船舶制造中英文对照外文翻译文献

合集下载

船舶设备部件中英文对照

船舶设备部件中英文对照

船舶设备部件中英文对照一、船体设备1. 锚Anchor2. 舵叶Rudder blade3. 舵柄Rudder tiller4. 舵挂臂Rudder horn5. 舵销/舵轴Rudder pintle or axle6. 舵承Rudder carrier7. 舵杆Rudder stock8. 主舵机Main steering gear9. 固定式灭火系统Fixed fire extinguishing system10. 惰气系统Inert Gas System11. 惰性气体发生器inert gas generator12. 洗涤塔 scrubber13. 甲板水封deck water seal14. 鼓风机Blower15. 压力真空阀P/V valves16. 舷梯Accommodation Ladders17. 风雨密舱口盖Weather tight hatch covers18. 救生/救助艇Lifeboat/rescue boat19. 救生/救助艇架Life boat/rescue davit20. 海上撤离系统Marine evacuation system21. 起重机(安全工作负荷≥1t)Deck cranes22. 吊杆装置(安全工作负荷≥1t)Derrick rig二、轮机设备1. 柴油机(功率≥130kw)Diesel Engine2. 应急鼓风机Emergency Blower3. 燃气轮机Turbines4. 柴油机地脚螺栓Foundation bolts & nuts5. 推力轴Thrust Shaft6. 齿轮箱Reduction Gear7. 离合器Clutch8. 中间轴Intermediate Shaft9. 连接螺栓Coupling bolts10. 联轴节Shaft coupling11. 艉轴管Stern Tube12. 艉轴Stern Shaft13. 螺旋桨轴Screw Shaft14. 备用轴Spare Shaft15. 艉轴密封装置Stern shaft seal16. 螺旋桨Propeller17. 备用螺旋桨Spare Propeller18. 导流罩Kort nozzle19. 可调桨装置CPP Installation20. “Z”型推进器装置Z-Type Propulsion System21. 喷水推进器装置Water-jet propulsion system22. 动力定位/侧推装置Dynamic positioning/lateral thruster23. 蒸汽/热油系统STEAM/THERMAL OIL SYSTEM24. 主锅炉Main Boiler25. 辅锅炉Aux. Boiler26. 废气锅炉Exhaust Gas Boiler27. 组合锅炉Composite Boiler28. 热油锅炉Thermal Oil Heater29. 蒸汽透平Steam Turbines30. 燃烧器Burning Unit31. 弦外排污阀Overboard discharge Valve32. 压缩空气系统COMPRESSED AIR SYSTEM33. 主空压机Main Air Compressor34. 辅空压机Aux. Air Compressor35. 应急空压机Emergency Air Compressor三、电气设备1. 发电机组(≥50kV A)Electric generator set2. 发电机(≥50kV A)Electric generator3. 应急发电机组Emergency generator set4. 应急配电板Emergency switchboard5. 主配电板Main switchboard6. 轮机自动化系统(控制、监测、报警)Automation of the machinery(Control, Monitoring, Alarm)7. 机舱集中控制台Engine room centralized control panel8. 驾驶集中控制台Bridge centralized control panel9. 分配电箱Electrical distribution box10. 锚机Anchor windlass11. 主机遥控系统M.E. remote control system12. 自动化机舱安全和报警系统Safety system for automation of the machinery13. 自动化机舱安全和报警系统Alarm system for automation of the machinery14. 车钟Telegraph15. 水渗漏检测报警系统和传感器Water leakage detection system and sensor16. 液位监测系统Level gauging system(and sensors)17. 电力推进电机和控制装置Electric propulsion motor and control apparatus18. 货舱进水报警系统Cargo hold flooding alarm system19. 组合声光报警灯板(箱)Audible and visual group alarm panel20. 岸电箱Connecting box for Land-use power21. 电罗经Gyro compass22. 电罗经复示器Gyro repeaters23. 雷达Radar24. 自动雷达标绘仪Automatic radar plotting aid(ARPA)25. 船令广播系统Public address system26. 自动识别系统Automatic identification system(AIS)27. 航行数据记录仪V oyage data recorder(VDR)28. 综合驾驶台系统Integrated bridge system(IBS)29. 综合航行系统Integrated navigation system(INS)30. 国际海事卫星船舶地面站Ship earth station(SES)31. 通用紧急报警系统General alarm systembrake drum 刹车卷筒brake hydraulic cylinder 制动液压缸brake hydraulic pipe 刹车液压管breadth extreme 最大宽,计算宽度breadth moulded 型宽breakbulk 件杂货breasthook 艏肘板bridge 桥楼,驾驶台bridge console stand 驾驶室集中操作台BSRA 英国船舶研究协会buckle 屈曲buffer spring 缓冲弹簧built-up plate section 组合型材bulb plate 球头扁钢bulbous bow 球状船艏,球鼻首bulk carrier 散货船bulk oil carrier 散装油轮bulkhead 舱壁bulwark 舷墙bulwark plate 舷墙板bulwark stay 舷墙支撑buoy tender 航标船buoyant 浮力的buoyant box 浮箱Bureau Veritas 法国船级社butt weld 对缝焊接butterfly screw cap 蝶形螺帽buttock 后体纵剖线by convention 按照惯例,按约定cable ship 布缆船cable winch 钢索绞车CAD(computer-aided design) 计算机辅助设计CAE(computer-aided manufacturing) 计算机辅助制造CAM(computer-aided engineering) 计算机辅助工程camber 梁拱cant beam 斜横梁cant frame 斜肋骨cantilever beam 悬臂梁capacity plan 舱容图CAPP(computer –aided process planning) 计算机辅助施工计划制定 capsize 倾覆capsizing moment 倾覆力臂captain 船长captured-air-bubble vehicle 束缚气泡减阻船cargo cubic 货舱舱容,载货容积cargo handling 货物装卸carriage 拖车,拖架cast steel stem post 铸钢艏柱catamaran 高速双体船catamaran 双体的cavitation 空泡cavitation number 空泡数cavitation tunnel 空泡水筒center keelson 中内龙骨centerline bulkhead 中纵舱壁centroid 型心,重心,质心,矩心chain cable stopper 制链器 chart 海图charterer 租船人chief engineer 轮机长chine 舭,舷,脊chock 导览钳CIM(computer integrated manufacturing) 计算机集成组合制造circulation theory 环流理论classification society 船级社cleat 系缆扣clipper bow 飞剪型船首clutch 离合器coastal cargo 沿海客货轮cofferdam 防撞舱壁combined cast and rolled stem 混合型艏柱commercial ship 营利用船commissary spaces 补给库舱室,粮食库common carrier 通用运输船commuter 交通船compartment 舱室compass 罗经concept design 概念设计connecting tank 连接水柜constant-pitch propeller 定螺距螺旋桨constraint condition 约束条件container 集装箱containerized 集装箱化contract design 合同设计contra-rotating propellers 对转桨controllable-pitch 可控螺距式corrosion 锈蚀,腐蚀couple 力矩,力偶crane 克令吊,起重机crank 曲柄crest (of wave) 波峰crew quarters 船员居住舱criterion 判据,准则Critical Path Method 关键路径法cross-channel automobile ferries 横越海峡车客渡轮cross-sectional area 横剖面面积crow’s nest 桅杆了望台cruiser stern 巡洋舰尾crussing range 航程cup and ball joint 球窝关节curvature 曲率curves of form 各船形曲线cushion of air 气垫damage stability 破损稳性damper 缓冲器damping 阻尼davit arm 吊臂deadweight 总载重量de-ballast 卸除压载deck line at side 甲板边线deck longitudinal 甲板纵骨deck stringer 甲板边板deck transverse 强横梁deckhouse 舱面室,甲板室deep v hull 深v型船体delivery 交船depth 船深derrick 起重机,吊杆design margin 设计余量design spiral 设计螺旋循环方式destroyer 驱逐舰detachable shackle 散合式连接卸扣detail design 详细设计diagonal stiffener 斜置加强筋diagram 图,原理图,设计图diesel engine 柴油机dimensionless ratio 无量纲比值displacement 排水量displacement type vessel 排水型船distributed load 分布载荷division 站,划分,分隔do work 做功dock 泊靠double hook 山字钩double iteration procedure 双重迭代法double roller chock 双滚轮式导览钳double-acting steam cylinder 双向作用的蒸汽气缸down halyard 降帆索draft 吃水drag 阻力,拖拽力drainage 排水draught 吃水,草图,设计图,牵引力dredge 挖泥船drift 漂移,偏航drilling rig 钻架drillship 钻井船drive shaft 驱动器轴driving gear box 传动齿轮箱driving shaft system 传动轴系dry dock 干船坞ducted propeller 导管螺旋桨dynamic supported craft 动力支撑型船舶dynamometer 测力计,功率计e.h.p 有效马力eccentric wheel 偏心轮echo-sounder 回声探深仪eddy 漩涡eddy-making resistance 漩涡阻力efficiency 供给能力,供给量electrohydraulic 电动液压的electroplater 电镀工elevations 高度,高程,船型线图的侧面图,立视图,纵剖线图,海拔empirical formula 经验公式enclosed fabrication shop 封闭式装配车间enclosed lifeboat 封闭式救生艇end open link 末端链环end shackle 末端卸扣endurance 续航力endurance 续航力,全功率工作时间engine room frame 机舱肋骨engine room hatch end beam 机舱口端梁ensign staff 船尾旗杆entrance 进流段erection 装配,安装exhaust valve 排气阀expanded bracket 延伸肘板expansion joint 伸缩接头extrapolate 外插fair 光顺faised floor 升高肋板fan 鼓风机fatigue 疲劳feasibility study 可行性研究feathering blade 顺流变距桨叶fender 护舷ferry 渡轮,渡运航线fillet weld connection 贴角焊连接fin angle feedback set 鳍角反馈装置fine fast ship 纤细高速船fine form 瘦长船型finite element 有限元fire tube boiler 水火管锅炉fixed-pitch 固定螺距式flange 突边,法兰盘flanking rudders 侧翼舵flap-type rudder 襟翼舵flare 外飘,外张flat of keel 平板龙骨fleets of vessels 船队flexural 挠曲的floating crane 起重船floodable length curve 可进长度曲线flow of materials 物流flow pattern 流型,流线谱flush deck vessel 平甲板型船flying bridge 游艇驾驶台flying jib 艏三角帆folding batch cover 折叠式舱口盖folding retractable fin stabilizer 折叠收放式减摇鳍following edge 随边following ship 后续船foot brake 脚踏刹车fore peak 艏尖舱forged steel stem 锻钢艏柱forging 锻件,锻造forward draft mark 船首水尺forward/afer perpendicular 艏艉柱forward/after shoulder 前/后肩foundry casting 翻砂铸造frame 船肋骨,框架,桁架freeboard 干舷freeboard deck 干舷甲板freight rate 运费率fresh water loadline 淡水载重线frictional resistance 摩擦阻力Froude number 傅汝德数fuel/water supply vessel 油水供给船full form 丰满船型full scale 全尺度fullness 丰满度funnel 烟囱furnishings 内装修。

船舶设计论文中英文外文翻译文献

船舶设计论文中英文外文翻译文献

船舶设计论文中英文外文翻译文献XXX shipbuilding。

with a single large container vessel consisting of approximately 1.5 n atomic components in a n hierarchy。

this n is considered a XXX involves a distributed multi-agent n that runs on top of PVM.2 XXXShip XXX process。

as well as the final product's performance and safety。

nal design XXX-consuming and often fail to consider all the complex factors XXX。

there is a need for a more XXX designers.3 The Role of HPCN in Ship Design nHPCN。

or high-performance computing and orking。

has the potential to XXX utilizing the massive parallel processing power of HPCN。

designers XXX changes。

cing the time and cost of thedesign process。

nally。

HPCN can handle the complex XXX。

XXX.4 XXX XXX of the HPCN n Support ToolThe XXX ship designers is implemented as a distributed multi-agent n that runs on top of PVM。

(完整版)船舶专业英语(课文+翻译)

(完整版)船舶专业英语(课文+翻译)

Chapter 1 Ship Design(船舶设计)Lesson 2 Ships Categorized(船舶分类)2.1 Introduction(介绍)The forms a ship can take are innumerable. 一艘船能采用的外形是不可胜数的A vessel might appear to be a sleek seagoing hotel carrying passengers along to some exotic destination; a floating fortress bristling with missile launchers; 。

or an elongated box transporting tanks of crude oil and topped with complex pipe connections. 一艘船可以看做是将乘客一直运送到外国目的地的优美的远航宾馆。

竖立有导弹发射架的水面堡垒及甲板上铺盖有复杂管系的加长罐装原油运输轮None of these descriptions of external appearance, however, does justice to the ship system as a whole and integrated unit所有这些外部特点的描述都不能说明船舶系统是一个总的集合体self-sufficient,seaworthy, and adequately stable in its function as a secure habitat for crew and cargo. ——船员和货物的安全性功能:自给自足,适航,足够稳定。

This is the concept that the naval architect keeps in mind when designing the ship and that provides the basis for subsequent discussions, not only in this chapter but throughout the entire book.这是一个造船工程师设计船舶使必须记住的、能为以后讨论提供根据的观念,不仅涉及本章也贯穿全书。

船舶与海洋工程专业常用词汇英汉对照汇总

船舶与海洋工程专业常用词汇英汉对照汇总

IMO(Intergovernmental Maritime Organization)国际海事组织IMCO(Intergovernmental Maritime Consultative Organization)国际海事质询组织International Towing Tank Conference (ITTC) 国际船模试验水池会议International Association of Classification Society (IACS) 国际船级社协会ABS(American Bureau of Shipping) 美国船级社BV(Bureau Veritas) 法国船级社Lloyd's Register of shipping 英国劳埃德船级社RINA(Registo Italiano Navade) 意大利船级社Load Line Convention 载重线公约Lloyd's Rules 劳埃德规范Register (船舶)登录簿,船名录Green Book 绿皮书,19世纪英国另一船级社的船名录,现合并与劳埃德船级社,用于登录快速远洋船Supervision of the Society's surveyor 船级社验船师的监造书Merchant Shipbuilding Return 商船建造统计表BSRA 英国船舶研究协会HMS 英国皇家海军舰艇CAD(computer-aided design) 计算机辅助设计CAE(computer-aided manufacturing) 计算机辅助制造CAM(computer-aided engineering) 计算机辅助工程CAPP(computer -aided process planning) 计算机辅助施工计划制定IAGG(interactive computer graphics) 交互式计算机图像技术a faired set of lines 经过光顺处理的一套型线a stereo pair of photographs 一对立体投影相片abaft 朝向船体abandonment cost 船舶废置成本费用accommodation 居住(舱室)accommodation ladder 舷梯adjust valve 调节阀adjustable-pitch 可调螺距式admiralty 海军部advance coefficient 进速系数aerostatic 空气静力学的aft peak bulkhead 艉尖舱壁aft peak tank 艉尖舱aileron 副鳍air cushion vehicle 气垫船air diffuser 空气扩散器air intake 进气口aircraft carrier 航空母舰air-driven water pump 气动水泵airfoil 气翼,翼剖面,机面,方向舵alignment chock 组装校准用垫楔aluminum alloy structure 铝合金结构amidships 舯amphibious 两栖的anchor arm 锚臂anchor chain 锚链anchor crown 锚冠anchor fluke 锚爪anchor mouth 锚唇anchor recess锚穴anchor shackle 锚卸扣anchor stock 锚杆angle bar/plate 角钢angle of attack 攻角angled deck 斜角甲板anticipated loads encountered at sea 在波浪中遭遇到的预期载荷anti-pitching fins 减纵摇鳍antiroll fins 减摇鳍anti-rolling tank 减摇水舱appendage 附体artisan 技工assembly line 装配流水线at-sea replenishment 海上补给augment of resistance 阻力增额auxiliary systems 辅机系统auxiliary tank 调节水舱axial advance 轴向进速backing structure 垫衬结构back-up member 焊接垫板balance weight 平衡锤ball bearing 滚珠轴承ball valve 球阀ballast tank 压载水舱bar 型材bar keel 棒龙骨,方龙骨,矩形龙骨barge 驳船base line 基线basic design 基本设计batten 压条,板条beam 船宽,梁beam bracket 横梁肘板爱beam knee 横梁肘板bearing 轴承bed-plate girder 基座纵桁bending-moment curves 弯矩曲线Benoulli's law 伯努利定律berth term 停泊期bevel 折角bidder 投标人bilge 舭,舱底bilge bracket 舭肘板bilge radius 舭半径bilge sounding pipe 舭部边舱水深探管bitt 单柱系缆桩blade root 叶跟blade section 叶元剖面blast 喷丸block coefficient 方形系数blue peter 出航旗boarding deck 登艇甲板boat davit 吊艇架boat fall 吊艇索boat guy 稳艇索bobstay 首斜尾拉索body plan 横剖面图bolt 螺栓,上螺栓固定Bonjean curve 邦戎曲线boom 吊杆boss 螺旋桨轴榖bottom side girder 旁底桁bottom side tank 底边舱bottom transverse 底列板boundary layer 边界层bow line 前体纵剖线bow wave 艏波bowsprit 艏斜桅bow-thruster 艏侧推器box girder 箱桁bracket floor 框架肋板brake 制动装置brake band 制动带brake crank arm 制动曲柄brake drum 刹车卷筒brake hydraulic cylinder 制动液压缸brake hydraulic pipe 刹车液压管breadth extreme 最大宽,计算宽度breadth moulded 型宽breakbulk 件杂货breasthook 艏肘板bridge 桥楼,驾驶台bridge console stand 驾驶室集中操作台buckle 屈曲buffer spring 缓冲弹簧built-up plate section 组合型材bulb plate 球头扁钢bulbous bow 球状船艏,球鼻首bulk carrier 散货船bulk oil carrier 散装油轮bulkhead 舱壁bulwark 舷墙bulwark plate 舷墙板bulwark stay 舷墙支撑buoy tender 航标船buoyant 浮力的buoyant box 浮箱butt weld 对缝焊接butterfly screw cap 蝶形螺帽buttock 后体纵剖线by convention 按照惯例,按约定cable ship 布缆船cable winch 钢索绞车camber 梁拱cant beam 斜横梁cant frame 斜肋骨cantilever beam 悬臂梁capacity plan 舱容图capsize 倾覆capsizing moment 倾覆力臂captain 船长captured-air-bubble vehicle 束缚气泡减阻船cargo cubic 货舱舱容,载货容积cargo handling 货物装卸carriage 拖车,拖架cast steel stem post 铸钢艏柱catamaran 高速双体船,双体的cavitation 空泡cavitation number 空泡数cavitation tunnel 空泡水筒center keelson 中内龙骨centerline bulkhead 中纵舱壁centroid 型心,重心,质心,矩心chain cable stopper 制链器chart 海图charterer 租船人chief engineer 轮机长chine 舭,舷,脊chock 导览钳CIM(computer integrated manufacturing) 计算机集成组合制造circulation theory 环流理论classification society 船级社cleat 系缆扣clipper bow 飞剪型船首clutch 离合器coastal cargo 沿海客货轮cofferdam 防撞舱壁combined cast and rolled stem 混合型艏柱commercial ship 营利用船commissary spaces 补给库舱室,粮食库common carrier 通用运输船commuter 交通船compartment 舱室compass 罗经concept design 概念设计connecting tank 连接水柜constant-pitch propeller 定螺距螺旋桨constraint condition 约束条件container 集装箱containerized 集装箱化contract design 合同设计contra-rotating propellers 对转桨controllable-pitch 可控螺距式corrosion 锈蚀,腐蚀couple 力矩,力偶crane 克令吊,起重机crank 曲柄crest (of wave) 波峰crew quarters 船员居住舱criterion 判据,准则Critical Path Method 关键路径法cross-channel automobile ferries 横越海峡车客渡轮cross-sectional area 横剖面面积crow's nest 桅杆瞭望台cruiser stern 巡洋舰尾crussing range 航程cup and ball joint 球窝关节curvature 曲率curves of form 各船形曲线cushion of air 气垫damage stability 破损稳性damper 缓冲器damping 阻尼davit arm 吊臂deadweight 总载重量de-ballast 卸除压载deck line at side 甲板边线deck longitudinal 甲板纵骨deck stringer 甲板边板deck transverse 强横梁deckhouse 舱面室,甲板室deep v hull 深v型船体delivery 交船depth 船深derrick 起重机,吊杆design margin 设计余量)design spiral 设计螺旋循环方式destroyer 驱逐舰detachable shackle 散合式连接卸扣detail design 详细设计diagonal stiffener 斜置加强筋diagram 图,原理图,设计图diesel engine 柴油机dimensionless ratio 无量纲比值displacement 排水量displacement type vessel 排水型船distributed load 分布载荷division 站,划分,分隔do work 做功dock 泊靠double hook 山字钩double iteration procedure 双重迭代法double roller chock 双滚轮式导览钳double-acting steam cylinder 双向作用的蒸汽气缸down halyard 降帆索draft 吃水drag 阻力,拖拽力drainage 排水draught 吃水,草图,设计图,牵引力爱dredge 挖泥船drift 漂移,偏航drilling rig 钻架drill ship 钻井船drive shaft 驱动器轴driving gear box 传动齿轮箱driving shaft system 传动轴系dry dock 干船坞ducted propeller 导管螺旋桨dynamic supported craft 动力支撑型船舶dynamometer 测力计,功率计e.h.p 有效马力eccentric wheel 偏心轮echo-sounder 回声探深仪eddy 漩涡eddy-making resistance 漩涡阻力efficiency 供给能力,供给量electrohydraulic 电动液压的electroplater 电镀工elevations 高度,高程,船型线图的侧面图,立视图,纵剖线图,海拔empirical formula 经验公式enclosed fabrication shop 封闭式装配车间enclosed lifeboat 封闭式救生艇end open link 末端链环end shackle 末端卸扣endurance 续航力,全功率工作时间engine room frame 机舱肋骨engine room hatch end beam 机舱口端梁ensign staff 船尾旗杆entrance 进流段erection 装配,安装exhaust valve 排气阀expanded bracket 延伸肘板expansion joint 伸缩接头extrapolate 外插fair 光顺faised floor 升高肋板fan 鼓风机fatigue 疲劳feasibility study 可行性研究feathering blade 顺流变距桨叶fender 护舷ferry 渡轮,渡运航线fillet weld connection 贴角焊连接fin angle feedback set 鳍角反馈装置fine fast ship 纤细高速船fine form 瘦长船型finite element 有限元fire tube boiler 水火管锅炉fixed-pitch 固定螺距式flange 突边,法兰盘flanking rudders 侧翼舵flap-type rudder 襟翼舵flare 外飘,外张flat of keel 平板龙骨fleets of vessels 船队flexural 挠曲的floating crane 起重船floodable length curve 可进长度曲线flow of materials 物流flow pattern 流型,流线谱flush deck vessel 平甲板型船flying bridge 游艇驾驶台flying jib 艏三角帆folding batch cover 折叠式舱口盖folding retractable fin stabilizer 折叠收放式减摇鳍following edge 随边following ship 后续船foot brake 脚踏刹车fore peak 艏尖舱forged steel stem 锻钢艏柱forging 锻件,锻造forward draft mark 船首水尺forward/after perpendicular 艏/艉柱forward/after shoulder 前/后肩foundry casting 翻砂铸造frame 船肋骨,框架,桁架frame spacing 肋骨间距freeboard 干舷freeboard deck 干舷甲板freight rate 运费率fresh water loadline 淡水载重线frictional resistance 摩擦阻力Froude number 傅汝德数fuel/water supply vessel 油水供给船full form丰满船型full scale 全尺度fullness 丰满度funnel 烟囱furnishings 内装修gaff 纵帆斜桁爱gaff foresail 前桅主帆gangway 舷梯gantt chart 甘特图gasketed openings 装以密封垫的开口general arrangement 总布置general cargo ship 杂货船generatrix 母线geometrically similar form 外形相似船型girder 桁梁,桁架girder of foundation 基座纵桁governmental authorities 政府当局,管理机构gradient 梯度graving dock 槽式船坞gross ton 长吨(1.016公吨,short for GT)group technology 成组建造技术guided-missile cruiser 导弹巡洋舰gunwale 船舷上缘gunwale angle 舷边角钢gunwale rounded thick strake 舷边圆弧厚板guyline 定位索gypsy 链轮gyro-pilot steering indicator 自动操舵操纵台gyroscope 回转仪half breadth plan 半宽图half depth girder 半深纵骨half rounded flat plate 半圆扁钢hard chine 尖舭hatch beam sockets 舱口梁座hatch coaming 舱口围板hatch cover 舱口盖(板)hatch cover rack 舱口盖板隔架hatch side cantilever 舱口悬臂梁hawse pipe 锚链桶hawsehole 锚链孔heave 垂荡heel 横倾heel piece 艉柱根helicoidal 螺旋面的,螺旋状的hinge 铰链hinged stern door 艉部吊门hog 中拱hold 船舱homogeneous cylinder 均质柱状体hopper barge 倾卸驳horizontal stiffener 水平扶强材hub 桨毂,轴毂,套筒hull form 船型,船体外形hull girder stress 船体桁应力HV AC(heating ventilating and cooling) 取暖,通风与冷却hydraulic mechanism 液压机构hydrodynamic 水动力学的hydrofoil 水翼hydrostatic 水静力的icebreaker 破冰船immerse 浸水,浸没impact load 冲击载荷imperial unit 英制单位in strake 内列板inboard profile 纵剖面图incremental plasticity 增量塑性independent tank 独立舱柜initial stability at small angle of inclination 小倾角初稳性inland waterways vessel 内河船inner bottom 内底in-plane load 面内载荷intact stability 完整稳性intercostals 肋间的,加强的intersection 交点,交叉,横断(切)inventory control 存货管理iterative process 迭代过程jack 船首旗jack 千斤顶joinery 细木工keel 龙骨keel laying 开始船舶建造kenter shackle 双半式连接链环Kristen-Boeing propeller 正摆线推进器landing craft 登陆艇launch 发射,下水launch 汽艇launching equipment (向水中)投放设备leading edge 导缘,导边ledge 副梁材length overall 总长leveler 调平器,矫平机life saving appliance 救生设备lifebuoy 救生圈lifejacket 救生衣lift fan 升力风扇lift offsets 量取型值light load draft 空载吃水lightening hole 减轻孔light-ship 空船limbers board 舭部污水道顶板liner trade 定期班轮营运业lines 型线lines plan 型线图Linnean hierarchical taxonomy 林式等级式分类学liquefied gas carrier 液化气运输船liquefied natural gas carrier 液化天然气船liquefied petroleum gas carrier 液化石油气船liquid bulk cargo carrier 液体散货船liquid chemical tanker 液体化学品船living and utility spaces 居住与公用舱室load line regulations 载重线公约,规范load waterplane 载重水线面loft floor 放样台longitudinal (transverse) 纵(横)稳心高longitudinal bending 纵总弯曲longitudinal prismatic coefficient 纵向棱形系数longitudinal strength 总纵强度longitudinally framed system 纵骨架式结构luffing winch 变幅绞车machinery vendor 机械(主机)卖方magnet gantry 磁力式龙门maiden voyage 处女航main impeller 主推叶轮main shafting 主轴系major ship 大型船舶maneuverability 操纵性manhole 人孔margin plate 边板mark disk of speed adjusting 速度调整标度盘mast 桅杆mast clutch 桅座matrix 矩阵merchant ship 商船metacenter 稳心metacentric height 稳心高metal plate path 金属板电镀槽metal worker 金属工metric unit 公制单位middle line plane 中线面midship section 舯横剖面midship section coefficient 中横剖面系数ML 物资清单,物料表model tank 船模试验水池monitoring desk of main engine operation 主机操作监视台monitoring screen of screw working condition 螺旋桨运转监视屏more shape to the shell 船壳板的形状复杂mould loft 放样间multihull vessel 多体船multi-purpose carrier 多用途船multi-ship program 多种船型建造规划mushroom ventilator 蘑菇形通风桶mutually exclusive attribute 相互排它性的属性N/C 数值控制nautical mile 海里naval architecture 造船学navigation area 航区navigation deck 航海甲板near-universal gear 准万向舵机,准万向齿轮net-load curve 静载荷曲线neutral axis 中性轴,中和轴neutral equilibrium 中性平衡non-retractable fin stabilizer 不可收放式减摇鳍normal 法向的,正交的normal operating condition 常规运作状况nose cone 螺旋桨整流帽notch 开槽,开凹口oar 橹,桨oblique bitts 斜式双柱系缆桩ocean going ship 远洋船off-center loading 偏离中心的装载offsets 型值offshore drilling 离岸钻井offshore structure 离岸工程结构物oil filler 加油点oil skimmer 浮油回收船oil-rig 钻油架on-deck girder 甲板上桁架open water 敞水optimality criterion 最优性准则ore carrier 矿砂船orthogonal 矩形的orthogonal 正交的out strake 外列板outboard motor 舷外机outboard profile 侧视图outer jib 外首帆outfit 舾装outfitter 舾装工outrigger 舷外吊杆叉头overall stability 总体稳性overhang 外悬paddle 桨paddle-wheel-propelled 明轮推进的Panama Canal 巴拿马运河panting arrangement 强胸结构,抗拍击结构panting beam 强胸横梁panting stringer 抗拍击纵材parallel middle body 平行中体partial bulkhead 局部舱壁payload 有效载荷perpendicular 柱,垂直的,正交的photogrammetry 投影照相测量法pile driving barge 打桩船pillar 支柱pin jig 限位胎架pintle 销,枢轴pipe fitter 管装工pipe laying barge 铺管驳船piston 活塞pitch 螺距ipitch 纵摇plan views 设计图planning hull 滑行船体Plimsoll line 普林索尔载重线polar-exploration craft 极地考察船poop 尾楼port 左舷port call 沿途到港停靠positive righting moment 正扶正力矩power and lighting system 动力与照明系统precept 技术规则preliminary design 初步设计pressure coaming 阻力式舱口防水挡板principal dimensions 主尺度Program Evaluation and Review Technique 规划评估与复核法progressive flooding 累进进水project 探照灯propeller shaft bracket 尾轴架爱propeller type log 螺旋桨推进器测程仪PVC foamed plastic PVC泡沫塑料quadrant 舵柄quality assurance 质量保证quarter 居住区quarter pillar 舱内侧梁柱quartering sea 尾斜浪quasi-steady wave 准定长波quay 码头,停泊所quotation 报价单racking 倾斜,变形,船体扭转变形radiography X射线探伤rake 倾斜raked bow 前倾式船首raster 光栅refrigerated cargo ship 冷藏货物运输船regulating knob of fuel pressure 燃油压力调节钮reserve buoyancy 储备浮力residuary resistance 剩余阻力resultant 合力reverse frame 内底横骨Reynolds number 雷诺数right-handed propeller 右旋进桨righting arm 扶正力臂,恢复力臂rigid side walls 刚性侧壁rise of floor 底升riverine warfare vessel 内河舰艇rivet 铆接,铆钉roll 横摇roll-on/roll-off (Ro/Ro) 滚装rotary screw propeller 回转式螺旋推进器9 rounded gunwale 修圆的舷边rounded sheer strake 圆弧舷板rubber tile 橡皮瓦rudder 舵rudder bearing 舵承rudder blade 舵叶rudder control rod 操舵杆rudder gudgeon 舵钮rudder horn 挂舵臂rudder pintle 舵销rudder post 舵柱rudder spindle 舵轴rudder stock 舵杆rudder trunk 舵杆围井run 去流段sag 中垂salvage lifting vessel 救捞船scale 缩尺,尺度schedule coordination 生产规程协调schedule reviews 施工生产进度审核screen bulkhead 轻型舱壁Sea keeping performance 耐波性能sea spectra 海浪谱sea state 海况seakeeping 适航性seasickness 晕船seaworthness 适航性seaworthness 适航性section moulus 剖面模数section 剖面,横剖面self-induced 自身诱导的self-propulsion 自航semi-balanced rudder 半平衡舵semi-submersible drilling rig 半潜式钻井架shaft bossing 轴榖shaft bracket 轴支架shaft coupling 联轴节shear 剪切,剪力shear buckling 剪切性屈曲shear curve 剪力曲线sheer 舷弧sheer aft/forward 艉/艏舷弧sheer drawing 剖面图sheer plane 纵剖面sheer profile 总剖线,纵剖图shell plating 船壳板ship fitter 船舶装配工ship hydrodynamics 船舶水动力学shipway/slipway 船台shipyard 船厂shrouded screw 有套罩螺旋桨,导管螺旋桨side frame 舷边肋骨side keelson 旁内龙骨side plate 舷侧外板side stringer 甲板边板single-cylinder engine 单缸引擎sinkage 升沉six degrees of freedom 六自由度skin friction 表面摩擦力skirt (气垫船)围裙slamming 砰击sleeve 套管,套筒,套环slewing hydraulic motor 回转液压马达slice 一部分,薄片sloping shipway 有坡度船台sloping top plate of bottom side tank 底边舱斜顶板sloping bottom plate of topside tank 顶边舱斜底板soft chine 圆舭sonar 声纳spade rudder 悬挂舵spectacle frame 眼睛型骨架speed-to-length ratio 速长比sponson deck 舷伸甲板springing 颤振stability 稳性stable equilibrium 稳定平衡starboard 右舷static equilibrium 静平衡steamer 汽轮船steering gear 操纵装置,舵机stem 船艏stem contour 艏柱型线stern 船艉stern barrel 尾拖网滚筒stern counter 尾突体stern ramp 尾滑道,尾跳板爱stern transom plate 尾封板stern wave 艉波stiffen 加劲,加强stiffener 扶强材,加劲杆straddle 跨立,外包式叶片strain 应变strake 船体列板streamline 流线streamlined casing 流线型套管strength curves 强度曲线strength deck 强力甲板stress concentration 应力集中structural instability 结构不稳定性strut 支柱,支撑构型subassembly 分部装配subdivision 分舱submerged nozzle 浸没式喷口submersible 潜期suction back of a blade 桨叶片抽吸叶背Suez Canal tonnage 苏伊士运河吨位限制summer load water line 夏季载重水线superintendent 监督管理人,总段长,车间主任superstructure 上层建筑supper cavitating propeller 超空泡螺旋桨surface nozzle 水面式喷口surface piercing 穿透水面的surface preparation and coating 表面预处理与喷涂surge 纵荡sway 横荡yaw 首摇surmount 顶上覆盖,越过swage plate 压筋板swash bulkhead 止荡舱壁SWATH (Small Waterplane Area Twin Hull) 小水线面双体船tail-stabilizer anchor 尾翼式锚talking paper 讨论文件tangential 切向的,正切的tangential viscous force 切向粘性力tanker 油船tender 交通小艇timber carrier 木材运输船tugboat 拖船tee T型构件,三通管tensile stress 拉(张)应力thermal effect 热效应throttle valve 节流阀throughput 物料流量thrust 推力thruster 推力器,助推器tip of a blade 桨叶叶梢toed towards amidships 趾部朝向船舯tonnage 吨位torpedo 鱼雷torque 扭矩trailing edge 随边transom stern 方尾transverse bulkhead plating 横隔舱壁板transverse section 横剖面transverse stability 横稳性trawling 拖网trial 实船试验trim 纵倾trim by the stern/bow 艉/艏倾trimaran 三体的tripping bracket 防倾肘板trough 波谷tumble home (船侧)内倾tunnel wall effect 水桶壁面效应turnable blade 可转动式桨叶turnable shrouded screw 转动导管螺旋桨tweendeck cargo space 甲板间舱tweendedk frame 甲板间肋骨two nodded frequency 双节点频率LCC 大型原油轮ULCC 超级大型原油轮VLCC 巨型原油轮ultrasonic 超声波的underwriter (海运)保险商unsymmetrical 非对称的upright position 正浮位置vapor pocket 气化阱ventilation and air conditioning diagram 通风与空调铺设设计图Venturi section 文丘里试验段vertical prismatic coefficient 横剖面系数vertical-axis(cycloidal)propeller 直叶(摆线)推进器vessel component vender 造船部件销售商viscosity 粘性V oith-Schneider propeller 外摆线直翼式推进器vortex 梢涡v-section v型剖面wake current 伴流,尾流water jet 喷水(推进)管water plane 水线面watertight integrity 水密完整性wave pattern 波形wave suppressor 消波器,消波板wave-making resistance 兴波阻力weather deck 露天甲板web 腹板web beam 强横梁web frame 腹肋板welder 焊工wetted surface 湿表面积winch 绞车windlass 起锚机wing shaft 侧轴wing-keel 翅龙骨(游艇)working allowance 有效使用修正量worm gear 蜗轮,蜗杆yacht 快艇yard issue 船厂开工任务发布书yards 帆桁--。

船舶设计论文中英文外文翻译文献

船舶设计论文中英文外文翻译文献

中英文外文翻译文献Ship Design OptimizationThis contribution is devoted to exploiting the analogy between a modern manufacturing plant and a heterogeneous parallel computer to construct a HPCN decision support tool for ship designers. The application is a HPCN one because of the scale of shipbuilding - a large container vessel is constructed by assembling about 1.5 million atomic components in a production hierarchy. The role of the decision support tool is to rapidly evaluate the manufacturing consequences of design changes. The implementation as a distributed multi-agent application running on top of PVM is described1 Analogies between Manufacturing and HPCNThere are a number of analogies between the manufacture of complex products such as ships, aircraft and cars and the execution of a parallel program. The manufacture of a ship is carried out according to a production plan which ensures that all the components come together at the right time at the right place. A parallel computer application should ensure that the appropriate data is available on the appropriate processor in a timely fashion.It is not surprising, therefore, that manufacturing is plagued by indeterminacy exactly as are parallel programs executing on multi-processor hardware. This has caused a number of researchers in production engineering to seek inspiration in otherareas where managing complexity and unpredictability is important. A number of new paradigms, such as Holonic Manufacturing and Fractal Factories have emerged [1,2] which contain ideas rather reminiscent of those to be found in the field of Multi- Agent Systems [3, 4].Manufacturing tasks are analogous to operations carried out on data, within the context of planning, scheduling and control. Also, complex products are assembled at physically distributed workshops or production facilities, so the components must be transported between them. This is analogous to communication of data between processors in a parallel computer, which thus also makes clear the analogy between workshops and processors.The remainder of this paper reports an attempt to exploit this analogy to build a parallel application for optimizing ship design with regard to manufacturing issues.2 Shipbuilding at Odense Steel ShipyardOdense Steel Shipyard is situated in the town of Munkebo on the island of Funen. It is recognized as being one of the most modern and highly automated in the world. It specializes in building VLCC's (supertankers) and very large container ships. The yard was the first in the world to build a double hulled supertanker and is currently building an order of 15 of the largest container ships ever built for the Maersk line. These container ships are about 340 metres long and can carry about 7000 containers at a top speed of 28 knots with a crew of 12.Odense Steel Shipyard is more like a ship factory than a traditional shipyard. The ship design is broken down into manufacturing modules which are assembled and processed in a number of workshops devoted to, for example, cutting, welding and surface treatment. At any one time, up to 3 identical ships are being built and a new ship is launched about every 100 days.The yard survives in the very competitive world of shipbuilding by extensive application of information technology and robots, so there are currently about 40 robots at the yard engaged in various production activities. The yard has a commitment to research as well, so that there are about 10 industrial Ph.D. students working there, who are enrolled at various engineering schools in Denmark.3 Tomorrow's Manufacturing SystemsThe penetration of Information Technology into our lives will also have its effect in manufacturing industry. For example, the Internet is expected to become thedominant trading medium for goods. This means that the customer can come into direct digital contact with the manufacturer.The direct digital contact with customers will enable them to participate in the design process so that they get a product over which they have some influence. The element of unpredictability introduced by taking into account customer desires increases the need for flexibility in the manufacturing process, especially in the light of the tendency towards globalization of production. Intelligent robot systems, such as AMROSE, rely on the digital CAD model as the primary source of information about the work piece and the work cell [5,6].This information is used to construct task performing, collision avoiding trajectories for the robots, which because of the high precision of the shipbuilding process, can be corrected for small deviations of the actual world from the virtual one using very simple sensor systems. The trajectories are generated by numerically solving the constrained equations of motion for a model of the robot moving in an artificial force field designed to attract the tool centre to the goal and repell it from obstacles, such as the work piece and parts of itself. Finally, there are limits to what one can get a robot to do, so the actual manufacturing will be performed as a collaboration between human and mechatronic agents.Most industrial products, such as the windmill housing component shown in Fig. 1, are designed electronically in a variety of CAD systems.Fig. 1. Showing the CAD model for the housing of a windmill. The model, made using Bentley Microstation, includes both the work-piece and task-curve geometries.4 Today's Manufacturing SystemsThe above scenario should be compared to today's realities enforced by traditional production engineering philosophy based on the ideas of mass production introduced about 100 years ago by Henry Ford. A typical production line has the same structure as a serial computer program, so that the whole process is driven by production requirements. This rigidity is reflected on the types of top-down planning and control systems used in manufacturing industry, which are badly suited to both complexity and unpredictability.In fact, the manufacturing environment has always been characterized by unpredictability. Today's manufacturing systems are based on idealized models where unpredictability is not taken into account but handled using complex and expensive logistics and buffering systems.Manufacturers are also becoming aware that one of the results of the top-down serial approach is an alienation of human workers. For example, some of the car manufacturers have experimented with having teams of human workers responsible for a particular car rather than performing repetitive operations in a production line. This model in fact better reflects the concurrency of the manufacturing process than the assembly line.5 A Decision Support Tool for Ship Design OptimizationLarge ships are, together with aircraft, some of the most complex things ever built. A container ship consists of about 1.5 million atomic components which are assembled in a hierarchy of increasingly complex components. Thus any support tool for the manufacturing process can be expected to be a large HPCN application.Ships are designed with both functionality and ease of construction in mind, as well as issues such as economy, safety, insurance issues, maintenance and even decommissioning. Once a functional design is in place, a stepwise decomposition of the overall design into a hierarchy of manufacturing components is performed. The manufacturing process then starts with the individual basic building blocks such as steel plates and pipes. These building blocks are put together into ever more complex structures and finally assembled in the dock to form the finished ship.Thus a very useful thing to know as soon as possible after design time are the manufacturing consequences of design decisions. This includes issues such as whether the intermediate structures can actually be built by the available production facilities, the implications on the use of material and whether or not the production can be efficiently scheduled [7].Fig.2. shows schematically how a redesign decision at a point in time during construction implies future costs, only some of which are known at the time. Thus a decision support tool is required to give better estimates of the implied costs as early as possible in the process.Simulation, both of the feasibility of the manufacturing tasks and the efficiency with which these tasks can be performed using the available equipment, is a very compute-intense application of simulation and optimization. In the next section, we describe how a decision support tool can be designed and implemented as a parallel application by modeling the main actors in the process as agents.Fig.2. Economic consequences of design decisions. A design decision implies a future commitment of economic resources which is only partially known at design time.6 Multi-Agent SystemsThe notion of a software agent, a sort of autonomous, dynamic generalization of an object (in the sense of Object Orientation) is probably unfamiliar to the typical HPCN reader in the area of scientific computation. An agent possesses its own beliefs, desires and intentions and is able to reason about and act on its perception of other agents and the environment.A multi-agent system is a collection of agents which try to cooperate to solve some problem, typically in the areas of control and optimization. A good example is the process of learning to drive a car in traffic. Each driver is an autonomous agent which observes and reasons about the intentions of other drivers. Agents are in fact a very useful tool for modeling a wide range of dynamical processes in the real world, such as the motion of protein molecules [8] or multi-link robots [9]. For other applications, see [4].One of the interesting properties of multi-agent systems is the way global behavior of the system emerges from the individual interactions of the agents [10]. The notion of emergence can be thought of as generalizing the concept of evolution in dynamical systems.Examples of agents present in the system are the assembly network generator agent which encapsulates knowledge about shipbuilding production methods for planning assembly sequences, the robot motion verification agent, which is a simulator capable of generating collision-free trajectories for robots carrying out their tasks, the quantity surveyor agent which possesses knowledge about various costs involved in the manufacturing process and the scheduling agent which designs a schedule for performing the manufacturing tasks using the production resources available.7 Parallel ImplementationThe decision support tool which implements all these agents is a piece of Object- Oriented software targeted at a multi-processor system, in this case, a network of Silicon Graphics workstations in the Design Department at Odense Steel Shipyard. Rather than hand-code all the communication between agents and meta-code for load balancing the parallel application, abstract interaction mechanisms were developed. These mechanisms are based on a task distribution agent being present on each processor. The society of task distribution agents is responsible for all aspects of communication and migration of tasks in the system.The overall agent system runs on top of PVM and achieves good speedup andload balancing. To give some idea of the size of the shipbuilding application, it takes 7 hours to evaluate a single design on 25 SGI workstations.From:Applied Parallel Computing Large Scale Scientific and Industrial Problems Lecture Notes in Computer Science, 1998, Volume 1541/1998, 476-482, DOI: 10.1007/BFb0095371 .中文翻译:船舶设计优化这一贡献致力于开拓类比现代先进制造工厂和一个异构并行计算机,构建了一种HPCN 决策支援工具给船舶设计师。

船舶论文 外文翻译

船舶论文 外文翻译

1.1Container Shipping ChangesAs commerce has become and continues to be more international, ocean container shipments have grown exponentially as a means of moving most any kind of freight from one port to another. Buffered by waves of change touching other modes of transport, ocean carriers are in a constant process of altering the way they conduct their business to meet current needs of shipping customers. While chartered to serve a wider public with insight about the industry, the Container Shipping Information Service (CSIS) is able to provide a spokesperson from one of its 24 member companies to treat objectively with commonly shared issues. Andres Kulka, senior vice president of CSAV Group North America shares just such insights.In an environment of high transportation costs, ocean container shipping‟s mix of speed, cost, availability and capability offers a superior value proposition, especially as logistics and supply chain management processes and systems are implemented by a growing range of shippers. Because of their shelf life or time value certain commodities must be transported by air. Increases in the need to speedily transport these commodities along with the greater economy will be a primary factor for airfreight growth in the future. But spiraling fuel surcharges and resulting cost consciousness among shippers opens opportunities for ocean carriers to gain market share in the broader spectrum of non- perishable commodities where airfreight‟s cost effectiveness has diminished.Shortages of containers is produced by commercial imbalance situations. When exports outgrow imports in a geographic region, you may face equipment shortages, as was the case in Asia. When you add imbalance by type of equipment to the situation, the situation worsens. While at present leasing containers are available to meet the demand in Asia, container pricing has reached levels of $2,500 for a dry,due largely, to the increase of commodities costs and deterioration of the US exchangeThere have been reports of shortages of containers, particularly for cargo moving from Asia.Under these conditions,shipping lines are relying primarily on empty repositioning to Asia rather than use of fresh equipment.The shortage of equipment in the US today is due to two primary factors. First,exports are growing at high rates, mainly because of devaluation of the USdollar.Additionally imports are pretty much staggered causing, again, a commercial imbalance. Secondly, last year many nonprofitable international intermodal lanes were eliminated. This reduced the stock of containers at some inland locations available for exports.Location specific equipment shortages have created the need for increasing empty container repositioning. That is one of the reasons export freight rates have gone up. Media pays great attention to Asian business, but how healthy is container shipping in other regions, say Latin America?In fact trade with Latin America has been sensitive to the sharp fall of theUS dollar. For example in 2007 the Brazilian real was down 17% and the Chilean peso fell 7%. For exports total 2007 volumes for Latin America were about 800,000 TEU (twenty-foot equivalent units), approximately 20% greater than 2006. Top commodities exported to Latin America have been resins,chemicals, plastics, forest products and general merchandise. Higher rates have followed the increase in export demand.Foodstuffs and forest products dominate import volumes from South America, about 970,000 TEU in 2007. Unlike exports, import volume growth—5.5% greater than 2006—has slowed due to the decline of the US dollar. Import rates have risen, but not nearly as strongly as export rates. So far in 2008 the US dollar has continued its downward trend. We are very cautious about the future outlook. Even though exports will probably continue growing at high rates, imports might continue decreasing.1.2Discussion of Structural Standards DevelopmentTaken as a whole, there has been a piecemeal approach to structural design standards. As technical developments occur (models of various structural behaviours, risk methodologies), they have been incorporated into structural standards. Individuals and rule committees have framed their own rules with an emphasis on certain load/strength/failure models, coupled with some risk avoidance strategy (explicit or implicit). It is hardly surprising that various standards are different, even quite different. More,rather than fewer, concepts are available to those who develop structural standards. In the absence of a binding philosophy of structural behaviour, there will continue to be divergence along the way to improved standards. It must be appreciated that all current standards “work”. Any of the current naval and commercial ship design approaches can be used to produce structural designs that function with adequate reliability over a 20+ yearlife expectancy, unless subjected to poor maintenance, human operational error, or deliberate damage. Changes to standards are, therefore, resisted by all those who have invested time and effort in them as developers and users. The rationale for change must be presented well, and its benefits have to outweigh its costs.Experienced designers recognize that structural behaviour can be very complex. Despite this, it is necessary to use simple, practical approaches in design standards, to avoid adding to the problem through overly-complex rules that are difficult to apply and more so to check and audit. Stress is the primary load-effect that standards focus on, partly because it is so readily calculated. The main concerns are material yielding, buckling and fatigue. All of these are local behaviours, and all are used as surrogates for actual structural failure. A structure is a system, comprised of elements, which in turn are built from materials.As an example, yielding can be considered. Yielding is a material level …failure‟, very common, usually very localized, and usually producing noobservable effect. It can be quite irrelevant. The important issue is the behaviour and failure of the structural system, even at the level of the structural components. Ship structures are especially redundant structures, quite unlike most civil structures and buildings. Ship structures are exposed to some of the harshest loading regimes, yet are usually capable of tolerating extensive material and component failure, prior to actual structural collapse.An essential deficiency of all traditional structural standards has been the failure to consider the structural redundancy (path to failure) and identify weaknesses in the system. Areas of weakness are normally defined as those parts that will first yield or fail.However, far more important is the ability of the structure to withstand these and subsequent local/material failures and redistribute the load. The real weaknesses are a lack of secondary load paths. It is often assumed, wrongly, that initial strength is a valid indicator for ultimate strength, and far simpler to assess. There is a need to focus on ways of creating robust structures, much as we use subdivision to create adequate damage stability. As another example, consider frames under lateral loads. When designed properly, frames can exhibit not only sufficient initial strength, but substantial reserve strength, due to the secondary load path created by axial stresses in the plate and frame. In effect, it is possible to create a ductile structure (analogous to a ductile material). If we instead use current designstandards that emphasize elastic section modulus, we risk creating a …brittle‟ structure, even w hen built from ductile materials.In the case of fatigue and buckling, it is again necessary to stand back from consideration of the initial effects, and examine whether there is sufficient reserve (secondary load paths). When there is no such reserve, there is the structural equivalent of a subdivision plan that cannot tolerate even one compartment flooding.The above discussion talks only about structural response, and indicated some gaps. Similar gaps exist in our knowledge of loads. The complexity of ship structures, the complexity of the loads that arise in a marine environment, and the dominating influence of human factors in any risk assessment for vessels, all present daunting challenges.The project team‟s approach to this project, described in the following sections, has intended to provide part of the basis for future design standard development.1.1集装箱运输的变化当商业已成为并将继续更加国际化,远洋集装箱运输已成为成倍增长的将任何种类的货物从一个港口移到另一个港口的手段。

船舶论文-外文翻译

船舶论文-外文翻译

1.1Container Shipping ChangesAs commerce has become and continues to be more international, ocean container shipments have grown exponentially as a means of moving most any kind of freight from one port to another. Buffered by waves of change touching other modes of transport, ocean carriers are in a constant process of altering the way they conduct their business to meet current needs of shipping customers. While chartered to serve a wider public with insight about the industry, the Container Shipping Information Service (CSIS) is able to provide a spokesperson from one of its 24 member companies to treat objectively with commonly shared issues. Andres Kulka, senior vice president of CSAV Group North America shares just such insights.In an environment of high transportation costs, ocean container shipping’s mix of speed, cost, availability and capability offers a superior value proposition, especially as logistics and supply chain management processes and systems are implemented by a growing range of shippers. Because of their shelf life or time value certain commodities must be transported by air. Increases in the need to speedily transport these commodities along with the greater economy will be a primary factor for airfreight growth in the future. But spiraling fuel surcharges and resulting cost consciousness among shippers opens opportunities for ocean carriers to gain market share in the broader spectrum of non- perishable commodities where airfreight’s cost effectiveness has diminished.Shortages of containers is produced by commercial imbalance situations. When exports outgrow imports in a geographic region, you may face equipment shortages, as was the case in Asia. When you add imbalance by type of equipment to the situation, the situation worsens. While at present leasing containers are available to meet the demand in Asia, container pricing has reached levels of $2,500 for a dry,due largely, to the increase of commodities costs and deterioration of the US exchangeThere have been reports of shortages of containers, particularly for cargo moving from Asia.Under these conditions,shipping lines are relying primarily on empty repositioning to Asia rather than use of fresh equipment.The shortage of equipment in the US today is due to two primary factors. First,exports are growing at high rates, mainly because of devaluation of the USdollar.Additionally imports are pretty much staggered causing, again, a commercial imbalance. Secondly, last year many nonprofitable international intermodal lanes were eliminated. This reduced the stock of containers at some inland locations available for exports.Location specific equipment shortages have created the need for increasing empty container repositioning. That is one of the reasons export freight rates have gone up. Media pays great attention to Asian business, but how healthy is container shipping in other regions, say Latin America?In fact trade with Latin America has been sensitive to the sharp fall of theUS dollar. For example in 2007 the Brazilian real was down 17% and the Chilean peso fell 7%. For exports total 2007 volumes for Latin America were about 800,000 TEU (twenty-foot equivalent units), approximately 20% greater than 2006. Top commodities exported to Latin America have been resins,chemicals, plastics, forest products and general merchandise. Higher rates have followed the increase in export demand.Foodstuffs and forest products dominate import volumes from South America, about 970,000 TEU in 2007. Unlike exports, import volume growth—5.5% greater than 2006—has slowed due to the decline of the US dollar. Import rates have risen, but not nearly as strongly as export rates. So far in 2008 the US dollar has continued its downward trend. We are very cautious about the future outlook. Even though exports will probably continue growing at high rates, imports might continue decreasing.1.2Discussion of Structural Standards DevelopmentTaken as a whole, there has been a piecemeal approach to structural design standards. As technical developments occur (models of various structural behaviours, risk methodologies), they have been incorporated into structural standards. Individuals and rule committees have framed their own rules with an emphasis on certain load/strength/failure models, coupled with some risk avoidance strategy (explicit or implicit). It is hardly surprising that various standards are different, even quite different. More,rather than fewer, concepts are available to those who develop structural standards. In the absence of a binding philosophy of structural behaviour, there will continue to be divergence along the way to improved standards. It must be appreciated that all current standards “work”. Any of the current naval and commercial ship design approaches can be used to produce structural designs that function with adequate reliability over a 20+ yearlife expectancy, unless subjected to poor maintenance, human operational error, or deliberate damage. Changes to standards are, therefore, resisted by all those who have invested time and effort in them as developers and users. The rationale for change must be presented well, and its benefits have to outweigh its costs.Experienced designers recognize that structural behaviour can be very complex. Despite this, it is necessary to use simple, practical approaches in design standards, to avoid adding to the problem through overly-complex rules that are difficult to apply and more so to check and audit. Stress is the primary load-effect that standards focus on, partly because it is so readily calculated. The main concerns are material yielding, buckling and fatigue. All of these are local behaviours, and all are used as surrogates for actual structural failure. A structure is a system, comprised of elements, which in turn are built from materials.As an example, yielding can be considered. Yielding is a material level‘failure’, very common, usually very localized, and usually producing noobservable effect. It can be quite irrelevant. The important issue is the behaviour and failure of the structural system, even at the level of the structural components. Ship structures are especially redundant structures, quite unlike most civil structures and buildings. Ship structures are exposed to some of the harshest loading regimes, yet are usually capable of tolerating extensive material and component failure, prior to actual structural collapse.An essential deficiency of all traditional structural standards has been the failure to consider the structural redundancy (path to failure) and identify weaknesses in the system. Areas of weakness are normally defined as those parts that will first yield or fail.However, far more important is the ability of the structure to withstand these and subsequent local/material failures and redistribute the load. The real weaknesses are a lack of secondary load paths. It is often assumed, wrongly, that initial strength is a valid indicator for ultimate strength, and far simpler to assess. There is a need to focus on ways of creating robust structures, much as we use subdivision to create adequate damage stability. As another example, consider frames under lateral loads. When designed properly, frames can exhibit not only sufficient initial strength, but substantial reserve strength, due to the secondary load path created by axial stresses in the plate and frame. In effect, it is possible to create a ductile structure (analogous to a ductile material). If we instead use current designstandards that emphasize elastic section modulus, we risk creating a‘brittle’ structure, even w hen built from ductile materials.In the case of fatigue and buckling, it is again necessary to stand back from consideration of the initial effects, and examine whether there is sufficient reserve (secondary load paths). When there is no such reserve, there is the structural equivalent of a subdivision plan that cannot tolerate even one compartment flooding.The above discussion talks only about structural response, and indicated some gaps. Similar gaps exist in our knowledge of loads. The complexity of ship structures, the complexity of the loads that arise in a marine environment, and the dominating influence of human factors in any risk assessment for vessels, all present daunting challenges.The project team’s approach to this project, described in the following sections, has intended to provide part of the basis for future design standard development.1.1集装箱运输的变化当商业已成为并将继续更加国际化,远洋集装箱运输已成为成倍增长的将任何种类的货物从一个港口移到另一个港口的手段。

造船英语(中英对照)

造船英语(中英对照)

LESSON ONEAN INTRODUCTION OF H. D. SHIPYARD (1)H.D.船厂的介绍(1)H. D. Shipyard, situated on the eastern bank of the Huang Pu River in Shanghai, is a comprehensive enterprise specialized in the manufacture of ocean-going vessels as well as marine diesel engines of medium and low speed with full capability in casting, forging and mechanical processing. Two slipways, with one for ships under40,000 tonnage and another for ships under 70,000 tonnage, and eight berths for ships of 5,000 T dwt have been constructed in the yard. The outfitting quay, some 700 meters in length, is well equipped with about 3,600 kinds of various equipments. The shipyard is noted for its high comprehensive productivity and facile adaptability.H.D.船厂位于上海黄浦江的东岸,是一个综合性企业,尤其是在远洋轮的建造,和船用中低速柴油机的铸造,锻造和机加工方面具有很强的实力。

该船厂建有两个倾斜船台,一个4万吨,另一个7万吨,和八个5千吨水平船台。

船舶专业英语(课文+翻译)

船舶专业英语(课文+翻译)

精心整理Chapter1ShipDesign(船舶设计)Lesson2ShipsCategorized(船舶分类)2.1Introduction(介绍)Theformsashipcantakeareinnumerable.一艘船能采用的外形是不可胜数的Avesselmightappeartobeasleekseagoinghotelcarryingpassengersalongtosomeexoticdestination;afloatingfortres sbristlingwithmissilelaunchers;。

船员和货能为cteristicsofshipsdesignedtooperateinthoseregionscanbediverse.由于上面提到的三个区域中物理环境的本质相差很大,所以那些区域中的船的物理特性也不同。

AerostaticSupport(空气静力支撑)Therearetwocategoriesofvesselsthataresupportedabovethesurfaceoftheseaonaself-inducedcushionofair.Theser elativelylightweightvehiclesarecapableofhighspeeds,sinceairresistanceisconsiderablylessthanwaterresistance,andthe absenceofcontactwithsmallwavescombinedwithflexiblesealsreducestheeffectsofwaveimpactathighspeed.有两种靠自身诱导的气垫浮于海面上的船。

这些重量相对轻的船能够高速航行,这是因为空气阻力比水阻力小得多,而且船舶高速航行时,弹性密封圈没有与小波浪接触,因而降低了了波浪冲击的影响。

Suchvesselsdependonliftfanstocreateacushionoflow-pressureairinanunderbodychamber.这种船依靠升力风扇在船体水下部分产生了低压气垫。

船舶与海洋工程论文中英文资料外文翻译文献

船舶与海洋工程论文中英文资料外文翻译文献

中英文资料外文翻译文献A Simple Prediction Formula of Roll Damping of Conventional Cargo Ships on the Basis of lkeda's Method and Its LimitationSince the roll damping of ships has significant effects of viscosity, it is difficult to calculate it theoretically. Therefore, experimental results or some prediction methods are used to get the roll damping in design stage of ships. Among some prediction methods, Ikeda’s one is widely used in many ship motion computer programs. Using the method, the roll damping of various ship hulls with various bilge keels can be calculated to investigate its characteristics. To calculate the roil damping of each ship, detailed data of the ship are needed to input. Therefore, a simpler prediction method is expected in primary design stage. Such a simple method must be useful to validate the results obtained by a computer code to predict it on the basis of Ikeda,s method, too. On the basis of the predicted roll damping by Ikeda’s method for various ships, a very simple prediction formula of the roll damping of ships is deduced in the present paper. Ship hull forms are systematically changed by changing length, beam, draft, mid-ship sectional coefficient and prismatic coefficient. It is found, however, that this simple formula can not be used for ships that have high position of the center of gravity. A modified method to improve accuracy for such ships is proposed.Key words: Roll damping, simple prediction formula, wave component, eddy component, bilge keel component.IntroductionIn 1970s, strip methods for predicting ship motions in 5-degree of freedoms in waves have been established. The methods are based on potential flow theories (Ursell-Tasai method, source distribution method and so on), and can predict pitch, heave, sway and yaw motions of ships in waves in fairly good accuracy. In roll motion, however, the strip methods do not work well because of significant viscous effects on the roll damping. Therefore, some empirical formulas or experimental dataare used to predict the roll damping in the strip methods.To improve the prediction of roll motions by these strip methods, one of the authors carried out a research project to develop a roll damping prediction method which has the same concept and the same order of accuracy as the strip methods which are based on hydrodynamic forces acting on strips. The review of the prediction method was made by Himeno [5] and Ikeda [6,7] with the computer program.The prediction method, which is now called Ikeda’s method, divides the roll damping into the frictional (BF), the wave (Bw),the eddy (Be) and the bilge keel (Bbk) components at zero forward speed, and at forward speed, the lift (Bi) is added. Increases of wave and friction components due to advance speed are also corrected on the basis of experimental results. Then the roll damping coefficient B44 (= roll damping moment (kgfm)/roll angular velocity (rad/sec)) can be expressed as follows: B44 B bk (1)At zero forward speed, each component except the friction and lift components are predicted for each cross section with unit length and the predicted values are summed up along the ship length. The friction component is predicted by Kato’s formula for a three-dimensional ship shape. Modification functions for predicting the forward speed effects on the roll damping components are developed for the friction, wave and eddy components. The computer program of the method was published, and the method has been widely used.For these 30 years, the original Ikeda’s method developed for conven tional cargo ships has been improved to apply many kinds of ships, for examples, more slender and round ships, fishing boats, barges, ships with skegs and so on. The original method is also widely used. However, sometimes, different conclusions of roll mot ions were derived even though the same Ikeda’s method was used in the calculations. Then, to check the accuracy of the computer programs of the same Ikeda’s method, a more simple prediction method with the almost same accuracy as the Ikeda’s original one h as been expected to be developed. It is said that in design stages of ships, Ikeda’s method is too complicated to use. To meet these needs, a simple roll damping prediction method was deduced by using regression analysis [8].Previous Prediction FormulaThe simple prediction formula proposed in previous paper can not be used for modem ships that have high position of center of gravity or long natural roll period such as large passenger ships with relatively flat hull shape. In order to investigate its limitation, the authors compared the result of this prediction method with original Ikeda’s one while out of its calculating limitation. Fig. 1 shows the result of the comparison with their method of roll damping. The upper one is on the condition that the center of gravity is low and the lower one on the condition that the center of gravity is high.From this figure, the roll damping estimated by this prediction formula is in good agreement with the roll damping calculated by the Ikeda’s method for low positi on of center of gravity, but the error margin grows for the high position of center of gravity. The results suggest that the previous prediction formula is necessary to be revised. Methodical Series ShipsModified prediction formula will be developed on the basis of the predicted results by Ikeda’s method using the methodical series ships. This series ships are constructed based on the Taylor Standard Series and its hull shapes are methodically changed by changing length, beam, draft, midship sectional coefficient and longitudinal prismatic coefficient. The geometries of the series ships are given by the following equations. Proposal of New Prediction Method of Roll DampingIn this chapter, the characteristics of each component of the roll damping, the frictional, the wave, the eddy and the bilge keel components at zero advanced speed, are discussed, and a simple prediction formula of each component is developed.As well known, the wave component of the roll damping for a two-dimensional cross section can be calculated by potential flow theories in fairly good accuracy. In Ikeda's method, the wave damping of a strip section is not calculated and the calculated values by any potential flow theories are used as the wave damping.reason why viscous effects are significant in only roll damping can be explained as follows. Fig. 4 shows the wave component of the roll damping for 2-D sections calculated by a potential flow theory.ConclusionsA simple prediction method of the roll damping of ships is developed on the basis of the Ikeda’s original prediction method which was developed in the same concept as a strip method for calculating ship motions in waves. Using the data of a ship, B/d, Cb,Cm, OG/d, G),bBK/B, Ibk/Lpp,(pa, the roll damping of a ship can be approx imately predicted. Moreover, the limit of application of Ikeda’s prediction method to modern ships that have buttock flow stern is demonstrated by the model experiment. The computer program of the method can be downloaded from the Home Page of Ikeda’s Labo (AcknowledgmentsThis work was supported by the Grant-in Aid for Scientific Research of the Japan Society for Promotion of Science (No. 18360415).The authors wish to express sincere appreciation to Prof. N. Umeda of Osaka University for valuable suggestions to this study.References五、Y. Ikeda, Y. Himeno, N. Tanaka, On roll damping force of shipEffects of friction of hull and normal force of bilge keels, Journal of the Kansai Society of Naval Architects 161 (1976) 41-49. (in Japanese)六、Y. Ikeda, K. Komatsu, Y. Himeno, N. Tanaka, On roll damping force of ship~Effects of hull surface pressure created by bilge keels, Journal of the Kansai Society of Naval Architects 165 (1977) 31-40. (in Japanese)七、Y. Ikeda, Y. Himeno, N. Tanaka, On eddy making component of roll damping force on naked hull, Journal of the Society of Naval Architects 142 (1977) 59-69. (in Japanese)八、Y. Ikeda, Y. Himeno, N. Tanaka, Components of roll damping of ship at forward speed, Journal of the Society of Naval Architects 143 (1978) 121-133. (in Japanese) 九、Y. Himeno, Prediction of Ship Roll Damping一State of the Art, Report of Department of Naval Architecture & Marine Engineering, University of Michigan, No.239, 1981.十、Y. Ikeda, Prediction Method of Roll Damping, Report of Department of Naval Architecture, University of Osaka Prefecture, 1982.十一、Y. Ikeda, Roll damping, in: Proceedings of 1stSymposium of Marine Dynamics Research Group, Japan, 1984, pp. 241-250. (in Japanese)十二、Y. Kawahara, Characteristics of roll damping of various ship types and as imple prediction formula of roll damping on the basis of Ikeda’s method, in: Proceedings of the 4th Asia-Pacific Workshop on Marine Hydrodymics, Taipei, China, 2008,pp. 79-86.十三、Y. Ikeda, T. Fujiwara, Y. Himeno, N. Tanaka, Velocity field around ship hull in roll motion, Journal of the Kansai Society of Naval Architects 171 (1978) 33-45. (in Japanese)十四、N. Tanaka, Y. Himeno, Y. Ikeda, K. Isomura,Experimental study on bilge keel effect for shallow draftship, Journal of the Kansai Society of Naval Architects 180 (1981) 69-75. (in Japanese)常规货船的横摇阻尼在池田方法基础上的一个简单预测方法及其局限性摘要:由于船的横摇阻尼对其粘度有显着的影响,所以很难在理论上计算。

外贸船舶备件名称中英文对照表

外贸船舶备件名称中英文对照表

外贸船舶备件名称中英文对照表In the realm of international trade, shipping vessels play a pivotal role in transporting goods and materials across vast oceans and waterways. As these vessels traverse the globe, they require a comprehensive inventory of spare parts to ensure their continued operational efficiency and safety. It is crucial for ship owners, operators, and suppliers to have a thorough understanding of the nomenclature used for these spare parts, both in English and the respective local languages. This article aims to provide a comprehensive guide to the English and Chinese nomenclatures of various maritime spare parts commonly used in foreign trade shipping vessels.**Engine and Propulsion Systems*** **Main Engine** - 主发动机+ Diesel Engine - 柴油机+ Gas Turbine Engine - 燃气轮机 * **AuxiliaryEngine** - 辅助发动机+ Generator Engine - 发电机发动机+ Boiler Feed Pump Engine - 锅炉给水泵发动机 ***Propeller** - 推进器 + Fixed Propeller - 定距桨+ Controllable Pitch Propeller - 可调距桨**Hull and Structural Components*** **Hull Plating** - 船体板材+ Steel Plating - 钢板+ Aluminum Alloy Plating - 铝合金板 * **Deck Fittings** - 甲板装置 + Hatches - 舱口盖+ Rails - 栏杆 ***Bulkheads and Compartments** - 舱壁和舱室 + Watertight Bulkhead - 水密舱壁 + Cargo Compartment - 货舱**Electrical and Electronic Systems*** **Switchboards and Panels** - 开关板和面板+ Main Switchboard - 主配电板 + Control Panel - 控制面板 ***Navigation and Communication Equipment** - 导航和通讯设备+ Radar - 雷达+ GPS Receiver - GPS接收器 ***Automation and Control Systems** - 自动化和控制系统+ Automatic Steering System - 自动操舵系统 + Engine Control Unit - 发动机控制单元**Deck Machinery and Equipment*** **Anchors and Chains** - 锚和锚链+ Anchor - 锚 + Anchor Chain - 锚链 * **Winches and Capstans** - 绞车和绞盘+ Anchor Winch - 锚绞车+ Mooring Winch - 系泊绞车 * **Cranes and Davits** - 起重机和吊艇架+ Cargo Crane - 货物起重机 + Lifeboat Davit - 救生艇吊架**Safety and Life-Saving Equipment*** **Fire Extinguishers and Systems** - 灭火器和系统 + Portable Fire Extinguisher - 便携式灭火器+ Fixed Fire-Fighting System - 固定式灭火系统 * **Life-Saving Appliances** - 救生设备+ Life Jackets - 救生衣+ Life Rafts - 救生筏 * **Emergency Evacuation Equipment** - 应急疏散设备+ Emergency Escape Breathing Apparatus - 紧急逃生呼吸装置+ Evacuation Chutes - 疏散滑梯The comprehensive list provided above is merely a snapshot of the vast array of spare parts utilized in foreign trade shipping vessels. The nomenclatures and classifications may vary depending on the specific vessel type, size, and operational requirements. It is advisable for industry professionals to consult manufacturer's manuals, industry standards, and specialized dictionaries for more detailed and accurate information.在外贸领域,船舶在运输全球各地的货物和材料方面发挥着至关重要的作用。

造船英语(中英对照)

造船英语(中英对照)

CONTENTS(目录)1.Lesson OneAn Introduction of H.D. Shipyard (1) (4)2.Lesson TwoAn Introduction of H.D. Shipyard (2) (7)3.Lesson ThreePrincipal Dimensions (主尺度) (10)4.Lesson FourOther Sea-keeping Performances (1) (14)5.Lesson FiveOther Sea-keeping Performances (2) (17)6.Lesson SixHull Construction (1) (20)7.Lesson SevenHull Construction (2) (23)8.Lesson EightShip Equipments (26)9.Lesson NineProcess for HullBuilding (1) (29)10.Lesson TenProcess for HullBuilding (2) (33)11.Lesson ElevenWelding (36)12.Lesson TwelveMarine Diesel Engines (1) (40)13.Lesson ThirteenMarine Diesel Engines (2) (43)14.Lesson FourteenMarine Diesel Engines (3) (47)15.Lesson FifteenThe Propulsion Plant (50)16.Lesson SixteenThe Shaft System (53)17.Lesson SeventeenThe Power System of Diesel Engines (56)18.Lesson EighteenShip System (1) (60)19.Lesson NineteenShip System (2) (63)20.Lesson TwentyThe Power System (66)21.Lesson Twenty-oneThe Application of Electricity on Board (69)22.Lesson Twenty-twoIntercommunication and Electrical Signals (73)23.Lesson Twenty-threeThree Stages of Main Engine Control (76)24.Lesson Twenty-fourPower Station Automation (79)25.Lesson Twenty-fiveNavigation Equipments (1) (82)26.Lesson Twenty-sixNavigation Equipments (2) (85)27.Lesson Twenty-sevenRadio Communication Equipments (88)28.Lesson Twenty-eightPainting (91)29.Lesson Twenty-nineQuality Control (93)30.Lesson ThirtyThe Application of Computers (97)LESSON ONEAN INTRODUCTION OF H. D. SHIPYARD (1)H.D.船厂的介绍(1)H. D. Shipyard, situated on the eastern bank of the Huang Pu River in Shanghai, is a comprehensive enterprise specialized in the manufacture of ocean-going vessels as well as marine diesel engines of medium and low speed with full capability in casting, forging and mechanical processing. Two slipways, with one for ships under40,000 tonnage and another for ships under 70,000tonnage, and eight berths for ships of 5,000 T dwt have been constructed in the yard. The outfitting quay, some 700 meters in length, is well equipped with about 3,600 kinds of various equipments. The shipyard is noted for its high comprehensive productivity and facile adaptability.H.D.船厂位于上海黄浦江的东岸,是一个综合性企业,尤其是在远洋轮的建造,和船用中低速柴油机的铸造,锻造和机加工方面具有很强的实力。

船舶规范中英文对照

船舶规范中英文对照
G.R.T./N.R.T.:4253/2562
总吨/净吨:4253/2562
L.O.A./L.B.P.:108.47M/100M
总长/型长:108.47米/100米
BREATH/DEPTH:18M/9M
宽/深:18米/9米
DRAFT:SUMMER FULL7M,LIGHT SHIP3M
吃水:夏季满载7米,空船3米
AIR DRAFT;50M(KEEL TO TOP)CAN FOLD5MMORE AT MAST
空高:50米(龙骨到顶)后桅可再折叠5米
TPC:SUMMER FULL 16T/M
每厘米浸吨:夏季满载16吨/厘米
NUMBER OF DECK:SINGLE DECK
甲板层数:单层甲板
NO OF HOLD/HATCH/HATCH COVER:2/2/PONTOON STEEL
批注本地保存成功开通会员云端永久保存去开通
船舶规范-中英对照、
SHIP'S PARTICULAR
船舶规范
SHIP'S NAME:
船名
CALL SIGN
呼号
TYPE OF SHIP:GENERAL CARGO SHIP
类别:杂货船
PORT OF REGIDTRY & FLAG:
船籍港/国籍
OFFICIAL NO.
船吊工作:1.3t, 岸吊工作:0.8t
INM-C ID:527104541
MMSI:458328620
包装,4200+4000=8200m3
CARGO GEAR: d ERRICK 2X16T,GRANE 2X16T
装货设备:吊杆 2x16t,克令2x16t
MAIN ENGINE:HANSHIN 6EL44-D 3500PSX230RPM SP:11KT

有关船舶的文章 英文版范文

有关船舶的文章 英文版范文

有关船舶的文章英文版范文Ships are fascinating creations that have been around for centuries, connecting people and cultures across vast oceans. Whether you're a sailor, a traveler, or just someone who enjoys the view of the horizon, there's something magical about a ship sailing on the open sea.On a ship, every day is an adventure. The sun rises, painting the sky with brilliant hues, and you feel the gentle rocking of the waves beneath your feet. The sea breeze carries the scent of salt and freedom, reminding you that you're truly at the mercy of the vast ocean.Ships come in all shapes and sizes, from the massive cargo vessels that carry goods across the globe to the sleek yachts that cruise the coastlines. Each ship has its own unique story, a history of voyages and discoveries. You can almost imagine the tales they could tell if they could speak.One of the best things about being on a ship is the sense of community that develops among the crew and passengers. Everyone shares a common purpose, whether it's exploring a new destination or simply.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

船舶制造中英文对照外文翻译文献(文档含英文原文和中文翻译)Spatial scheduling for large assembly blocks inshipbuildingAbstract: This paper addresses the spatial scheduling problem (SPP) for large assembly blocks, which arises in a shipyard assembly shop. The spatial scheduling problem is to schedule a set of jobs, of which each requires its physical space in a restricted space. This problem is complicated because both the scheduling of assemblies with different due dates and earliest starting times and the spatial allocation of blocks with different sizes and loads must be considered simultaneously. This problem under consideration aims to the minimization of both the makespan and the load balance and includes various real-world constraints, which includes the possible directional rotation of blocks, the existence of symmetric blocks, and the assignment of some blocks to designated workplaces or work teams. The problem is formulated as a mixed integer programming (MIP) model and solved by a commercially available solver. A two-stage heuristic algorithm has been developed to use dispatching priority rules and a diagonal fill space allocation method, which is a modification ofbottom-left-fill space allocation method. The comparison and computational results shows the proposed MIP model accommodates various constraints and the proposed heuristic algorithm solves the spatial schedulingproblems effectively and efficiently.Keywords: Large assembly block; Spatial scheduling; Load balancing; Makespan; Shipbuilding1. IntroductionShipbuilding is a complex production process characterized by heavy and large parts, various equipment, skilled professionals, prolonged lead time, and heterogeneous resource requirements. The shipbuilding process is divided into sub processes in the shipyard, including ship design, cutting and bending operations, block assembly, outfitting, painting, pre-erection and erection. The assembly blocks are called the minor assembly block, the sub assembly block, and the large assembly block according to their size and progresses in the course of assembly processes. This paper focuses on the spatial scheduling problem of large assembly blocks in assembly shops. Fig. 1 shows a snapshot of large assembly blocks in a shipyard assembly shop.Recently, the researchers and practitioners at academia and shipbuilding industries recently got together at “Smart Production Technology Forum in Shipbuilding and Ocean Plant Industries” to recognize that there are various spatial scheduling problems in every aspect of shipbuilding due to the limited space, facilities, equipment, labor and time. The SPPs occur in various working areas such as cutting and blast shops, assembly shops, outfitting shops, pre-erection yard, and dry docks. The SPP at different areas has different requirements and constraints to characterize the unique SPPs. In addition, the depletion of energy resources on land put more emphasis on the ocean development. The shipbuilding industries face the transition of focus from the traditional shipbuilding to ocean plant manufacturing. Therefore, the diversity of assembly blocks, materials, facilities and operations in ship yards increases rapidly.There are some solution pr oviders such as Siemens™ and Dassult Systems™ to provide integrated software including product life management, enterprise resource planning system, simulation and etc. They indicated the needs of efficient algorithms to solve medium- to large-sized SPP problems in 20 min, so that the shop can quickly re-optimize the production plan upon the frequent and unexpected changes in shop floors with the ongoing operations on exiting blocks intact.There are many different applications which require efficient scheduling algorithms with various constraints and characteristics (Kim and Moon, 2003, Kim et al., 2013, Nguyen and Yun, 2014 and Yan et al., 2014). However, the spatial scheduling problem which considers spatial layout and dynamic job scheduling has not been studied extensively. Until now, spatial scheduling has to be carried out by human schedulers only with their experiences and historical data. Even when human experts have much experience in spatial scheduling, it takes a long time and intensive effort to produce a satisfactory schedule, due to the complexity of considering blocks’ geometric shapes, loads, required facilities, etc. In pract ice, spatial scheduling for more than asix-month period is beyond the human schedulers’ capacity. Moreover, the space in the working areas tends to be the most critical resource in shipbuilding. Therefore, the effective management of spatial resources through automation of the spatial scheduling process is a critical issue in the improvement of productivity in shipbuilding plants.A shipyard assembly shop is consisted of pinned workplaces, equipment, and overhang cranes. Due to the heavy weight of large assembly block, overhang cranes are used to access any areas over other objects without any hindrance in the assembly shop. The height of cranes can limit the height of blocks that can be assembled in the shop. The shop can be considered as a two-dimensional space. The blocks are placed on precisely pinned workplaces.Once the block is allocated to a certain area in a workplace, it is desirable not to move the block again to different locations due to the size and weight of the large assembly blocks. Therefore, it is important to allocate the workspace to each block carefully, so that the workspace in an assembly shop can be utilized in a most efficient way. In addition, since each block has its due date which is pre-determined at the stage of ship design, the tardiness of a block assembly can lead to severe delay in the following operations. Therefore, in the spatial scheduling problem for large assembly blocks, the scheduling of assembly processes for blocks and the allocation of blocks to specific locations in workplaces must be considered at the same time. As the terminology suggests, spatial scheduling pursues the optimal spatial layout and the dynamic schedule which can also satisfy traditional scheduling constraints simultaneously. In addition, there are many constraints or requirements which are serious concerns on shop floors and these complicate the SPP. The constraints or requirements this study considered are explained here: (1) Blocks can be put in either directions, horizontal or vertical. (2) Since the ship is symmetric around the centerline, there exist symmetric blocks. These symmetric blocks are required to be put next to each other on the same workplace. (3) Some blocks are required to be put on a certain special area of the workplace, because the work teams on that area has special equipment or skills to achieve a certain level of quality or complete the necessary tasks. (4) Frequently, the production plan may not be implemented as planned, so that frequent modifications in production plans are required to cope with the changes in the shop. At these modifications, it is required to produce a new modified production plan which does not remove or move the pre-existing blocks in the workplace to complete the ongoing operations.(5) If possible at any time, the load balancing over the work teams, i.e., workplaces are desirable in order to keep all task assignments to work teams fair and uniform.Lee, Lee, and Choi (1996) studied a spatial scheduling that considers not only traditional scheduling constraints like resource capacity and due dates, but also dynamic spatial layout of the objects. They usedtwo-dimensional arrangement algorithm developed by Lozano-Perez (1983) to determine the spatial layout of blocks in shipbuilding. Koh, Park, Choi, and Joo (1999) developed a block assembly scheduling system for a shipbuilding company. They proposed a two-phase approach that includes a scheduling phase and a spatial layout phase. Koh, Eom, and Jang (2008) extended their precious works (Koh et al., 1999) by proposing the largest contact area policy to select a better allocation of blocks. Cho, Chung, Park, Park, and Kim (2001) proposed a spatial scheduling system for block painting process in shipbuilding, including block scheduling, four arrangement algorithms and block assignment algorithm. Park et al. (2002) extended Cho et al. (2001) utilizing strategy simulation in two consecutive operations of blasting and painting. Shin, Kwon, and Ryu (2008) proposed a bottom-left-fill heuristic method for spatial planning of block assemblies and suggested a placement algorithm for blocks by differential evolution arrangement algorithm. Liu, Chua, and Wee (2011) proposed a simulation model which enabled multiple priority rules to be compared. Zheng, Jiang, and Chen (2012) proposed a mathematical programming model for spatial scheduling and used several heuristic spatial scheduling strategies (grid searching and genetic algorithm). Zhang and Chen (2012) proposed another mathematical programming model and proposed the agglomeration algorithm.This study presents a novel mixed integer programming (MIP) formulation to consider block rotations, symmetrical blocks, pre-existing blocks, load balancing and allocation of certain blocks to pre-determined workspace. The proposed MIP models were implemented by commercially available software, LINGO® and problems of various sizes are tested. The computational results show that the MIP model is extremely difficult to solve as the size of problems grows. To efficiently solve the problem, a two-stage heuristic algorithm has been proposed.Section 2 describes spatial scheduling problems and assumptions which are used in this study. Section 3 presents a mixed integer programming formulation. In Section 4, a two-stage heuristic algorithm has been proposed, including block dispatching priority rules and a diagonal fill space allocation heuristic method, which is modified from the bottom-left-fill space allocation method. Computational results are provided in Section 5. The conclusions are given in Section 6.2. Problem descriptionsThe ship design decides how to divide the ship into many smaller pieces. The metal sheets are cut, blast, bend and weld to build small blocks. These small blocks are assembled to bigger assembly blocks. During this shipbuilding process, all blocks have their earliest starting times which are determined from the previous operational step and due dates which are required by the next operational step. At each step, the blocks have their own shapes of various sizes and handling requirements. During the assembly, no block can overlap physically with others or overhang the boundary of workplace.The spatial scheduling problem can be defined as a problem to determine the optimal schedule of a given set of blocks and the layout of workplaces by designating the blocks’ workplace simultaneously. As the term implies, spatial scheduling pursues the optimal dynamic spatial layout schedule which can also satisfy traditional scheduling constraints. Dynamic spatial layout schedule can be including the spatial allocation issue, temporal allocation issue and resource allocation issue.An example of spatial scheduling is given in Fig. 2. There are 4 blocks to be allocated and scheduled in a rectangular workplace. Each block is shaded in different patterns. Fig. 2 shows the 6-day spatial schedule of four large blocks on a given workplace. Blocks 1 and 2 are pre-existed or allocated at day 1. The earliest starting times of blocks 3 and 4 are days 2 and 4, respectively. The processing times of blocks 1, 2 and 3 are 4, 2 and 4 days, respectively.The spatial schedule must satisfy the time and space constraints at the same time. There are many objectives in spatial scheduling, including the minimization of makespan, the minimum tardiness, the maximum utilization of spatial and non-spatial resources and etc. The objective in this study is to minimize the makespan and balance the workload over the workspaces.There are many constraints for spatial scheduling problems in shipbuilding, depending on the types of ships built, the operational strategies of the shop, organizational restrictions and etc. Some basic constraints are given as follows; (1) all blocks must be allocated on given workplaces for assembly processes and must not overstep the boundary of the workplace; (2) any block cannot overlap with other blocks; (3) all blocks have their own earliest starting time and due dates; (4) symmetrical blocks needs to be placed side-by-side in the same workspace. Fig. 3 shows how symmetrical blocks need to be assigned; (5) some blocks need to be placed in the designated workspace; (6) there can be existing blocks before the planning horizon; (7) workloads forworkplaces needs to be balanced as much as possible.In addition to the constraints described above, the following assumptions are made.(1) The shape of blocks and workplaces is rectangular.(2 )Once a block is placed in a workplace, it cannot be moved or removed from its location until the process is completed.(3 ) Blocks can be rotated at angles of 0° and 90° (see Fig. 4).(4) The symmetric blocks have the same sizes, are rotated at the same angle and should be placed side-by-side on the same workplace.(5) The non-spatial resources (such as personnel or equipment) are adequate.3. A mixed integer programming modelA MIP model is formulated and given in this section. The objective function is to minimize makespan and the sum of deviation from average workload per workplace, considering the block rotation, the symmetrical blocks, pre-existing blocks, load balancing and the allocation of certain blocks to pre-determined workspace.A workspace with the length LENW and the width WIDW is considered two-dimensional rectangular space. Since the rectangular shapes for the blocks have been assumed, a block can be placed on workspace by determining (x, y) coordinates, where 0 ⩽ x ⩽ LENW and 0 ⩽ y ⩽ WIDW. Hence, the dynamic layout of blocks on workplaces is similar to two-dimensional bin packing problem. In addition to the block allocation, the optimal schedule needs to be considered at the same time in spatial scheduling problems. Z axis is introduced to describe the time dimension. Then, spatial scheduling problem becomes a three-dimensional bin packing problem with various objectives and constraints.The decision variables of spatial scheduling problem are (x, y, z) coordinates of all blocks within athree-dimensional space whose sizes are LENW, WIDW and T in x, y and z axes, where T represents the planning horizon. This space is illustrated in Fig. 5.In Fig. 6, the spatial scheduling of two blocks into a workplace is illustrated as an example. The parameters p1 and p2 indicate the processing times for Blocks 1 and 2, respectively. As shown in z axis, Block 2 is scheduled after Block 1 is completed.4. A two-stage heuristic algorithmThe computational experiments for the MIP model in Section 3 have been conducted using a commercially available solver, LINGO®. Obtaining global optimum solutions is very time consuming, considering the number of variables and constraints. A ship is consisted of more than 8 hundred large blocks and the size of problem using MIP model is beyond today’s computational ability. A two-stage heuristic algorithm has been proposed using the dispatching priority rules and a diagonal fill method.4.1. Stage 1: Load balancing and sequencingPast research on spatial scheduling problems considers various priority rules. Lee et al. (1996) used a priorityrule for the minimum slack time of blocks. Cho et al. (2001) and Park et al. (2002) used the earliest due date. Shin et al. (2008) considered three dispatching priority rules for start date, finish date and geometric characteristics (length, breadth, and area) of blocks. Liu and Teng (1999) compared 9 different dispatching priority rules including first-come first-serve, shortest processing time, least slack, earliest due date, critical ratio, most waiting time multiplied by tonnage, minimal area residue, and random job selection. Zheng et al. (2012) used a dispatching rule of longest processing time and earliest start time.Two priority rules are used in this study to divide all blocks into groups for load balancing and to sequence them considering the due date and earliest starting time. Two priority rules are streamlined to load-balance and sequence the blocks into an algorithm which is illustrated in Fig. 7. The first step of the algorithm in this stage is to group the blocks based on the urgency priority. The urgency priority is calculated by subtracting the earliest starting time and the processing time from the due date for each block. The smaller the urgency priority, the more urgent the block needs to bed scheduled. Then all blocks are grouped into an appropriate number of groups for a reasonable number of levels in urgency priorities. Let g be this discretionary number of groups. There are g groups of blocks based on the urgency of blocks. The number of blocks in each group does not need to be identical.Blocks in each group are re-ordered grouped into as many subgroups as workplaces, considering the workload of blocks such as the weight or welding length. The blocks in each subgroup have the similar urgency and workloads. Then, these blocks in each subgroup are ordered in an ascending order of the earliest starting time. This ordering will be used to block allocations in sequence. The subgroup corresponds to the workplace.If block i must be processed at workplace w and is currently allocated to other workplace or subgroup than w, block i is swapped with a block at the same position of block i in an ascending order of the earliest starting time at its workplace (or subgroup). Since the symmetric blocks must be located on a same workplace, a similar swapping method can be used. One of symmetric blocks which are allocated into different workplace (or subgroups) needs to be selected first. In this study, we selected one of symmetric blocks whichever has shown up earlier in an ascending order of the earliest starting time at their corresponding workplace (or subgroup). Then, the selected block is swapped with a block at the same position of symmetric blocks in an ascending order of the earliest starting time at its workplace (or subgroups).4.2. Stage 2: Spatial allocationOnce the blocks in a workplace (or subgroup) are sequentially ordered in different urgency priority groups, each block can be assigned to workplaces one by one, and allocated to a specific location on a workplace. There has been previous research on heuristic placement methods. The bottom-left (BL) placement method was proposed by Baker, Coffman, and Rivest (1980) and places rectangles sequentially in a bottom-left most position. Jakobs (1996) used a bottom-left method that is combined with a hybrid genetic algorithm (see Fig.8). Liu and Teng (1999) developed an extended bottom-left heuristic which gives priority to downward movement, where the rectangles is only slide leftwards if no downward movement is possible. Chazele (1983) proposed the bottom-left-fill (BLF) method, which searches for lowest bottom-left point, holes at the lowest bottom-left point and then place the rectangle sequentially in that bottom-left position. If the rectangle is not overlapped, the rectangle is placed and the point list is updated to indicate new placement positions. If the rectangle is overlapped, the next point in the point list is selected until the rectangle can be placed without any overlap. Hopper and Turton (2000) made a comparison between the BL and BLF methods. They concluded that the BLF method algorithm achieves better assignment patterns than the BL method for Hopper’s example problems.Spatial allocation in shipbuilding is different from two-dimensional packing problem. Blocks have irregular polygonal shapes in the spatial allocation and blocks continuously appear and disappear since they have their processing times. This frequent placement and removal of blocks makes BLF method less effective in spatial allocation of large assembly block.In order to solve these drawbacks, we have modified the BLF method appropriate to spatial scheduling for large assembly blocks. In a workplace, since the blocks are placed and removed continuously, it is more efficient to consider both the bottom-left and top-right points of placed blocks instead of bottom-left points only. We denote it as diagonal fill placement (see Fig. 9). Since the number of potential placement considerations increases, it takes a bit more time to implement diagonal fill but the computational results shows that it is negligible.The diagonal fill method shows better performances than the BLF method in spatial scheduling problems. When the BLF method is used in spatial allocation, the algorithm makes the allocation of some blocks delayed until the interference by pre-positioned blocks are removed. It generates a less effective and less efficient spatial schedule. The proposed diagonal fill placement method resolve this delays better by allocating the blocks as soon as possible in a greedy way, as shown in Fig. 10. The potential drawbacks from the greedy approaches is resolved by another placement strategy to minimize the possible dead spaces, which will be explained in the following paragraphs.The BLF method only focused on two-dimensional bin packing. Frequent removal and placement of blocks in a workspace may lead to accumulation of dead spaces, which are small and unusable spaces among blocks. A minimal possible-dead space strategy has been used along with the BLF method. Possible-dead spaces are being generated over the spatial scheduling and they have less chance to be allocated for future blocks. The minimal possible-dead space strategy minimizes the potential dead space after allocating the following blocks (Chung, 2001 and Koh et al., 2008) by considering the 0° and 90° rotation of the block and allocating the following block for minimal possible-dead space. Fig. 11 shows an example of three possible-dead space calculations using the neighbor block search method. When a new scheduling block is considered to be allocated, the rectangular boundary of neighboring blocks and the scheduling blocks is searched. This boundary can be calculated by obtaining the smallest and the largest x and y coordinates of neighboring blocks and the scheduling blocks. Through this procedure, the possible-dead space can be calculated as shown in Fig.11. Considering the rotation of the scheduling blocks and the placement consideration points from the diagonal fill placement methods, the scheduling blocks will be finally allocated.In this two-stage algorithm, blocks tend to be placed adjacent to one of the alternative edges and their assignments are done preferentially to minimize fractured spaces.5. Computational resultsTo demonstrate the effectiveness and efficiency of the proposed MIP formulation and heuristic algorithm, the actual data about 800+ large assembly blocks from one of major shipbuilding companies has been obtainedand used. All test problems are generated from this real-world data.All computational experiments have been carried out on a personal computer with a Intel® Core™ i3-2100 CPU @ 3.10 GHz with 2 GB RAM. The MIP model in Section 3 has been programmed and solved using LINGO® version 10.0, a commercially available software which can solve linear and nonlinear models. The proposed two-stage heuristic algorithm has been programmed in JAVA programming language.Because our computational efforts to obtain the optimal solutions for even small problems are more than significant, the complexity of SPP can be recognized as one of most difficult and time consuming problems.Depending on the scaling factor α in objective function of the proposed MIP formulation, the performance of the MIP model varies significantly. Setting α less than 0.01 makes the load balancing capability to be ignored from the optimal solution in the MIP model. For computational experiments in this study, the results with the scaling factor set to 0.01 is shown and discussed. The value needs to be fine-turned to obtain the desirable outcomes.Table 1 shows a comparison of computational results and performance between the MIP models andtwo-stage heuristic algorithm. As shown in Table 1, the proposed two-stage heuristic algorithm finds thenear-optimal solutions for medium and large problems very quickly while the optimal MIP models was not able to solve the problems of medium or large sizes due to the memory shortage on computers. It is observed that the computational times for the MIP problems are rapidly growing as the problem sizes increases. The test problems in Table 1 have 2 workplaces.Table 1.Computational results and performance between the MIP models and two-stage heuristic algorithm.The MIP model Two-stage heuristic algorithmNumber of blocksOptimal solution Time (s) Best known solution Time (s)10 12.360 1014.000 12.360 0.02620 22.380a 38250.000 21.380 0.07830 98.344a 38255.000 30.740 0.21850 ––53.760 0.719100 ––133.780 2.948200 ––328.860 12.523The MIP model Two-stage heuristic algorithmNumber of blocksOptimal solution Time (s) Best known solution Time (s)300 ––416.060 40.154400 ––532.360 73.214Best feasible solution after 10 h in Global Solver of LINGO®.Full-size tableTable optionsView in workspaceDownload as CSVThe optimal solutions for test problems with more than 50 blocks in Table 1 have been not obtained even after 24 h. The best known feasible solutions after 10 h for the test problems with 20 blocks and 30 blocks are reported in Table 1. It is observed that the LINGO® does not solve the nonlinear constraints very well as shown in Table 1. For very small problem with 10 blocks, the LINGO® was able to achieve the optimal solutions. For slightly bigger problems, the LINGO® took significantly more time to find feasible solutions. From this observation, the approaches to obtain the lower bound through the relaxation method and upper bounds are significant required in future research.In contrary, the proposed two-stage heuristic algorithm was able to find the good solutions very quickly. For the smallest test problem with 10 blocks, it was able to find the optimal solution as well. The computational times are 1014 and 0.026 s, respectively, for the MIP approach and the proposed algorithm. Interestingly, the proposed heuristic algorithm found significantly better solutions in only 0.078 and 0.218 s, respectively, for the test problems with 20 and 30 blocks. For these two problems, the LINGO® generates the worse solutions than the heuristics after 10 h of computational times. The symbol ‘–’ in Table 1 indicates that the Global Solver of LINGO® did not find the feasible solutions.Another observation on the two-stage heuristic algorithms is the robust computational times. The computation times does not change much as the problem sizes increase. It is because the simple priority rules are used without considering many combinatorial configurations.Fig. 12 shows partial solutions of test problems with 20 and 30 blocks on 2 workplaces. The purpose of Fig. 12 is to show the progress of production planning generated by the two-stage heuristic algorithm. Two workplaces are in different sizes of (40, 30) and (35, 40), respectively.6. ConclusionsAs global warming is expected to open a new way to transport among continent through North Pole Sea and to expedite the oceans more aggressively, the needs for more ships and ocean plants are forthcoming. The shipbuilding industries currently face increased diversity of assembly blocks in limited production shipyard. Spatial scheduling for large assembly blocks holds the key role in successful operations of the shipbuilding。

相关文档
最新文档