)()()(C A B A C B A -=--⑸)()()()(D B C A D C B A -=-- ⑹.)(B A B A A =-- 证明 ⑴().)()()()(B A B C A A C A B C A C A B A C A B A A s s s s s -====-B C B A B B A s )()(=-=B A B C B B C A s s -=)()( ⑵).()(()(()(()()()()()()(C B A C C B A C C B A A C B A C C A C B A C A C B A C A B A s s s s s s -=====-⑶)()()()(C B A C B C A CC B C A C B A s s s -===--⑷4).()()()()()()()(C A B A C A B C A C B C A C C B C A C C B A C B A s s s s s -====-=--⑸).()()()()()()()(D B C A D B C C A D C C B C A D C B A s s s -===--⑹.)()()(B A B A C A B C A C A B A A s s s ===--3. 证明:)()()(C B C A C B A --=- ;).()()(C A B A C B A --=- 证明:).()()()()()(C B C A C C B C C A C C B A C B A s s s --===-).()()()()()(C B A C B C A C C B C A C C A B C A C A B A s s s s s -====--4.证明: ∞=∞==11.)(i i s i i s A C A C证明 设)(1∞=∈i i s A C x ,则S x ∈,但 ∞=∉1i i A x ,因此对任意i ,i A x ∉,所以i s A C x ∈,因而 ∞=∈1.i i s A C x5设 ∞=∈1.i i s A C x 则任意i , i s A C x ∈,即S x ∈,i A x ∉,因此则S x ∈,但∞=∉1i i A x ,得)(1∞=∈i i s A C x ,所以 ∞=∞==11.)(i i s i i s A C A C5.证明:⑴ Λ∈Λ∈-=-αααα)()(B A B A ; ⑵ Λ∈Λ∈-=-αααα)()(B A B A . 证明 ⑴ Λ∈Λ∈Λ∈Λ∈-===-αααααααα)()()()(B A B C A B C A B A ss⑵ Λ∈Λ∈Λ∈Λ∈-===-αααααααα)()()()(B A B C A B C A B A ss.6.设{}n A 是一列集合,作11A B =,1),(11>-=-=n A A B n n n νν。

实变函数部分课后习题答案(最新版)

实变函数部分课后习题答案(最新版)

备注:证明题每章都是二选一,计算题在第五章第二章1.证明点集F 为闭集的充要条件是F F =. 证明:因为'F F F = ,若F 为闭集,则'F F ⊂ 所以'F F F F F F F =⊂=⊂ 故F F =反过来,若'F F F F =⊂ ,则必有'F F ⊂,从而F 为闭集.2.设()f x 是(),-∞∞上的实值连续函数,证明:对于任意常数a ,(){};x f x a >都是开集,(){};x f x a ≥都是闭集.证明:任取常数a ,若 (){}0;x x f x a ∈>,则()0f x a >,由于()f x 连续,0,0a x δ∃>, 使()(){}00,,;a x x N x x f x a δ∈⊂≥,这表明(){};x f x a >是开集.任取常数a ,若{}(){};n x x f x a ∈≥,且0n x x →,则从()n f x a ≥和()f x 连续知 ()()0lim n n f x f x a →∞=≥,故(){}0;x x f x a ∈≥这表明(){}(){}';;x f x a x f x a ≥⊂≥.,故(){};x f x a ≥是闭集.第三章68页3.证明对任意可测集合A 和B 都有()()()()m A B m A B m A m B +=+ (*) 证明:若()m A B =∞ ,则,A B A B ⊂∞=∞=∞=⋃⇒)(,)(,)(B m A m B A m∞=+=⋂+⋃=∞∴)()()()(B m A m B A m B A m 成立.若()m A B <∞ 则(*)等价于()()()()m A B m A m B m A B =+- 注意到()(),A B A B A A B A =--=∅ 且,A B 可测B A ⇒-可测()()()m A B m A m B A =+-A 可测()()()()()c m B m A B m A B m A B m B A =+=+-)()()()(B A m B m A B m B A m ⋂-=-∴∞<⋂()()()()m A B m A m B m A B ∴=+-9、设n E R ⊂,那么E 可测当且仅当对任意正数ε,存在开集G E ⊃及闭集F E ⊂使得()m G F ε-<。

实变函数论课后答案第三版

实变函数论课后答案第三版

1. 证明:()B A A B -=的充要条件是A B ⊂.证明:若()B A A B -=,则()A B A A B ⊂-⊂,故A B ⊂成立. 反之,若A B ⊂,则()()B A A B A B B -⊂-⊂,又x B ∀∈,若x A ∈,则()x B A A ∈-,若x A ∉,则()x B A B A A ∈-⊂-.总有()x B A A ∈-.故()B B A A ⊂-,从而有()B A A B -=。

证毕2. 证明c A B A B -=.证明:x A B ∀∈-,从而,x A x B ∈∉,故,c x A x B ∈∈,从而x A B ∀∈-, 所以c A B A B -⊂.另一方面,c x A B ∀∈,必有,c x A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-, 所以 c A B A B ⊂-.综合上两个包含式得c A B A B -=. 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9.证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂.证:若x A λλ∈∧∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈,这说明A B λλλλ∈∧∈∧⊂.定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=.证:若()x A B λλλ∈∧∈,则有'λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧∈⊂.反过来,若()()x A B λλλλ∈∧∈∧∈则x A λλ∈∧∈或者x B λλ∈∧∈.不妨设x A λλ∈∧∈,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂.故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂.综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=.定理6中第二式()c c A A λλλλ∈∧∈∧=.证:()c x A λλ∈∧∀∈,则x A λλ∈∧∉,故存在'λ∈∧ ,'x A λ∉所以'c c x A A λλλ∈∧∉⊂从而有()c c A A λλλλ∈∧∈∧⊂.反过来,若c x A λλ∈∧∈,则'λ∃∈∧使'c x A λ∉,故'x A λ∉,x A λλ∈∧∴∉,从而()c x A λλ∈∧∈()c c A A λλλλ∈∧∈∧∴⊃. 证毕定理9:若集合序列12,,,,n A A A 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==(相应地)1lim n n n A ∞→∞==.证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==.故从定理8知11liminf n i m n m i mm A A A ∞∞∞→∞=====另一方面,m n ∀,令m i i mS A ∞==,从1m m A A +⊂对m N ∀∈成立知 11111()()m i mi m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==.故定理8表明1111limsup liminf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========故1lim limsup liminf n n n m n n n m A A A A ∞→∞→∞→∞====.4. 证明()()A B B A B B -=-的充要条件是B =∅. 证:充分性若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅必要性 若()()A B B A B B -=-,而B ≠∅则存在x B ∈.所以()()x A B B A B B ∈-=-即所以,x A B x B ∈∉这与x B ∈矛盾, 所以x B ∈.4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A .又如果1;1,2,3,,S n n⎧⎫==⎨⎬⎩⎭01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭,问()()01,F A F A 是什么. 解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅.若011111;1,2,3,,;1,,,,3521S n A nni ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭, 易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. {}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. 令11;1,2,,;1,2,212B i C i i i⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭. {}{}{}1,F A S AK A B K C K A =∅==∅为的子集,或.证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭的任何子集()1F A .所以有()1B F A ∈,而c B C =,故()1C F A ∈,又()1F A ∅∈. 任取B 的一子集A ,()1A A F A ∅=∈,且()1A C F A ∈. 显S A ∈,故只用证A 的确是一个σ-域.(1) ,c c S S A ∅==∅∈,且B ∀的子集A ,若K =∅,则,c KA A A C ∅==(B A -是B 的子集,故()()cc A A C F A ∅=∈) 又B ∀的子集A ,()cc c c A C A C A B ==. 显然是B 的子集,所以()()cc A C A B A =∅∈.又若n A 为B 的子集()1,2,3,,n n K C ==或∅.则()111nn n n n n n A K A K A K ∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.这里1n n A A B ∞==⊂是B 的子集.1n n K K C ∞===或∅.所以()1n n n A K A ∞=∈.若n A 中除B 的子集外,还有S ,则()1n n n A K S A ∞==∈.若n A 中有∅,不影响1n n A B ∞=⊂.故A 是σ-域,且()1F A A =. 证毕.6.对于S 的子集A ,定义A 的示性函数为()10A x Ax x A ϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf nnA A x x ϕϕ=(2)()()limsup limsup nnA A x x ϕϕ=证明:x S ∀∈,若()liminf nA x x ϕ∈则()liminf 1nA x ϕ=。

《实变函数》习题库参考答案

《实变函数》习题库参考答案

《实变函数》习题库参考答案一、判断题 1、( √ )理由:由内点定义知,存在A P U ⊂),(0δ,从而对任意的)(0P U ,必含有A 中无穷多个点。

满足聚点定义 2、( √ )理由:[法一]:都具有连续基数,故对等 [法二]:可建立一个映射)2tan()(ππ-⋅--=a b a x x f ,则f(x)为),(b a 到R 的一一映射.3、( √ )理由:由B A ⊂知, A A B B )(-=,从而由有限可加性知,mA A B m mB +-=)(,又由 +∞<mB 知,+∞<-+∞<)(,A B m mA 。

从而移项可得结论。

4、( √ )理由:f(x)在区间[0,5)及[5,10]上均为连续函数,故分别在2个区间上是可测函数, 从而再其和集上也是可测函数。

5、( × )理由:例如有理数集Q ,无理数2是Q 的聚点,但不是其内点。

6、( √ )理由:[法一]:都是可数集,故有相同的基数,即对等。

[法二]:可建立一个映射⎪⎩⎪⎨⎧==+==...2,1,1,11,0,1)(n n x n x x f ,则f(x)为集合 ⎭⎬⎫⎩⎨⎧ ,1,,31,21,1,0n 到集合⎭⎬⎫⎩⎨⎧ ,1,,31,21,1n 的一一映射。

7、( √ )理由:由B A ⊂知A A B B )(-=,且φ=-A A B )(, 故mA mA A B m mB =+-=)(8、( √ )理由:狄利克莱函数⎩⎨⎧-∈∈=.]1,0[,0]1,0[,1)(Q x Qx x D 是[0,1]上的简单函数,故可测。

9、( √ )理由:由于E E ⊆Φ=',所以.}3,2,1{为闭集=E 10、( × )理由:如无界。

,但,则N mN N E +∞<==0 11、( √ )理由:由于可测。

在连续,从而在]2,1[2)(]2,1[2)(-=-=x f x f 12、( √ ) 理由:事实上:)()(***CE T m E T m T m T E +=∀⇔:可测]([)(**CE C T m CE T m +=可测。

实变函数(程其襄版)第一至四章课后习题答案

实变函数(程其襄版)第一至四章课后习题答案
第一章 集合
早在中学里我们就已经接触过集合的概念,以及集合的并、交、补的运算,因此这章的前两节具有复习性质,不过,无限多个集合的并和交,是以前没有接触过的,它是本书中常常要用到,是学习实变函数论时的一项基本功。
康托尔在19世纪创立了集合论,对无限集合也以大小,多少来分,例如他断言:实数全体比全体有理数多,这是数学向无限王国挺近的重要里程碑,也是实变函数论的出发点。
{ : >1}=
习惯上,N表示自然数集,(本书中的自然数集不包含0),Z表示整数集,Q表示有理数集,R表示实数集.
设 是定义在E上的函数,记 ={ : ∈E},称之为f的值域。若D是R中的集合,则 ={ : ∈E ,},称之为D的原像,在不至混淆时,{ : ∈E, 满足条件p}可简写成{ : 满足条件 }.
1.集合的表示
一个具体集合A可以通过例举其元素 来定义,可记
也可以通过该集合中的各个元素必须且只需满足的条件p来定义,并记为
A={x:x满足条件p}
如例1可以表示为{4,7,8,3}例3可以表示为
设A是一个集合,x是A的元素,我们称x属于A,记作 ,x不是A的元素,记作 。
为方便表达起见, 表示不含任何元素的空集,例如
顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。
例14,7 ,8,3四个自然数构成的集合。
例2全体自然数
例30和1之间的实数全体
例4 上的所有实函数全体
例5A,B,C三个字母构成的集合
例6平面上的向量全体
全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。
若 ,说明所有的 没有公共的元素。

卢同善实变函数青岛海洋大学出版社第一章习题答案

卢同善实变函数青岛海洋大学出版社第一章习题答案

第一章习题答案第1-10,17题略. 从11题开始(9,10,11类似)11 []11k k E f a E f a ∞=≤=<+⎡⎤⎣⎦证明:任取左边的元素x ,则a x f ≤)(,当然对任意的k ,有1()k f x a <+,即,1()k x E f a k ∈<+∀⎡⎤⎣⎦. 因此,该x 含于右边. 得到左是右的子集;另一方面,任取右边的元素x ,则1()k x E f a k ∈<+∀⎡⎤⎣⎦,即1()()k f x a k <+∀. 让k →∞,得到()f x a ≤. 因此,该x 含于左边. 得到右是左的子集. 综上,左等于右.12 设实函数列{})(x f n 在E 上定义,又设{})(inf )(1x f x h n n ≥=. 证明对R a ∈∀,成立[] ∞=<=<1][n n a f E a h E . 证明:因))(()(n x f x h n ∀≤,故当()n f x a <时,必有()h x a <,这表明[])]([n a h E a f E n ∀<⊂<,因此[] ∞=<⊃<1][n n a f E a h E . 另一方面,任取][a h E x <∈,由下极限的定义,知存在n ,使a x f n <)((若否,则对任意的n ,有()n f x a ≥,这表明inf{()}()n f x h x a =≥,矛盾). 当然有[] ∞=<∈1n n a f E x ,故[] ∞=<⊂<1][n n a f E a h E . 综上,左等于右.13 实函数列{})(x f n 在E 上收敛到)(x f ,证明对任意的R a ∈∀,成立[] ∞=∞=∞=+<=≤111][k N N n k n a f E a f E . 证明:任取左边的元素x ,则a x f ≤)(. 由于)()(lim x f x f n n =∞→,所以对任意的k ,存在N ,使得当N n ≥时有k x f x f n 1)()(<-,即有ka k x f x f n 11)()(+<+<. 也即,对任意的N n ≥,恒有1n k x E f a ∈<+⎡⎤⎣⎦,所以1n k n N x E f a ∞=∈<+⎡⎤⎣⎦. 这表明x 是右边的元素,所以左是右的子集.另一方面,任取右边的元素x ,则对任意的k ,存在N ,使得当N n ≥时有k a x f n 1)(+<. 让∞→n ,得到)(,1)(lim )(k ka x f x f n n ∀+≤=∞→. 再由k 的任意性,得到a x f ≤)(. 这表明x 是左边的元素,所以右是左的子集. 综上,左右相等.14 若集列{}n A 单减,则 ∞===1lim lim n n n n A A A . 证明:因为{}n A 单减,所以mn m n A A ∞==,1m m m n m A A ∞∞===. 得到 ∞=∞=∞=∞→==11lim n n n n m m n n A A A ,∞=∞=∞=∞=∞=∞=∞→====11111lim n n m m n m m n n m m n n A A A A A .即, ∞===1lim lim n n n n A A A .15 证明)(lim )(lim x x n n A A χχ=证明:若0)(lim =x n A χ,显有)(lim )(lim x x n n A A χχ≤; 若1)(lim =x n A χ,由特征函数的定义知n A x lim ∈. 再由下限集的性质知存在N ,使)(N n A x n >∀∈,从而对N n >∀有1)(=x n A χ,故1)(lim =x n A χ. 此时)(lim )(lim x x n n A A χχ=. 总之,)(lim )(lim x x nn A A χχ≤. 另一方面:若0)(lim =x n A χ,显有)(lim )(lim x x n n A A χχ≥; 若1)(lim =x n A χ,又因为()1()n A x n χ≤∀,故1)(lim =x n A χ. 因此存在N ,使得1)(=x nA χ )(N n >∀. 由特征函数的定义知)(N n A x n >∀∈,再由下限集的性质知n A x lim ∈. 因此,1)(lim =x n A χ,也就得到)(lim )(lim x x n n A A χχ=. 总之)(lim )(lim x x n n A A χχ≥. 综合有)(lim )(lim x x n n A A χχ=. 16 证明定理1.2.4与Bernstein 定理等价.证明:必要性:由假设知存在A 到B B ⊂1上的双射f , B 到A A ⊂1上的双射g . 令2))((A A f g =. 则21)(A B g =,且2A 与A 对等(因为,f g 是单射). 又因为)(,11B g A B B =⊂,因此A A A ⊂⊂12. 由定理1.2.4知A A A ,,12三者对等,又1A 与B 对等,根据对等的传递性,得到A 与B 对等,故Bernstein 定理成立.充分性:设C B A ⊂⊂且C A ~. 一方面C B B ⊂~,另一方面B A C ⊂~,由Bernstein 定理知C B ~. 又C A ~,根据对等的传递性,得到C B A ~~. 即定理1.2.4成立. 18 设A 为无限集,B 为有限集,证明A B A ~\.证明:因为A 为无限集,B 为有限集,所以B A \是无限集. 由B B A ⊂⋂知道B A ⋂是有限集. 而()()B A B A A ⋂⋃=\,右边是一个无限集并上有限集,不改变对等关系(定理1.3.5),所以A B A ~\.19 设A 为无限集,B 为可数集,若B A \为无限集,证明A B A ~\. 并举反例说明“B A \为无限集”这一条件不可去.证明:因为B 为可数集,所以B A ⋂是至多可数集. 而()()B A B A A ⋂⋃=\,B A \又是无限集,由定理1.3.5知命题成立(与18题类似).20 空间中坐标为有理数的点的全体K 成一可数集.证明:显然{}(,,):,,K a b c a b c Q Q Q Q =∈=⨯⨯是三个可数集的乘积,从而是可数集. 21 1R 中以互不相交的的开区间为元素的集合为至多可数集.证明:设该集合为K . 因为对任意的开区间K b a ∈),(,存在有理数),(b a r ab ∈. 这样,可作一映射Q K f →:,使得()ab r b a f =),(. 由于K 中的开区间是互不相交的,所以这一映射是一单射. 因此Q K f K ⊂)(~,也就说明了K 是一至多可数集.22 1R 上单调函数)(x f 的不连续点的全体A 为至多可数集.证明:不妨设函数单增. 任取断点A x ∈0. 由于函数单调,所以在0x 点的左极限)(0x f -和右极限)(0x f +都存在,且)()(00x f x f ++<. 让断点0x 对应于开区间())(),(00x f x f ++,由于函数单增,所以不同断点所对应的开区间是不相交的. 再利用21题即得.23 设A 为无限集,证明必存在A A ⊂*,使A A ~*且*\A A 为一可数集. 证明:因A 为无限集,故A 有可数的子集{} ,,211a a A =. 令{} ,,,53111a a a A =,{} ,,,64212a a a A =. 取11*\A A A =,则11*\A A A =为可数集,A A ⊂*为无限集(因*12A A ⊂)11*A A A ⋃=,所以A A ~*.24 设A 为可数集,证明A 的所有有限子集的全体是可数集.证明:设{}12,,,,n A a a a =. A 的所有有限子集的全体为K . 对K B ∈∀,设{}m i i i a a a B ,...,,21=,令B 与数组()m i i i ,...,,21对应. 因为不同的集合的元素不完全相同,所以它们对应的数组也不同. 这样由编号定理知K 为至多可数集. 又因所有的单元素集在K 中,所以K 是无限集,因此K 是可数集.25 设A 为其长度不等于零的开区间所组成的不可数集. 证明:存在0>δ,使得A 中有无限多个开区间的长度均大于δ.证明:令n A 为A 中长度不小于n 1的开区间的全体,则 1≥=n n AA . 因为A 为不可数集,所以右端至少有一个集合是无限集(否则,右边是至多可数集). 取相应的的长度为δ即可.26 ]1,0[中无理数的全体成一不可数集.证明:反证法. 假设]1,0[中无理数的全体K 是至多可数集,而]1,0[中有理数的全体0Q 是可数集,这样0[0,1]K Q =是可数集(可数集和至多可数集的并是可数集). 这与]1,0[是不可数集矛盾.27整系数多项式的实根称为代数数,称非代数数的实数为超越数. 证明:代数数的全体成一可数集,进而证明超越数的存在.证明:所有整系数多项式的实根全体正是代数数的全体. 整系数多项式的全体是可数的,而每一个多项式至多有有限个实根. 又可数个有限集的并是至多可数集,这表明代数数的全体是至多可数集. 代数数的全体当然是无限集(因为整数是代数数),所以它是可数集. 因而,也表明超越数的全体是不可数集(利用19题得到).28 证明c a =2,其中a 为可数基数,c 为连续基数.证明:设},,,,{21 n r r r A =,即证明A 的所有子集的全体A 2的势为c . 作从A 2到二进位小数全体K 的映射:2A f K →为 n a a a B f 21.0)(=,其中当B r n ∈时,1=n a ;当B r n ∉时,0=n a . 因为不同的集合的元素不完全相同,所以该映射是单射,故c K A =≤2. 另一方面,作映射:2A g K →为B a a a g n =).0(21 ,其中{}:1,1,2,i i B r a i ===若,该映射也是单射,因此c K A =≥2. 综上,有c K A ==2. 29 ]1,0[上连续函数的全体[0,1]C 的基数是c .证明:因常函数都是连续函数,故[0,1]C R c ≥=. 设0[0,1]Q Q =⋂,则它是可数集. 不妨设{}012,,...,,n Q r r r =. 对任意的[0,1]f C ∈,让其对应于R ∞中的实数组{}12(),(),...,(),n f r f r f r ,则这个对应是从[0,1]C 到R ∞的一个单射. 事实上,若g f ,是对应于同一数组的两个连续函数,即(),...2,1,)(==i r g r f i i . 对任意的实数]1,0[∈a ,存在有理数序列{}]1,0[⊂k i r ,使得)(∞→→k a r k i . 这样由函数的连续性得到)()(lim )(lim )(a g r g r f a f k k i k i k ===∞→∞→,也即f g ≡,也就是说该对应是一个单射.因此[0,1]C 和∞R 的某子集对等,故有[0,1]C R c ∞≤=. 综上,[0,1]C c =.30 ]1,0[上单调函数的全体的基数是c .证明:类似上一题. ]1,0[上单调函数的全体K 的基数显是不小c ,因为)(,)(a ax x f ∀=都是K 中的元素. 对任一单调函数)(x f ,其断点的全体A 是至多可数集(第22题的结论). 令()A Q E ⋃⋂=]1,0[,则E 是可数集,设{} ,,,,21n a a a E =. 让函数)(x f 对应于()∞∈R a f a a f a a f a n n );(,;);(,);(,2211,这个对应是单射(方法类似于上题,不过要多考虑断点罢了). 因此,]1,0[上单调函数的全体K 的基数不超过∞R 的基数c . 命题得证. 31 ]1,0[上实函数的全体的基数是c 2.证明:设]1,0[上实函数的全体为]1,0[R . 对任意的集合]1,0[⊂A ,则其特征函数()[0,1]A x R χ∈,并且不同集合的特征函数是不同的. 所以]1,0[的子集的全体]1,0[2对等于]1,0[R 的一个子集,从而c R 22]1,0[]1,0[=≥. 另一方面,对任意实函数]1,0[R f ∈,让其和集合(){}2]1,0[:)(,R x x f x ⊂∈对应(该集合是函数的图像),当然这一对应是单射,从而]1,0[R 和2R 的某些子集构成的集合对等,也即2[0,1]22R c R ≤=. 综上,c R 2]1,0[=. 32 设c B A =⋃,证明A 和B 中至少有一为c .证明:不妨设,2R B A =⋃B A ,不相交. 显然B A ,的势都不超过c .对任意的R x ∈,作直线}:),{(R y y x L x ∈=,则x L 的势均为c .若存在R x ∈,使得A L x ⊂,则A 的势不小于x L 的势c ;若不存在R x ∈,使得A L x ⊂,即任取R x ∈,必有R x y ∈)(,使得A x y x ∉))(,(,这时必有B x y x ∈))(,(. 这表明集合{}B R x x y x ⊂∈:))(,(,而集合{}R x x y x ∈:))(,(的势为c ,故B 的势不小于c . 综上A 和B 中至少有一不小于c . 又B A ,的势都不超过c ,因此A 和B 中至少有一个为c . 注意:该题不好用反证法,因为集合的势小于c 时不能得到集合是至多可数集(康托连续统假设的不确定性).。

实变函数答案_胡适耕 第二章

实变函数答案_胡适耕 第二章

第二章习题 A1.作完备疏集]1,0[⊂F ,使得2/1=mF .解 在[0,1]上挖去居中长为41的开区间)1(1I ,余下两个闭区间记为)1(2)1(1E E ,.在闭区间)1(2)1(1E E ,上挖去居中长为241的两个开区间)2(2)2(1I I ,余下的4个区间记为)2(4)2(3)2(2)2(1E E E E ,,,.依此方法继续下去,设挖去的所有开区间的并集为G =∞==-121)(1n i n i n I,则G 为开集且2141211121)(1===∑∑∑∞=-∞==-nn n n i n in mImG .令F =[0,1]\G ,则F 是可测集且[0,1]=F G ,故21211]1,0[=-=-=mG m mF .又因挖去的区间没有公共点,因此F 为完备集.又]1,0[=G ,从而c cc G G G F ]1,0[)1,0()1,0(]1,0[)\]1,0([ ====∅=,故F 为疏集,因此F 为完备疏集.2.作闭集⊂F R\Q ,使得0>mF .解 记R 中有理数全体为 ,,21r r ,作)21,21(1n n n n n r r G +-=∞= ,于是2≤mG ,作F =R \G ,则F 是闭集,又所有的有理点都在G 中,故F ⊂R \Q 且0>mF .3.设⊂A R ,∞<mA ,0>ε,则存在有限个开区间i δ,使得εδ<∆))((i iA m . 证 由于A 为R 中可测集,由逼近性质,0>∀ε,存在闭集F 与开集G ,使G A F ⊂⊂,且ε<)\(F G m ,又根据R 上开集结构:存在可数个G 的构成区间i δ,使F A G i i ⊃⊃=∞= 1δ,即∞=1}{i i δ为F 的一个开覆盖.由于∞<≤mA mF ,即F 为有界闭集,根据有限覆盖定理,必N n ∈∃,使F ni i⊃= 1δ,故F G A A A ni i ni i ni i \)\()\(111⊂=∆=== δδδ,从而εδ<≤∆=)\())((1F G m A m ni i .4.设⊂A R 可测,∈a R ,0>δ,当x a x a x -+<与时δ||至少一个属于A , 则δ≥mA .证 由假设,}||{}||{}||{δδδ<∈-<∈+=<x A x a x x A x a x x x ,, ,所以2})||({})||({δδδ<∈-+<∈+≤x A x a x m x A x a x m ,,,于是上式右端两项中,至少有一项不小于δ,设δδ≥<∈+})||({x A x a x m ,,于是由平移不变性δδ≥<∈+≥∈+=})||({})({x A a x x m A a y y m mA ,.5.设A ⊂R n,若0>∀ε,存在闭集A F ⊂与开集A G ⊃,使ε<)\(F G m , 则A 可测. 证 取ε=n1,则有开集n G 及闭集n F ,使得n n F A G ⊃⊃,且)\(n n F G m <n 1.作集合 ∞=∞===11~~n n n n F F G G ,,则F G ~~和都是可测的,且F AG ~~⊃⊃. ∵,n n G G F F ⊂⊃ ∴,\\n n n N G F G F ∀∈⊂∴1(\)(\)n n m G F m G F n ≤<∴(\)(\)0(n n m G F m G F n ≤→→∞ ∴(\)0m G F =,即F G ~\~为零测集.又F G A G ~\~\~⊂,由完备性A G \~是零测集. ∵零测集一定是可测集 ∴A G \~可测. ∴\(\)A G G A =是可测集.6.设⊂G A ,R G mA n,0,=为开集,则A G G \=.证 易证G A G ⊂\.欲证A G G \⊂,只须证\G G A ⊂.若A G G \⊄, 则∃A G x G x \,∉∈,于是∅=⊂>'∃'')\()()(,0A G x B G x B δδδ且,即∅==''cc A x B A G x B )()()(δδ.∴()00B x A mB mA δδ''⊂∴<≤=,矛盾.∴\G G A ⊂.故有A G G \=.7.设⊂A R n 可测,mA ≤≤α0,则α=⊂∃mB A B :.证 (1) 当+∞=α时,取A B =即可.(2)当+∞<mA 时,对0≥r ,令))0(()(r B A m r f =,则mA r f ≤≤)(0.若)(r f 为0≥r 上的连续函数,则由0)0(=f 且mA ≤≤α0,根据介值定理0≥∃αr 使ααα==))0(()(r B A m r f ,取A B A B r ⊂=)0(α 即得.下证)(r f 为0≥r 上的连续函数.0,00>≥∀εr ,取0>∆r 足够小,使ε<∆+))0(\)0((00r r r B B m ,则))0(())0(()()(0000r r r B A m B A m r f r r f -=-∆+∆+))0(())])0(\)0(()0([(0000r r r r r B A m B B B A m -=∆+ )]0(\)0([(00r r r B B A m ∆+= ε<≤∆+)]0(\)0([)00r r r B B m故)(r f 在0r 右连续,同理可证)(r f 在0r 左连续.故)(r f 在0r 连续.由0r 的任意性即知)(r f 在0≥r 连续. (3)当+∞=mA 时, ∞==1n nAA ,其中+∞<n mA , ,2,1=n ,必存在某个N n ∈0,使得0n mA ≤α,由(2)结论成立.8.R1-n 当作R n的子集,其n 维Lebesgue 测度为零.证 }1,,1,:),,{(,1n i Z k k x k R x x x I IR i i n k kn≤≤∈+≤≤∈==+∞∞- ,由平移不变性,R n~n)1,0[~ n]1,0[,故本题等价于证明1[0,1]n -当作[0,1]n的子集,其n 维Lebesgue 测度为0. ∵111111[0,1][0,1][0,1][0,1]{,}([0,1]{})nn n n k k N k k +∞---==⨯⊃⨯∈=⨯ ∴})1{]1,0([]1,0[11k m m k n n⨯≥∑∞=-,设0})1{]1,0([1≠=⨯-a k m n ,则 ∞=≥=∑∞=1]1,0[1k na m ,矛盾.∴11([0,1]{})0n m k -⨯=.9.直线上恰有2c个Lebesgue 可测集.证 设直线上的Lebesgue 可测集作成的集合为Ł ,设P 为康托集,则c P mP ==且0,于是c pp 222==,又0,=⊂∀mA P A ,即∈A Ł ,于是⊂p 2Ł ,从而≤p 2| Ł |,即≤c 2| Ł |.另一方面,Ł R 2⊂,故| Ł |c R 22=≤,从而| Ł |c 2=.10.设)21( ,,=n A n 是-μ可测集(μ是X 上的测度,下同),则n nn nA A μμlim )lim (≤;当∞<)(n A μ时n nn nA A μμlim )lim (≥.证 令),2,1( ==∞=n A D n k kn ,于是nD为升列,由下连续性,有n nn nn nn nn nA D D DA μμμμμlim lim lim )()lim (1≤===∞= .同理,令),2,1( ==∞=n A F nk kn ,于是nF为降列,且∞<=)(1n A F μμ,由上连续性,有n nn nnnn n n nA F FF A μμμμμlim lim lim )()lim (1≥===∞= .11.设),2,1( =n A n 是-μ可测集,∞<)( n A μ,A =n nA lim ,则n nA A μμlim =.证 由题10知:n nn nn nn nA A A A lim lim lim lim μμμμ≤≤≤,又n nn nn nA A A A lim lim lim ===,从而n nn nn nA A A μμμlim lim lim ==,于是n nA A μμlim =.12.设∞<∑∞=1n n A μ,则)lim (n nA μ=0.证 ∵1lim n k nn k nA A ∞∞===∴(l i m)()n k k nk nk nA A A μμμ∞∞==≤≤∑.又∵1nn Aμ∞=<∞∑ ∴0()k k nA n μ∞=→→∞∑. ∴(l i m)0n nA μ=. 13.设),2,1(,1 =⊂==n X A A X n n μμ,则1)(= nA μ.证 N n ∈∀,由0)\(=-=n n A X A X μμμ, 得0))\(()\(11==∞=∞= n nn nA X A X μμ又)()\(11∞=∞=-=n nn nA X A X μμμ,故10)\()(11=-=-=∞=∞=X A X X A n n n nμμμμ .14.设1=X μ,)(1∞→→n A n μ,则有子列}{i n A 使得0)(> in iAμ.证 由于1→n A μ,故对0211>+i ),2,1( =i ,取i n ,使 <<21n n , 11112i n i A μ+-<≤,从而21)]211(1[)1(111=--≤-∑∑∞=+∞=i i i n i A μ.于是))\((1))\(\()(111∞=∞=∞=-==i n i n i n iiiA X A X X A μμμ21)1(11≥--≥∑∞=i n iA μ0>. 15.设1=X μ,11->∑=n A n i i μ,则0)(1>= ni i A μ.证 1111()1()11(1)nn n ncci i i i i i i i A A A A μμμμ=====-≥-=--∑∑0)1(111=-+->+-=∑=n n A n ni i μ.16.设X 是任一非空集,A X2⊂满足:(ⅰ)∈⊂B A A ∈⇒A A ;(ⅱ)∈n AA ∈⇒= n An ),2,1(A ;(ⅲ)∈X A .令Ù={∈A A :A 或∈cA A };当A ∈A 时令0=A μ,当∈cA A 时令1=A μ,则μ是一完备概率测度.证 先证Ù 为σ代数(P 1):由(ⅰ)知∈∅ A ,故∈∅Ù ,于是∈X Ù .(P 2):∈∀n A Ù ),2,1( =n ,若N n ∈∀,∈n A A ,则由(ⅱ),∈ n nAA ,从而∈ n nAÙ ,若N n ∈∃使得∈c n A A ,由c n kc k A A ⊂ ,由(ⅰ)知∈ ncn A A ,从而∈=c nc n nnA A)( Ù .(P 3):若∈A Ù ,则∈A A 或∈c A A ,由Ù 的定义,只需证明∈c A Ù即可.当∈A A 时,∈c A Ù ;当∈c A A 时,cA ∈Ù .Ù 满足(P 1)----(P 3),下面证μ为Ù上的完备测度. (Q 1):由于∈∅A ,故0=∅μ (Q2):若∈n A Ù ),2,1( =n 互不相交,下证∑=nnn AA μμ)(,若N n ∈∀,∈n A A ,则∈ nn A A ,故0)(1=∞= n n A μ,又0=n A μ),2,1( =n 于是00==∑∑nnnA μ.故∑=nnnnAA μμ)( ;若}{n A 中恰有唯一一个∈c n A 0 A ,则c n c n A A 0⊂ ,所以∈ c n A A ,又 cn c n A A =)(. ∴n A ∈Ù且1)(= n A μ,又1=∑n A μ.∴()n n A A μμ=∑.以下证n A ),2,1( =n 中不可能有一个以上不属于A . 若n A 中有两个,不妨设∉1A A ,∉2A A .则由∈n A Ù ),2,1( =n 知∈c A 1 A ,∈c A 2 A .于是由(ⅱ)∈cc A A 21 A ,但由于n A ),2,1( =n 互不相交知∅=21A A .于是∈=X A A cc 21 A ,与(ⅲ)矛盾,以此类推,n A ),2,1( =n 中不可能有两个或两个以上不属于A .(Q 3):若∈⊂A B Ù ,0=A μ,则易证∈B Ù .故μ是一完备测度.又可证∉=X X (1μ A ) 故Ù 是一完备概率测度. 17.设2f 与集)0(>f X 可测,则f 可测.证 1,当取α=0,则由已知)0(>f X 是可测集; 2,当取0>α,则)()0()(22αα>>=>fX f X f X ,由已知条件,左侧集合可表为右边两个可测集的交,故可测;3,当取0<α,则)()0()(22αα<>=>f X f X f X ,由已知条件,左边集表为右边两个可测集之并,故可测;综上,对∈∀αR ,)(α>f X 都是可测集,命题成立. 18.设f 是有限可测函数,g :R →R 连续或单调,则))((x f g 可测.证 令h (x )=g (f (x )),则)),(()(11+∞=>--ααg fh X1 当(C g ∈R )时,由于),(+∞α是R 中开集,则),(1+∞-αg 记为G ,是R中开集,由R 中开集构造原理,G 可表为至多可数个开区间(构成区间)的并集.设nn G G =,),(n n n G βα=),2,1( =n ,则nn nn G f G f G f g f h X )()()()),(()(11111-----===+∞=>αα,对每个)()()()(1n n n n n f X f X f X G fβαβα<>=<<=- ,由f 的可测性,知)(n f X α>及)(n f X β<均可测,故)(1n G f-可测,从而)(α>h X 可测.2 对于单调函数g ,不妨设递增,则),(1+∞-αg 有三种情况,a ,),(),(1+∞=+∞-βαg ; b ,),[),(1+∞=+∞-βαg ; c ,∅=+∞-),(1αg只证b (a ,c ,类似):由 f 是可测函数可知,对∈∀βR ,)(β≥f X 都是可测集,又)()),([)),((111ββα≥=+∞=+∞---f X fg f,从而)),((11+∞--αg f可测.19.设21,f f 是X 上的有限可测函数,()2g C R ∈,则))(),((21x f x f g 可测.证1 先证对简单函数∑==ni e ii11χαϕ和)(12X S mj e jj∈=∑=χβϕ,),(21ϕϕg 是可测函数.由于}{}{j i e e 和是X 的互不相交的可测集,且:X e X ejj ii== ,,故可得}{}{j i e e 和重组为X 的新分划 kk k e X e =使},{,k e 互不相交,且:]),([))(),((21k e k kk g x x g χβαϕϕ∑=,已知()2g C R ∈,故12((),())g x x ϕϕ在每个k e 上可测 ,所以12((),())g x x ϕϕ在X 上可测.2 对可测函数21,f f ,依定理2.3.6,存在序列),(,21X S n n ∈ϕϕ使2211,f f n n →→ϕϕ)(∞→n ,由g 是R 2上连续函数,故有),(),(2121f f g g n n →ϕϕ)(∞→n ,而由已证1,),(21n n g ϕϕ可测,故由命题2.3.4得),(21f f g 也可测. 20.设f 在[a ,b ]上可微,则f '可测.证 )]()1([lim )(x f nx f n x f n -+⋅='∞→,),[b a x ∈. 因为f 可微 ,则],[b a C f ∈ ,故f 可测,故)1(n x f +亦可测 ,因此1()()f x f x n+-可测,故)]()1([x f nx f n -+⋅也可测.由命题2.3.4知:)(x f '可测.21.设f 在每个区间),(],[b a ⊂βα上可测,则f 在[a ,b ]上可测.证 ∈∀αR ,})(:]1,1[{})(:),({αα>-+∈=>∈∞=x f n b n a x x f b a x Nn 其中1]2[+-=a b N ,又})(:]1,1[{α>-+∈x f nb n a x ),1,( +=N N n 均可测,从而})(:),({α>∈x f b a x 亦可测.22.设),(y x f 对x 可测,对y 连续,则),(max )(10y x f x y ≤≤=ϕ可测.证 1证}]1,0[:),(sup{),(max )(10Q r r x f y x f x y ∈==≤≤ϕ.x ∀,不妨设),(),(max 010y x f y x f y =≤≤.(1)若Q y ]1,0[0∈,则1显然成立.(2)若Q y ]1,0[0∈,Q r n ]1,0[∈∃,使得0y r n →,则由),(y x f 对y 连续,可知),(),(0y x f r x f n →,又),(),(0y x f r x f ≤,Q r ]1,0[∈.因此}]1,0[),,(sup{)(Q r r x f x ∈=ϕ.2由已知),(y x f 对x 可测,且}]1,0[{Q r ∈可数.故由命题2.3.4,得}]1,0[),,(sup{)(Q r r x f x ∈=ϕ可测.23.设⊂X R n 是紧集,)(X C F ⊂,则)(sup )(x f x Ff ∈=ϕ可测.证 1 )(X C F f ⊂∈∀,都满足)(,αα≤∈∀f X R 是闭集(相对于X ),又n R X ⊂为紧集,故)(α≤f X 为闭集.2 由)(sup )(x f x Ff ∈=ϕ,可得 Ff fX X ∈≤=≤)()(ααϕ,而由1 可知每一个)(α≤f X 均为闭集,故 Ff fX X ∈≤=≤)()(ααϕ为闭集,当然也是可测集,所以)(x ϕ为可测函数.24.设∞<X μ,f 在X 上可测,则)()(t f X t <=μϕ处处左连续,几乎处处右连续.证 ∵()()t X f t ϕμ=<是单调递增函数,0↓∀n ε,则)(n t f X ε-≤是一升列,由下连续性])(()()( nt f X t f X t εμμϕ-≤=<=)0()(lim -=-≤=t t f X n nϕεμ∴()t ϕ处处左连续.而)(n t f X ε+≤是一降列, ∞<X μ ,由上连续性得:()()()[()]n t X f t X f t X f t ϕμμμε=<=≤=<+lim ()(0)n nX f t t μεϕ=<+=+ ∴()t ϕ几乎处处右连续.25.设f 是有限可测函数,则有可测函数列}{n f ,使n f ✋)(∞→n f 且每个n f 取可数个值.证 不妨设0≥f (一般情况可利用分解-+-=f ff 推出)n k x f n 1)(-=,,2,1,,)(1=<≤-k n nk x f n k ,显然 01)()(0→<-≤n x f x f n ,且n1与x 无关.所以)(x f n ✋)(x f . 26.设f 是有界可测函数,则有简单函数列}{n ϕ,使n ϕ✋)(∞→n f ,且f n ≤ϕ.证 不妨设0≥f (一般情况可利用-+-=f f f 推出).ni 21- n n i x f i 2)(21<≤- nn i 2.2.1⨯= 令n ϕ=n n x f ≥)(则).2.1(0)(1 =≤≤∈+n X S n n n ϕϕϕ且且当n x f <)(时,nn x x f -≤-≤2)()(0ϕ因为f 有界,所以0N N ∃∈,使得0N f <,当0N n ≥时1,2n ni ϕ-=n n ix f i 2)(21<≤-,n n i 221⨯=,,, ,此时有 021)()(0→≤-≤nn x f x ϕ)(∞→n .所以n ϕ f ,且)()(x f x n<ϕ. 27.设f 是几乎处处有限的可测函数,则有有界可测函数列}{n f ,使)(∞→−→−n f f n μ.证 本题要加条件∞<X μ,令()n fX n f f <⋅=χ,则()n fX n f f f ≥⋅=-χ于是对0>∀σ,都有:()()n f X f f X n ≥=≥-μσμ()σ>n . 由∞<X μ, 根据上连续性有()()[]n f X n f X n ≥=≥∞→ μμlim .又有f 几乎处处有限,即()0=∞=f X μ,于是由()()⎥⎦⎤⎢⎣⎡≥=∞=∞= 1n n f X f X μμ,对0>∀σ,()()0lim lim =≥=≥-∞→∞→n f X f f X n n n μσμ,其中()n f X n f f <⋅=χ显然是有界函数列.注:原题疏忽了应该强调X μ<∞的条件,因为当测度空间(),X μ非有限,即X μ=∞时,结论未必成立.反例如下:设[]0,X =+∞,m μ=取为通常的L -测度,当),1[n n x -∈,1,2,n =时,令()f x n =,则f 是X R +=上的处处有限的非负可测函数.不难证明这时就不存在有界可测函数列{}n f ,使n f 在X 上依测度收敛于f ,具体验证留给读者.28.设)(}{X M f n ⊂,则集)(lim :{x f x A n n=存在且有限}可测.证 不妨设0≥n f ,因为{}()n f M X ⊂,由命题2.3.4知n nf lim 是可测函数. nn nnnn nA n fn x x f x A ∆=<≤-==}lim 1:{})(lim :{存在且有限,因为f 是可测函数,所以}lim 1:{n f n x A n nn <≤-=可测,所以 nnAA =可测.29.设,),(,0f f X M f X n n →∈>μa .e .∞<∞→f n ),(,则}{,n f X A 使⊂∃在A 上一致有界且0>A μ.证 我们只对改造后的本题条件:()a 设(),X μ是非平凡的(即全空间测度0X μ>)有限或σ-有限测度空间;()b{}n f 是X 上的有限(或几乎处处有限)可测函数列;()c n f f →a .e .()n →∞,f <∞,对所有要求的结论进行证明.至于改造条件的原因,相信读完证明过程后,再理解注记中指出原题的忽略所在,会更深刻.由条件()a ,不妨设定0X μ<<∞,这是因为当X μ=∞时,由于(),X μ是σ-有限的,必有一可测集1X X ⊂,使得10X μ<<∞,然后用1X 代替X (显然不影响其余题设条件).用到一个引理:设f 是定义在有限测度空间(),X μ的有限(或几乎处处有限)的可测函数,则对任一0ε>,存在f X X ⊂,使得()\f X X με<,且f 在f X 上有界.引理的证明很简单,但在实变函数论中是很常用的基本结果(实际上上面27题主要就是用这个结果):由于1n n X X ∞==,其中()n X X f n =≤注意到121n n X X X X X +⊆⊆⊆⊆⊆⊆,故lim n n X X μμ→∞=,又X μ<∞,从而()\0n n X X X X μμμ=-→()n →∞.取()N N ε=,使()\N X X με<,且令f N X X =,则证毕.(请用心体会在这个小引理中何处用到f 是有限(或几乎处处有限)条件,又在何处用到X μ<∞条件).A. 先对f 用引理,对011042X εμ=⋅>,存在一个f X X ⊂,使得()0\f X X με< ....... (1) 且在f X 上,∞<≤0M f . (2)同理,依次取021411>⋅=+X n n με,存在一个X X n f ⊂,使得 n f nX X εμ<)\(. ………(1')且在n f X 上,∞<≤n n M f . …………(2') B .对X 上的(注意已设定∞<X μ)几乎处处收敛的可测函数列}{n f 用Egorov 定理,就应又有X X ⊂0,使得X X X μμ41)\(0<,且在0X 上,n f 一致收敛于f .于是对1='ε,存在N ,使当N n >时,对每一0X x ∈,1)()(='<-εx f x f n . …………(3) C .令)(10021 ∞===n f f f f f nXX X X X X X A ,于是,))\(()\()\(\10 ∞===n f f cn X X X X X X A X A ,从而,∑∞=++≤=10)\()\()\()\(n f f cnX X X X X X A X A μμμμμX X X X μμμμ85)2121(412141412=+++⋅+<故08385)()\(>=-≥-==X X X A X A X A ccμμμμμμμ. D. 最后验证在A 上}{n f 一致有界.首先,由于f X A ⊂,故在A 上0M f ≤(见上(2)式).其次,由(B )中所证(3)式以及0X A ⊂,故对一切N n >,A x ∈,01)()()()(M x f x f x f x f n n +≤+-≤.再次,注意到N f f f X A X A X A ⊂⊂⊂,,, 21,故相应于上(2')式,对每个A x ∈,11)(M x f ≤,22)(M x f ≤,… ,N N M x f ≤)(.最后,取}1m ax {021+=M M M M M N ,,,, ,则在A 上,M x f n ≤)(关于n 一致成立.注记 (1)将原题条件“)(X M f n ∈”改为“()b :设}{n f 是有限(或几乎处处有限)可测函数列”是必要的.(本题引理中 ∞==1n nXX 中的等号本质上依赖此设定).这里反映出实变函数论与通常数学分析的一个区别:允许函数值在广义实数集中取,而且强调有0)(=∞=f X μ(几乎处处有限)与0)(≠∞=f X μ之区别,如果按原题设条件,}{n f 只是可测函数列,可举反例如下)1(∞<=X μ:令0 , ]21,0[∈x ; ∞+ , ]21,0[∈x ;=)(1x f =)(2x f∞+ , ]1,21(∈x , 0 , ]1,21(∈x , 当3≥n 时,0≡=f f n ,则}{n f 与f 满足题设全部条件,但显然}{n f 处处无界,更谈不上在某A 上一致有界.(2)至于本题改造条件()a 是非本质的.因为我们一般遇到非有限测度空间(即∞=X μ时),总都是-σ有限测度空间.故上面的证明,一般来说也包容了∞=X μ,结论仍成立的情况.至于“-σ有限”这一条件是否也可去掉,留作讨论.讨论的第一问题就是:是否存在这样的非-σ有限测度空间),(μX ,使得∞=X μ,且任一可测集X X ⊂0,或00=X μ,或∞=0X μ,这已是测度论的专门议题.30.设f f n →,a .u .,则f f f f n n →−→−且μ,a .e ..证 ① 要证f f f f n u a n −→−⇒−→−μ.. 即对0,0>>∀εσ,要证n 充分大时,εσμ<≥-)(f f X n . 对这个ε,由已知f f n →,a,e.,故εμεε<∃)(,cX X ,在εX 上,n f f ,故当n 充分大时,)2(σε<-⊂f f X X n ,∴()[()]2c c n n X f f X f f X εσσ-≥⊂-<⊂∴()()c n f f X εμσμε-≥≤<∴,0>∀σ有0)|(|→≥-σμf f X n )(∞→n ,即f f n −→−μ. ②,要证f f f f ea n ua n −→−⇒−→−...取nn 1=δ,由已知f f ua n −→−.,存在n X δ,n X n cn1)(=<δμδ,在n X δ上n f f .令 ∞==1n cn X E δ,则01)()(→≤≤n X E cnδμμ,即0)(=E μ. 在 ∞==1n cn X E δ上,f f n →.∴f f ea n −→−..31.设f f n −→−μ,1+≤n n f f ,a .e .,),2,1( =n ,则f f n →,a .e ..证 已知f f n −→−μ,由Riesz 定理,有子列f f k n →a .e .)(∞→k . 令kn f X X (0=↛))(()1 nn nf fX f +>,则00=X μ,00cx X ∀∈,)}({0x f n 为单调递增数列且有子列存在极限,故)()(00x f x f n →()n →∞.32.设0,,>−→−∞<p f f X n μμ,则ppn ff −→−μ.证 (反证法)若结论不真,则有 <<>21,0,n n εσ, 使得 ,2,1,)||||(=≥≥-k f f X ppn k εσμ . (1)由)(∞→−→−k f f k n μ,有子列f f ik n →a .e .)(∞→i .从而kippn f f →,a .e .,又X μ<∞,由Th 2. 4. 2(ⅲ)有 )(∞→−→−i f f ppn ik μ.这与(1)矛盾,故假设不成立.33.设(),,n X f f g C R μμ<∞−−→∈,f g f g f f n n −→−∞<μ则,,.证 (反证法)若结论不真,则有 <<>21,0,n n εσ,使得εσμ≥≥-)(f g f g X k n , ,2,1=k . (1) 由)(∞→−→−k f f k n μ,则有子列f f ik n →,a .e .. ∵()g C R ∈ ∴k in gf gf→,a .e .)(∞→i 由Th 2. 4. 2(ⅲ),因为Xμ<∞,则可推出)(,∞→−→−i f g f g ik n μ,这与(1)矛盾,假设不成立.34.设g f g f X n n ,,,,∞<μ是X 上的有限可测函数,f f n −→−μ,g g n −→−μ,)(2R C ∈ϕ,则))(),(())(),((x g x f x g x f n n ϕϕμ−→−. 证 0>∀σ,由)(2R C ∈ϕ知,0>∃δ,当δ<-),(),(g f g f n n 时,有σϕϕ<-),(),(g f g f n n ,又由δ<--=-),(),(),(g g f f g f g f n n n n ,有δ<-f f n 且δ<-g g n .于是)()),(),((δσϕϕ≥-⊂≥-f f X g f g f X n n n 或)()),(),((δσϕϕ≥-⊂≥-g g X g f g f X n n n .由f f n −→−μ,g g n −→−μ知0)(→≥-δμf f X n ,0)(→≥-δμg g X n 故))(),(())(),((x g x f x g x f n n ϕϕμ−→−. 35.设),2,1)((, =∈∞<n X M f X n μ几乎处处有限,则}{n f 有测度收敛子列⇔}{n f 有几乎处处收敛子列.证 “⇒”设}{n f 的测度收敛子列为),2,1}({ =k f k n ,则}{k n f 有子列),2,1}({ =i f ik n 几乎处处收敛,即}{n f 有几乎处处收敛子列.“⇐”设}{n f 有几乎处处收敛子列),2,1}({ =k f k n ,因为∞<X μ,所以f f k n −→−μ,即}{n f 有测度收敛子列.36.设),2,1)((, =∈∞<n X M f X n μ,则0→n f ,a .e .)(0sup ∞→−→−⇔≥n f k nk μ.证 “⇒”由0→n f ,a .e .,当∞<X μ时由Egorov 定理知,0→n f ,a .u .,即对X e ⊂∃>∀,0δ,使得δ<)(e m 且}{n f 在\X e 上一致收敛于0.于是0>∀ε,可取N ,使N n ≥时,2)(ε<x f n 对一切e X x \∈成立.所以,εε<≤≥2)(sup x f k nk 对一切e X x \∈成立,从而e f X k nk ⊂≥≥)sup (ε, 所以δε<≥≥))sup ((k nk f X m .“⇐” 不妨设0≥n f ,令k nk n f g ≥=sup ;已知0−→−μn g ,由定理2.4.2(iii)知存在子列...0e a g k n →.又∞→k lim k nk f k≥sup ∞→=n lim k nk f ≥sup ,故..,0e a g n →,从而..,0e a f n →.37.设f f X M f X n n →∈∞<),(,μ,a .e .,∞<n f ,a .e .),2,1( =n ,则有),2,1( =⊂k X A k ,使X A kμμ=)(,且在每个kA上n f ✋)(∞→n f .证 f f n →a .e .,∞<X μ,由Egorov 定理得:f f n →a .u .,于是n1∀,X A n ⊂∃,nA c n 1<μ,在n A 上n f ✋f .由于 c nn nn A A X )()( μμμ+=)()( ncn nn A A μμ+=,又)(01)()(0∞→→≤≤≤n n A A c n nc n μμ ,故0)(= ncnA μ, 从而)( nn A X μμ=.38.设),2,1(),(, =∞<∈∞<n f X M f X n n μ,则存在⊂}{n a R ,使0→n n f a ,a .e .)(∞→n .证 由n f <∞,∞<X μ,故可取充分大的01>k ,使112)(-<>k f X n μ,进一步可取 <<21k k ,使nn n k f X -<>2)(μ,00,,0n n n >∃>∀当σ时,使nk 1≥σ,令2-=n n k b , ≤>)(σμn n f b X )1(nn n k f b X >μ()20n n n X f k μ-=><→. ∴()0n n X b f μσ>→ ∴0n n b f μ−−→.由定理2.4.2 (ⅲ)得:}{n n f b 有子列(记为k k n n f b )几乎处处收敛于0,令⎩⎨⎧≠==k kn n n n n n b a k ,0,,则0→n n f a a .e .(∞→n ).39.设⊂X R n可测,0>∀ε,存在闭集X F ⊂,使F f |连续且ε<)\(F X m ,则f 可测.证 01>∀n ,存在闭集X F n ⊂,使n F f |连续,且nF X m n 1)\(<,令 ∞==1n n F F 则n ∀,)\(F X m nF X m n 1)\(<≤,故0)\(=F X m . 因为n F f |连续,所以f 为n F 上可测函数.又因为 ∞==1n nFF ,故f 为F 上的可测函数.又0)\(=F X m ,所以f 也为F X \上的可测函数,由F F X X )\(=,知f 为X 上的可测函数.40.设⊂X Rn可测,f 是X 上几乎处处有限的可测函数,则存在序列C f k ⊂}{(R n ),使得在X 上)(∞→−→−k f f m k . 证 由Luzin 定理知:C f N k k k ∈∃∈∀),(1(R n )使kf f mX k 1)(<≠,0>∀σ,有)()(f f X f f X k k ≠⊆≥-σ∴1()()0()k k mX f f mX f f k kσ-≥≤≠<→→∞ ∴mk f f −−→. 第二章习题 B41.作可测集]1,0[⊂A ,使对任何非空开区间]1,0[⊂∆,恒成立0)(>∆A m 且0)\(>∆A m .证 ①在任一区间),(βα中,对于预先指定数r (0<r <1),可构造一个稠密开集G ,使)(αβ-=r mG .首先在),(βα中取出以其中点为中心长为)(αβλ-的区间)31(<λδ;再在余下的两个区间10,∆∆中,分别取出以其中点为中心长为)(2αβλ-的两个区间10,δδ;再在余下的四个区间12i i ∆)1,0;1,0(21==i i 中分别取出以其中点为中心长为)(3αβλ-的区间12i i δ)1,0;1,0(21==i i ;等等.如此一直下去.令G 为所有这些取出的区间之和:111(,)()nn i i n i i G δδ∞⋯=⋯=.显然G 为开集,n i i ,1δδ与为其构成区间.1111()1()()2()12nn n n i i n i i n mG m m λβαδδλβαλβαλ∞∞+==-=+=-+-=-∑∑∑,取r r 21+=λ,则有)(αβ-=r mG ,当0<r <1时,310<<λ,并可知:G -],[βα为疏朗完全集,从而G 为],[βα中稠集.②在[0,1]中构造出所要求的集合A . 对于[0,1],取43=r ,按①作出相应的稠密开集43,00=mG G ,由0G 为开集,)0(1)0(0,i i i G δδ ∞==为0G 的构成区间.再对每个)0(i δ,按①的做法,得出一稠密开集)0(iG ,使)0(2)0()311(i im mG δ-=,并令0)0(11G G G i i ⊂=∞= ,则(0)10211(1)3ii mG mG mG ∞===-∑,由1G 为开集,)1(11i i G δ∞== ,)1(i δ为1G 的构成区间.再对每个)1(iδ,按①做出相应的稠密开集)1(iG ,使)1(2)1()411(i im mG δ-=,并令1)1(12G G G i i ⊂=∞= ,则)211)(311)(411(2222---=mG ,如此继续下去,得出一列单调下降的开集:∏==+-=⊃⊃⊃nk n n n k mG G G G 0210).1.0)()2(11(, , 令n n G A ∞==0,显然A 可测,且∏∞=∞→=+-==0221))2(11(lim k n n k mG mA . ③证明A 满足题目要求.任取开区间]1,0[⊂∆,易知每一个n G 于[0,1]中稠密,从而可知∅≠∆A ,设A x ∆∈0,则在每一个n G 中有它的一个构成区间)(0n i nx δ∈,又易知:)(0311)(∞→→<+n m n n i n δ,故存在一充分大的0n ,使∆⊂∈)(000n i n x δ,由)(00000)()(k n k n i n iG A n n ∞== δδ,∏∞=+-=00000)(2)()])2(11([)(n k n i n i n nm k A m δδ 以及 0]))2(11([21))2(11(11102200>+-=+->--=∞=∏∏n k n k k k ,可知: 0)()(00>A m n i n δ,0)\()(00>A m n i n δ.从而00()()()0;nn i m A m A δ∆≥>00()(\)(\)0nn i m A m A δ∆≥>.42.每个非空完备集⊂A R 有非空完备子集B ,使0=mB .证 若mA =0,则结论自然成立.下设0>=a mA ; 显然非空完备集A 的每一点均为A 的聚点.下证A 含有测度为零的非空完全子集.如能构造一个测度为0的不可列闭集A E ⊂,则D B E =,B 为非空完备集.又A E B ⊂⊂∴0mB mE ≤=,即mB =0,于是B 即合所求.下面就构造这样的集E :在A 中任取两个不同的点10,x x ,做两个小区间10,δδ,使得1100,δδ∈∈x x ,且010122,,22a am m δδδδ≤≤=∅.由10,x x 均为A 的聚点,可知10δδ A A 与均为不可列闭集,记其聚点全体分别为10,P P ,易知11(0,1)i P i =为非空完全集且A P i ⊂1,221amP i ≤,∅=10P P ,对每个1i P 施行同样的手续,得出四个完全集1212(0,1;0,1)i i P i i ==满足:121124,2i i i i i aP P mP ⊂≤, ∅=1011i i P P ,再对每个12i i P 施行同样的手续,如此一直下去,得到一列完全集:)2()2(),2(212112个个个n i i i i i i n P P P 满足:ni i i i i i i i i amP A P P n n n 22,2112121≤⊂⊂- ,∅='''nn i i i i i i P P 2121(至少有一个k i 与'k i 不同).令 ,,),()2()()1(212111i i i i i i PP P P ==,),,()(211n n i i i i i n PP =,易知:),2,1(222,2)()()2()1( ==⨯≤⊃⊃⊃⊃n a a mP P P P n n n n n . 再令 ∞==1)(n n PE .则E 就是我们要构造的集合.因为()(),lim lim02n n nn n aE P A mE mP →∞→∞⊂⊂===.又由)(n P均为闭集,知E 为闭集.再因每一个0-1序列{12,,i i ,n i }所对应的完全集列: ⊃⊃⊃⊃n i i i i i i P P P 21211决定一点,记为12ni i i X ,易知E 即由所有这样的点所组成的,即:121211212{|,0,1(1,,,)nnni i i i i i i i i i i i k E X X P P P i k n =∈==}.由此可见E 的基数为c .记E 的凝聚点全体为B ,则B 即为所求的非空零测完备子集. 43.设Q =22{:},(,),n n n r n N G r n r n F R --∈=-+⊂是闭集,则m (G ΔF )>0. 证 m (G ΔF )= m (Gc F )+m ( F \G )1)若m (G c F )>0,显然m (G ΔF )>0 2)若m (Gc F )=0,假设c F ≠∅又c F 为开集,由有理数稠密性Gc F ≠∅ ,又G 为开集 ∴m (Gc F )>0,这与m (Gc F )=0矛盾.∴c F =∅ ,即F =R .又m G ∞<++++≤)1211(222 n,mF mR ==∞ ∴m ( F \G )≥0mF mG -=∞> ∴m (G ΔF )>0. 44.设A R ⊂,0,mA >则有x,y ∈A ,使 0≠y x -Q ∈.证 不妨设A 为有界(否则可取n 充分大,使m 0)],([>-A n n ,然后对有界的A n n A ],[1-= 证本题),即存在0r ,使 0(0)r A B ⊂假设不存在x,y ∈A ,使0≠y x -Q ∈,∀r ∈0(0)r Q B +,令{:}r A x r x A =+∈,显然,∀012,((0))r r r Q B +∈,若12r r ≠,有12r r A A =∅且)0(0r B Q r rA+∈02(0)r B ⊂.因此m (02(0)r B )12n r r r mA mA mA ≥++⋅⋅⋅++⋅⋅⋅mA mA mA =++⋅⋅⋅++⋅⋅⋅=∞,矛盾.故假设不成立.45.设A R ⊂,0,mA >则有x,y ∈A ,使 x-y \R Q ∈.证 假设命题不成立,则,,x y A x y Q ∀∈-∈. ,x A ∀∈作集合1{|}A y x y A =-∈.因为1||||A A =,由假设,1A Q ⊂,故1A 可数所以A 也可数,故0,mA =与0mA >,矛盾.46.设A R ⊂,0,mA >10<<p ,则有区间Δ,使<0p m Δ≤m (A Δ).证 设A 有界(否则可取n 充分大,使m 0)],([>-A n n ,然后对有界的A n n A ],[1-= 证本题).由于 A 可测,由2.1.5得:存在开集G ⊃A ,使m G ≤1p-m A =1p -m (GA ).由1.5.1定理,存在开集列{}i δ使G =1i i δ∞=,i δ互不相交.故1ii m δ∞=∑=m G ≤1p-m (G A )=1p-111()()iii i m A p m A δδ∞∞-===∑∑.所以存在N n ∈,使)(1A m p m n n δδ-≤.即:)(A m pm n n δδ≤,又0>n m δ. 所以有区间n δ=∆,使0<p m Δ≤m (AΔ).47.设⊂A R ,0>mA ,则()A A +≠∅;于是当A A A ⊂+或A A A ⊂+2/)(时,A ≠∅.证 因为0>mA ,所以存在开区间),(r a r a I +-=使得)(43I A m mI <,令)2,2(r a r a J +-=,下面证明A A J +⊂,从而φ≠+0)(A A .任意J x ∈0,则区间),(}{0000r a x r a x I y y x I x +---=∈-=:包含区间I 的中点a 而且与区间I 的长度相同,所以)(223)(0I A m mI I I m x <<.令}{)(00I A y y x I A x ∈-=:,可以证明φ≠0)()(x I A I A .若不然,则)()(2])()[(00x x I I m I A m I A I A m >=,但是00)()(x x I I I A I A ⊂,从而)(])()[(00x x I I m I A I A m ≤,这与上式矛盾.所以φ≠0)()(x I A I A ,于是可取0)()(1x I A I A y ∈,这时存在I A y ∈2使201y x y -=,因为A y A y ∈∈21,,而且A A y y x +∈+=210,从而A A J +⊂,所以≠+0)(A A Ø.从而当A A A ⊂+或A A A ⊂+2/)(时,A ≠∅.48.设B B B A A A B A B A B A ⊂+⊂+≠==∞,,,,),0(φ ,则A ,B 均不可测.证 先证若A 可测,则必0=mA .这是因若0>mA ,由A A A ⊂+,那么上题2-47的结论:0A 就应是R ⊂∞),0(中的一个非空开集,按R 中非空开集的构成性质,应有 ∞==1),(n n nb aA ,其中构成区间),(n n b a 两两不相交:且当端点R b a n n ∈,时,0,A b a n n ∉,故B A b a n n =∞∈\),0(,.现在分如下两种情况推出矛盾.情况1,存在一个构成区间0),(A b a n n ⊂且+∞<<<n n b a 0那么由已知A A A ⊂+,就应有A b a n n ⊂)2,2(,这时由于B b a n n ∈,,不妨设B b a n n ∈,(由于0>=-c a b n n ,在一般情况下如果B B a n \∈,总可取n n n a a B a <∈'',并使'n a 充分接近来代替n a ,对n b 也同理).现在,一方面,由于B B B ⊂+,就应有B b a n n ∈+.但另一方面,n n n n b b a a 22<+<,即A b a b a n n n n ⊂∈+)2,2(,而φ=B A ,矛盾.情况2,在 ∞==1),(n n nb aA 的构成区间),(n n b a 中,没有+∞<<<n n b a 0的情况出现.由于A A A ⊂+导致A 是无界集.就必然有一个构成区间),(n n b a 满足∞=∞<<n n b a ,0,即),(),(+∞=n n n a b a .(这时必n a <0,否则B A A =+∞=),0(与B 非空矛盾),这又与B 非空,B B B ⊂+,从而B 无界,至少有一点),(+∞∈n a B b ,从而与φ=B A 矛盾.总之,以上两种情况都说明,若A 是可测集时必0=mA .同理,若B 是可测集,则也必0=mB ,从而A 与B 不可能都是可测集,否则),0(0)(,0∞====m B A m mB mA ,矛盾.最后,还应该说明A 与B 也不可能有一个可测(例如A 可测),另一个不可测(例如B 不可测)的情况发生.因为将出现),0(,0∞==B A mA 不可测的矛盾.至此本题证毕.49.作可测集2E R ⊂,使E 在x 轴与y 轴上的投影均不可测.证 由2.5.7存在A R ⊂是不可测集, 令E =A ×{0} {0}×A ,则 A ×{0},{0}×A 可测, 故E 可测,但x E = A{0},y E = A{0}均不可测.50.设nA R ⊂,0,mA >则∃,0,x A δ∈∀>有(())0m AB x δ>.证 假设x A ∀∈,存在0x δ>,有0))((=x B A m x δ .由第一章68题结论:对A 的开覆盖A x x B x ∈)}({δ存在A 的可数子覆盖{}n G 满足()0n m A G =.故(())n mA m A G ==(())n m A G 1()()0n m A G m A G ≤+⋅⋅⋅++⋅⋅⋅=这与0,mA >矛盾.所以假设不成立. 51.设f 是可测函数,B R ⊂可测,则1()fB -未必可测.证 用(){}n k I 表示康托集P 的有限余区间集1()()()12212783231(,),(,),(,)333333n n n n n n n n n n n n II I---===其中,11,2,2,1,2,n k n -==定义[0,1]上的函数ϕ如下1/2,1/4,()3/4,x ϕ⎧⎪⎪=⎨⎪⎪⎩(1/3,2/3)(1/9,2/9)(7/9,8/9)x x x ∈∈∈一般地,()21,(),2n k nk x I x x P ϕ-∈=∈时, ()sup{()|,[0,1]\},(0)0x x P ϕϕξξξϕ=≤∈=,易见ϕ是[0,1]上单调增加连续函数,再作()()x x x ψϕ=+,ψ是[0,1]上严格单调增加的连续函数.在康托集的诸有限余区间上,ϕ分别取常值,因此这些余区间经ψ映射后长度不变,所以如记I=[0,1],便有((\))(\)1m I P m I P ψ==.因为]2,0[)(=I m ψ,所以(())(())1211m P m I ψψ=-=-=.取D 为()P ψ的不可测子集,1()A D P ψ-=⊂,所以A 是可测的.令1()(2),f x x ψ-=则f 在[0,1]上连续,所以)(x f 可测,取f 值域中的可测集,B A =则有112(){|},f B x x D -=∈由于D 不可测,故1()f B -不可测. 52.可测函数的复合函数未必可测.证 如题51那样先构造一个严格单调增加连续函数]1,0[]1,0[:→ϕ,函数)(x ϕ通常称为Cantor 函数. 下面利用)(x ϕ构造一个可测函数)(x g 和一个连续函数)(x h ,使复合函数))(()(x h g x h g = 不可测.令2)()(x x x f ϕ+=,则)(x f 是从]1,0[到]1,0[上的严格单调增加连续函数,从而存在严格单调增加连续反函数)(1x f-,就取)(x h )(1x f -=. 由于0))((>P f m ,所以在)(P f 中可取一个不可测集E ,)(P f E ⊂,P 为零测度集,从而P E f⊂-)(1,从而)(1E f-也为零测度集. 令)(x g 为)(1E f -的特征函数,)(x g )()(1x E f-=χ,则)(x g 为]1,0[上可测函数,而且)(x g ..,0e a =于]1,0[.记=I ]1,0[,则}1))(()(,|{)1(==∈==x h g x h g I x x h g I)}()(,|{1E f x h I x x -∈∈=E E f x fI x x =∈∈=--)}()(,|{11因为E 为不可测集,所以复合函数))((x f g 在]1,0[=I 上不是可测函数.53.作R 上几乎处处有限的可测函数f ,使任何与f 几乎处处相等的函数处处不连续.解:作⎪⎩⎪⎨⎧∈∈=).1,0(\,0);1,0(,1)(R x x x x h ,则显然h 是R 上处处非负有限可测函数.又令)()(n n r x h x h -=,其中Q r n ∈,{}∞==1n n r Q 是R 中有理数集的一个全排,则对每一个)(x h n ,作为)(x h 的一个n r 平移,除了与)(x h 一样是R 上处处非负有限可测函数外,还有如下性质)(P :+∞==+→+)(lim )(x h r h n r x n n n,其等价于对任意一列+→n k r x ,都有)()(∞→+∞→k x h k n .现令)(21)(1x h x f n n n∑∞==,则显然)(x f 作为一列非负处处有限可测函数列)(21)(1x h x S nmn n m ∑==的极限函数,)(x f 是R 上非负可测函数. (1)要证f 在R 上是几乎处处有限的.利用第三章65题的结果,应用Levi 逐项积分定理与积分平移不变性,可得)(1R L f ∈,从而f 几乎处处有限.(2)要证对R 上每个函数g ,只要0)(=≠f g m ,则g 在R 上处处不连续.事实上只需证明对每一点R x ∈0,+∞=+)(0x g 或不存在即可.为此,先取一列0x r m ↓,要证明对每个m ,存在)1,(mr r t m m m +∈满足条件:m t f t g m m ≥=)()(.事实上,由于..,e a f g =于R ,所以在)1,(nr r m m +中总有一点)(n m t 使得)()()()(n m n m t f t g =,现在)()(∞→→+n r t m n m ,对固定的m ,对)(x h m 用性质)(P ,。

实变函数论课后答案第二章(精品)

实变函数论课后答案第二章(精品)

实变函数论课后答案第二章1第二章第一节1.证明'0p E ∈的充要条件是对于任意含有0p 的邻域()0,N p δ(不一定以0p 为中心)中,恒有异于0p 的点1p 属于E (事实上这样的1p 其实还是有无穷多个)而0p 为E 的内点的充要条件则上有含有0p 的邻域()0,N p δ(同样,不一定以0p 为中心)存在,使()0,N p E δ⊂. 证明:先设'0p E ∈,则()00,,N p E δδ∀> 中有无穷多个点。

现在设()00,p N p δ∈,这表明()00,p p ηρδ≤=<,故()0,y N p δη∀∈-,有()()()00,,,y p y p p p ρρρδηηδ≤+<-+= 故()()0,,N p N p δηδ-⊂故()0,N p E δη- 有无穷个点,自然有异于0p 的点()10,p N p E δη∈-(),N p δ⊂.这就证明了必要性,事实上,(){}00,N p E p δη-- 是无穷集,故(),N p δ中有无穷多个异于0p 的E 中的点.反过来,若任意含有0p 的邻域(),N p δ中,恒有异于0p 的点1p 属于E ,则0δ∀>,(),N p δ中,有异于0p 的点1p 属于E ,记()101,p p ρδ=,则显然1δδ<由条件()01,N p δ中有异于0p 的点2p E ∈,()2021,p p ρδδ=<由归纳法易知,有{}11,1,2,,n n n n δδδδ+∀=<<< 和()01,n n p E N p δ-∈ ,0,1,2,n p p n ≠=这表明()0,N p δ中有无穷个E 中的点.由0δ>的任意性知,'0x E ∈若0p 为E 的内点,则0,δ∃>使()0,N p E δ⊂,故必要性是显然的. 若存在邻域(),N p E δ⊂,使()0,p N p δ∈,则从前面的证明知()()()00,,,N p p p N p E δρδ-⊂⊂,故0p 为E 的内点.2.设1n R R =是全体实数,1E 是[]0,1上的全部有理点,求'11,E E .解:[]0,1x ∀∈,由有理数的稠密性知,()()0,,,N x x x εεεε∀>=-+中有无穷个1E 中的点,故'1x E ∈,故[]'10,1E ⊂.而另一方面,[]0,1x ∀∉,必有0δ>,使()[]0,0,1N x δ=∅ ,故'01x E ∉ 故[]'10,1E ⊂,所以[][]'10,10,1E ⊂⊂. 表明[]'10,1E =而[][]'11110,10,1E E E E === 故[]'110,1E E ==.1. 设2n R R =是普通的xy 平面(){}222,;1E x y xy =+<,求'22,E E .解:(){}'222,;1E x y xy =+≤事实上,若()'0002,p x y E =∈,则由于()22,f x y x y =+是2R 上的连续函数,必存在0δ>,使()()0,,x y N p δ∀∈有()22,1f x y x y =+>.故()02,N p E δ=∅ ,故0p 不是'2E 中的点矛盾. 故22001x y +≤时(){}220,;1p x y xy ∈+≤反过来,若()(){}22000,,;1p x y x y x y =∈+≤则0δ∀>,作[]0,1上的函数()()()()22000000,f t tp p tx x ty y ρ==-+-()22222000011t x y t x y =-+=-+则()f t 是[]0,1上的连续函数,()220001f x y =+≤,()10f =,01δ∀<<,[]0,1t δ∃∈使()f t δδ=现在任取()0,0min 1,ηδη>∃<<,使()()00,,N p N p δη⊂. 由上面的结论,存在01t δ<<,使()1f t δδ=<.故0t p δ满足(1)00t p p δ≠;(2)0001t p t p t p t δδδδ==≤<.故02t p E δ∈ (3)()00,t p p δρδη=<,故()0,t p N p δη∈所以(){}020,t p N p E p δη∈- 由习题1的结论知'02p E ∈,所以(){}'222,;1E x y xy =+≤.而(){}''222222,;1E E E E x y xy ===+≤ .2. 设2nR R =是普通的xy 平面,3E 是函数1sin00x y xx ⎧≠⎪=⎨⎪=⎩的图形上的点所作成的集合,求'3E . 解:设函数的图形是()(){}{}'131,;,,sin ;0x f x x R Ex x R x ⎧⎫⎛⎫∈=∈-⎨⎬ ⎪⎝⎭⎩⎭(){}0,0 . 下证(){}'330,;11E E δδ=-≤≤()'0003,p x y E =∈⇔存在()(){}300,,n n n p x y E x y =∈-, ()000,,n n n n n p x y p x x y y =→⇔→→,()0,0n p p ρ→设()'0003,p x y E =∈,则存在()(){}30,,n n x y E x y ∈-使00,nn xx y y →→若00x ≠,则0n x ≠(当n 充分大) 则0011sinsin n n y y x x =→= 所以()003,x y E ∈若00x ≠,则0n x →,01sinn ny y x =→,011y -≤≤ 所以()(){}00,0,;11x y δδ∈-≤≤ 故(){}'330,;11E E δδ⊂-≤≤反过来:()(){}0003,0,;11p x y E δδ∀=∈-≤≤ , 若00x ≠,001siny x =, 故存在0n x x ≠,使0n x ≠,0n x x →从而011sinsin n x x → 即存在()001,sin,n n x x y x ⎛⎫→ ⎪⎝⎭故'03p E ∈.若()(){}000,0,;11p y δδ=∈-≤≤ 则从[]01,1y ∈-知存在0x 使00sin x y =, 令()010,1,2,2k x k k x π=≠=+ .则()0001sinsin 2sin kk x x y x π=+==, 所以()3011,sin,,sin 0,k kkk x E x y x x ⎛⎫⎛⎫∈→ ⎪ ⎪⎝⎭⎝⎭,()()00,0,k x y y → ()()00,0,k x y y ≠故'03p E ∈ 故结论成立.3. 证明当E 是nR 中的不可数无穷点集时,'E 不可能是有限集. 证明:记B 为E 的孤立点集,则'E B E -= 所以()'E E B B E B =-⊂ .若能证明B 是至多可数集,则若'E 是有限集或可列集知'E B E ⊃ 为至多可数集,这将与E 是n R 中的不可数无穷点集矛盾.故只用证E 的孤立点集B 是至多可数集p B ∀∈,0p δ∃>使(){},p N p E p δ=故(),np p N p R δ⊂ 是B 到nR 中的一个互不相交的开球邻域组成的集的11-对应.而任一互不相交开球邻域作成的集合{},A αα∈Λ是可数的,因为任取α∈Λ,取有理点p A α∈,则从,A A αβαβ=∅≠ 则{},A αα∈Λ与Q 11-对应故{},A αα∈Λ是至多可数集. 证毕。

《实变函数论与泛函分析(曹广福)》1到5章课后习题答案

《实变函数论与泛函分析(曹广福)》1到5章课后习题答案

第一章习题参考解答3.等式(A -B) ⋃C =A - (B -C) 成立的的充要条件是什么?解: 若(A -B) ⋃C =A - (B -C),则 C ⊂ (A -B) ⋃C =A - (B -C) ⊂A .即, C ⊂A .反过来, 假设C ⊂A , 因为B -C ⊂B . 所以,A -B ⊂A - (B -C) . 故,( A -B) ⋃C ⊂A - (B -C) .最后证, A - (B -C) ⊂ (A -B) ⋃C事实上,∀x ∈A - (B -C) , 则x ∈A 且x ∉B -C 。

若x ∈C,则x ∈(A -B) ⋃C ;若x ∉C,则 x ∉B ,故 x ∈A -B ⊂ (A -B) ⋃C. 从而, A - (B -C) ⊂ (A -B) ⋃C.C ⊂ (A -B) ⋃C =A - (B -C) ⊂A -∅=A . 即 C ⊂A .反过来,若C ⊂A ,则因为B -C ⊂B 所以A -B ⊂A - (B -C) 又因为C ⊂A ,所以C ⊂A - (B -C) 故 (A -B) ⋃C ⊂A - (B -C)另一方面,∀x ∈A - (B -C) ⇒x ∈A 且x ∉B -C ,如果x ∈C则x ∈(A -B) C ;如果x ∉C, 因为x ∉B -C ,所以x ∉B 故x ∈A -B . 则x ∈(A -B) ⋃C . 从而A - (B -C) ⊂ (A -B) ⋃C于是, (A -B) ⋃C =A - (B -C)⎧1,x ∈A4.对于集合A,定义A 的特征函数为χA (x) =⎨,假设A1 , A2 , , A n 是⎩0, x ∉A一集列,证明:(i)χliminf A(x) = lim inf χA (x)n n n n(ii)χ(x) = lim sup χA (x)limsup An n n n证明:(i)∀x∈lim inf A n =⋃(⋂A n ),∃n0 ∈N,∀m ≥n0 时,x ∈A m .n n∈N m≥n所以 χA (x) = 1,所以 inf χA(x) = 1故lim inf χA (x) = supinf χA(x) = 1 m m≥nm n n b∈N m≥n m= i i1 1 ,使 m n n m nn n =1 1 1∀x ∉ lim inf A n ⇒ ∀n ∈ N ,有 x ∉ ⋂ A n ⇒ ∃k n ≥ nnm ≥n有 x ∉ A k ⇒ χ A = 0 ⇒ inf χ A (x ) = 0 ,故 s u p n f i χ A (x ) = 0,即 limn f iχ A (x ) =0 ,mk nm ≥n mb ∈N m ≥nmn n从而 χliminf A (x ) = lim inf χ A(x )nnnni -1 5. 设{A n } 为集列, B 1 = A 1 , B i = A i - ⋃ A j (i > 1) 证明j 1(i ) {B n } 互相正交n n(ii ) ∀n ∈ N , A i = B ii =1i =1n -1 证明:(i )∀n , m ∈ N , n ≠ m ;不妨设n>m ,因为 B n = A n - A i ⊂ A n - A m ,又因 i =1为 B ⊂ A ,所以 B ⊂ A - A ⊂ A - B , 故 B B = ∅ ,从而 {B }∞相互正交.n nnn(ii )因为 ∀i (1 ≤ i ≤ n ),有 B i ⊂ A i ,所以⋃ B i ⊂ ⋃ A i ,现在来证: ⋃ A i ⊂ ⋃ B i当n=1 时, A 1 = B 1 ; i =1i =1i =1i =1nn当 n ≥ 1时,有: A i = B ii =1i =1n +1 n n +1 n n n 则 A i = ( A i ) A n +1 = ( A i ) ( A n +1 - A i ) = ( B i ) (B n +1 - B i )i =1i =1i =1i =1i =1i =1n事实上, ∀x ∈ ⋃ A ,则∃i (1 ≤ i ≤ n ) 使得 x ∈ A ,令i = min i | x ∈ A 且1 ≤ i ≤ ni =1i 0 -1 n i 0 -1 n n则 x ∈ A i 0 - A i = B i 0 ⊂ B i ,其中,当 i 0 = 1 时, A i = ∅ ,从而, A i = B ii =1i =1i =1i =1i =16. 设 f (x ) 是定义于E 上的实函数,a 为常数,证明:∞(i ) E {x | f (x ) > a }= { f (x ) ≥ a + }n =1 n(ii) ∞E {x | f (x ) ≥ a }= { f (x ) > a - }n =1 n证明:(i ) ∀x ∈ E {x | f (x ) > a } ⇒ x ∈ E 且 f (x ) > a⇒ ∃n ∈ N ,使得f (x ) ≥ a + 1 > a 且x ∈ E ⇒ x ∈ E {x | f (x ) ≥ a + 1}⇒ x ∈ n ∞ E {x | f (x ) ≥ a + }⇒ E {x | f (x ) > a } ⊂ n∞E {x | f (x ) ≥ a + } n =1 n n =1 n反过来,∀x ∈ ∞E {x {x | f (x ) ≥ a + 1},∃n ∈ N x ∈ E {x | f (x ) ≥ a + 1} n =1 n nm n m m= n 0 1 1即 f (x ) ≥ a + 1 n∞> a 且x ∈ E 1故 x ∈ E {x | f (x ) > a }所 以 ⋃ E {x | f (x ) ≥ a + n =1 } ⊂ E {x | f (x ) > a } 故nE {x | f (x ) > a } ∞ E {x | f (x ) ≥ a + 1}n =1 n7. 设{ f n (x )} 是E 上的实函数列,具有极限 f (x ) ,证明对任意常数 a 都有:E {x | f (x ) ≤ a } = ∞lim inf E {x | f(x ) ≤ a + 1} = ∞lim inf E {x | f (x ) < a + 1} k =1 n n k k =1 n n k证明: ∀x ∈ E {x | f (x ) ≤ a },∀k ∈ N ,即 f (x ) ≤ a ≤ a + 1,且 x ∈ Ek因为 lim f n →∞(x ) = f (x ),∃n ∈ N ,使∀m ≥ n ,有 f n(x ) ≤ a + 1 ,故 kx ∈ E {x | f m (x ) ≤ a + 1}(∀m ≥ n ) k 所以x ∈ E {x | f m m ≥n (x ) ≤ a + 1} kx ∈ E {x | f (x ) ≤ a + 1}= lim inf E {x | f (x ) ≤ a + 1},由 k 的任意性:n ∈N m ≥n m k n mk∞ ∞ x ∈ lim inf E {x | f n (x ) ≤ a + },反过来,对于∀x ∈ lim inf E {x | f n (x ) ≤ a + },k =1 n k k =1 n k ∀k ∈ N ,有 x ∈ lim inf E {x | f (x ) ≤ a + 1} =E {x | f (x ) ≤ a + 1} , 即n m k n ∈N m ≥n m k∃n ∈ N ,∀m ≥ n 时,有: f (x ) ≤ a + 1 且 x ∈ E ,所以, lim f (x ) ≤ f (x ) ≤ a + 1且 m k m mkx ∈ E . 又令k → ∞ ,故 f (x ) ≤ a 且x ∈ E 从而 x ∈ E {x | f (x ) ≤ a }∞ 1故 E {x | f (x ) ≤ a }= lim inf E {x | f n (x ) ≤ a + }k =1 n k8.设{ f n (x )} 是区间(a ,b )上的单调递增的序列,即f 1 (x ) ≤ f 2 (x ) ≤ ≤ f n (x ) ≤∞若 f n (x ) 有极限函数 f (x ) ,证明: ∀a ∈ R , E { f (x ) > a } = ⋃ E { f n (x ) > a }n 1证明: ∀x ∈ E { f (x ) > a },即: x ∈ E 且 f (x ) > a ,因为lim f (x ) = n →∞f (x )所以∃n 0 ∈ N ,∀n ≥ n 0 ,恒有: f n (x ) > a 且x ∈ E ,从而, x ∈ E { f n(x ) > a }∞⊂ E { f n (x ) > a }n =1nn n k1 2 3 n n∞反过来, ∀x ∈ E { f n (x ) > a },∃n 0 ∈ N ,使 x ∈ E { f n (x ) > a },故∀n ≥n 0 ,因此,n =1lim f (x ) = n →∞f (x ) ≥ f (x ) > a 且 x ∈ E ,即, x ∈ E { f (x ) > a },∞从而, E { f (x ) > a } = E { f n (x ) > a }n =110.证明: R 3 中坐标为有理数的点是不可数的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章习题答案1.若 x m x且 y m y ,则( x m , y m )( x , y ) .特别的 , 若x m x ,则 ( x m , y )( x , y ) .证明:这实际上是表明( x, y)是 R n R n上的连续函数 .利用三角不等式 ,得到( x m , y m )( x, y)( x m , y m )( x, y m )( x, y m )( x, y).( x , x m )( y, y m )0,( m)2.证明:若 x1 O x 0 ,,则1,使得 O x1 ,1O x 0 ,.证明:实际上取01( x 0 , x1 ) 即可,因为此时对任意的x O x1 , 1 ,有( x , x 0 )( x, x1 )( x1 , x 0 )1( x 1 , x 0 ),即 x O x0 , .3.证明以下三条等价: (1). x E;(2).x 0的任意邻域中都有 E 中的点;(3).存在E中的点列 x n收敛到 x 0. 进而,若 x0 E ,则存在0,使得 O ( x 0 ,)E.证明:注意到 E E E ' .( i) .若( 1)成立,则x0 E 或 x 0 E ' .若前者成立,显然( 2)成立;若后者x0 E ' 成立,由极限点的定义也有(2)成立.总之,由(1)推出(2).(ii).若(2)成立,则对任意的n ,有O ( x0,1n)E,在其中任选一点记为x n.这样就得到点列x n E ,使得( x n , x0 )1n,即(3)成立.(iii).设(3)成立.若存在某个n 使得x n x0,当然有x0x n E E ;若对任意的n ,都有 x0x n,则根据极限点的性质知x0 E ' E . 总之,( 1)成立 .5.证明:A B A B.证明:因为 A B ' A' B',所以有A B A B A B ' A B A' B'A A'B B'A B.6. 在 R1中,设E Q[0,1] ,求 E ', E .解: E ' E[0,1]7. 在 R 2中,设 E( x, y ) : x2y 2 1,求E',E .解:E'E( x , y ) : x 2 y 218. 在 R 2中,设 E 是函数 ysinx1, x0,0,x的图形上的点的全体所成之集,求E ' .0,解:E'E(0, a ) : 1a1 . 因对任意的1 a1 ,有 E 上的点列1, y ( 1) (0, a ) .2 narcsin a arcsin2 na9. 证明:当 E 是不可数集时, E ' 也必是不可数集 .证明: 注意到 E EE 'E E ' .而EE '是 E 中孤立点的全体,它是一个孤立集,故是至多可数集 . 若 E ' 不是不可数集,则E ' 是至多可数集,其子集E E ' 也必为至多可数集,就得到EEE 'EE ' 也是至多可数集(因右边两个都是至多可数集),与题设矛盾 . 所以 E ' 必是不可数集 .1inf E ,sup E , 证明 E , E .10.设ER,证明: 由确界的定义知有E 中的点列x n 收敛到 ,再由第 3 题即得结果 .11. 证明以下三个命题等价 :(1) E 是疏朗集 .(2) E 不含任何邻域 .(3) ( E ) c 是稠密集 .证明: (1) (2) :反证法 假设存在 O ( x , r ) E , 按闭包的等价定义, O ( x, r ) 中任意点的任意邻域中都含有E 中的点 , 与疏朗集的定义矛盾 .(2)(3) :由假设 , 对 x ,0 , 有 O ( x, )E , 从而 O ( x,)Ec,即任一点的任一邻域中都有( E ) c 中的点,也即 (E ) c 是稠密集 .(3)(1) :反证法 若 E 不是疏朗集, 则存在 O ( x , ) ,使得 O ( x ,) 中没有子邻域与 E 不相交 . 这实际上意味着对任意的O ( y, r )O ( x, ) 都有 O ( y , r ) E,由 r 的任意小c性知道 y E , 再由 y 的任意性知道 O ( y , r ) E , 由此知道 E 不是稠密的 .由这个命题知道疏朗集的余集是稠密的, 但稠密集的余集不一定是疏朗的, 如Q .12.设 E R n,证明:E是疏朗集的充要条件是任一闭区间中均有子闭区间与E不相交.证明:因为任一闭区间中必含开区间,而任一开区间中也必含闭区间.13.证明:疏朗集的余集必是稠密集,但稠密集的余集未必是疏朗集.c 证明:由第 11 题知若E是疏朗集,则( E )c是稠密集 .而由于 E E,故E E c,从而由 ( E ) c是稠密集得到 E c是稠密的 .反例: Q 和 Q c都是稠密集 .14.构造反例说明:非稠密集未必是疏朗集,非疏朗集未必是稠密集.反例: [ 0,1]15.证明: R1中的非空闭区间不能表示成可数个疏朗集的并.证明:反证法 . 若否,设[ a , b ] E n,其中 E n都是疏朗集 . 利用 12 题,因 E 1疏n 1朗,故 [ a , b ] 中有非空子闭区间[ a1, b1][ a , b ] ,使 b1a1 1 且[ a1, b1]E1;同样,因 E 2疏朗,存在 [ a 2 , b 2 ][ a1 , b1 ] ,使b21a 2并且 [ a2 , b2 ] E 2;一直下去,得2到一列闭区间套 [ a n , b n ],使得 b n a n 1,[ a n1 , b n 1 ][ a n , b n] ,且 [ a n, b n] E n. n由数学分析中的闭区间套定理,存在唯一的x[ a , b] 含于所有的闭区间[ a n , b n],并且成立 x E n (n ) ,这与 x[ a , b ] E n矛盾.n 116.孤立集 E R n必是至多可数集 .证明:令 E k E O (0, k ) ,则 E k是有界集列,且E E k,故只需要证明每k1个 E k是至多可数集即可.注意到 E k也是孤立集并且有界,方便起见,不妨仍记 E k为 E .这样,问题转为证明:有界的孤立集 E 是至多可数集.任取 x E ,由孤立性,存在( x) 0 使得O ( x ,( x ) ) E x( * ).得到满足( * )式开球族O ( x, ( x)) : x EK . 明显的,E和开球族K对等. 对K中的球按半径分类 .令 K n是 K 中半径大于1的球的全体 . 则K K n,若能证明每个K n都是有限集,n n 1就得到 K 是至多可数集,从而 E 是至多可数集.下证明:Kn都是有限集.注意到K n中每个球的半径大于1,且每个球的球心不在其他n1的球中(由( * )式),这表明各个球心之间的距离大于. 另一方面,这些球心是一致有界n的.再结合有界的无限集必有收敛的子列这一命题,知K n中只能有有限个球.17.设 E R n,证明 E 是R n中包含 E 的最小闭集.证明:当然, E 是包含 E 的闭集.任取闭集 F ,且 E F .来证 E F .任取 x0 E ,则存在 E 中的点列 x n收敛到 x0( 第 3 题中闭包的性质 ).而 E F ,所以点列x n含于F 中且收敛到 x0,这表明 x0 F. 又F是闭集,所以F F ,即有 x0 F .再由 x0E 的任意性知 E F ,即 E 是包含 E 的最小闭集.18.设 f( x ) 是R n上的实值连续函数 . 证明:对任意的实数 a ,集合x : f ( x) a 是开集 ,集合 x : f ( x) a 是闭集 .证明:( 1)任取 x : f ( x) a中的点 x0,则 f ( x0 ) a .由连续函数的性质(保号性)知:0 ,使得当x x0时,恒有 f ( x ) a ,即O ( x0,)x : f ( x) a ,也就证明了 x0是x : f ( x) a 的内点 . 由x0的任意性知x : f ( x)a是开集 .(2)证明 Ex : f ( x) a 是闭集 .法一 .类似于( 1),知x : f ( x) a 是开集 .由于开集的余集是闭集,所以x : f ( x )a x : f ( x )a c是闭集 .法二 .直接证 . 任取x0 E ',则存在点列x n E ,使得lim n x n x0.再由函数的连续性知lim n f( x n ) f ( x0) .又 f ( x n ) a (n ) ,结合连续函数的性质(保号性),必有 f ( x 0 ) a ,即 x0 E .由 x0 E '的任意性得到 E 'E,也即E是闭集.19.证明: R1中可数个稠密的开集之交是稠密集.证明:反证法.设En1E n,其中 E n是一列稠密的开集.若 E不是稠密集,则存在某个邻域O ( x0 , ) 与 E 不相交,这时必有闭区间I [ x 02, x2]E c .( 1)而E ccE n c ,n E nn( 2)11这里 E n c是一列疏朗集 (因为稠密开集的余集是疏朗的 ).E n cI 也是一列疏朗集 (疏朗集的子集当然是疏朗的) ,再由( 1),( 2)两式得到II E cIE n cn 1IE n c ,n 1这表明非空闭区间 I 可以表示成一列疏朗集cI 的并,与第 15 题矛盾 .E n补:稠密开集E 的余集 E c 是疏朗的 .证明:反证法 . 若 E c 不是疏朗集,由疏朗集的等价条件(第11 题)知存在邻域O ( x 0 , )E c . 又 E 是开集,所以 E c 是闭集,故 E cE c . 结合起来有 O ( x 0 , )E c ,这表明 O ( x 0 , )E,与 E 是稠密集矛盾 .20. 设 f ( x ) 是 R 1 上的实函数 . 令( x ) limsupy xf ( y )inf y x f ( y ) .证明 :( 1)对任意的 0 ,集合 x : ( x )是闭集 .( 2 ) f ( x ) 的不连续点的全体成一 F 集 .( x) limsupy ' , y '''f ( y '',它是 f ( x ) 在 x 处的振幅 .证明: 注意到O ( x , )f ( y ) ) (1). 等价于证明 E x : ( x)是开集 .任取 x 0E ,因为( x 0 ),由极限的性质,存在0 ,使得sup y ', y'''f ( y ''O ( x , )f ( y )).任取 xO ( x 0 , ) ,则存在 1 0 ,使得 O ( x ,1)O ( x 0 , ) . 显然有sup'f ( y ''supf ''''''f ( y ) )'''O ( x 0 , )( y )f ( y ).y , yO ( x , 1 )y , y这表明( x ), x E . 故 O ( x 0 , ) E ,说明 E 中的点全是内点,E 是开集.( 2). 注意到连续点的振幅是零,不连续点的振幅大于零. 设不连续点的全体是 K .令 K nx R 1 :( x )1 . 则 K n是闭集列,且Kn K n ,即K 是F 集.n121.证明: [ 0 ,1] 中无理数的全体不是 F 集.证明:反证法 . 若[0,1]Q 是 F 集,则 [0,1]Q E n,其中E n是 [ 0,1] 中的闭n 1集列 . 因为每个E n都是闭集且都不含有理数,所以它必是疏朗集(因若不疏朗,则 E n中必有邻域,而任意邻域中都有有理数).而 [ 0,1]中有理数的全体Q[0,1]是可数集,设Q[0,1]r1 , r2 , , r n ,nr n.单点集列 r n当然是疏朗集列 .结合起来,有1[0,1][0,1]Q[0,1]Q E n r n,n 1n 1等式的右边都是疏朗集,故上式表明闭区间[ 0 ,1] 可表示成一列疏朗集的并,与第 15 题矛盾 .22.证明:定义在 [ 0 ,1]上具有性质:“在有理点处连续,在无理点处不连续”的函数不存在.证明:结合第 20 题( 2)和第21 题直接得结论 .23.设 E R n,证明 E 的任意开覆盖必有至多可数的子覆盖. (Lindelof定理)证明:设 E:是 E 的任一开覆盖.任取 E 中的点x,必有某,使得 x E .存在有理开区间I x,使得x I x E.( * )就得到 E 的有理开区间族覆盖I x: x E(称为E:的加细开覆盖),其中 I x对某个 E 满足(*)式.因为有理开区间的全体是可数集,所以I x : x E作为集合来看是至多可数集,记为 I n. 则 E I n,对I n,取满足( * )式的相应E记为 E n,这时E nn是至多可数个且覆盖 E .24.用 Borel 有限覆盖定理证明 Bolzano-Weierstrass 定理 .证明:反证法 . 设E是有界的无限集 . 若E没有极限点,则它是有界闭集,还是孤立集.由孤立性,对任意的x E ,存在( x )0 使得O ( x, ( x)) E x( * )这样,得到满足( * )式的开球族O ( x, ( x)) : x E且覆盖E.因 E 是有界闭集,由Borel有限覆盖定理,存在有限的子覆盖,记为 O ( x i) : i1, , k .k O ( x i ) ,又 E即有 Ei1是无限集,所以至少存在一个O ( x i ) 含有 E 中的多个点,这与(* )式矛盾 .25.设E R n是 G集,且 E 含于开集 I之中,则 E 可表为一列含于I 的递减开集之交.证明:设E E n,其中E n是开集列 .取 F n n E k,则F n是递减的开集kn 11列(因有限个开集的交是开集),且 E F n. 又I是开集,故 F n I是含于 I 中的n 1递减开集列 .结合 E I,得E E In 1F n I F n I. { F n I} 为所求.n 126.设 f n ( x )为 R n上的连续函数列 .证明:点集 E x : lim f n ( x)0为一 F集 .证明:注意到对任意的 a , x : f n ( x)a f n a都是闭集(第18题).而E x : lim f n ( x )01. k 1N1n Nf nk又f n 1是闭集(任意多个闭集的交还是闭集),结合上式表明E为一F 集.n Nk27.设 G 为Cantor开集,求 G ' .解:由 Cantor 集是疏朗的,可得G ' [0,1]28.证明: R1中既开又闭的集合只能是 R1或 .证明:设 A 是非空的既开又闭集. 它必有构成区间,不妨设( a, b)是A的一个构成区间 .若 a 有限 , 则a A ;另一方面,由 A 是闭集得 a[ a, b ]( a , b)'A' A,得到矛盾.所以 a,同理得 b.因此A R1,所以R 1中既开又闭的集或是空集或是R1 .实际上: R n中既开又闭的集或是空集或是R n .证明:反证法 . 设A R n是既开又闭的非空又非R n的集合 . 则必存在x R n,但x A .一方面因为 A 是非空闭集,所以存在 y A ,使得x, A x, y0.另一方面, 因为A又是开集 , 所以y是内点,而取得非零距离的点绝不能是内点(只能在边界上达到非零的距离),就导出了矛盾, 所以 R n中既开又闭的集或是空集或是R n .29.R1中开集(闭集)全体所成之集的势为c .证明:因为开集的余集是闭集、闭集的余集是开集, 且不同集合的余集是不同的, 所以开集全体的势和闭集全体的势是一样的.设开集的全体是 F .由于全体开区间F1( a , b ) : a b ( a ( b )可取负 (正 )无穷 )的势是c , 所以F的势不小于 c . 任取开集A F ,由开集的构造知道A( a i , b i ) (是至多可列个并 ). 作对应 ( A ) a 1 , b1 ; a 2 , b2 ;;(如果是有限并,后面的点全用0代替) ,则该对应是从 F 到R一个单射(因不同开集的构造不同), 就有F的势不大于 R 的势 c . 综上所述,直线上开集的全体的势是 c .实际上: R n中开集(闭集)全体所成之集的势为 c .证明:设 R n中开集的全体是 F ,易知 F 的势不小于 c .由 R n中开集的构造,每个开集A F 都可表示成可数多个互不交的左闭右开的有理方区间(平行坐标轴,中心的坐标和边长都是有理点,有理数)I n ( A ) : n N的并,且开集不同时表示不完全相同. 有理方区间的全体 K 是可数集,所以K 的子集的全体所成之集2K的势是 2 a c .让开集 A 和它的表示 I n ( A) : n N对应,则该对应是从 F 到2K的单射,这表明 F的势不超过 c .30.证明: R n中的每个开集或闭集均为 F 集和G 集.证明:设 E 是闭集,它当然是 F 集(取闭集列全是 E 自身即可).令 E n x :( x, E )n1,则 E n是包含 E 的开集列(第32题) . 实际上,有E n.( * )En 1显然,左是右的子集.任取右边的元x ,则x E n(n) ,即( x , E )n1 (n) ,这表明( x , E )0 ,因此x E E ,说明右边是左边的子集.因此( * )式表明闭集E是G集 .由对偶性得到开集既是 F 集也是G集 .31.非空集合 F R n具有性质:x R n , y* F 使( x, y *)( x , F ) ,证明 F 是闭集.证明:任取 x F ',则存在x n F,使 x x n0,故 0( x, F )x x n0 .因此( x , F )0.由题设,存在y *F使得( x, y * )( x , F )0 ,故 x y *F. 由x F'的任意性得F'F,即F是闭集.由于点到闭集的距离可达, 该性质是F成为闭集的充要条件 .32. 设集合 En0,点集U 为 U x : ( x, E ) d . 证明 E U 且U 是开集.R , d证明: EU 是显然的 . 法一 . 由第 34 题, f ( x )( x , E ) 是 R n 上的连续函数,而Ux : f ( x ) d ,再由第 18 题知U 是开集 .法二. 直接证 U中的点全是内点 .任取 xU ,则( x, E) r d . 取正数d r .当 yR n 满足( x , y )时,根据集合距离的不等式得( y , E )( x , E )( x , y )rd ,即表明 O ( x , ) U ,故 x 是 U 的内点 . 由 x U 的任意性知 U 是开集.33. 设E,FR n 是不相交的闭集, 证明:存在互不相交的开集U,V ,使得EU , F V .证明:法 一 . 由 第 35 题 ,存在 R n 上的 连续函 数 f ( x) 使得 Ex : f ( x) 0 且Fx : f ( x )1 . 则 Ux : f ( x )41,Vx : f ( x)21都是开集(由第18 题)且不相交,同时还满足EU , FV .法二 . 因为 E , F 是互不相交的闭集,所以E c ,F c 是开集,且 E F c, F E c .任取xEF c , 因 F c 是开集,故存在邻域 O ( x )O ( x , ( x )) ,使得x O ( x ) O ( x) F c ,即 O ( x )F .( 1)这样就得到 E 开覆盖 O ( x) : x E ,且满足( 1). 又集合 E 的任一开覆盖一定有至多可数的子覆盖(第23 题),所以 E 可以用可数个开球 O ( x ) 来覆盖,记为O n. 即有n 1En O n 且 O nF, ( n ) .( 2)1同理,存在可数个开球B nn 1使得Fn B n 且 B nE, (n)( 3)1令 U nO n nB kO n n B k ,V nB nn O kB nnO k .k kkk1111则 U nn, V n均是开集列 (都是开集减闭集) ,且 U n V m, ( n , m) .还由( 2)( 3)1n 1式知 U nn 1,V nn 1还分别是 E , F 的开覆盖(因由构造, O n 中去掉的都不是 E 中的点) .取UnU n ,VnV n,则它们即为所求 . 1134.设 E R n , E,证明( x, E ) 作为x的函数在R n上是一致连续的.证明:命题直接由不等式( x, E )( y, E )x y 得到 .35.设E,F为 R n中互不相交的非空闭集,证明存在R n上的连续函数 f ( x) 使得:(1).0 f ( x )1,x R n;(2).Ex : f ( x)0且 F x : f ( x ) 1 .证明:实际上 f ( x)( x , E )满足要求 . ( x, E )( x, F )36.设 E R n , x0R n.令Ex0x x0: x E ,即Ex 0是集合 E 的平移,证明:若 E 是开集,则 E x0也是开集 .证明:因为开球平移后还是开球 .。

相关文档
最新文档