物理专业英语洛伦兹力原文和翻译

合集下载

物理洛伦兹力知识点

物理洛伦兹力知识点

物理洛伦兹力知识点嘿,朋友们!今天咱来聊聊物理里超有意思的洛伦兹力呀!你说这洛伦兹力,就像是一个神秘又调皮的小精灵。

它呀,只在磁场里才会现身呢!当电荷在磁场中穿梭时,这个小精灵就会跑出来和电荷“玩耍”,给它施加一个力。

咱可以把磁场想象成一个巨大的游乐场,电荷就是在里面玩耍的小朋友。

而洛伦兹力呢,就是游乐场里的各种设施,会让小朋友的运动轨迹发生变化。

你想想看呀,要是没有这个洛伦兹力,电荷就会直直地跑过去,多没意思呀!但有了它,一切就变得有趣多啦。

电荷可能会被它带着转圈,或者改变方向。

那洛伦兹力到底有多大呢?这可就跟电荷的大小、速度以及磁场的强度有关系啦。

就好像小朋友在游乐场里玩不同的设施,受到的“乐趣”程度也不一样呢。

而且哦,洛伦兹力还有个很特别的地方,它永远和电荷的运动方向垂直。

这就好像有个小伙伴总是在你侧面推你,让你改变方向,但又不会让你停下来。

咱生活中也有很多类似洛伦兹力的现象呢!比如说,你有没有见过那种会拐弯的水流?水在流动的时候,要是遇到了磁场之类的影响,是不是就像电荷在磁场中一样会改变方向呀?学习洛伦兹力可不能马虎哦!这可是物理世界里的一个重要角色呢。

要是能把它搞清楚,那对我们理解很多物理现象都有很大的帮助。

你说,要是没有洛伦兹力,那这个世界会变成什么样呢?很多电器设备可能都没法正常工作啦,那多不方便呀!所以呀,我们得好好感谢这个神奇的洛伦兹力,是它让我们的世界变得更加丰富多彩。

洛伦兹力虽然有点复杂,但只要我们用心去学,就一定能掌握它。

就像攻克一个难关,只要我们有决心,有毅力,就一定能成功。

咱可不能被它吓倒,要勇敢地去探索,去发现它的奥秘呀!总之呢,洛伦兹力是个非常有趣又非常重要的物理概念,我们可得好好对待它,让它为我们打开更多物理世界的大门!。

大学物理洛伦兹力、B-S定律分解

大学物理洛伦兹力、B-S定律分解

B
的方向。
(2)B线的密度给出 B 的大小。
各种典型的磁感应线的分布:
直线电流的磁感线
圆形电流的磁感线
直螺线管电流的磁感线
环形螺线管电流的磁感线
绚丽多彩的极光
在地磁两极附近,由于磁感线与地面垂直,外层空 间入射的带电粒子可直接射入高空大气层内,它们 和空气分子的碰撞产生的辐射就形成了极光。
星 空 极 光
B线的特点:
(1)任何两条 B 线不相交。 (2)每一条B 线都闭合
磁场是涡旋场、无源场。


(3)B线和闭合电流回路互相套连,B 线
方向与 I 方向服从右手螺旋法则。
§14-2 毕奥-萨伐尔定律(Biot—Savart law)
一、B-S定律
d B
电流元 Idl在P点产生的磁
生产和科研中经常 要把样品放在均匀 磁场中作测试, 利用 亥姆霍兹线圈获得 均匀磁场比较方便。
3、密绕载流直螺线管轴线上的磁场
密绕→将每匝看作一个圆形
R
线圈。
N匝
(推导见书p72-73,自学)
结论:轴线上磁场方向与电流绕向满足右螺关系。
(1)对无限长(l>>R)密绕载流直螺线管轴
线上一点:
B 0nI
dl ad / sin2
B

0 I 4a
2
1
s
ind
I
2
Idl

r
l
Oa
1
B

0 I 4a
(cos1

cos2 )
1 、 2分别是直导线两端的电流
P B
元 与它们到P点的径矢之夹角。 B的方向,与I 流向成右螺关系。

应用物理专业英语English Vocabulary

应用物理专业英语English Vocabulary

Chapter 8adjacent 邻近的barrier 障碍物compensation 补偿板double slit 双缝electromagnetic 电磁的grating diffraction 光栅衍射illumination 照明,照亮,阐明intensity 强度missing order 缺级monochromatic 单色的,单频的opaque 不透明的prediction 预言prevail 优胜,主导scatter 散射speck 斑点spherical 球的,球形的substitute 替代subtend 对应于(张角)transparency 透明,透明度Chapter 9analyzer 检偏器antenna 天线arbitrary 任意的,专断的circular polarized light 圆偏振光crossed polaroids 正交偏振片eliminate 排除,消除,除去elliptical 椭圆的,省略的incident 入射的molecule 分子oscillatory 摆动的orientation 取向partially polarized 部分偏振光polaroid sheet 偏振片polarizer 起偏器preferential 优先的propagation 声波symmetry 对称性transverse 横向的,横断的unpolarized light 自然光Chapter 10 anode 阳极cathode ray 阴极射线conversion factor 变换量current-varying solenoid 载流线圈curvature 曲度cyclotron 螺旋加速器cylindrical 圆柱体differential 微分的discharge tube 放电管electric field intensity 电场强度electromotive force 电动势electric motor 电动机electromagnetic 电磁铁electrostatic 静电的field lines 场力线flux 通量ferromagnetic 铁磁性galvanometer 电流计impurity 杂质integration 积分loop 环Lorentz Force 洛伦兹力magnetic monopole 磁单极magnetron 磁控管magnetic induction磁感应强度oscillator 震荡器permanent magnet 永磁铁polarity 极性repel 排斥resistivity 电阻率spiral 螺旋的test charge 试验电荷trace 轨迹uniform electric field 匀强电场Chapter 11accidentally 偶然地antiparallel 反平行bubble chamber 气泡室compass needle 罗盘针current-varying solenoid 载流线圈deflect 偏转eddy current 涡电流electromagnetic induction 电磁感应electric current 电流episode 插曲gyroscope 回转仪induced EMF 感应电动势induced current 感应电流insulation 绝缘intuitive 直观的laminate 分成薄片monopole 单极neutron star 中子星permanent magnet 永磁铁prestige 威信positron正电子rate of change 时间变化率repel 排斥rudimentary 基础的,初步的seismograph 地震仪sinusoidal 正弦的summarize 总结symmetric 对称的tenacity 韧性transformer 变压器vicinity 临近,周围voltmeter 伏特计vortex 漩涡Chapter 12annihilation 湮没angular momentum 角动量classical 经典的classical physics 经典物理学contraction 收缩,缩减deceive 欺骗delay-controlled exponential 缓发中子控制指数disappear 不见,失踪exponential 指数的General Theory of Relativity 广义相对论inertial reference frame 惯性参考系intrinsic 固有的,内在的,本质的meter stick 米尺microscopic 微观的Newtonian 牛顿的,牛顿学说的paradox 自相矛盾者platform 平台,站台postulate 假设relativistic physics 相对论性物理学satellite 卫星simultaneity 同时性spectrum 光谱special Relativity 狭义相对论subtle 稀薄的,精巧的time dilation时间膨胀transformation 转换vacuum 真空,真空状态Chapter 13amplitude 振幅barrier penetration 势垒穿透binding energy 结合能boundary 边界classical mechanics 经典力学confine 限制cosmic rays 宇宙射线de Broglie wavederivative 派生的,导出的decay 放射性衰变dimensional 空间的,维的discrete 不连续的distribution 分布double slit 双缝duality 双重性,二象性electron cloud 电子云energy level splitting 能及分裂entangle 纠缠,卷入excited energy level 激发能级exponentially 以指数级的形式地external force 外力fission 裂变ground state 基态half-life 半衰期harmonic 谐波insulator 绝缘体infinite potential well 无限深势阱integration 积分interference pattern 干涉图样judicious 明智的kinetic 动力学的,运动的leak through 漏过macroscopic 宏观的molecular 分子的muon 介子neutron 中子nucleus 原子核nuclear fission 核子分裂out of phase 反相peak 峰phase shift 相移photon 光子piezoelectric 压电的potential barrier 势垒potential well 势阱probability 概率,几率proportional 成比例的probability density 几率密度proton 质子quantum mechanics 量子力学quantization 量子化quantum 定量,量子quantum equivalence 量子当量quantum physics 量子物理学quantum state 量子态tabletop 桌面transition 跃进,迁移trapped electron 俘获电子tunneling effect 隧道效应wave function 波函数wave-particle duality波粒二象性Chapter 14absorption 吸收acronym 字首缩略词amplification 放大aperture 孔径bumper 缓冲器,减震器carve 雕刻coherent 相干的,一致的convergence 会聚性covalent bonds 共价键density gradient 密度梯度depletion 耗散层,耗尽donor 施主,给予体energy gap 禁带energy band 能带fluorescent 荧光的helium 氦hologram 全息inelastic 无弹性的kinematic 运动学的majority 多数metastable 亚稳态的metallic 金属(性)的minority 少数mono-chromatic 单色的optical pump 光泵pentavalency 五价population inversion 粒子数反转propagation 传播rectification 整流resistivity 抵抗力,电阻率semiconductor 半导体spiraling 螺旋式spontaneous 自发的stimulate 受刺激tetravalene 四价threshold 阈值triode 三极管valance electron 价电子Chapter 15antiquark 反夸克baryon 重子boson 波色子chain reaction 链式反应deuterium 氘flavor 味fusion 聚变hadron 强子ionization 电离lepton 轻子nuclear fission 原子核裂变neutron 中子penetrate 穿透proton 质子radioactive decay 放射性衰变radioisotope 放射性同位素。

物理学名词中英文索引-苏科版九年级物理上册教案

物理学名词中英文索引-苏科版九年级物理上册教案

物理学名词中英文索引-苏科版九年级物理上册教案一、力和运动中文名词英文名词力force张力tension弹力elastic force摩擦力friction阻力resistance重力gravity合力resultant force分力component force动量定理momentum theorem牛顿第一定律Newton’s first law牛顿第二定律Newton’s second law牛顿第三定律Newton’s third law惯性inertia计算机模拟computer simulation二、力的作用中文名词英文名词工作work功率power机械效率mechanical efficiency能量energy势能potential energy动能kinetic energy机械能mechanical energy热能thermal energy等效能equivalent energy能量定理energy theorem三、电现象和电路中文名词英文名词电荷charge电场electric field静电场electrostatic field电势差potential difference电位potential电容capacitance并联电容parallel capacitance串联电容series capacitance电流current电阻resistance电阻率resistivity等效电阻equivalent resistance欧姆定律Ohm’s law布尔定理Kirchhoff’s law白炽灯泡incandescent bulb四、电磁现象中文名词英文名词电磁感应electromagnetic induction感应电流induced current感生电动势induced electromotive force 磁通量magnetic flux感应定律Faraday’s law楞次定律Lenz’s law感应电磁场induced electromagnetic field 交流电alternating current直流电direct current变压器transformer电源的交流和直流AC and DC power supply五、光学中文名词英文名词波长wavelength频率frequency光线light ray光束light beam反射reflection折射refraction透镜lens成像image formation高锟定理Gauss’s theorem光的折射refraction of light灯芯和LED filament and LED显微镜microscope以上是本文档所列举的物理学名词索引,可以为九年级物理上册学生和老师提供帮助,帮助他们更好的掌握物理学知识,完成物理学的学业。

《洛伦兹力》 讲义

《洛伦兹力》 讲义

《洛伦兹力》讲义一、什么是洛伦兹力在物理学中,当带电粒子在磁场中运动时,会受到一种力的作用,这种力被称为洛伦兹力。

洛伦兹力是由荷兰物理学家亨德里克·安东·洛伦兹首先提出的。

要理解洛伦兹力,我们先来看看带电粒子的运动。

带电粒子可以是电子、质子等,它们带有一定的电荷量。

当这些带电粒子在没有磁场的情况下做直线运动时,它们遵循牛顿运动定律。

然而,当存在磁场时,情况就变得复杂了。

磁场是一种特殊的物质,它具有能量和动量。

带电粒子在磁场中运动时,会与磁场发生相互作用,从而受到洛伦兹力的影响。

洛伦兹力的大小与带电粒子的电荷量、速度以及磁场的磁感应强度有关。

具体来说,洛伦兹力的大小可以用公式 F =qvBsinθ 来表示,其中 F 是洛伦兹力的大小,q 是带电粒子的电荷量,v 是带电粒子的速度,B 是磁场的磁感应强度,θ 是速度方向与磁感应强度方向的夹角。

从这个公式可以看出,如果带电粒子的运动方向与磁场方向平行(即θ = 0 或 180°),那么洛伦兹力为零;只有当带电粒子的运动方向与磁场方向不平行时,才会受到洛伦兹力的作用。

二、洛伦兹力的方向洛伦兹力的方向可以用左手定则来判断。

左手定则的具体方法是:伸出左手,让磁感线垂直穿过手心,四指指向正电荷运动的方向(或者负电荷运动的反方向),那么大拇指所指的方向就是洛伦兹力的方向。

需要注意的是,洛伦兹力的方向始终与带电粒子的运动方向垂直,所以洛伦兹力永远不做功。

这是因为做功的条件是力在力的方向上有位移,而洛伦兹力与运动方向垂直,在运动方向上没有分力,也就不会做功。

举个例子,如果一个带正电的粒子以速度 v 向右运动,磁场方向垂直纸面向里,那么根据左手定则,洛伦兹力的方向向上。

三、洛伦兹力与电场力的区别在研究带电粒子的运动时,我们经常会遇到洛伦兹力和电场力。

虽然它们都是对带电粒子的作用力,但它们有很多不同之处。

首先,产生的原因不同。

电场力是由电场对带电粒子的作用产生的,只要带电粒子处于电场中,就会受到电场力的作用。

洛伦兹力——精选推荐

洛伦兹力——精选推荐

洛伦兹⼒洛伦兹⼒在这篇⽂章内,⽮量与标量分别⽤粗体与斜体显⽰。

例如,位置⽮量通常⽤表⽰;⽽其⼤⼩则⽤来表⽰。

不同电荷量的带电粒⼦,由于磁场(磁场⽅向从银幕内指出来)的影响,感受到洛伦兹⼒的作⽤,所呈现的可能运动轨道。

由于磁场的影响,电⼦射束的移动路径呈圆形。

电⼦经过的路径会有紫⾊光发射出来。

这是因为电⼦与玻璃球内的⽓体分⼦碰撞⽽产⽣的现象。

在电动⼒学⾥,洛伦兹⼒ (Lorentz force) 是运动于电磁场的带电粒⼦所感受到的作⽤⼒。

洛伦兹⼒是因荷兰物理学者亨德⾥克·洛伦兹⽽命名。

根据洛伦兹⼒定律,洛伦兹⼒可以⽤⽅程,称为洛伦兹⼒⽅程,表达为;其中,是洛伦兹⼒,是带电粒⼦的电荷量,是电场,是带电粒⼦的速度,是磁场。

洛伦兹⼒定律是⼀个基本公理,不是从别的理论推导出来的定律,⽽是由多次重复完成的实验所得到的同样的结果。

感受到电场的作⽤,正电荷会朝着电场的⽅向加速;但是感受到磁场的作⽤,按照右⼿定则,正电荷会朝着垂直于速度和磁场的⽅向弯曲(详细地说,假设右⼿的⼤拇指与同向,⾷指与同向,则中指会指向的⽅向)。

洛伦兹⼒⽅程的项⽬是电场⼒项⽬,项⽬是磁场⼒项⽬。

处于磁场内的载电导线感受到的磁场⼒就是这洛伦兹⼒的磁场⼒分量。

洛伦兹⼒⽅程的积分形式为。

其中,是积分的体积,是电荷密度,是电流密度,是微⼩体元素。

洛伦兹⼒密度是单位体积的洛伦兹⼒,表达为:。

历史亨德⾥克·洛伦兹1892年,荷兰物理学家亨德⾥克·洛伦兹提出洛伦兹⼒的概念。

但是,在洛伦兹之前,就已经有发掘出洛伦兹⼒⽅程的形式,特别是在詹姆斯·麦克斯韦的1861 年论⽂《论物理⼒线》⾥的公式 (77):、、;其中,、、分别为电场的三个分量,是磁导率,、、分别为导电体的移动速度的三个分量,、、分别为磁场强度的三个分量,、、分别为磁⽮势的三个分量,是电势。

后来,在他的 1864 年论⽂《电磁场的动⼒学理论》⾥,麦克斯韦将这公式列为麦克斯韦⽅程组的⼋个原本⽅程中的⽅程(D) :;其中,是速度,是磁场强度,是磁导率,是磁⽮势,是电势。

3.5洛伦兹力(人教版)

3.5洛伦兹力(人教版)
复习回顾
θ为B和I 之间的夹角
B B1
B2
θ
1、磁场对通电导线的作用力 大小: F ILB sin 安培力: 方向: 左手定则 运用左手定则判断安培力的方向
B F B
I
I
30 °
I
F
为什么磁场对通电导线有作用力?
复习回顾
1、磁场对通电导线的作用力 大小: F ILB sin 安培力: 方向: 左手定则
B
D.带电粒子速度方向不变
课堂练习
电荷量为+q的粒子在匀强磁场中运动,下 列说法正确的是( )
B
A.只要速度大小相同,所受洛伦兹力就相同 B.如果把+q改为-q,且速度反向,大小不 变,则洛伦兹力的大小方向不变 C.洛伦兹力方向一定与电荷速度方向垂直,磁 场方向一定与电荷运动方向垂直 D.粒子的速度一定变化
显像管的工作原理:
课堂练习
来自宇宙的质子流,以与地球表面垂直 的方向射向赤道上空的某一点,则这些质子 在进入地球周围的空间时,将( B ) A.竖直向下沿直线射向地面 B.相对于预定地面向东偏转 C.相对于预定点稍向西偏转 D.相对于预定点稍向北偏转
V
课堂练习
当一带正电q的粒子以速度v沿螺线管中轴 线进入该通电螺线管,若不计重力,则( CD ) A.带电粒子速度大小改变 B.带电粒子速度方向改变 C.带电粒子速度大小不变
v
F安 ILB B(nqvS) L (3)这段导线内的自由电荷数 N nSL
(4)每个电荷所受的洛伦兹力
I v
F
v
v
F安 B(nqvS) L F洛 qvB N nSL
洛伦兹力大小
电荷量为q的粒子以速度v运动时,如 果速度方向与磁感应强度方向垂直,那么 粒子所受的洛伦兹B

物理洛伦兹力-概述说明以及解释

物理洛伦兹力-概述说明以及解释

物理洛伦兹力-概述说明以及解释1.引言1.1 概述在物理学中,洛伦兹力是一种与带电粒子在电场和磁场中的相互作用有关的力。

这种力是由19世纪的荷兰物理学家洛伦茨提出的,他发现当带电粒子移动时,会受到电场和磁场的双重影响,从而产生一种受力。

洛伦茨力的存在和性质对于解释许多物理现象和现代科学的发展都至关重要。

本文将会对洛伦兹力的概念、公式以及其在物理学中的应用进行深入探讨,同时也将探讨洛伦兹力在现代科学中的作用以及展望其未来的发展。

通过本文的阐述,读者将能更全面地了解洛伦兹力对于物理学和科学发展的重要性。

1.2文章结构1.2 文章结构本文将分为以下几个部分来详细介绍物理洛伦兹力的相关概念、公式和应用。

首先,在引言部分将对物理洛伦兹力进行简要概述,介绍文章的结构和目的。

接下来,在正文部分将详细解释洛伦兹力的概念,介绍洛伦兹力的公式以及讨论洛伦兹力在实际应用中的重要性。

最后,在结论部分将总结洛伦兹力在物理学中的重要性,并探讨其在现代科学中的作用,展望未来洛伦兹力的发展方向。

通过以上分析和讨论,读者将能够更深入地了解物理洛伦兹力的相关知识,为其在科学研究和实践中的应用提供更多参考和启发。

1.3 目的本文的主要目的是探讨物理学中的洛伦兹力,并深入了解其在电磁学和磁场中的重要性。

通过对洛伦兹力的概念、公式和应用进行全面的分析和讨论,我们希望读者能够更加深入地理解洛伦兹力在物理学领域中的作用和意义。

此外,本文也将探讨洛伦兹力在现代科学研究中的应用以及未来的发展趋势,以便读者能够更好地认识和理解这一重要力学概念的前沿研究和应用领域。

通过阐述洛伦兹力的重要性和影响,本文旨在引发读者对物理学领域的兴趣和思考,促进科学研究和相关学科的发展。

2.正文2.1 洛伦兹力的概念洛伦兹力是指在电磁场中,带电粒子受到的力。

这个力是由荷电粒子在电场和磁场中相互作用而产生的。

洛伦兹力的大小和方向取决于带电粒子的电荷量、速度以及电场和磁场的强度。

物理名词中英文对照

物理名词中英文对照

物理名词中英文对照必修1力学mechanics质点mass point参考系reference frame坐标系coordinate system路径path位移displacement矢量vector标量scalar速度velocity平均速度average velocity瞬时速度instantaneous velocity速率speedv~t图像v~t graph加速度acceleration匀变速直线运动uniform variable rectilinear motion初速度initial velocity自由落体运动free fall motion自由落体加速度free fall acceleration 重力加速度gravitational acceleration力force重力gravity重心center of gravity万有引力gravitation电磁相互作用electromagnetic interaction 强相互作用strong interaction弱相互作用weak interaction形变deformation弹性形变elastic deformation弹性限度elastic limit弹力elastic force劲度系数coefficient of stiffness胡克定律Hooke law摩擦力frictional force静摩擦力static frictional force滑动摩擦力sliding frictional force动摩擦因数dynamic friction factor合理resultant force分力components of force力的合成composition of forces平行四边形定则parallelogram rule 共点力concurrent force力的分解resolution of force三角形定则triangular rule运动学kinematics动力学dynamic牛顿第一定律Newton first law惯性定律law of inertia牛顿第二定律Newton second law 单位制system of units作用力action反作用力reaction牛顿第三定律Newton third law超重overweight失重weightlessness必修2曲线运动curvilinear motion切线tangent抛体运动projectile motion抛物线parabola 线速度linear velocity匀速圆周运动uniform circular motion角速度angular velocity弧度radian向心加速度centripetal acceleration向心力centripetal force引力常量gravitational constant万有引力定律law of universal gravitation 宇宙第一速度first cosmic velocity能energy势能potential energy动能kinetic energy功work功率power重力势能gravitational potential energy弹性势能elastic potential energy动能定理theorem of kinetic energy机械能mechanical energy机械能守恒定律law of conservation of mechanical energy能量守恒定律law of energy conservation高考相关的物理学史内容(1)落体理论:亚里士多德:物体下落的快慢是由它们的重量决定,越重的物体下落的越快;伽利略:物体做自由落体运动时与物体本身的重量无关(2)胡克定律:弹力与弹簧形变量成正比(3)亚里士多德认为必须有力作用在物体上,物体才能运动;没有力的作用,物体就要静止在一个地方。

应用物理专业英语EnglishVocabulary

应用物理专业英语EnglishVocabulary

邻近地障碍物补偿板双缝电磁地光栅衍射照明,照亮,阐明强度缺级单色地,单频地不透明地预言优胜,主导散射斑点球地,球形地替代对应于(张角)透明,透明度检偏器天线任意地,专断地圆偏振光正交偏振片排除,消除,除去椭圆地,省略地入射地分子摆动地取向部分偏振光偏振片起偏器优先地声波对称性横向地,横断地自然光阳极阴极射线变换量载流线圈曲度螺旋加速器圆柱体微分地放电管电场强度电动势电动机电磁铁静电地场力线通量铁磁性电流计杂质积分环洛伦兹力磁单极磁控管磁感应强度震荡器永磁铁极性排斥电阻率螺旋地试验电荷轨迹匀强电场偶然地反平行气泡室罗盘针载流线圈偏转涡电流电磁感应电流插曲回转仪感应电动势感应电流绝缘直观地分成薄片单极中子星永磁铁威信正电子时间变化率排斥基础地,初步地地震仪正弦地总结对称地韧性变压器临近,周围伏特计漩涡湮没角动量经典地经典物理学收缩,缩减欺骗缓发中子控制指数不见,失踪指数地广义相对论惯性参考系固有地,内在地,本质地米尺微观地牛顿地,牛顿学说地自相矛盾者平台,站台假设相对论性物理学卫星同时性光谱狭义相对论稀薄地,精巧地时间膨胀转换真空,真空状态振幅势垒穿透结合能边界经典力学限制宇宙射线派生地,导出地放射性衰变空间地,维地不连续地分布双缝双重性,二象性电子云能及分裂纠缠,卷入激发能级以指数级地形式地外力裂变基态半衰期谐波绝缘体无限深势阱积分干涉图样明智地动力学地,运动地漏过宏观地分子地介子中子原子核核子分裂反相峰相移光子压电地势垒势阱概率,几率成比例地几率密度质子量子力学量子化定量,量子量子当量量子物理学量子态桌面跃进,迁移俘获电子隧道效应波函数波粒二象性吸收字首缩略词放大孔径缓冲器,减震器雕刻相干地,一致地会聚性共价键密度梯度耗散层,耗尽施主,给予体禁带能带荧光地氦全息无弹性地运动学地多数亚稳态地金属(性)地少数单色地光泵五价粒子数反转传播整流抵抗力,电阻率半导体螺旋式自发地受刺激四价阈值三极管价电子反夸克重子波色子链式反应氘味聚变强子电离轻子原子核裂变中子穿透质子放射性衰变放射性同位素。

高中物理选择性必修件洛伦兹力

高中物理选择性必修件洛伦兹力

结构
回旋加速器主要由两个D形金属盒、高频 交流电源、磁体等部分组成。其中,两个 D形金属盒分别与交流电源的两极相连, 形成加速电场;磁体则提供匀强磁场,使 带电粒子在其中做匀速圆周运动。
04 洛伦兹力在电磁 感应中作用
法拉第电磁感应定律内容及应用
法拉第电磁感应定律内容
当穿过回路的磁通量发生变化时,回路中就会产生感应电动势,感应电动势的大小与穿 过回路的磁通量对时间的变化率成正比。
右手定则
伸开右手,使拇指与其余四指垂直且在同一平面内,让磁感 线从掌心进入,拇指指向导体运动的方向,四指所指的方向 就是感应电流的方向。
洛伦兹力与安培力关系
联系
洛伦兹力和安培力之间的联系是它们都是磁场对运动电荷的作用力。安培力是洛 伦兹力的宏观表现,洛伦兹力是安培力的微观本质。
区别
安培力是通电导线在磁场中受到的作用力,而洛伦兹力是运动电荷在磁场中受到 的作用力。安培力的方向既跟磁场方向垂直,又跟电流方向垂直,而洛伦兹力的 方向只跟磁场方向垂直,跟速度方向不一定垂直。
4. 通过示波器观察带 电粒子在回旋加速器 中的运动轨迹和速度 变化。
THANKS
感谢观看
观察阴极射线管中电子束偏转实验
01
3. 改变磁场方向或强度,观察电 子束偏转的变化。
02
4. 记录实验数据,分析实验结果 。
测量电子比荷实验设计思路
实验目的
通过测量电子在电场和磁场中的偏转情况,计算电子的 比荷。
实验器材
阴极射线管、亥姆霍兹线圈、电源、电流表、电压表、 测量尺等。
测量电子比荷实验设计思路
洛伦兹力使带电粒子偏转
1 2
带电粒子在磁场中偏转
当带电粒子以一定速度进入磁场时,会受到洛伦 兹力的作用而发生偏转。

18-19 第1章 第6节 洛伦兹力初探

18-19 第1章 第6节 洛伦兹力初探

自 和阳极间强电场的作用下沿直线运动,如果在射线管所在区域内加上垂直纸面 当


预 习
向里的匀强磁场,则电子束的偏转方向为(
)
【导学号:71082030】
达 标














重 难
A.向上偏转
图 1-6-1 B.向下偏转
课 时 分 层 作 业
C.向纸内偏转
D.向纸外偏转












探 新
1.洛伦兹力方向与安培力方向的确定是一样的,都是由左手定则判定.判
固 双


断洛伦兹力的方向时一定要注意 F 垂直于 v 与 B 所决定的平面.
合 作 探 究 • 攻 重
2.当运动电荷的速度 v 的方向与磁感应强度的方向平行时,运动电荷不受 洛伦兹力作用,仍以初速度 v 做匀速直线运动.而磁场中静止的电荷也不受洛 伦兹力的作用.导体平行磁场方向放置时,定向运动的电荷不受洛伦兹力,所
合 作 探 究 • 攻 重
(3)交变电压的作用:为保证带电粒子每次经过夹缝时都被加速,使之能量

不断提高,需在夹缝两侧加上跟带电粒子在
D
形盒中运动周期相同的交变电压.
时 分




返 首 页

显像管是电视机中的一个重要元件,如图 1-6-5 为电视机显像管的 当


预 习
偏转线圈示意图,圆心墨点表示电子枪射出的电子,它的方向由纸内指向纸外,

大学物理洛伦兹力BS定律分解

大学物理洛伦兹力BS定律分解

§14-2 毕奥-萨伐尔定律(Biot—Savart law)
一、B-S定律
d B
电流元 Idl在P点产生的磁
I 感应强度为:
dB r
P r θ Idl
电流元
dB大 方小 向dB : :同dBI0dl I4d0l e rIed .rrsl2in
其中:er
r r
4 r2
0417 0 Tm A (1真空磁导率)
解: 等效圆电流为 I e
mv r -e
T 2r
v
T I ev
2r
pmIS2ervr2e2vr
而 L=rmv
pm e L 2m
例3.(学习指导p209,44)长为l 的细杆均匀分布着电 荷q .杆绕垂直杆并经过其中心的轴,以恒定角速
度 旋转,此旋转带电杆的磁矩大小是_________.
的、共轴的、彼此平行的各有 N 匝的圆环电流。当它们的间 距正好等于其圆环半径 R 时, 称这对圆线圈为亥姆霍兹线圈。
生产和科研中经常 要把样品放在均匀 磁场中作测试, 利用 亥姆霍兹线圈获得 均匀磁场比较方便。
3、密绕载流直螺线管轴线上的磁场
密绕→将每匝看作一个圆形
R
线圈。
N匝
(推导见书p72-73,自学)
X x+dx x
P 此微元的电流强
度为 I dx .
a
a
它在P点产生dB
0
I a
dx
.
2x
B
dB
ab
0
dxI a
0I
lnab
b 2x 2a b
B 的方向 :
例2.(学习指导p209,43)氢原子中电子质量m,电量
-e,它沿某一圆轨道绕原子核运动,其等效圆电

物理学教程(第二版)11-7洛仑兹力(新)

物理学教程(第二版)11-7洛仑兹力(新)
π 又∵ T = 2 m

11 e m = (1.75881962±0.00000053)×10 C/kg
Be π e 8 mn m = Bl
2 2 2
带电粒子受洛伦 兹力的作用作圆 周运动的周期.
2
1 mvx e = U 2
2
电场能与带 电粒子动能 的关系
带电粒子的电量与它 的质量之比-荷质比
二.
π 2 m v cos θ h =v T = qB
πm 2 T= q B
以上种种的结论只适用于带电粒子的速度远小于光速 的非相对论情况。如果带电粒子的速度接近于光速 ,上 述公式虽然还可以沿用,但粒子的质量m已将不是常量 而是随着趋于光速而增加的 ,因而回旋时间(周期)将 变长,回旋频率将减小。正因为是这个原因,人们便研 制了回旋加速器等。 在普遍的情况下,带电粒子 如果既在电场又在磁场中 运动(电场和磁场共有区)则 其受到的力将是电场力和 磁场力之和:
H
× × × × × × × ×
金属导体的下表面为2
IB U =R b
H H
比较可得金属导 1 R H = ne 体的霍耳系数
n 型半导体载流子为电子(也称电子导电型) ,而P 型半导 体载流子为带正电的空穴(也称空穴导电型)。根据霍耳系 数的符号可以确定半导体的类型,根据霍耳系数的大 小的测定,可以确定载流子的浓度。
v
v ×
F = q v ×B
带电粒子在磁场 中运动的基础数 学理论的分析:
过程中带电粒子的运动轨迹 发生弯曲, 直致完成一个圆 周运动, 在运动过程中,其速 度方向是过圆周的切线方向 磁场力始终指向圆心.
带电粒子受到的洛仑兹力作为它维持作圆 周运动的向心力,根据牛顿动力学规律有:

磁场对运动电荷的作用洛伦兹力

磁场对运动电荷的作用洛伦兹力
ห้องสมุดไป่ตู้
4.当一带正电q的粒子以速度v沿螺线管 中轴线进入该通电螺线管,若不计重力, 则带电粒子会在螺线管中做什么运动?
B
匀速直线运动
5、如图示,一带负电的小滑块从粗糙的斜面顶端滑 至底端时的速率为v;假设加一个垂直纸面向外的匀 强磁场,并保证小滑块能滑至底端,那么它滑至底
端时的速率将B〔 〕
A、变大
B、变小
过导线的电流是
t
洛伦兹〔荷兰〕 Lorentz
1853—1928
L
IqneSxneSv t t
qv
S
我们已经知道,假设长度是L的通电导线与磁场方向 垂直,通过的电流是I,那么匀强磁场B中受到的安培力大
小为 FILB neSvBL
设每个电子受到的磁场力是F洛,那么F=NF洛,N是 这段导线所含有的自由电子总数,N=nSL,所以
C、不变
D、条件缺乏,无法判断
6.阴极射线管中粒子流向由左向右,其上方放置一 根通有如下图电流的直导线,导线与阴极射线管平
行,那么阴极射线将 ( B )
A.向上偏转
B.向下偏转
C.向纸里偏转
D.向纸外偏转
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
N洛 FneSvB NLevB
F洛 evB
e为电子所带电荷量,电荷量为q的运动电荷所受到的 洛伦兹力可以表示为

7-5洛仑兹力

7-5洛仑兹力

F = q v× B
结束
返回
F = q v× B
说明: 洛仑兹力与速度垂直, 说明: 洛仑兹力与速度垂直 因此洛仑兹力不作功, 因此洛仑兹力不作功 不改变速度的大小, 不改变速度的大小 只改变速度的方向. 只改变速度的方向
二、带电粒子在磁场中的运动 dv q v × B m 动力学方程: 动力学方程 = dt 1.带电粒子在匀强磁场中的运动 带电粒子在匀强磁场中的运动 (1). v 0 B q v0 B = m v 0 R
. . . .
. . R . .
. . . .
. . . .
. . . .
. .
. .
粒子径迹 匀强磁场
. . B . .
利用质谱仪可以测出 元素中个同位素的含量
通过速度选择器 后粒子的速度

离子源 狭缝
. . . . +
速度选择器
偏转板
. . . . . . . .
照相底片
. . . . . . . .
结束
返回
霍耳系数
金属 锂(Li) 钠(Na) 钾(K) 铯(Cs) 铜(Cu) 铍(Be) 锌(Zn) 镉(Cd) 实验值 (1011m3/C) -17.0 -25.0 -42 -78 -5.5 +24.4 + 3.3 + 6.0 计算值 (1011m3/C) -13.1 -24.4 -47 -73 -7.4 -2.5 -4.6 -6.5
qυB = qE
v= E B´
. . . .
(1)
. . . .
. . . .
. . R . .
. . . .
. . . .
. . . .
2

《物理化学》的中英文翻译

《物理化学》的中英文翻译

《物理化学》的中英文翻译第一篇:《物理化学》的中英文翻译复习《物理化学》过程中,顺便整理了专业名词的翻译,大家凑合着,依我看,简单的会考汉译英,复杂的会考英译汉。

不管怎么样,中文英文背过最好。

如果有错误,赶紧的,说。

1多相系统 heterogeneous system2自由度degree of freedom3相律 phase rule4独立组分数 number of independent component5凝聚系统 condensed system6三相点 triple point7超临界流体 supercritical fluid8超临界流体萃取supercritical fluid extraction9超临界流体色谱supercritical fluid chromatography10泡点 bubbling point11露点dew point12杠杆规则 level rule13连结线 tie line14部分蒸馏(分馏)fractional distillation15缔合分子 associated molecule16最低恒沸点 minimum azeotropic point17最低恒沸混合物low-boiling azeotrope18无水乙醇(绝对乙醇)absolute ethyl alcohol19最高恒沸点maximum azeotropic point20会溶点 consolute point21共轭层 conjugate layer22烟碱 nicotine23蒸汽蒸馏 steam distillation24步冷曲线 cooling curve25热分析法 thermal analysis26低共熔点 eutectic point27低共熔混合物eutectic mixture28异成分熔点 incongruent melting point29转熔温度 peritectic tempreture30固溶体 solid solution31退火 annealing32淬火 quenching33区域熔炼 zone melting34分凝系数 fractional coagulation coefficient35褶点 plait point36等温会溶点 isothermal consolute point37双节点溶解度曲线 binodal solubility cueve38一(二)级相变first(second)order phase transition39超流体 super fluid40顺磁体 paramagnetic substance41铁磁体 ferromagnetic substance第二篇:中英文翻译蓄电池 battery 充电 converter 转换器 charger开关电器Switch electric 按钮开关Button to switch 电源电器Power electric 插头插座 Plug sockets第三篇:中英文翻译Fundamentals This chapter describes the fundamentals of today’s wireless communications.First a detailed description of the radio channel and its modeling are presented, followed by the introduction of the principle of OFDM multi-carrier transmission.In addition, a general overview of the spread spectrum technique, especially DS-CDMA, is given and examples of potential applications for OFDM and DS-CDMA areanalyzed.This introduction is essential for a better understanding of the idea behind the combination of OFDM with the spread spectrum technique, which is briefly introduced in the last part of this chapter.1.1 Radio Channel Characteristics Understanding the characteristics of the communications medium is crucial for the appropriate selection of transmission system architecture, dimensioning of its components, and optimizing system parameters, especially since mobile radio channels are considered to be the most difficult channels, since they suffer from many imperfections like multipath fading, interference, Doppler shift, and shadowing.The choice of system components is totally different if, for instance, multipath propagation with long echoes dominates the radio propagation.Therefore, an accurate channel model describing the behavior of radio wave propagation in different environments such as mobile/fixed and indoor/outdoor is needed.This may allow one, through simulations, to estimate and validate the performance of a given transmission scheme in its several design phases.1.1.1 Understanding Radio Channels In mobile radio channels(see Figure 1-1), the transmitted signal suffers from different effects, which are characterized as follows: Multipath propagation occurs as a consequence of reflections, scattering, and diffraction of the transmitted electromagnetic wave at natural and man-made objects.Thus, at the receiver antenna, a multitude of waves arrives from many different directions with different delays, attenuations, and phases.The superposition of these waves results in amplitude and phase variations of the composite received signal.Doppler spread is caused by moving objects in the mobile radio channel.Changes in the phases and amplitudes of the arriving waves occur which lead to time-variant multipathpropagation.Even small movements on the order of the wavelength may result in a totally different wave superposition.The varying signal strength due to time-variant multipath propagation is referred to as fast fading.Shadowing is caused by obstruction of the transmitted waves by, e.g., hills, buildings, walls, and trees, which results in more or less strong attenuation of the signal pared to fast fading, longer distances have to be covered to significantly change the shadowing constellation.The varying signal strength due to shadowing is called slow fading and can be described by a log-normal distribution [36].Path loss indicates how the mean signal power decays with distance between transmitter and receiver.In free space, the mean signal power decreases with the square of the distance between base station(BS)and terminal station(TS).In a mobile radio channel, where often no line of sight(LOS)path exists, signal power decreases with a power higher than two and is typically in the order of three to five.Variations of the received power due to shadowing and path loss can be efficiently counteracted by power control.In the following, the mobile radio channel is described with respect to its fast fading characteristic.1.1.2 Channel Modeling The mobile radio channel can be characterized by the time-variant channel impulse response h(τ , t)or by the time-variant channel transfer function H(f, t), which is the Fourier transform of h(τ, t).The channel impulse response represents the response of the channel at time t due to an impulse applied at time t −τ.The mobile radio channel is assumed to be a wide-sense stationary random process, i.e., the channel has a fading statistic that remains constant over short periods of time or small spatial distances.In environments with multipath propagation, the channel impulseresponse is composed of a large number of scattered impulses received over Np different paths,Whereand ap, fD,p, ϕp, and τp are the amplitude, the Doppler frequency, the phase, and the propagation delay, respectively, associated with path p, p = 0,..., Np −1.The assigned channel transfer function isThe delays are measured relative to the first detectable path at the receiver.The Doppler Frequencydepends on the velocity v of the terminal station, the speed of light c, the carrier frequency fc, and the angle of incidence αp of a wave assigned to path p.A channel impulse response with corresponding channel transfer function is illustrated in Figure 1-2.The delay power density spectrum ρ(τ)that characterizes the frequency selectivity of the mobile radio channel gives the average power of the channel output as a function of the delay τ.The mean delay τ , the root mean square(RMS)de lay spread τRMS and the maximum delay τmax are characteristic parameters of the delay power density spectrum.The mean delay isWhereFigure 1-2 Time-variant channel impulse response and channel transfer function with frequency-selective fading is the power of path p.The RMS delay spread is defined as Similarly, the Doppler power density spectrum S(fD)can be defined that characterizes the time variance of the mobile radio channel and gives the average power of the channel output as a function of the Doppler frequency fD.The frequency dispersive properties of multipath channels are most commonly quantified by the maximum occurring Doppler frequency fDmax and the Doppler spread fDspread.The Doppler spread is the bandwidth of theDoppler power density spectrum and can take on values up to two times |fDmax|, i.e.,1.1.3Channel Fade Statistics The statistics of the fading process characterize the channel and are of importance for channel model parameter specifications.A simple and often used approach is obtained from the assumption that there is a large number of scatterers in the channel that contribute to the signal at the receiver side.The application of the central limit theorem leads to a complex-valued Gaussian process for the channel impulse response.In the absence of line of sight(LOS)or a dominant component, the process is zero-mean.The magnitude of the corresponding channel transfer functionis a random variable, for brevity denoted by a, with a Rayleigh distribution given byWhereis the average power.The phase is uniformly distributed in the interval [0, 2π].In the case that the multipath channel contains a LOS or dominant component in addition to the randomly moving scatterers, the channel impulse response can no longer be modeled as zero-mean.Under the assumption of a complex-valued Gaussian process for the channel impulse response, the magnitude a of the channel transfer function has a Rice distribution given byThe Rice factor KRice is determined by the ratio of the power of the dominant path to thepower of the scattered paths.I0 is the zero-order modified Bessel function of first kind.The phase is uniformly distributed in the interval [0, 2π].1.1.4Inter-Symbol(ISI)and Inter-Channel Interference(ICI)The delay spread can cause inter-symbol interference(ISI)when adjacent data symbols overlap and interfere with each other due to differentdelays on different propagation paths.The number of interfering symbols in a single-carrier modulated system is given by For high data rate applications with very short symbol duration Td < τmax, the effect of ISI and, with that, the receiver complexity can increase significantly.The effect of ISI can be counteracted by different measures such as time or frequency domain equalization.In spread spectrum systems, rake receivers with several arms are used to reduce the effect of ISI by exploiting the multipath diversity such that individual arms are adapted to different propagation paths.If the duration of the transmitted symbol is significantly larger than the maximum delay Td τmax, the channel produces a negligible amount of ISI.This effect is exploited with multi-carrier transmission where the duration per transmitted symbol increases with the number of sub-carriers Nc and, hence, the amount of ISI decreases.The number of interfering symbols in a multi-carrier modulated system is given byResidual ISI can be eliminated by the use of a guard interval(see Section 1.2).The maximum Doppler spread in mobile radio applications using single-carrier modulation is typically much less than the distance between adjacent channels, such that the effect of interference on adjacent channels due to Doppler spread is not a problem for single-carrier modulated systems.For multi-carrier modulated systems, the sub-channel spacing Fs can become quite small, such that Doppler effects can cause significant ICI.As long as all sub-carriers are affected by a common Doppler shift fD, this Doppler shift can be compensated for in the receiver and ICI can be avoided.However, if Doppler spread in the order of several percent of the sub-carrier spacing occurs, ICI may degrade the system performance significantly.T oavoid performance degradations due to ICI or more complex receivers with ICI equalization, the sub-carrier spacing Fs should be chosen assuch that the effects due to Doppler spread can be neglected(see Chapter 4).This approach corresponds with the philosophy of OFDM described in Section 1.2 and is followed in current OFDM-based wireless standards.Nevertheless, if a multi-carrier system design is chosen such that the Doppler spread is in the order of the sub-carrier spacing or higher, a rake receiver in the frequency domain can be used [22].With the frequency domain rake receiver each branch of the rake resolves a different Doppler frequency.1.1.5Examples of Discrete Multipath Channel Models Various discrete multipath channel models for indoor and outdoor cellular systems with different cell sizes have been specified.These channel models define the statistics of the 5 discrete propagation paths.An overview of widely used discrete multipath channel models is given in the following.COST 207 [8]: The COST 207 channel models specify four outdoor macro cell propagation scenarios by continuous, exponentially decreasing delay power density spectra.Implementations of these power density spectra by discrete taps are given by using up to 12 taps.Examples for settings with 6 taps are listed in Table 1-1.In this table for several propagation environments the corresponding path delay and power profiles are given.Hilly terrain causes the longest echoes.The classical Doppler spectrum with uniformly distributed angles of arrival of the paths can be used for all taps for simplicity.Optionally, different Doppler spectra are defined for the individual taps in [8].The COST 207 channel models are based on channel measurements with a bandwidth of 8–10 MHz in the 900-MHz band used for 2Gsystems such as GSM.COST 231 [9] and COST 259 [10]: These COST actions which are the continuation of COST 207 extend the channel characterization to DCS 1800, DECT, HIPERLAN and UMTS channels, taking into account macro, micro, and pico cell scenarios.Channel models with spatial resolution have been defined in COST 259.The spatial component is introduced by the definition of several clusters with local scatterers, which are located in a circle around the base station.Three types of channel models are defined.The macro cell type has cell sizes from 500 m up to 5000 m and a carrier frequency of 900 MHz or 1.8 GHz.The micro cell type is defined for cell sizes of about 300 m and a carrier frequency of 1.2 GHz or 5 GHz.The pico cell type represents an indoor channel model with cell sizes smaller than 100 m in industrial buildings and in the order of 10 m in an office.The carrier frequency is 2.5 GHz or 24 GHz.COST 273: The COST 273 action additionally takes multi-antenna channel models into account, which are not covered by the previous COST actions.CODIT [7]: These channel models define typical outdoor and indoor propagation scenarios for macro, micro, and pico cells.The fading characteristics of the various propagation environments are specified by the parameters of the Nakagami-m distribution.Every environment is defined in terms of a number of scatterers which can take on values up to 20.Some channel models consider also the angular distribution of the scatterers.They have been developed for the investigation of 3G system proposals.Macro cell channel type models have been developed for carrier frequencies around 900 MHz with 7 MHz bandwidth.The micro and pico cell channel type models have been developed for carrier frequencies between 1.8 GHz and 2 GHz.The bandwidths of the measurements are in the range of 10–100 MHz for macro cells and around 100 MHz for pico cells.JTC [28]: The JTC channel models define indoor and outdoor scenarios by specifying 3 to 10 discrete taps per scenario.The channel models are designed to be applicable for wideband digital mobile radio systems anticipated as candidates for the PCS(Personal Communications Systems)common air interface at carrier frequencies of about 2 GHz.UMTS/UTRA [18][44]: Test propagation scenarios have been defined for UMTS and UTRA system proposals which are developed for frequencies around 2 GHz.The modeling of the multipath propagation corresponds to that used by the COST 207 channel models.HIPERLAN/2 [33]: Five typical indoor propagation scenarios for wireless LANs in the 5 GHz frequency band have been defined.Each scenario is described by 18discrete taps of the delay power density spectrum.The time variance of the channel(Doppler spread)is modeled by a classical Jake’s spectrum with a maximum terminal speed of 3 m/h.Further channel models exist which are, for instance, given in [16].1.1.6Multi-Carrier Channel Modeling Multi-carrier systems can either be simulated in the time domain or, more computationally efficient, in the frequency domain.Preconditions for the frequency domain implementation are the absence of ISI and ICI, the frequency nonselective fading per sub-carrier, and the time-invariance during one OFDM symbol.A proper system design approximately fulfills these preconditions.The discrete channel transfer function adapted to multi-carrier signals results inwhere the continuous channel transfer function H(f, t)is sampled in time at OFDM symbol rate s and in frequency at sub-carrier spacing Fs.The durations is the total OFDM symbol duration including the guardinterval.Finally, a symbol transmitted onsub-channel n of the OFDM symbol i is multiplied by the resulting fading amplitude an,i and rotated by a random phase ϕn,i.The advantage of the frequency domain channel model is that the IFFT and FFT operation for OFDM and inverse OFDM can be avoided and the fading operation results in one complex-valued multiplication per sub-carrier.The discrete multipath channel models introduced in Section 1.1.5 can directly be applied to(1.16).A further simplification of the channel modeling for multi-carrier systems is given by using the so-called uncorrelated fading channel models.1.1.6.1Uncorrelated Fading Channel Models for Multi-Carrier Systems These channel models are based on the assumption that the fading on adjacent data symbols after inverse OFDM and de-interleaving can be considered as uncorrelated [29].This assumption holds when, e.g., a frequency and time interleaver with sufficient interleaving depth is applied.The fading amplitude an,i is chosen from a distribution p(a)according to the considered cell type and the random phase ϕn,I is uniformly distributed in the interval [0,2π].The resulting complex-valued channel fading coefficient is thus generated independently for each sub-carrier and OFDM symbol.For a propagation scenario in a macro cell without LOS, the fading amplitude an,i is generated by a Rayleigh distribution and the channel model is referred to as an uncorrelated Rayleigh fading channel.For smaller cells where often a dominant propagation component occurs, the fading amplitude is chosen from a Rice distribution.The advantages of the uncorrelated fading channel models for multi-carrier systems are their simple implementation in the frequency domain and the simple reproducibility of the simulation results.1.1.7Diversity The coherence bandwidth of amobile radio channel is the bandwidth over which the signal propagation characteristics are correlated and it can be approximated byThe channel is frequency-selective if the signal bandwidth B is larger than the coherence bandwidth.On the other hand, if B is smaller than , the channel is frequency nonselective or flat.The coherence bandwidth of the channel is of importance for evaluating the performance of spreading and frequency interleaving techniques that try to exploit the inherent frequency diversity Df of the mobile radio channel.In the case of multi-carrier transmission, frequency diversity is exploited if the separation of sub-carriers transmitting the same information exceeds the coherence bandwidth.The maximum achievable frequency diversity Df is given by the ratio between the signal bandwidth B and the coherence bandwidth,The coherence time of the channel is the duration over which the channel characteristics can be considered as time-invariant and can be approximated byIf the duration of the transmitted symbol is larger than the coherence time, the channel is time-selective.On the other hand, if the symbol duration is smaller than , the channel is time nonselective during one symbol duration.The coherence time of the channel is of importance for evaluating the performance of coding and interleaving techniques that try to exploit the inherent time diversity DO of the mobile radio channel.Time diversity can be exploited if the separation between time slots carrying the same information exceeds the coherence time.A number of Ns successive time slots create a time frame of duration Tfr.The maximum time diversity Dt achievable in one time frame is given by the ratio between the duration of a timeframe and the coherence time, A system exploiting frequency and time diversity can achieve the overall diversityThe system design should allow one to optimally exploit the available diversity DO.For instance, in systems with multi-carrier transmission the same information should be transmitted on different sub-carriers and in different time slots, achieving uncorrelated faded replicas of the information in both dimensions.Uncoded multi-carrier systems with flat fading per sub-channel and time-invariance during one symbol cannot exploit diversity and have a poor performance in time and frequency selective fading channels.Additional methods have to be applied to exploit diversity.One approach is the use of data spreading where each data symbol is spread by a spreading code of length L.This, in combination with interleaving, can achieve performance results which are given forby the closed-form solution for the BER for diversity reception in Rayleigh fading channels according to [40] Whererepresents the combinatory function,and σ2 is the variance of the noise.As soon as the interleaving is not perfect or the diversity offered by the channel is smaller than the spreading code length L, or MCCDMA with multiple access interference is applied,(1.22)is a lower bound.For L = 1, the performance of an OFDM system without forward error correction(FEC)is obtained, 9which cannot exploit any diversity.The BER according to(1.22)of an OFDM(OFDMA, MC-TDMA)system and a multi-carrier spread spectrum(MC-SS)system with different spreading code lengths L is shown in Figure 1-3.No other diversity techniques are applied.QPSK modulation is used for symbol mapping.The mobile radio channel is modeled as uncorrelatedRayleigh fading channel(see Section 1.1.6).As these curves show, for large values of L, the performance of MC-SS systems approaches that of an AWGN channel.Another form of achieving diversity in OFDM systems is channel coding by FEC, where the information of each data bit is spread over several code bits.Additional to the diversity gain in fading channels, a coding gain can be obtained due to the selection of appropriate coding and decoding algorithms.中文翻译 1基本原理这章描述今日的基本面的无线通信。

高中物理 3.5运动电荷在磁场中的运动 (2)

高中物理 3.5运动电荷在磁场中的运动 (2)

6.如图所示,套在足够长的绝缘粗糙直棒上的带正 电小球,其质量为m,带电荷量为q,小球可在棒上 滑动。现将此棒竖直放入沿水平方向且互相垂直的
匀强磁场和匀强电场中,设小球电荷量不变,在小 球由静止下滑的过程中( )
A.小球加速度一直增大 B.小球速度一直增大,直到最后匀速 C.小球速度先增大,再减小,直到停止运动 D.杆对小球的弹力一直减小
3.电子的速率v=3×106 m/s,垂直射入 B=0.10T的匀强磁场中,它受到的洛伦兹力 是多大?
思考与深化
若带电粒子垂直于磁场方向射入匀强磁场 中,带电粒子在磁场中将会如何运动?
三、显像管的工作原理
1. 原理
阳极发射电子,经过偏转线圈,偏转线圈产生的磁 场和电子运动方向垂直,电子受洛伦兹力作用发生 偏转,偏转后打在荧光屏上,使其发光。
V B
+
F
F
B V
B v2
+
vV1 F
重要结论: 洛伦兹力永 远不做功!
课堂练习:
1、下列各图中带电粒子刚刚进入磁场,试判断
这时粒子所受洛伦兹力的方向
F×L × ×
+× ×V× + V
+V
+V
×××
FL
垂直纸面向外 垂直纸面向里
FL × × ×
×××
V
×××
+ FL
V
V
FL=0
V
FL=0
2.当一带正电q的粒子以速度v沿螺线管中轴线
4、如图所示,一个质量为m,带电量+q的小 球静止在光滑的绝缘平面上,并处于匀强磁场 里,磁场的方向垂直纸面向里,磁感应强度为 B.为了使小球能飘离平面,该匀强磁场在纸 面移动的最小速度应为多少?方向如何?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理专业英语组别:19组专业:物理学姓名:9.5 THE LORENTZ FORCEA charge moving in a magnetic field experiences a force which we shall call magnetic . The force is determined by the chang q,its velocity v ,and the magnetic inductionB at the point where the charge is at the moment of time being considered .The simplest assumption is that the magnitude of the force F is proportional to each of the three quantities q,v,and B .In addition ,F can be expected to depend on the mutual orientation of the vectors v and B .The direction of the vector F should be determined by those of vectors v and B.To”construct”che vector F form the scalar q and the vectors v and B ,let us find the vector of v and B and then multiply then multiply the result obtained by the scalar q.The result is the expressionq[vB (9.31)It has been established experimentally that the force F acting on a charge moving in a magnetic field is determined by the formulaFa=kq[vB] (9.32)Where k is a proportionality constant depending on the choice of the units for the quantities in the formula .It must be borne in mind that the reasoning which led us to expression(9.31)must by no means be considered as the derivation of Eq.(9.32)This reasoning does not have conclusive force .Its aim is to help us memorize Eq(9.32).The correctness of this equation can be established only experimentally .We must note that Eq.(9.32)can be considered as a definition of The magnetic induction B.The unit of magnetic induction B -the tesla-is determined so that the proportionality constant k in Eq.(9.32)equals unity .Hence,In SI units ,this equation becomesF=q[vB] (9.33)The magnitude of the magnetic force isF=qvBsin∂(9.34) Where ∂is the angle between the vectors v and B .It can be seen from Eq.(9.34) that a charge moving along the lines of a magnetic field does not experience the action of a magneticforce .The magnetic force is directed at right angles to the plane containing the vectors v and B.If the charge q is positive ,then direction of the force coincides with that of the vector [vB].Where q is negative ,the directions of the vectors F and [vB] are opposite (Fig.9.6).Since the magnetic force is always directed at right angles to the velocity of a charged particle ,it does no work on the particle .Hence ,we cannot change the energy of a charged particle by acting on it with a constant magnetic field .The force exerted on a charged particle that is simultaneously in an electric and a magnetic field isF=qE+q[vB] (9.35)This expression was obtained from the results of experiments by the Dutch physicist Hendrik Lorentz (1853~1928)and is called the Lorentz force.Assume that the charge q is moving with the velocity v parallel to a straight infinite wire along which the current I flows(Fig.9.7).According to Eqs .(9.30)and(9.34),the charge in this case experiences a magnetic force whose magnitude isF=qvB=qv b240I πμ (9.36) Where b is the distance from the charge to the wire .The force is directed toward the wire when charge is positive if the directions of the current and motion of the charge are the same ,and away from the wire if these directions are opposite (see Fig.9.7).When the charge is negative ,the direction of the force is reversed ,the other conditions being equal.Let us consider two like point charges q 1and q2 moving along parallel straight lines with the same velocity v that is much smaller than c (Fig.9.8).When v ∝c,the electric field does not virtually differ form the field of stationary charges (see Sec 。

9.3).Therefore the magnitude of the electric force F e exerted on the charges can be considered equal toF e ,1=F e ,2=F e =041πε221q rq (9.37) Equations (9.21)and (9.33)give us the following expression for the magnetic force m F exerted on the charges :222102,1,m 4r v q q F F F m m πμ=== (9.38) (the position vector r is perpendicular to v). Let us find the ratio between the magnetic and electric forces It follows from Eqs.(9.37)and(9.38)that22200m cv v Fe F ==με (9.39) [see Eq(9.15)].We have obtained Eq.(9.39) on the assumption that v<<c.This ratio holds ,however,with any v ,s.The forces F e and m F are directed oppositely .Figure 9.8 has been drawn for like and positive charges.For like negative charges, the directions of the forces will remain the same ,while the directions of the electric and magnetic forces will be the reverse of those shown in the figure .Inspection of Eq.(9.39)shows that the magnetic force is weaker than the Coulomb one by a factor equal to the square of ratio of the speed of the charge to that of light.The explanation is that the magnetic interaction between moving charges is a relativistic effect. Magnetism would disappear if the speed of light were infinitely great.9.5 洛伦兹力移动的电荷在磁场中收到磁场力的作用,这种力是由电荷的电量q,速度v和在磁场中所在的位置和该时刻所对应的磁感应强度B决定。

相关文档
最新文档