大一高数同济版期末考试题(精) - 副本
(完整word版)大一高数同济版期末考试题(精) - 副本
高等数学上(1)一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值;(B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(10=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e .6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:10330()x f x dx xe dx ---=+⎰⎰⎰3()xxd e --=-+⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
大一高数同济版期末考试题精副本
大一高数同济版期末考试题精副本10. 11.高等数学上(1)一、单项选择题(本大题有4小题,每小题4分,共16分) 1 设f(X)= cosx(x +|sin x |),则在 x = 0 处有( )(A ) f'(0)=2( B )f'(0)=1 (C ) f'(0)=0( D ) f(x)不可导.设a (x)= —, P (x)=3 —3奴,则当 X T 1 时(2.1 +x(A )(X)与P (X)是同阶无穷小,但不是等价无穷小;是等价无穷小;(C ) a (X)是比P (x)高阶的无穷小;无穷小.X3.若F (X )= J 。
(2t —x ) f(t )dt ,其中f(x)在区间上(-1,1)二阶可导且f'(x)> 0 则( ).(A) 函数F(x)必在x=0处取得极大值;(B) 函数F(x)必在x=0处取得极小值;(C) 函数F(x)在x = 0处没有极值,但点(0,F(0))为曲线y = F(x)的拐点; (D) 函数F(X)在X = 0处没有极值,点(0, F(0))也不是曲线y = F(x)的拐点。
1设 f(X)是连续函数,且 f ( X)= X + 2 J 0 f (t)dt ,贝y f ( X)=()2 2——+2 (A ) 2 ( B ) 2(C ) X-1 ( D ) x + 2.填空题(本大题有4小题,每小题4分,共16分)2lim (1 + 3x)sin^ =X T 0 已知cosx是f(x)的一个原函数, X8.三、解答题(本大题有5小题,每小题8分,共40分) 设函数y=y(x )由方程eE + simxy)"确定,求y (x)以及y (0).+ 「 1- X 7求J ----- 厂dx.x(1 + X ) (B )(X)与(x)(D ) P (X)是比a (X)高阶的4.5. 则[f(x) C0SX dx =X6.兀2兀22兀 2- 1lim —(cos — + cos —+(卜|+ cos---- 沢)= n Y n n n n r X arcsin x +1J —J 2 dX二7. 9.[xe ,设f (x) = ------ 2lV2x - X2求J: f (x)dx.1g (x H ff (xt)dt12.设函数f(x)连续,,且y X ,A 为常数.求g (x)并讨论g (x)在x=0处的连续性.y(1)=--13.求微分方程xy7 2y = xinx 满足9的解.四、解答题(本大题10分)14. 已知上半平面内一曲线 y = y(x) (X >0),过点(0,1),且曲线上任一点 M(x o ,y o )处切线斜率数值上等于此曲线与 x 轴、y 轴、直线x=x o 所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线y = ln X 的切线,该切线与曲线y = |nX 及x 轴围成平面图形D.(1)求D 的面积A ; (2)求D 绕直线x = e 旋转一周所得旋转体的体积V.六、证明题(本大题有2小题,每小题4分,共8分)16.设函数f(x)在b ,1】上连续且单调递减,证明对任意的qj 0,1],q 1J f (X ) d X X J f (X )dx17.设函数f(x)在咖上连续,且证明:在(0,兀)内至少存在两个不同的点xF(X)= ! f (x)dx示:设)、单项选择题(本大题有4小题,每小题4分,共16分)1、D2、A3、C4、C二、填空题(本大题有4小题,每小题 1,cosx 2 , e6 -( ---- )+c 5. e . 6. 2 X .7.三、解答题(本大题有5小题,每小题9.解:方程两边求导e f (1+y 「co(s( xy)(y =) . e x^+ycos(xy)y(X)一e XJ xcos(xy) X = 0, y = 0, y(0) = TJIJIJ f (X ) d X = 0 f f (X) cos X dx = 0,04分, 兀 2 . 8 分, 共16分)兀8.3共 40 分)10.解:u=x7 7x6dx=du= -(ln|u|—2ln |u+1|) +c1 2=—ln|x7|—-ln|1 +x7|+C7 71 0 1 --------------------------------------------- 2一肋 f f(x)dx=『xe dx+f V2x-x2dx=J:xd(—e」)+ J;J1 -(x-1)2dx=[-xe」-e」]j + J 兀cos2日d0(令x-1 =sin9)~2兀3=—-2e3 -1412.解:由f(0)=0,知g(0)=0。
同济大学大一公共课高等数学期末试卷及答案2套
(2)该曲线在哪点处的曲率半径为 2 ?
∫⎧
2.设
ϕ
(x)
=
⎪ ⎨
⎪
2x et2 d t
x
,
x
⎩ a,
x ≠ 0, 求 a 的值,使得ϕ(x)在 x = 0 处连续,并用导数定义求ϕ ′(0) .
x = 0,
三、
∫ 1.求定积分 I = π x2 1− sin 2 x d x . 0
2.若
f
(x)
2 0
−
x2 sin x + 2x cos x − 2 sin x
π π
2
= π 2 + 2π − 4 . 2
2.当 x < 0 时, 当 x ≥ 0 时,
∫ F(x) =
x −∞
1 1+ t2
dt
= arctan x +
π 2
;
∫ ∫ F(x) = 0 1 d t + x
−∞ 1+ t2
0
1 d t = π + [2 arctan t (1+ t) 2
4 + y2 d y −1000g
h(t )
y
4+ y2 d y ,
−1
−1
−1
上式两边对 t 求导,得
∫ d F = 1000g h(t) 4 + y2 d y d h ,
dt
−1
dt
由于 d h = −0.01,因此,当水面下降至平板的中位线(即 x 轴)时,平板一侧所受到的水压力的下 dt
降速率为
t
]
x 0
=
2 arctan
x+π . 2
大一(第一学期)高数期末考试题及答案
页眉内容大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:101233()2x f x dx xe dx x x dx---=+-⎰⎰⎰123()1(1)xxd e x dx--=-+--⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
同济大学版高等数学期末考试试卷
《高数》试卷1 (上)(A) y =x —1 (B ) y=_(x 1) (C ) y = I n X -1x -1 ( D ) y = x4•设函数f x =|x|,则函数在点x=0处( )5 .点x = 0是函数y = x 4的( )16.曲线y的渐近线情况是( ).|x|(A )只有水平渐近线(B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线 7.f — _2dx 的结果是().l x /Xf 1 Lf 1 L CLf 1 L (A ) f 一丄 C(B ) —f -丄 C (C ) f 1 C (D ) 一 f - CI X 丿 I X 丿 l x 丿J x 丿dx& 匚出的结果是().e e(A ) arctane x C (B ) arctane" C (C ) e xC (D ) ln(e x e^) C9.下列定积分为零的是().1.下列各组函数中 ,是相同的函数的是 ( ).(A ) f (x ) = lnx 2 和 g (x ) = 2lnX(B )f( x ) =| x|和g (x )=J?(C ) f (X )=X和 g (x ) = (T X )(D )f (X )=|x|和Xg (x )“Jsinx+4 -2x 式02.函数 f (X )= *In (1 +x )在X = 0处连续,则 a =( )ax = 0(A ) 0( B 1 - (C ) 1(D ) 243•曲线y = xln x 的平行于直线x - y T = 0的切线方程为()(A )连续且可导 (B )连续且可微(C )连续不可导(D )不连续不可微(A )驻点但非极值点(B )拐点 (C )驻点且是拐点(D )驻点且是极值点「•选择题(将答案代号填入括号内,每题 3分,共30分)10.设f x 为连续函数,则 o f ' 2x dx 等于(1 _ 1(A )f 2-f 0(B )^-f 11 -f 0 (C )p 二•填空题(每题 4分,共20 分)dx②.罟予a 0JI(A )]学買弘(B ) txarcsinxdx (C )1 x 21e x■ e■_1_xdx 2x sin x dx1.设函数f x 二 x^0在x =0处连续, x = 02. 已知曲线y = f x 在x =2处的切线的倾斜角为3.4.Xy =— 的垂直渐近线有x -1 dx 5.x 1 In 2xi ,ix sin x cosx dx =~2"三.计算(每小题 5分,共30分) 求极限 (1+x ¥x迎CT 丿1.2. 3. ②lim x )0x -sin xx 2x e -1求曲线y =ln x y 所确定的隐函数的导数 y x .求不定积分 四.应用题(每题 10分,共20分) 1.作出函数y =x 3 -3x 2的图像._f 2 - f 0(D )dxxe^dx《高数》试卷1参考答案一•选择题1. B2. B3. A 4• C 5. D 6. C 7• D 8. A 9• A 10. C二.填空题1. -22.3.24. arcta nln x c5.23三.计算题2 I 11①e ②一2. y x 二 --------------6 x + y_13.①丄ln| 口| C ② In | x2- a2x| C ③-e」x 1 C2 x+3四.应用题1.略2. S =18x - a。
同济大学大一高等数学期末试题精确答案
同济大学大一高等数学期末试题精确答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]课程名称:《高等数学》试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不得分则在小题大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。
课程名称:高等数学A (考试性质:期末统考(A 卷)一、单选题(共15分,每小题3分)1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( )A .(,)f x y 在P 连续B .(,)f x y 在P 可微C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在2.若x y z ln =,则dz 等于( ).ln ln ln ln .x x y y y y A x y + ln ln .x y y B xln ln ln .ln x xy yC yydx dy x+ ln ln ln ln .x x y y y x D dx dy x y + 3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f).212cos .(cos ,sin ,)A d dr f r r z dz πθθθθ⎰⎰⎰ 212cos .(cos ,sin ,)B d rdr f r r z dz πθθθθ⎰⎰⎰2122cos .(cos ,sin ,)C d rdr f r r z dz πθπθθθ-⎰⎰⎰ 21cos .(cos ,sin ,)xD d rdr f r r z dz πθθθ⎰⎰⎰4. 4.若1(1)n n n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( ).A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定5.曲线222x y z z x y-+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1)二、填空题(共15分,每小题3分) 1.设220x y xyz +-=,则'(1,1)x z = .2.交 换ln 1(,)exI dx f x y dy =⎰⎰的积分次序后,I =_____________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 .4. 已知0!nxn x e n ∞==∑,则x xe -= .5. 函数332233z x y x y =+--的极小值点是 . 三、解答题(共54分,每小题6--7分)1.(本小题满分6分)设arctan y z y x=, 求z x ∂∂,z y∂∂.2.(本小题满分6分)求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.3. (本小题满分7分)求函数22z x y =+在点(1,2)处沿向量132l i j =+方向的方向导数。
同济大学版高等数学期末考试试卷
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩在0x =处连续,则a =( ). (A )0 (B )14(C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1xdx xππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x x e edx --+⎰ (D )()121sin xx x dx -+⎰10.设()f x 为连续函数,则()12f x dx '⎰等于().(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分)1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰ ②()220a x a >-⎰③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2- 2.3- 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+-3. ①11ln ||23x C x +++ ②ln |x C + ③()1x e x C --++四.应用题1.略 2.18S =。
同济大学高等数学期末考试题
《高数》试卷7(上)一、 选择题(每小题3分)1、函数 2)1ln(++-=x x y 的定义域是( ). A []1,2- B [)1,2- C (]1,2- D ()1,2-2、极限x x e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21- D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y5、下列各微分式正确的是( ).A 、)(2x d xdx =B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d = 6、设 ⎰+=C x dx x f 2cos 2)( ,则 =)(x f ( ).A 、2sin xB 、 2sin x -C 、 C x +2sinD 、2sin 2x -7、⎰=+dx x x ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ).A 、⎰104dx x πB 、⎰10ydy π C 、⎰-10)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e+ 10、微分方程 x e y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=*B 、x e y 73=*C 、x xe y 272=*D 、x e y 272=* 二、 填空题(每小题4分)1、设函数x xe y =,则 =''y ;2、如果322sin 3lim0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分 ⎰eedx x 1ln ; 6、解方程21x y xdx dy -=; 四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、x e x )2(+; 2、94 ; 3、0 ; 4、x e x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e- ; 6、C x y =-+2212 ;四、 1、38;2、图略。
大一高数同济版期末考试题(精)-副本
⼤⼀⾼数同济版期末考试题(精)-副本⾼等数学上(1)⼀、单项选择题 (本⼤题有4⼩题, 每⼩题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶⽆穷⼩,但不是等价⽆穷⼩;(B )()()x x αβ与是等价⽆穷⼩;(C )()x α是⽐()x β⾼阶的⽆穷⼩;(D )()x β是⽐()x α⾼阶的⽆穷⼩.3. 若()()()02xF x t x f t dt=-?,其中()f x 在区间上(1,1)-⼆阶可导且'>()0f x ,则().(A )函数()F x 必在0x =处取得极⼤值;(B )函数()F x 必在0x =处取得极⼩值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点;(D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=?x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.⼆、填空题(本⼤题有4⼩题,每⼩题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的⼀个原函数是已知x f xx=?x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnn n ππππ .8. =-+?21212211arcsin -dx xx x .三、解答题(本⼤题有5⼩题,每⼩题8分,共40分)9. 设函数=()y y x 由⽅程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ?+-求11. . 求,,设?--≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=?10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分⽅程2ln xy y x x '+=满⾜=-1(1)9y 的解.四、解答题(本⼤题10分)14. 已知上半平⾯内⼀曲线)0()(≥=x x y y ,过点(,)01,且曲线上任⼀点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成⾯积的2倍与该点纵坐标之和,求此曲线⽅程. 五、解答题(本⼤题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平⾯图形D.(1) 求D 的⾯积A ;(2) 求D 绕直线x = e 旋转⼀周所得旋转体的体积V .六、证明题(本⼤题有2⼩题,每⼩题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥??qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=?πx d x f ,0cos )(0=?πdx x x f .证明:在()π,0内⾄少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提⽰:设=xdxx f x F 0)()()⼀、单项选择题(本⼤题有4⼩题, 每⼩题4分, 共16分) 1、D 2、A 3、C 4、C ⼆、填空题(本⼤题有4⼩题,每⼩题4分,共16分)5. 6e .6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本⼤题有5⼩题,每⼩题8分,共40分) 9. 解:⽅程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du ==1(1)112()7(1)71u du duu u u u -==-++??原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1330()xf x dx xe dx ---=+3()xxd e --=-+??00232cos (1sin )x x xe e d x πθθθ----??=--+-= 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
同济大学高数试卷大一下学期期末考试
同济大学2021-2021学年第二学期高等数学C(下)期终试卷一、选择题.〔此题共有5小题,每题3分,总分值15分,每题只有一个正确答案〕1、以下微分方程为一阶线性方程的是:【D】y A:yy'1;B:y'e1;C:2y'yy;D:2y'yx。
2、假设向量a2,1,0,b1,1,2,c0,1,2k,且abc0,那么k【B】A;B:2;C:3;D:4。
:13、假设向量a1,2,k在向量b2,1,2上的投影为2,那么k【C】A;B:2;C:3;D:4。
:1xx 4、设ecoszxyy,那么zy【A】A:xx2esinyy ;B:xx1esin2yy ;C:12yxesin y ;D:xx2esinyy 。
5、交换二次积分的次序:22yd,dyfxyx【A】20y4xA:dxfx,ydy;x2x4Bx2fxyy;:d,dBx2fxyy;0x22x Cxfxyy;:d,d20x22x Dxfxyy。
:d,d0x二、填空题〔此题共4小题,每题4分,总分值16分,只需将答案填入空格〕6、微分方程y"2y'2y0的通解为y x ecossincxcx.127、设向量a2,3,2,b2,3,0,假设xax,b,且x7。
那么向量x3,2,6。
8、空间直线2x4yz03x y2z9在xoy面上的投影直线方程为:7x9y9z0。
9、设函数zf2xy,其中函数f具有二阶导数,那么2zxy2f"2xy。
1三、解答题〔此题共有6小题,每题7分,总分值42分,需写出具体解题过程〕10、求微分方程:dyxydx2 1的通解。
[1d ydx2yxyxc]tanln11、一平面过原点及点6,3,2,且与另一平面4xy2z8垂直,求平面方程。
[n6,3,24,1,24,4,62x2y3z0]12、函数zzx,y由zlnz1sinxy所确定,求d z。
[z1cosxydzydxxdyz]13、求函数22fx,y4xyxy的极值点。
(完整版)大一高等数学期末考试试卷及答案详解
一、填空题(每小题3分,共18分)
1.设函数 ,则 是 的第类间断点.
2.函数 ,则 .
3. .
4.曲线 在点 处的切线方程为.
5.函数 在 上的最大值,最小值.
6. .
二、单项选择题(每小题4分,共20分)
1.数列 有界是它收敛的().
必要但非充分条件; 充分但非必要条件;
充分必要条件; 无关条件.
二.选择题(每小题4分,4题共16分):
1.设常数 ,则函数 在 内零点的个数为(B).
(A)3个;(B)2个;(C)1个;(D)0个.
2.微分方程 的特解形式为(C)
(A) ;(B) ;
(C) ;(D)
3.下列结论不一定成立的是(A)
(A)(A)若 ,则必有 ;
(B)(B)若 在 上可积,则 ;
(C)(C)若 是周期为 的连续函数,则对任意常数 都有 ;
2.下列各式正确的是().
; ;
; .
3.设 在 上, 且 ,则曲线 在 上.
沿 轴正向上升且为凹的; 沿 轴正向下降且为凹的;
沿 轴正向上升且为凸的; 沿 轴正向下降且为凸的.
4.设 ,则 在 处的导数().
等于 ; 等于 ;
等于 ; 不存在.
5.已知 ,以下结论正确的是().
函数在 处有定义且 ; 函数在 处的某去心邻域内有定义;
大一高等数学期末考试试卷
(一)
一、选择题(共12分)
1. (3分)若 为连续函数,则 的值为( ).
(A)1 (B)2 (C)3 (D)-1
2. (3分)已知 则 的值为( ).
(A)1 (B)3 (C)-1 (D)
3. (3分)定积分 的值为( ).
(完整版)大一高等数学期末考试试卷及答案详解
一、1 B;2 C; 3 D;4 A.
二、1 2 3 0; 4 0.
三、1解原式 6分
2 解 2分
4分
3解原式 3分
ቤተ መጻሕፍቲ ባይዱ2分
1分
4 解令 则2分
5 1分
6 1分
1分
1分
7 两边求导得 2分
8 1分
1分
2分
9 解 2分
10 4分
11 解原式= = 6分
四、1解令 则 3分
= 2分
2分
1分
2 解 3分
-----------3
3.求摆线 在 处的切线的方程.
解:切点为 -------2
-------2
切线方程为 即 . -------2
4.设 ,则 .
5.设 ,求 .
解: ---------2
--------------2
= ------------2
故 =
四.应用题(每小题9分,3题共27分)
1.求由曲线 与该曲线过坐标原点的切线及 轴所围图形的面积.
(A)必不可导 (B)一定可导(C)可能可导 (D)必无极限
二、填空题(共12分)
1.(3分) 平面上过点 ,且在任意一点 处的切线斜率为 的曲线方程为.
2. (3分) .
3. (3分) =.
4. (3分) 的极大值为.
三、计算题(共42分)
1.(6分)求
2.(6分)设 求
3.(6分)求不定积分
4.(6分)求 其中
(D)(D)若可积函数 为奇函数,则 也为奇函数.
4.设 ,则 是 的(C).
(A)连续点;(B)可去间断点;
(C)跳跃间断点;(D)无穷间断点.
大一高数同济版期末考试题精 副本
10. 11.高等数学上(1)一、单项选择题(本大题有4小题,每小题4分,共16分) 1 设 f(X)= cosx(x +|sin x |),则在 x = 0 处有( )(A ) f'(0)=2( B )f'(0)=1 (C ) f'(0)=0( D ) f(x)不可导.设a (x)= —, P (x)=3 —3奴,则当 X T 1 时(2.1 +x(A )(X)与P (X)是同阶无穷小,但不是等价无穷小; 是等价无穷小;(C ) a (X)是比P (x)高阶的无穷小; 无穷小.X3.若F (X )= J 。
(2t —x ) f(t )dt ,其中f(x)在区间上(-1,1)二阶可导且f'(x)> 0 则( ).(A) 函数F(x)必在x=0处取得极大值; (B) 函数F(x)必在x=0处取得极小值;(C) 函数F(x)在x = 0处没有极值,但点(0,F(0))为曲线y = F(x)的拐点; (D) 函数F(X)在X = 0处没有极值,点(0, F(0))也不是曲线y = F(x)的拐点。
1设 f(X)是连续函数,且 f ( X)= X + 2 J 0 f (t)dt ,贝y f ( X)=()2 2——+2 (A ) 2 ( B ) 2(C ) X-1 ( D ) x + 2.填空题(本大题有4小题,每小题4分,共16分)2lim (1 + 3x)sin^ =X T 0 已知cosx是f(x)的一个原函数, X8.三、解答题(本大题有5小题,每小题8分,共40分)设函数y=y(x )由方程eE + simxy)"确定,求y (x)以及y(0).+ 「 1- X 7・ 求J ----- 厂dx.x(1 + X ) (B )(X)与(x)(D ) P (X)是比a (X)高阶的4.5. 则[f(x) C0SX dx =X6.兀2兀22兀 2- 1lim —(cos — + cos —+(卜|+ cos---- 沢)= n Y n n n n r X arcsin x +1J —J 2 dX二7. 9.[xe ,设f (x) = ------ 2lV2x - X2求J: f (x)dx.1g (x H ff (xt)dt12.设函数f(x)连续,,且y X ,A 为常数.求g (x)并讨论g (x)在x=0处的连续性.y(1)=--13.求微分方程xy7 2y = xinx 满足9的解.四、解答题(本大题10分)14. 已知上半平面内一曲线 y = y(x) (X >0),过点(0,1),且曲线上任一点 M(x o ,y o )处切线斜率数值上等于此曲线与 x 轴、y 轴、直线x=x o 所围成 面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线y = ln X 的切线,该切线与曲线y = |nX 及x 轴围成平面图形D.(1)求D 的面积A ; (2)求D 绕直线x = e 旋转一周所得旋转体的体积V.六、证明题(本大题有2小题,每小题4分,共8分)16.设函数f(x)在b ,1】上连续且单调递减,证明对任意的qj 0,1],q 1J f (X ) d X X J f (X )dx17.设函数f(x)在 咖 上连续,且证明:在(0,兀)内至少存在两个不同的点xF(X)= ! f (x)dx示:设)、单项选择题(本大题有4小题,每小题4分,共16分)1、D2、A3、C4、C二、 填空题(本大题有4小题,每小题 1,cosx 2 , e6 -( ---- )+c 5. e . 6. 2 X .7.三、 解答题(本大题有5小题,每小题9.解:方程两边求导e f (1+y 「co(s( xy)(y =) . e x^+ycos(xy)y(X)一e XJ xcos(xy) X = 0, y = 0, y(0) = TJIJIJ f (X ) d X = 0 f f (X) cos X dx = 0,04分, 兀 2 . 8 分, 共16分)兀8.3共 40 分)10.解:u=x7 7x6dx=du= -(ln|u|—2ln |u+1|) +c1 2=—ln|x7|—-ln|1 +x7|+C7 71 0 1 --------------------------------------------- 2一肋f f(x)dx=『xe dx+f V2x-x2dx=J:xd(—e」)+ J;J1 -(x-1)2dx=[-xe」-e」]j + J 兀cos2日d0(令x-1 =sin9)~2兀3=—-2e3 -1412.解:由f(0)=0,知g(0)=0。
同济大学大一_高等数学期末试题_(精确答案)[1]
课程名称:《高等数学》一、单选题(共15分,每小题3分)1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( )A .(,)f x y 在P 连续B .(,)f x y 在P 可微C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在2.若x y z ln =,则dz 等于( ). ln ln ln ln .xxyy yy A xy+ln ln .xy y B x ln ln ln .ln xxyy C yydx dy x+ln ln ln ln .xxyyyx D dx dy xy+3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f ). 212cos .(cos ,sin ,)A d dr f r r z dz πθθθθ⎰⎰⎰ 212cos .(cos ,sin ,)B d rdr f r r z dz πθθθθ⎰⎰⎰2122cos .(cos ,sin ,)C d rdr f r r z dz πθπθθθ-⎰⎰⎰ 21cos .(cos ,sin ,)x D d rdr f r r z dz πθθθ⎰⎰⎰4. 4.若1(1)nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( ).A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定5.曲线222x y z z x y -+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1)二、填空题(共15分,每小题3分)1.设220x y xyz +-=,则'(1,1)x z = . 2.交 换ln 1(,)ex I dx f x y dy =⎰⎰的积分次序后,I =_____________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 .4. 已知0!nxn xe n ∞==∑,则xxe-= .5. 函数332233z x y x y =+--的极小值点是 .三、解答题(共54分,每小题6--7分)1.(本小题满分6分)设arctan y z y x=, 求z x∂∂,z y∂∂.2.(本小题满分6分)求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.3. (本小题满分7分)求函数22z x y =+在点(1,2)处沿向量1322l i j =+方向的方向导数。
最新同济大学高数试卷 大一下学期 期末考试
同济大学2009-2010学年第二学期高等数学C(下)期终试卷一、选择题.(本题共有5小题,每小题3分,满分15分,每题只有一个正确答案)1、下列微分方程为一阶线性方程的是: 【 D 】 :A '1yy =; :B 'e 1yy +=; :C 2'y y y +=; :D 2'y y x =+。
2、若向量()()()2,1,0,1,1,2,0,1,2a b c k =-=--=,且()0a b c ⨯⋅=,则k = 【 B 】 :1A ; :2B ; :3C ; :4D 。
3、若向量()1,2,a k =-在向量()2,1,2b =-上的投影为2-,则k = 【 C 】 :1A ; :2B ; :3C ; :4D 。
4、设e cos x x z x y y =+-,则zy∂=∂ 【 A 】 :A 2e sin x x y y -+; :B 21e sin x x y y -+; :C 21e sin x y y -+; :D 2e sin x x y y-。
5、交换二次积分的次序:()2220d ,d yy yf x y x =⎰⎰【 A 】()42:d ,d x A x f x y y ⎰⎰; ()4:d ,d xB x f x y y ⎰;()2220:d ,d x xC x f x y y ⎰⎰; ()2:d ,d xD x f x y y ⎰。
二、填空题(本题共4小题,每小题4分,满分16分,只需将答案填入空格) 6、微分方程"2'20y y y -+=的通解为y =()12e cos sin x c x c x +.7、设向量()()2,3,2,2,3,0a b =-=-,若,x a x b ⊥⊥,且7x =。
则向量x =()3,2,6±。
8、空间直线240329x y z x y z -+=⎧⎨--=⎩在xoy 面上的投影直线方程为:7990x y z -=⎧⎨=⎩。
高数同济版大一下学期期末复习共64页文档
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学上(1)一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(10=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()lim x f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x ye y xy xy y +''+++=cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1033()x f x dx xe dx ---=+⎰⎰⎰3()x xd e --=-+⎰⎰00232cos (1sin )x xxe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰令3214e π=--12. 解:由(0)0f =,知(0)0g =。
===⎰⎰1()()()xxt uf u dug x f xt dt x(0)x ≠02()()()(0)xxf x f u dug x x x-'=≠⎰20()()A(0)lim lim22xx x f u duf xg x x →→'===⎰02()()lim ()lim22xx x xf x f u duA Ag x A x→→-'==-=⎰,'()g x 在=0x 处连续。
13. 解:2ln dy y x dx x +=22(ln )dx dx x x y e e xdx C -⎰⎰=+⎰211ln 39x x x Cx -=-+1(1),09y C =-=,11ln 39y x x x=- 四、 解答题(本大题10分)14. 解:由已知且02d xy y x y'=+⎰,将此方程关于x 求导得y y y '+=''2特征方程:022=--r r解出特征根:.2,121=-=r r其通解为x x e C e C y 221+=-代入初始条件y y ()()001='=,得31,3221==C C故所求曲线方程为:xx e e y 23132+=-五、解答题(本大题10分)15. 解:(1)根据题意,先设切点为)ln ,(00x x ,切线方程:)(1ln 000x x x x y -=-由于切线过原点,解出e x =0,从而切线方程为:x e y 1=则平面图形面积⎰-=-=1121)(e dy ey e A y(2)三角形绕直线x = e 一周所得圆锥体体积记为V 1,则2131e V π=曲线x y ln =与x 轴及直线x = e 所围成的图形绕直线x = e 一周所得旋转体体积为V 2⎰-=122)(dye e V y πD 绕直线x = e 旋转一周所得旋转体的体积)3125(6221+-=-=e e V V V π六、证明题(本大题有2小题,每小题4分,共12分)16. 证明:1()()qf x d x q f x dx -⎰⎰1()(()())qqqf x d x q f x d x f x dx =-+⎰⎰⎰10(1)()()qqq f x d x q f x dx=--⎰⎰1212[0,][,1]()()12(1)()(1)()0q q f f q q f q q f ξξξξξξ∈∈≥=---≥故有:1()()≥⎰⎰qf x d x q f x dx证毕。
17.证:构造辅助函数:π≤≤=⎰x dt t f x F x0,)()(0。
其满足在],0[π上连续,在),0(π上可导。
)()(x f x F =',且0)()0(==πF F由题设,有⎰⎰⎰⋅+===ππππ0)(sin cos )()(cos cos )(0|dxx F x x x F x xdF xdx x f ,有⎰=π00sin )(xdx x F ,由积分中值定理,存在),0(πξ∈,使0sin )(=ξξF 即0)(=ξF综上可知),0(,0)()()0(πξπξ∈===F F F .在区间],[,],0[πξξ上分别应用罗尔定理,知存在),0(1ξξ∈和),(2πξξ∈,使0)(1='ξF 及0)(2='ξF ,即0)()(21==ξξf f .高等数学上(2)一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) (本大题分5小题, 每小题2分, 共10分)1、.)1ln(2)(;)1ln(2)(;)1ln()()1ln()(,d 11c e x D c x e C c e B c e A I x e e I x x x x x x ++-+-++++-=+-=⎰ 则设答( )2、lim ()()()()n n n n ne e ee A B e C e D e →∞-⋅⋅=12121 答( )3、)()1()1()()1(1)()1)(1()1()()1)(1(1)()10)(()(11)(12121111 答 式中 格朗日型余项阶麦克劳林展开式的拉的++++++++θ--θ-θ-+-θ-+<θ<=-=n n n n n n n n n n n xx D x x C x x n B x x n A x R n xx f4、)()()()()()()()()(0, 2cos 1)(lim,0)0(,0)(0 答 的驻点但不是极值点 是的驻点 不是的极小值点 是的极大值点 是则点且的某邻域内连续在设x f D x f C x f B x f A x xx f f x x f x ==-==→5、1213)(49)(94)(421)()1(2)4,0(422002 图形的面积所围成的平面与曲线处的切线上点曲线D C B A A x y T M M x x y =-=+-=答( )二、填空题(将正确答案填在横线上) (本大题分5小题, 每小题3分, 共15分)1、设 ,则____y x x y =++'=ln tan()112、并相应求得下选内的近似根时,在用切线法求方程023,)01(0152x x x x -=--- __________________ 101 分别为,则一个近似值x x x3、设空间两直线λ12111-=+=-z y x 与x y z +=-=11相交于一点,则λ=⎽⎽⎽⎽⎽ 。
4、. ___________0 , 001sin )(2==⎪⎩⎪⎨⎧=≠-+=a x x a x xe x xf ax 处连续,则在 ,当,当5、是实数.,其中b dx x b_________________ 0=⎰三、解答下列各题 ( 本 大 题4分 )设平面π与两个向量 a i j =+3和 b i j k =+-4平行,证明:向量c i j k =--26与平面π垂直。