高一数学必考知识点总结三篇

合集下载

精选高一数学必考知识点总结三篇

精选高一数学必考知识点总结三篇

精选高一数学必考知识点总结三篇数学这个科目一直是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学的差的同学则在数学上失分很多;在平时的学习和考试中同学们要善于总结知识点,这样有助于帮助同学们学好数学。

高一数学必考知识点总结(一)集合常用大写拉丁字母来表示,如:A,B,C 而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c 拉丁字母只是相当于集合的名字,没有任何实际的意义。

将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A={} 的形式。

等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。

常用的有列举法和描述法。

1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。

{1 ,2,3,}2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。

{x|P}(x 为该集合的元素的一般形式,P 为这个集合的元素的共同属性)如:小于的正实数组成的集合表示为:{x|03.图示法(venn 图)﹕为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。

集合自然语言常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N;不包括0 的自然数集合,记作N_(2)非负整数集内排除0 的集,也称正整数集,记作Z+;负整数集内也排除0 的集,称负整数集,记作Z-(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q。

Q={p/q|pZ,qN,且p,q 互质}( 正负有理数集合分别记作Q+Q-)(5)全体实数的集合通常简称实数集,记作R(正实数集合记作R+;负实数记作R-)(6)复数集合计作 C 集合的运算:集合交换律AB=BAAB=BA 集合结合律(AB)C=A(BC)(AB)C=A(BC) 集合分配律A(BC)=(AB)(AC)A(BC)=(AB)(AC) 集合德.摩根律集合Cu(AB)=CuACuBCu(AB)=CuACuB 集合容斥原理在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合 A 的元素个数记为card(A)。

高一数学知识点总结

高一数学知识点总结

高一数学知识点总结高一数学知识点总结(精选15篇)在我们上学期间,是不是听到知识点,就立刻清醒了?知识点在教育实践中,是指对某一个知识的泛称。

还在为没有系统的知识点而发愁吗?下面是店铺为大家整理的高一数学知识点总结(精选15篇),仅供参考,希望能够帮助到大家。

高一数学知识点总结篇1函数的概念函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A---B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.函数的三要素:定义域、值域、对应法则函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。

(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。

4、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。

(3)函数图像平移变换的特点:1)加左减右——————只对x2)上减下加——————只对y3)函数y=f(x)关于X轴对称得函数y=-f(x)4)函数y=f(x)关于Y轴对称得函数y=f(-x)5)函数y=f(x)关于原点对称得函数y=-f(-x)6)函数y=f(x)将x轴下面图像翻到x轴上面去,x轴上面图像不动得函数y=|f(x)|7)函数y=f(x)先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)高一数学知识点总结篇2内容子交并补集,还有幂指对函数。

最新高一数学知识点整理归纳5篇

最新高一数学知识点整理归纳5篇

最新高一数学知识点整理归纳5篇说到高一数学,很多同学都会说很难,的确,相对而言,高一数学是高中数学中最难的一部分,但我们一定要把知识点给吃透.下面就是松鼠给大家带来的最新高一数学知识点整理归纳5篇,希望能帮助到大家!更多高一数学的相关内容推荐↓↓↓人教版高一数学知识点整理五篇分享高一数学集合知识点归纳高一数学知识点大全5篇学好高一数学五大方法数学课本知识点大全高一★高一数学知识点总结11.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;★高一数学知识点总结2集合具有某种特定性质的事物的总体。

高1数学知识点总结(精选6篇)

高1数学知识点总结(精选6篇)

高1数学知识点总结第1篇1.函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。

2.向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。

3.不等式知识:突出工具性,淡化独立性,突出解,是不等式命题的新取向。

高考中不等式试题的命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。

考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。

4.立体几何知识:20xx年已经变得简单,20xx年难度依然不大,基本的三视图的考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、平行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。

5.解析几何知识:小题主要涉及圆锥曲线方程,和直线与圆的'位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。

6.导数知识:导数的考查还是以理科19题,文科20题的形式给出,从常见函数入手,导数工具作用(切线和单调性)的考查,综合性强,能力要求高;往往与公式、导数往往与参数的讨论联系在一起,考查转化与化归能力,但今年的难点整体偏低。

高一数学知识点总结【优秀6篇】

高一数学知识点总结【优秀6篇】

高一数学知识点总结【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高一数学知识点总结【优秀6篇】在平平淡淡的学习中,是不是听到知识点,就立刻清醒了?知识点有时候特指教科书上或考试的知识。

高一数学必考知识点总结(3篇)

高一数学必考知识点总结(3篇)

高一数学必考知识点总结元素与集合的关系有“属于”与“不属于”两种。

集合与集合之间的关系某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。

高一数学必考知识点总结(二)一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B 的映射,记作f:A→B。

2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量____的范围出发,推出y=f(____)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(____有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。

主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(____),____∈A,如果对于任意∈A,都有,则称y=f(____)为偶函数。

如果对于任意∈A,都有,则称y=f(____)为奇函数。

2.性质:①y=f(____)是偶函数y=f(____)的图象关于轴对称,y=f(____)是奇函数y=f(____)的图象关于原点对称,②若函数f(____)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇____奇=偶偶____偶=偶奇____偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(____)与f(-____)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(____)与g(____)的单调性相反,则在M上是减函数;若f(____)与g(____)的单调性相同,则在M上是增函数。

最新高一必考数学知识点归纳精选5篇

最新高一必考数学知识点归纳精选5篇

最新高一必考数学知识点归纳精选5篇高一学生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。

下面就是给大家带来的关于高一数学知识点,希望大能帮助到大家!高一数学知识点11、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点:(1)(代数法)求方程的实数根;(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.高一数学知识点2空间几何体的直观图斜二测画法斜二测画法斜二测画法特点①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

直线与方程直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0180 直线的斜率定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k表示。

即。

斜率反映直线与轴的倾斜程度。

当时,。

当时,;当时,不存在。

过两点的直线的斜率公式:(注意下面四点)(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

高一数学知识点3一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(xxxx),其中1,且_.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(xxxx),这里叫做根指数(xxxxxt),叫做被开方数(xxxxd).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成(0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

高一数学知识点总结归纳3篇

高一数学知识点总结归纳3篇

高一数学知识点总结归纳【高中数学知识点总结】Part11.平面向量(1)向量的概念向量是有大小和方向的量,用带箭头的小写字母来表示。

(2)向量的表示向量可以用坐标表示,例如:(4,5),也可以用平面直角坐标系中的有向线段来表示。

(3)向量的运算向量加法:向量之间的加法满足“平行四边形法则”和“三角形法则”。

向量的数乘:一个向量与一个实数的积仍是一个向量。

如果k为正数,则向量的长度变为原来的k倍,并且方向不变;如果k为负数,则向量的长度变成原来的|k|倍,并且方向相反。

(4)向量的模长公式若向量u=(x1,y1),则它的模长为:|u|=√(x1²+y1²) (5)向量的数量积向量u和向量v的数量积的结果是一个实数,用u·v表示。

u·v=|u|·|v|·cosθ(其中θ是u和v之间的夹角)(6)向量的叉积叉积是满足反对称性的二元运算,用u×v表示。

u×v结果是一个向量,其大小等于两个向量构成的平行四边形的面积。

(7)共线向量如果两个向量的方向相同或相反,则它们是共线向量,否则它们是不共线向量。

2.直线方程与平面方程(1)点斜式直线的一般式方程为:ax + by + c = 0 (其中a, b, c 是实数,且a²+b²≠0)当一条直线的斜率为k,过点(x1,y1)时,该直线方程为:y-y1=k(x-x1)(2)两点式直线的两点式方程为:(y-y1)/(x-x1)=(y2-y1)/(x2-x1) (3)截距式直线的截距式方程为:y=kx+b (其中k, b是实数,且k≠0)(4)平面方程平面的一般式方程为:Ax + By + Cz + D = 0(其中A, B, C, D是实数,且A²+B²+C²≠0)平面的点法式方程为:A(x-x0)+B(y-y0)+C(z-z0)=0(其中(x0,y0,z0)是平面上的一个点,(A, B, C)是平面的法向量)3.函数(1)函数的概念函数是一种映射关系,把一个自变量的值唯一对应到一个因变量的值上。

2024年高一数学必修三知识点总结(三篇)

2024年高一数学必修三知识点总结(三篇)

2024年高一数学必修三知识点总结一、函数与方程1. 函数的概念与性质- 函数的定义与表示- 函数的自变量和因变量- 函数的定义域和值域- 函数图像与坐标系上的点的对应关系2. 一元一次方程与一元一次不等式- 一元一次方程的定义和解的方法- 一元一次不等式的定义和解的方法- 一元一次方程与一元一次不等式的应用3. 一元二次方程与二次函数- 一元二次方程的定义和解的方法- 二次函数的定义和性质- 一元二次方程与二次函数的关系- 一元二次方程与二次函数的应用4. 分式方程与分式不等式- 分式方程的定义和解的方法- 分式不等式的定义和解的方法- 分式方程与分式不等式的应用5. 指数与对数- 指数的定义和性质- 指数与幂运算的关系- 对数的定义和性质- 对数与指数运算的关系- 指数与对数的应用二、三角函数1. 弧度制与角度制- 弧度制与角度制的定义和换算关系2. 常用三角函数- 正弦函数、余弦函数、正切函数的定义和性质- 正弦函数、余弦函数、正切函数在坐标系上的图像- 正弦函数、余弦函数周期性的特点3. 三角函数的基本关系- 三角函数之间的基本关系式- 三角函数的奇偶性4. 三角函数的图像与性质- 正弦函数、余弦函数的图像特点- 正切函数的图像特点5. 三角函数的应用- 广义正弦定理和广义余弦定理- 三角函数在几何问题中的应用- 三角函数在物理问题中的应用三、数列与数列的和1. 数列的概念与性质- 数列的定义和表示- 数列的有限项和无限项- 数列的公式与递推关系- 数列的等差和等比2. 等差数列与等比数列- 等差数列的定义和性质- 等差数列的通项公式和前n项和公式- 等比数列的定义和性质- 等比数列的通项公式和前n项和公式3. 数列的应用- 数列在数学游戏中的应用- 数列在数学推理中的应用- 数列在等分数列和等比数列中的应用4. 常用数列公式与技巧- 数列求和公式的推导与运用- 常用数列的特殊性质和技巧总结:____年高一数学必修三主要涉及函数与方程、三角函数、数列与数列的和等知识点。

高一数学知识点总结期末必备(3篇)

高一数学知识点总结期末必备(3篇)

高一数学知识点总结期末必备一、高中数学函数的有关概念注意:函数定义域:能使函数式有意义的实数____的函数称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的____的值组成的函数.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.2.高中数学函数值域:先考虑其定义域(1)观察法(2)配方法(3)代换法3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(____),(____∈A)中的____为横坐标,函数值y为纵坐标的点P(____,y)的函数C,叫做函数y=f(____),(____∈A)的图象.C上每一点的坐标(____,y)均满足函数关系y=f(____),反过来,以满足y=f(____)的每一组有序实数对____、y为坐标的点(____,y),均在C上.(2)画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.高中数学函数区间的概念(1)函数区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间5.映射一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素____,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。

记作“f(对应关系):A(原象)B(象)”对于映射f:A→B来说,则应满足:(1)函数A中的每一个元素,在函数B中都有象,并且象是的;(2)函数A中不同的元素,在函数B中对应的象可以是同一个;(3)不要求函数B中的每一个元素在函数A中都有原象。

6.高中数学函数之分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。

高一数学知识点总结归纳9篇

高一数学知识点总结归纳9篇

高一数学知识点总结归纳9篇第一篇:函数与导数高一数学中的第一个重点是函数与导数。

函数是数学中非常重要的概念,它描述了变量之间的关系。

函数可分为多种类型,如一次函数、二次函数、指数函数和对数函数等。

导数是函数的一个重要性质,它描述了函数在某一点的变化率。

导数的计算方法有一元函数求导和常见函数求导等。

第二篇:二次函数与一元二次方程接下来,在高一数学中学习的另一个知识点是二次函数与一元二次方程。

二次函数是一种特殊类型的函数,其最高次项为二次。

掌握二次函数的图像、顶点、对称轴等特性,能够更好地理解它的性质。

一元二次方程是二次函数的一个具体应用,通过解一元二次方程可以求得未知数的值,是解决实际问题的重要数学方法。

第三篇:平面几何与向量平面几何与向量也是高一数学的重点之一。

平面几何是研究点、直线、圆等在平面上的关系和性质。

在学习平面几何时,需掌握如何证明两个三角形相似、如何证明两条直线垂直等内容。

向量是一种具有大小和方向的量,可以用来表示平面上的位移、力等。

掌握向量的加减、数量积和向量积等运算,能够解决一些几何问题。

第四篇:立体几何在高一数学中还要学习立体几何的相关知识。

立体几何是研究点、线、面在空间中的关系和性质。

学习立体几何时,需了解如何计算几何体的体积和表面积,如三棱锥、四棱锥和球等。

同时,还要熟练掌握一些立体几何的性质,如平行四边形的性质、平行线的性质等。

第五篇:三角函数与三角恒等变换高一数学还涉及三角函数与三角恒等变换的学习。

三角函数是研究角与边之间关系的函数,常见的三角函数有正弦函数、余弦函数和正切函数等。

掌握三角函数的性质和图像变化规律,能够解决一些相关的几何问题。

此外,还需掌握一些重要的三角恒等变换,如和差化积、倍角公式,以及三角函数的图像变换等。

第六篇:排列组合与概率在高一数学中,学习排列组合与概率也是必不可少的。

排列组合是研究多个元素组合的方法和问题。

掌握排列、组合和二项式定理等的计算方法,能够解决一些实际问题,如抽奖、选课等。

高一数学知识点总结范文(五篇)

高一数学知识点总结范文(五篇)

高一数学知识点总结范文一、直线与方程(1)直线的倾斜角定义:____轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与____轴平行或重合时,我们规定它的倾斜角为____度。

因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k表示。

即。

斜率反映直线与轴的倾斜程度。

当时。

当时,;当时,不存在。

②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于____1,所以它的方程是____=____1。

②斜截式:____,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)⑤一般式:(A,B不全为0)注意:○1各式的适用范围○2特殊的方程如:平行于____轴的直线:(b为常数);平行于y轴的直线:(a为常数);(4)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)过定点的直线系(ⅰ)斜率为k的直线系:____,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。

(5)两直线平行与垂直当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(6)两条直线的交点相交交点坐标即方程组的一组解。

高一数学必考知识点总结梳理5篇分享

高一数学必考知识点总结梳理5篇分享

高一数学必考知识点总结梳理5篇分享进入高中后,很多新生有这样的心理落差,比自己成绩优秀的大有人在,很少有人注意到自己的存在,心理因此失衡,这是正常心理,但是应尽快进入学习状态。

下面就是给大家带来的高一数学知识点总结,希望能帮助到大家!高一数学知识点总结11、集合的概念集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。

理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。

对象――即集合中的元素。

集合是由它的元素确定的。

整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。

确定的――集合元素的确定性――元素与集合的“从属”关系。

不同的――集合元素的互异性。

2、有限集、无限集、空集的意义有限集和无限集是针对非空集合来说的。

我们理解起来并不困难。

我们把不含有任何元素的集合叫做空集,记做Φ。

理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。

几个常用数集N、N_N+、Z、Q、R要记牢。

3、集合的表示方法(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素较多但呈现一定的规律的有限集,如{1,2,3, (100)③呈现一定规律的无限集,如{1,2,3,…,n,…}●注意a与{a}的区别●注意用列举法表示集合时,集合元素的“无序性”。

(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。

但关键点也是难点。

学习时多加练习就可以了。

另外,弄清“代表元素”也是非常重要的。

如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三个不同的集合。

4、集合之间的关系●注意区分“从属”关系与“包含”关系“从属”关系是元素与集合之间的关系。

“包含”关系是集合与集合之间的关系。

高一数学知识点全面总结(4篇)

高一数学知识点全面总结(4篇)

高一数学知识点全面总结(优秀4篇)作为一名无私奉献的老师,常常要写一份优秀的教案,借助教案可以提高教学质量,收到预期的教学效果。

那要怎么写好教案呢?小编为朋友们整理了4篇《高一数学知识点全面总结》,可以帮助到您,就是小编我最大的乐趣哦。

高一数学知识点总结篇一立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

高一数学重点知识点总结三篇

高一数学重点知识点总结三篇

高一数学重点学问点总结三篇学习任何一门科目都离不开对学问点的总结,有其是高一新生们在学习数学时,更要总结各个学问点,这样也便利同学们日后的复习。

下面就是我给大家带来的高一数学重点学问点,期望能关怀到大家高一数学重点学问点(一)(1)指数函数的定义域为全部实数的集合,这里的前提是a大于0,对于a不大于0的状况,则必定使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个明显的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。

其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)明显指数函数无界。

奇偶性定义一般地,对于函数f(x)(1)假如对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)假如对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)假如对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)假如对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

高一数学重点学问点(二)对于a的取值为非零有理数,有必要分成几种状况来商量各自的特性:首先我们知道假如a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是[0,+)。

最新高一数学知识点总结5篇

最新高一数学知识点总结5篇

2022高一数学知识点总结5篇文章一:高一数学知识点总结(1)——初步代数在高一数学中,初步代数是一个非常重要的内容。

它包括了一次函数、二次函数、函数的概念、函数的图像、函数的性质等知识点。

举例如下:1.一次函数一次函数的一般形式为:y=kx+b。

其中,k表示斜率,b为截距。

知道一次函数的图像、斜率、截距,可以用描点法、斜率法和截距法画出它的图像。

2.二次函数二次函数的一般形式为:y=ax²+bx+c。

其中,a为二次项系数,b为一次项系数,c为常数项。

知道二次函数的图像、顶点坐标、对称轴、零点、判别式等信息,可以作出函数的图像。

3.函数的概念函数是将集合A中每个元素x与唯一的元素y对应起来的一个规律。

常用的表示法是f(x),其中f表示函数名,x为自变量,y为因变量。

函数的定义域、值域、图像、单调性等是初步代数中需要掌握的知识。

文章二:高一数学知识点总结(2)——平面几何平面几何也是高一数学中的重要内容,它包括了平面图形的基本性质、相似、全等、共线和垂直、平行等知识点。

举例如下:1.平面图形的基本性质平面图形的基本性质有:周长、面积、角度、对称性等。

知道平面图形的这些性质,可以通过计算周长、面积等,求出其具体特征。

2.相似相似是指两个图形形状相同,但大小不同。

如果两个图形相似,那么它们的对应角度相等,对应边的比相等。

根据相似的关系,可以通过比例来求解图形的各个部分。

3.全等全等是指两个图形形状和大小都相同。

如果两个图形全等,那么它们的对应角度和对应边长都相等,根据全等的性质,可以通过移动、翻转和旋转等方式,证明两个图形全等。

文章三:高一数学知识点总结(3)——三角函数三角函数是高中数学中的重点知识之一,它包括了正弦、余弦、正切等三角函数的概念、性质以及应用。

举例如下:1.正弦函数正弦函数以y=sin(x)的形式表示,其中x为弧度。

正弦函数的图像是一个波浪形,其最大值为1,最小值为-1。

正弦函数在三角函数、谐波振动等领域有着广泛的应用。

高一数学知识点总结大全(通用9篇)

高一数学知识点总结大全(通用9篇)

高一数学学问点总结大全(通用9篇)高一数学学问点总结大全第1篇定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决议函数的开口方向,a>0时,开口方向向上,a0时,抛物线向上开口;当a0),对称轴在y轴左;当a与b异号时(即ab0时,抛物线与x轴有2个交点。

Δ=b^2—4ac=0时,抛物线与x轴有1个交点。

Δ=b^2—4ac2},{x|x—3>2},{(x,y)|y=x2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}强调:描述法表示集合应注意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。

集合A中是数组元素(x,y),集合B中只有元素y。

3、集合的三个特性(1)无序性指集合中的元素排列没有次序,如集合A={1,2},集合B={2,1},则集合A=B。

例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

解:A=B注意:该题有两组解。

(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指构成集合的元素的性质必需明确,不允许有模棱两可、含混不清的情况。

高一数学学问点总结大全第4篇1、对应、映射、函数三个概念既有共性又有区分,映射是一种特别的对应,而函数又是一种特别的映射。

2、对于函数的概念,应注意如下几点:(1)把握构成函数的三要素,会判定两个函数是否为同一函数。

(2)把握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。

(3)假如y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数。

3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f—1(y);(3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域。

高一数学知识点总结共9篇

高一数学知识点总结共9篇

高一数学知识点总结共9篇高一数学知识点总结第一篇:函数和方程在高一的数学学习中,函数和方程是一个重要的知识点。

函数是数学中的一种关系,它描述了输入和输出之间的规律。

方程是数学中的等式,它表示两个表达式相等。

函数和方程在实际生活中有广泛的应用,例如描述物体的运动、求解问题等。

第二篇:二次函数二次函数是一个重要的数学概念,它的图像是一个抛物线。

二次函数的一般形式是f(x)=ax^2+bx+c,其中a、b、c是常数,且a 不等于零。

在学习二次函数时,我们需要理解它的图像特征、顶点、轴、对称性等概念,并学会进行图像的平移、伸缩、翻转等变换操作。

第三篇:指数与对数指数与对数是数学中的重要概念,它们描述了数的增长和减小的规律。

指数表示重复乘法的运算,对数表示重复除法的运算。

在高一的数学学习中,我们需要理解指数与对数的定义、性质以及它们之间的关系。

同时,我们还需要学会运用指数与对数解决实际问题,如计算复利、求解方程等。

第四篇:三角函数三角函数是数学中的一类函数,它们与三角比有关。

在高一的数学学习中,我们会接触到正弦函数、余弦函数、正切函数等。

我们需要掌握三角函数的定义、性质以及它们在几何问题中的应用,如求解三角形的边长、角度等。

第五篇:平面向量平面向量是一个重要的数学工具,它用来表示有大小和方向的量。

平面向量可以进行加法、减法、数量乘法等运算,还可以用来表示位移、速度、力等物理量。

在高一的数学学习中,我们需要理解平面向量的定义、性质以及各种运算规则,并学会应用平面向量解决几何和物理问题。

第六篇:概率与统计概率与统计是高一数学的重要内容,它们与生活息息相关。

概率是研究随机事件发生的可能性,统计是搜集、整理、分析数据的方法。

在学习概率与统计时,我们需要理解概率计算的方法、统计数据的表示和分析方法,以及在实际问题中如何运用概率与统计知识。

第七篇:立体几何立体几何是数学中的一个重要分支,它研究的是三维空间中的几何形体。

高一数学知识点总结模板(五篇)

高一数学知识点总结模板(五篇)

高一数学知识点总结模板两个平面的位置关系只有两种。

两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。

a、平行两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

二面角的取值范围为[0,____](3)二面角的'棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp。

两平面垂直两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。

记为两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

Attention:二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)高一数学知识点总结模板(二)知识点一:棱柱的结构特征1、定义:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.在棱柱中,两个相互平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱.侧面与底的公共顶点叫做棱柱的顶点.棱柱中不在同一平面上的两个顶点的连线叫做棱柱的对角线.过不相邻的两条侧棱所形成的面叫做棱柱的对角面.2、棱柱的分类:底面是三角形、四边形、五边形、的棱柱分别叫做三棱柱、四棱柱、五棱柱①用表示底面的各顶点的字母表示棱柱,如下图,四棱柱、五棱柱、六棱柱可分别表示为、②用棱柱的对角线表示棱柱,如上图,四棱柱可以表示为棱柱或棱柱等;五棱柱可表示为棱柱、棱柱等;六棱柱可表示为棱柱、棱柱、棱柱等.4、棱柱的性质:棱柱的侧棱相互平行.知识点二:棱锥的结构特征1、定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形面叫做棱锥的底面.有公共顶点的各个三角形叫做棱锥的侧面.各侧面的公共顶点叫做棱锥的顶点.相邻侧面的公共边叫做棱锥的侧棱;2、棱锥的分类:按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥3、棱锥的表示方法:用表示顶点和底面的字母表示,如四棱锥;知识点三:圆柱的结构特征1、定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱.旋转轴叫做圆柱的轴.垂直于轴的边旋转而成的曲面叫做圆柱的底面.平行于轴的边旋转而成的曲面叫做圆柱的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆柱的母线.2、圆柱的表示方法:用表示它的轴的字母表示,如圆柱知识点四:圆锥的结构特征1、定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥.旋转轴叫做圆锥的轴.垂直于轴的边旋转而成的曲面叫做圆锥的底面.不垂直于轴的边旋转而成的曲面叫做圆锥的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆锥的母线.2、圆锥的表示方法:用表示它的轴的字母表示,如圆锥.知识点五:棱台和圆台的结构特征1、定义:用一个平行于棱锥(圆锥)底面的平面去截棱锥(圆锥),底面和截面之间的部分叫做棱台(圆台);原棱锥(圆锥)的底面和截面分别叫做棱台(圆台)的下底面和上底面;原棱锥(圆锥)的侧面被截去后剩余的曲面叫做棱台(圆台)的侧面;原棱锥的侧棱被平面截去后剩余的部分叫做棱台的侧棱;原圆锥的母线被平面截去后剩余的部分叫做圆台的母线;棱台的侧面与底面的公共顶点叫做棱台的顶点;圆台可以看做由直角梯形绕直角边旋转而成,因此旋转的轴叫做圆台的轴.2、棱台的表示方法:用各顶点表示,如四棱台;3、圆台的表示方法:用表示轴的字母表示,如圆台;注:圆台可以看做由圆锥截得,也可以看做是由直角梯形绕其直角边旋转而成.知识点六:球的结构特征1、定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球.半圆的半径叫做球的半径.半圆的圆心叫做球心.半圆的直径叫做球的直径.2、球的表示方法:用表示球心的字母表示,如球O.知识点七:特殊的棱柱、棱锥、棱台特殊的棱柱:侧棱不垂直于底面的棱柱称为斜棱柱;垂直于底面的棱柱称为直棱柱;底面是正多边形的直棱柱是正棱柱;底面是矩形的直棱柱叫做长方体;棱长都相等的长方体叫做正方体;特殊的棱锥:如果棱锥的底面是正多边形,且各侧面是全等的等腰三角形,那么这样的棱锥称为正棱锥;侧棱长等于底面边长的正三棱锥又称为正四面体;特殊的棱台:由正棱锥截得的棱台叫做正棱台;注:简单几何体的分类如下表:知识点八:简单组合体的结构特征1、组合体的基本形式:①由简单几何体拼接而成的简单组合体;②由简单几何体截去或挖去一部分而成的几何体;2、常见的组合体有三种:①多面体与多面体的组合;②多面体与旋转体的组合;③旋转体与旋转体的组合.知识点九:中心投影与平行投影1、投影、投影线和投影面:由于光的照射,在不透明物体后面的屏幕上会留下这个物体的影子,这种现象叫做投影,其中光线叫做投影线,屏幕叫做投影面.2、中心投影:把光由一点向外散射形成的投影叫做中心投影.3、中心投影的性质:①中心投影的投影线交于一点;②点光源距离物体越近,投影形成的影子越大.4、平行投影:把一束平行光线照射下形成的投影叫做平行投影,投影线正对着投影面时叫做正投影,否则叫做斜投影.5、平行投影的性质:平行投影的投影线相互平行.知识点十:常见几何体的三视图:1、圆柱的正视图和侧视图是全等的矩形,俯视图为圆;2、圆锥的正视图和侧视图是三角形,俯视图为圆和圆心;3、圆台的正视图和侧视图都是等腰梯形,俯视图为两个同心圆;4、球的三视图都是圆.注:1、三视图的排列方法是侧视图在正视图的右边;俯视图在正视图的下面;2、一个几何体的侧视图和正视图高度一样,俯视图和正视图的长度一样,侧视图和俯视图的宽度一样,即:长对正,高平齐,宽相等.高一数学知识点总结模板(三)一、直线与方程(1)直线的倾斜角定义:____轴正向与直线向上方向之间所成的角叫直线的倾斜角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必考知识点总结三篇
对于很多刚上高中的同学们来说,高一数学是噩梦一般的存在,其知识点非常的繁琐复杂,让同学们头疼不已。

高一数学必考知识点总结1
定义:
x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

范围:
倾斜角的取值范围是0180。

理解:
(1)注意两个方向:直线向上的方向、x轴的正方向;
(2)规定当直线和x轴平行或重合时,它的倾斜角为0度。

意义:
①直线的倾斜角,体现了直线对x轴正向的倾斜程度;
②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;
③倾斜角相同,未必表示同一条直线。

公式:
k=tan
k0时(0,90)
k0时(90,180)
k=0时=0
当=90时k不存在
ax+by+c=0(a0)倾斜角为A,
则tanA=-a/b,
A=arctan(-a/b)
当a0时,
倾斜角为90度,即与X轴垂直
高一数学必考知识点总结2
反比例函数
形如y=k/x(k为常数且k0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:
反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

如图,上面给出了k分别为正和负(2和-2)时的函数图像。

当K0时,反比例函数图像经过一,三象限,是减函数
当K0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

知识点:
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(xm)m为常数),就相当于将双曲线图象向左或右平移一个单位。

(加一个数时向左平移,减一个数时向右平移)
高一数学必考知识点总结3
1.包含关系子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB 或BA
2.相等关系(55,且55,则5=5)
实例:设A={x|x2-1=0}B={-1,1}元素相同
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。

AA
②真子集:如果AB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AB,BC,那么AC
④如果AB同时BA那么A=B
3.不含任何元素的集合叫做空集,记为
规定:空集是任何集合的子集,空集是任何非空集合的真子集。

相关文档
最新文档