(word完整版)五年级数学思维训练60题
五年级数学思维训练100题及解答
五年级数学思维训练100题及解答(1—5)
五年级数学思维训练100题及解答(6—10)
五年级数学思维训练100题及解答(11—15)
五年级数学思维训练100题及解答(16—20)
五年级数学思维训练100题及解答(20—25)
五年级数学思维训练100题及解答(26—30)
五年级数学思维训练100题及解答(31—35)
五年级数学思维训练100题及解答(36—40)
五年级数学思维训练100题及解答(41—45)
五年级数学思维训练100题及解答(46—50)
五年级数学思维训练100题及解答(51—55)
五年级数学思维训练100题及解答(56—60)
【
五年级数学思维训练100题及解答(61—65)
五年级数学思维训练100题及解答(66—70)
五年级数学思维训练100题及解答(71—75)
五年级数学思维训练100题及解答(76—80)
五年级数学思维训练100题及解答(81—85)
五年级数学思维训练100题及解答(86—90)
五年级数学思维训练100题及解答(91—95)
五年级数学思维训练100题及解答(96—100)。
(全)小学五年级数学思维训练50题(附解析及答案)
小学五年级数学思维训练50题(附解析及答案)1. 一副扑克牌共54张,最上面的一张是红桃K。
如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K 才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。
又因为每次移动12张牌,所以至少移动108÷12=9(次)。
2. 爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。
”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁。
提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。
(60岁)3. 某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。
解:11,13,17,23,37,47。
4. 在放暑假的8月份,小明有五天是在姥姥家过的。
这五天的日期除一天是合数外,其它四天的日期都是质数。
这四个质数分别是这个合数减去1,这个合数加上1,这个合数乘上2减去1,这个合数乘上2加上1。
问:小明是哪几天在姥姥家住的?7. 某种商品按定价卖出可得利润960元,若按定价的80%出售,则亏损832元。
问:商品的购入价是多少元?解:8000元。
按两种价格出售的差额为960+832=1792(元),这个差额是按定价出售收入的20%,故按定价出售的收入为1792÷20%=8960(元),其中含利润960元,所以购入价为8000元。
8. 甲桶的水比乙桶多20%,丙桶的水比甲桶少20%。
乙、丙两桶哪桶水多?解:乙桶多。
9. 学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A 题的有10人,做对B题的有13人,做对C题的有15人。
如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?解:只做对两道题的人数为(10+13+15)-25 -2×1=11(人),只做对一道题的人数为25-11-1=13(人)。
小学数学五年级思维训练练习题
小学数学五年级思维训练练习题
一、选择题
1. 下列哪个数不是偶数?
A. 38
B. 45
C. 64
D. 72
2. 已知一个长方形的长为15米,宽为8米,那么它的周长是多少?
A. 21米
B. 46米
C. 46厘米
D. 30米
3. 一群学生参加游戏,分别完成了5、7、8、6个任务,他们共完
成了多少个任务?
A. 25个
B. 26个
C. 28个
D. 30个
二、填空题
1. 7528 + ______ = 8000
2. 75.9 ÷ ______ = 15.98
3. 某数除以2,商是4,余数是3,这个数是______
三、计算题
1. 请用标记法计算:492 × 7 = ______
2. 甲、乙两个人一起修理一个机器,甲一小时能修理1/3个,乙一小时能修理1/4个,他们一起修理几个小时可以修好?
注:请写出计算步骤。
四、应用题
1. 小明有35个苹果,小华有75个苹果,如果他们把所有的苹果按照相同的数量分给他们的朋友,谁的朋友能分得多一些?为什么?
2. 我国每年的5月1日是国际劳动节,今年是星期四,请问过了多少天是星期五?
注:请写出计算步骤。
以上为小学数学五年级思维训练练习题,祝同学们取得好成绩!。
(完整word版)五年级第一学期数学新思维训练
五年级训练(1)学习目标:掌握小数乘法的意义,熟练进行计算、简算。
一、填一填1、求2。
4的一半是多少?有乘法算式表示是()。
2、一个正方形的边长是0。
65,它的周长是()米,面积是( )平方米.3、4.25的5倍是( ).0.84的十分之四是( ).4、在下面的○里填上“<、>或=”.3.8×0.9○3.8 52。
6○52。
6×1.0178。
5×1。
2○7。
85×0.12 81.3○81。
3×0。
8612.5×0○12.5 123×10○1235、一桶油重4.8千克,半桶油重()千克?6、两个因数的积是3。
8,如果两个因数的都缩小10倍,积变为( )7、甲数是76。
5,乙数比甲数的4倍少63。
8,乙数是().8、3.7094保留一位小数约是();精确到百分位约是();精确到0。
001约是( )。
二、列式计算37.6的百分之四是多少?3。
87的6倍是多少?0.375的十分之五是多少?12个0.7的和是多少?15的十分之八是多少? 2.4的百分之二十五是多少?三、用简便方法计算12.5×4.4×8 32。
8×2.5×0.47.75×2。
8+2.8×2。
25 0.65×10。
19。
7×99 7。
63×99+7.630。
58×3.2+7。
8×0.58—0。
58 2。
9+6。
7×2。
9+2.9×2。
3四、数学医院,把正确的竖式写在右面.五.解决问题1一支自动铅笔的售价是3。
5元,一支钢笔的售价是自动铅笔的2.4倍,买一支自动铅笔和一支钢笔共需多少元?2食品店运来35瓶鲜牛奶,运来的酸奶瓶数是鲜奶的2.4倍,运来的酸奶比鲜奶多多少瓶?3一个电影院的票价有两种,4。
5元一张的有400个座位,3。
5元一张的有350个座位.如果满座,每场收入是多少元?4一种乒乓球拍,每个18.6元,买6个这样的乒乓球拍一共需用多少元?5一种水果糖,每千克7。
(完整版)小学五年级数学思维训练解方程
小学五年级数学思维训练解方程(一)【例1】解方程:(1)x+63= 100(2)x-127=2.7(3)9x=6.3(4)x÷5=120【巩固】解方程:(1)x-7.4=8 (2)3+x=18(3)0.4x=2.4 (4)x÷5=0.016【例2】解方程:(1)x+3x=664(2)4x-x=72 (3)x+7x-4x+x=(15-5)×4【拓展】解方程:(1)3x+5-2x=13 (2)5x-8x+6x-10x=15【3】解方程:(1)8x-15=3x+5(2)15x+3=28+14x(3)3x-3=2x+2【巩固】解方程:(1)12x-4=7x+6 (2)15x+5=8x+40 (3)0.1x+0.75=3-0.125x【拓展】解方程:(1)x+3x+5+2x+1=840 (2)5x-8+6x=10x+15(3)11x+42-2x=100-9x-22 (4)8x-3+2x+1=7x+6-5x 【例4】解方程:(1)4x+48=6x-8 (2)46-5x=x-6+4【【课后练习】1、解方程:(1)x-0.52=1.3 (2)x+2.7=14.2(3)0.5x=3.9(4)x÷2.5=42、解方程:(1)x+3x=160 (2)4x-x=249 (3)3x-2x+x=(11-3)×4拓展】解方程:(1)2x+35-3x=15x-39(2)0.4x-0.08+1.5=0.7x-0.383、解方程:(1)3.4x-1.02=0.2x+16.9(2)2x+5=25-8x4、解方程:(1)x+3x+14=134 (2)x+3x+2+3+2=1275、解方程:(1)1.5x+0.5=2.5x-0.56、解方程:(1)60x-40=(60+20)×(x-5)(2)32x+32×0.5-25x+64x=24x+496-49x2)6x-59=10x-75(第二讲解方程(二)【知识梳理】1、解方程的依据:(1)方程等号的两边同时加上或减去同一个数,方程仍然成立;(2)方程等式两边同时乘以或除以一个不为零的数,方程等式成立。
五年级数学思维训练100题
五年级数学思维训练100题以下是100道五年级数学思维训练题目:1.小明有5盒巧克力,小华比他多3盒,他们一共有多少盒巧克力?2.小红有8个苹果,小刚给了她2个后,小红的苹果数量是小刚的3倍,小刚原来有多少个苹果?3.小华买了一支钢笔和一本笔记本,一共花了12元。
如果笔记本的价格是钢笔的(1/2),那么钢笔和笔记本各是多少元?4.妈妈买了一桶油,用去了全部的(2/5),还剩下20千克。
这桶油原来有多少千克?5.小丽看一本故事书,第一天看了全书的(1/4),第二天看了余下的(1/3),还剩48页没看。
这本故事书一共有多少页?6.一列火车7小时行驶了532千米,一辆汽车5小时行驶了210千米。
火车的速度是每小时多少千米?7.一条裤子76元,一件上衣的价钱是它的12倍。
一件上衣多少元?8.一只白兔重4千克,一只熊猫的体重是它的9倍。
熊猫重多少千克?9.50辆军车排成一列,每辆车长4米,每辆车之间隔5米,这列车队共长多少米?10.一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒?11.一个等腰三角形两条边的长度分别是3和6,这个三角形的周长是多少?12.一个两位数,十位数字是个位数字的3倍,如果把这个两位数的个位数字与十位数字对调,所得到的新的两位数与原数之和是88,原来的两位数是多少?13.一个两位数,十位数字是个位数字的4倍,如果把这个两位数的个位数字与十位数字对调,所得到的新的两位数与原数之和是66,原来的两位数是多少?14.一个长方形的长和宽的比是7:3,如果长减少5厘米,宽增加5厘米,则面积增加100平方厘米,那么原来长方形周长是多少厘米?15.甲、乙两地相距450千米,一列火车从甲站出发行驶了全程的(3/5),离乙地还有多少千米?16.某班共有学生48人,其中男生有32人,男生占全班人数的几分之几?女生占全班人数的几分之几?17.有一桶油,第一次取出总数的(3/8),第二次取出总数的(1/4),两次共取出48千克。
五年级思维训练
随堂练习
第六讲 盈亏问题 教学目标:
专题简介
盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定对象,如果按某种标 准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的 数量和分配对象的数量。例如:把一袋饼干分给班上的小朋友,如果没人分3快,则多12 块;如果没人分4块,则少8块。小朋友有多少人?饼干有多少块?这种一盈一亏的情况, 就是我们通常说的标准的盈亏问题。 盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数 还有一些非标准的盈亏问题,他们被分为四类: 1、 两盈:两次分配都有余。 2、 两亏:两次分配都不够。 3、 盈适足:一次分配有余,一次分配刚好。 4、 不足适足:一次分配不够,一次分配正好。 一些非标准的盈亏问题都可以由标准的盈亏问题演变过来的,解题时我们可以记住: 1、“两亏”问题的基本数量关系是:(亏-亏)÷两次所分之差=参与分配对象的总 数。 2、“两盈”问题的基本数量关系是:(盈-盈)÷两次所分之差=参与分配对象的总 数。 3、“一盈一亏”问题的基本数量关系是:(盈+亏)÷两次所分之差=参与分配对象 的总数。
例题1:甲组有图书是乙组的3倍,
随堂练习
1、甲、乙二人加工一批帽子,甲每天比乙多加工10个。途中 乙因事休息了5天,20天后,甲加工的帽子正好是乙加工的2倍, 这时两人各加工了多少个? 2、甲、乙两车同时从A、B两地相对开出,甲车每小时比乙 车多行20千米。途中乙车因修车用了2个小时,6小时后甲车到达 两地的中点,而乙车才行驶了甲车所行路程的一半。问:A、 B 两地相距多少千米? 3、甲、乙两人承包一项工程,共得工资1120元,已知甲工作 了10天,乙工作了12天,且甲5天的工资和乙4天的工资一样多。 求甲、乙每天各得工资多少元?
(精品)新人教版五年级数学思维训练100题及解答(全)
五年级数学思维训练100题及解答(全)1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49. 有7个数,它们的平均数是18。
小学五年级下册数学思维训练题及答案
小学五年级下册数学思维训练题及答案五年级下册小学数学思维训练题1.新民小学133个少先队员担任卫生宣传,把他们分成几个人数相等的小组,有()种分法。
2.三根钢筋的长分别是18米、24米、36米。
现在要把它们截成同样长的小段而没有剩余,每段最长可截成()米。
3.把110个桔子分装在10全篮子里,每个篮子里所装的桔子数正好是10个连续偶数,是怎样分装的?4、99个连续的自然数相加,它们的和是奇数还是偶数?()99个连续的奇数相加,它们的和是奇数还是偶数?()99个连续的偶数相加的和是奇数还是偶数?()5.四个连续自然数的乘积是3024,这四个数分别是()。
6.一个长方体沿着高的方向截去2cm,表面积就减少48cm2,剩下的部分成为一个正方体,求原长方体的体积是()。
7.已知60 = 2×2×3×5,,知道60除了有因数1以外,还有因数()。
8.从2、3、5、7、11这五个数中,任取两个不同的数分别当作一个分数的分子和分母,这样的分数有()个。
9.把一些橙和柑分装入袋,如果每袋6个橙、5个柑,橙分完了还剩3个柑;如果每袋8个柑、6个橙,柑分完了还剩18个橙。
橙和柑一共有()个。
10.有一筐苹果每次按2个、3个、4个、5个地数,数到最后都是多一个,如果按每次数6个,最后篮子里还剩1个。
这个篮子里至少有()个苹果。
11. 一个两位数十位上的数字是个位上数字的3倍,这个两位数减9,则个位上的数字与十位上的数字相等。
这个两位数是()。
12.计算22+42+62+……+402=()13.五年级数学竞赛,小明获得的名次与他的年龄和竞赛的成绩相乘之积是2134,小明获得的名次()名,成绩是()分。
14、把三个长5dm、宽4dm、高3dm的长方体礼品盒包装在一起,怎样包装用的包装纸最少?(请画出图)要用()平方分米的包装纸。
15、把210个零件分装在几个盒子里,要使每个盒子的零件数相等,有()种装法。
(完整版)五年级上册数学思维训练题全套,推荐文档
1. 一个直角梯形的一个底是5厘米,如果把它的另一个底减少2厘米,这个梯形就变成了一个正方形,这个梯形的面积是()平方厘米。
382. 1.4的小数部分第30位数字是()。
① 1 ② 3 ③ 4 ④ 83. 有五个数,按从小到大的顺序从左至右依次排开着。
这五个数的总和是113,其中前三个数的平均数是18.2.后三个数的平均数是26.8,你能求出这五个数的中位数吗?1. 把一张长方形的纸对折3次,其中一份是这张纸的( )。
A 、B 、C 、D 、3181911812. 求下列图中阴影部分的面积。
3. 在平行四边形的地旁边有一块三角形的地(如下图阴影部分,单位:米)准备出售,售价是每平方米4200元,买这块地需要多少钱?1. 一个用小正方体拼摆的立体图形,从上面、左面看到的图形分别如下:拼摆这个立体图形至少要用()个小正方体。
2. 一个直角梯形的一条底边长5厘米,如果把另一条底边减少2厘米,这个梯形就变成一个正方形。
这个梯形的面积是()平方厘米。
3.求出下面两个图形的面积。
五年级上册数学思维训练题第四套1. 同时掷两个骰子,得到两个数,这两个数的和最大是(),最小是()。
2. 图中每个小方格表示1平方厘米,比较阴影部分的面积,()图与其他三个图形不相等。
3. 食品店要将2千克薯片分装成每袋0.1千克和每袋0.25千克的两种包装出售,两种包装必须都有,可以怎么装,各是几袋?请你设计3种不同的包装方案。
方案一: 0.1千克/袋,装()袋,0.25千克/袋,装()袋。
方案二: 0.1千克/袋,装()袋,0.25千克/袋,装()袋。
方案三: 0.1千克/袋,装()袋,0.25千克/袋,装()袋。
五年级上册数学思维训练题第五套1. 如右图,平行四边形的面积是18平方分米,阴影部分两个三角形的面积之和是()平方分米。
2. 一个直角三角形的三条边分别是6厘米,8厘米和10厘米,这个三角形的面积是()平方厘米,它斜边上的高是()厘米。
五年级数学思维训练(巧用公因数
五年级数学思维训练(巧用公因数)学校____________姓名______________成绩___________例1、一个数是42的因数,同时又是3的倍数,这个数可以是()。
例2、把一张长24厘米,宽36厘米的长方形纸裁成相同的正方形纸片(纸没有剩余),至少能裁成()片。
例3、将一个长105厘米,宽45厘米,高30厘米的长方体木料,锯成同样大小的小正方体,如果不计损耗,锯完后木料不许有剩余,锯成的小正方体木块的棱长大于1厘米的自然数。
可以有()种不同的锯法。
每种锯法中小正方体的棱长是多少?分别可以锯成多少块?例4、有三根小棒,分别长12厘米、14厘米、56厘米。
要把它们截成同样长的小棒不许有剩余,每根小棒最长能有()厘米,一共可以截成()根小棒。
例5、幼儿园阿姨给小朋友分苹果,如果把167个苹果平均分给小朋友,还剩下5个;如果把111个苹果平均分给小朋友还剩下3个;如果把66个苹果平均分给小朋友,还剩下12个。
请你算一算,幼儿园最多有()个小朋友。
练习1、一个数是1001的因数,同时又是11的倍数,符号条件的最大数是()。
2、把一张长32分米,宽12分米的长方形纸裁成面积相同的正方形纸片(纸没有剩余),裁成的小正方形纸片的面积最大是()平方分米,可以裁成()片。
3、将一个长105厘米,宽63厘米,高42厘米的长方体木料,锯成同样大小的小正方体,如果不计损耗,锯完后木料不许有剩余,锯成的小正方体木块的棱长大于1厘米的自然数。
可以有()种不同的锯法。
每种锯法中小正方体的棱长是多少?分别可以锯成多少块?4、有三根木料,分别长12分米、18分米、24分米。
要把它们截成同样长的小段不许有剩余,每小段木料最长能有()分米,一共可以截成()段。
5、美术老师买了一些铅笔,打算平均分给美术组的同学,那54支铅笔来分,结果余下了3支,拿70支铅笔来分,结果余下了2支。
你能算出这个美术小组有()个学生。
思考1、两个两位数的乘积是1734(两个数不是倍数关系),它们的最大公因数是17。
五年级数学思维训练题100道
五年级数学思维训练100道及答案一、填空题。
(1)【计算】:28+208+2008+20008=__________(2)【计算】:(1+3+5+…+2025)-(2+4+6+…+2024)=__________(3)【计算】:1.1+1.3+1.5+…+9.9=____________(4)【计算】:0.32×25×12.5=____________(5)【排列组合】4个人进行篮球训练,互相传球接球,要求每个人接球后马上传给别人,开始由甲发球,并作为第一次传球,第五次传球后,球又回到甲手中,问有_________种传球方法.(6)【不定方程】五年级一班共有人,每人参加一个兴趣小组,共有,,,,五个小组.若参加组的有人,参加组的人数仅次于组,参加组,组的人数相同,参加组的人数最少,只有人.那么,参加组的有_______人.(7)【行程问题】一个旅游者于是10时15分从旅游基地乘小艇出发,务必在不迟于当日13时返回。
已知河水速度为1.4千米/小时,小艇在静水中的速度为3千米/小时,如果旅游者每过30分钟就休息15分钟,不靠岸,只能在某次休息后才返回,那么他从旅游基地出发乘艇走过的最大距离是____千米。
(8)【等差数列】一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。
最后,每只小猴分得8个野果。
这群小猴一共有_________只。
(9)【和差问题】有60名学生,男生,女生各30名,他们手拉手围成一个圆圈.如果让原本牵着手的男生和女生放开手,可以分成18个小组.那么,如果原本牵着手的男生和男生放开手时,分成了___________个小组.(10)【统筹规划】星期天妈妈要做好多事情。
擦玻璃要20分钟,收拾厨房要15分钟,洗脏衣服的领子,袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣服要10分钟。
小学五年级下册数学经典思维训练题7套,拓展孩子思维好资料!
小学五年级数学经典思维训练题11、如右图,平行四边形的面积是18平方分米,阴影部分两个三角形的面积之和是()平方分米。
2、一个直角三角形的三条边分别是6厘米,8厘米和10厘米,这个三角形的面积是()平方厘米,它斜边上的高是()厘米。
3、一个三角形与一个平行四边行等底等高,它们的面积之和是40.8平方厘米,那么这个平行四边形的面积是()平方厘米。
4、已知1÷A=0.0909……;2÷A=0.1818……;3÷A=0.2727;4÷A=0.3636……;那么9÷A的商是()。
5、妈妈带小乐到新建的游乐场玩,游乐场实行了新的收费标准,她们出来后按收费标准交了停车费8.5,你知道她们在游乐场最多玩了多长时间吗?6、盒子里有5个黄球,1个红球和3个白球,如果从中任意模出1个球,要使摸出黄球的可能性为1/3,那么还要放入()个红球。
7、把一个小数的小数点向右移动一位后,比原数多3.24,原数是多少?8、浩浩计划到书店买一些相同的作文书分给小伙伴们一起阅读,妈妈说你只买6本作文书的话就得剩下13.4元,爸爸说如果要买9本就还差2.5元,浩浩手里原来有多少钱?9、苗苗在做除法计算时,把一个有两位小数的除数的小数点漏掉了,8除以它后,商是0.32,问正确的除法算式中除数是多少?正确的商是多少?10、小午去水果店买水果,原计划买4千克梨和5千克苹果,需付45.8元,结果他买了4千克梨和6千克苹果,实际付了51.8元。
求每千克梨多少元?11、浩浩同学参加学校跳远比赛,前6次平均成绩跳了1.8m,又跳2次,前后8次平均成绩1.9m。
问最后两次平均跳了多少米?12、一个布袋里装有形状、大小相同的红、黄、黑、白四种颜色的乒乓球各一个。
①任取一个乒乓球,摸到红色的可能性是()。
②任取两个乒乓球,摸到红白两种颜色的可能性是()。
③任取三个乒乓球,摸到红、黄、蓝三种颜色的可能性是()。
五年级数学思维训练100题(附解析及答案)
1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000.6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99) =50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49. 有7个数,它们的平均数是18.去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20.求去掉的两个数的乘积.解: 7*18-6*19=126-114=126*19-5*20=114-100=14去掉的两个数是12和14它们的乘积是12*14=16810. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33.求第三个数.解:28×3+33×5-30×7=39.11. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8.问:第二组有多少个数?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分.如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分.因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分).13. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店.妈妈平均每星期去这两个商店几次?(用小数表示)解:每20天去9次,9÷20×7=3.15(次).14. 乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比.解:以甲数为7份,则乙、丙两数共13×2=26(份)所以甲乙丙的平均数是(26+7)/3=11(份)因此甲乙丙三数的平均数与甲数之比是11:7.15. 五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个.已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个.糊得最快的同学最多糊了多少个?解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人).因此糊得最快的同学最多糊了74×6-70×5=94(个).16. 甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进.问:甲、乙两班谁将获胜?解:快速行走的路程越长,所用时间越短.甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜.17. 轮船从A城到B城需行3天,而从B城到A城需行4天.从A城放一个无动力的木筏,它漂到B城需多少天?解:轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍.所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天.18. 小红和小强同时从家里出发相向而行.小红每分走52米,小强每分走70米,二人在途中的A处相遇.若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇.小红和小强两人的家相距多少米?解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同.也就是说,小强第二次比第一次少走4分.由(70×4)÷(90-70)=14(分)可知,小强第二次走了14分,推知第一次走了18分,两人的家相距(52+70)×18=2196(米).19. 小明和小军分别从甲、乙两地同时出发,相向而行.若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇.甲、乙两地相距多少千米?解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离.所以甲、乙两地相距6×4=24(千米)20. 甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇.设甲原来每秒跑x米,则相遇后每秒跑(x+2)米.因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米.21. 甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?解:9∶24.解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站.乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24.22. 一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为1123. 甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙.问:两人每秒各跑多少米?解:甲乙速度差为10/5=2速度比为(4+2):4=6:4所以甲每秒跑6米,乙每秒跑4米.24.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米.问:(1) A, B相距多少米?(2)如果丙从A跑到B用24秒,那么甲的速度是多少?解:解:(1)乙跑最后20米时,丙跑了40-24=16(米),丙的速度25. 在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明.已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?解:设车速为a,小光的速度为b,则小明骑车的速度为3b.根据追及问题“追及时间×速度差=追及距离”,可列方程10(a-b)=20(a-3b),解得a=5b,即车速是小光速度的5倍.小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车.26. 一只野兔逃出80步后猎狗才追它,野兔跑 8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步.猎狗至少要跑多少步才能追上野兔?解:狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间.所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步).27. 甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍?(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?解:(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的是行人速度的11倍;(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒).28. 辆车从甲地开往乙地,如果把车速提高20%,那么可以比原定时间提前1时到达;如果以原速行驶100千米后再将车速提高30%,那么也比原定时间提前1时到达.求甲、乙两地的距离.29. 完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天.问:甲、乙单独干这件工作各需多少天?解:甲需要(7*3-5)/2=8(天)乙需要(6*7-2*5)/2=16(天)30.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完.如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水?31.小松读一本书,已读与未读的页数之比是3∶4,后来又读了33页,已读与未读的页数之比变为5∶3.这本书共有多少页?解:开始读了3/7 后来总共读了5/833/(5/8-3/7)=33/(11/56)=56*3=168页32.一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成.如果甲做3时后由乙接着做,那么还需多少时间才能完成?解:甲做2小时的等于乙做6小时的,所以乙单独做需要6*3+12=30(小时)甲单独做需要10小时因此乙还需要(1-3/10)/(1/30)=21天才可以完成.33. 有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件.这批零件共有多少个?解:甲和乙的工作时间比为4:5,所以工作效率比是5:4工作量的比也5:4,把甲做的看作5份,乙做的看作4份那么甲比乙多1份,就是20个.因此9份就是180个所以这批零件共180个34.挖一条水渠,甲、乙两队合挖要6天完成.甲队先挖3天,乙队接着解:根据条件,甲挖6天乙挖2天可挖这条水渠的3/5所以乙挖4天能挖2/5因此乙1天能挖1/10,即乙单独挖需要10天.甲单独挖需要1/(1/6-1/10)=15天.35. 修一段公路,甲队独做要用40天,乙队独做要用24天.现在两队同时从两端开工,结果在距中点750米处相遇.这段公路长多少米?36. 有一批工人完成某项工程,如果能增加 8个人,则 10天就能完成;如果能增加3个人,就要20天才能完成.现在只能增加2个人,那么完成这项工程需要多少天?解:将1人1天完成的工作量称为1份.调来3人与调来8人相比,10天少完成(8-3)×10=50(份).这50份还需调来3人干10天,所以原来有工人50÷10-3=2(人),全部工程有(2+8)×10=100(份).调来2人需100÷(2+2)=25(天).37.解:三角形AOB和三角形DOC的面积和为长方形的50%所以三角形AOB占32%16÷32%=5038.解:1/2*1/3=1/6所以三角形ABC的面积是三角形AED面积的6倍.39.下面9个图中,大正方形的面积分别相等,小正方形的面积分别相等.问:哪几个图中的阴影部分与图(1)阴影部分面积相等?解:(2)(4)(7)(8)(9)40. 观察下列各串数的规律,在括号中填入适当的数2,5,11,23,47,(),……解:括号内填95规律:数列里地每一项都等于它前面一项的2倍减141. 在下面的数表中,上、下两行都是等差数列.上、下对应的两个数字中,大数减小数的差最小是几?解:1000-1=999997-995=992每次减少7,999/7=142 (5)所以下面减上面最小是51333-1=1332 1332/7=190 (2)所以上面减下面最小是2因此这个差最小是2.42.如果四位数6□□8能被73整除,那么商是多少?解:估计这个商的十位应该是8,看个位可以知道是6因此这个商是86.43. 求各位数字都是 7,并能被63整除的最小自然数.解:63=7*9所以至少要9个7才行(因为各位数字之和必须是9的倍数)44. 1×2×3×…×15能否被 9009整除?解:能.将9009分解质因数9009=3*3*7*11*1345. 能否用1, 2, 3, 4, 5, 6六个数码组成一个没有重复数字,且能被11整除的六位数?为什么?解:不能.因为1+2+3+4+5+6=21,如果能组成被11整除的六位数,那么奇数位的数字和与偶数位的数字和一个为16,一个为5,而最小的三个数字之和1+2+3=6>5,所以不可能组成.46. 有一个自然数,它的最小的两个约数之和是4,最大的两个约数之和是100,求这个自然数.解:最小的两个约数是1和3,最大的两个约数一个是这个自然数本身,另一个是这个自然数除以3的商.最大的约数与第二大47.100以内约数个数最多的自然数有五个,它们分别是几?解:如果恰有一个质因数,那么约数最多的是26=64,有7个约数;如果恰有两个不同质因数,那么约数最多的是23×32=72和25×3=96,各有12个约数;如果恰有三个不同质因数,那么约数最多的是22×3×5=60,22×3×7=84和2×32×5=90,各有12个约数.所以100以内约数最多的自然数是60,72,84,90和96.48. 写出三个小于20的自然数,使它们的最大公约数是1,但两两均不互质.解:6,10,1549. 有336个苹果、 252个桔子、 210个梨,用这些果品最多可分成多少份同样的礼物?在每份礼物中,三样水果各多少?解:42份;每份有苹果8个,桔子6个,梨5个.50. 三个连续自然数的最小公倍数是168,求这三个数.解:6,7,8. 提示:相邻两个自然数必互质,其最小公倍数就等于这两个数的乘积.而相邻三个自然数,若其中只有一个偶数,则其最小公倍数等于这三个数的乘积;若其中有两个偶数,则其最小公倍数等于这三个数乘积的一半.51. 一副扑克牌共54张,最上面的一张是红桃K.如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况.又因为每次移动12张牌,所以至少移动108÷12=9(次).52. 爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍.”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁.提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的.(60岁)53. 某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来.解:11,13,17,23,37,47.54. 在放暑假的8月份,小明有五天是在姥姥家过的.这五天的日期除一天是合数外,其它四天的日期都是质数.这四个质数分别是这个合数减去1,这个合数加上1,这个合数乘上2减去1,这个合数乘上2加上1.问:小明是哪几天在姥姥家住的?解:设这个合数为a,则四个质数分别为(a-1),(a+1),(2a-1),(2a+1).因为(a-1)与(a+1)是相差2的质数,在1~31中有五组:3,5;5,7;11,13;17,19;21,31.经试算,只有当a=6时,满足题意,所以这五天是8月5,6,7,11,13日.55. 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数.解:3,74;18,37.提示:三个数字相同的三位数必有因数111.因为111=3×37,所以这两个整数中有一个是37的倍数(只能是37或74),另一个是3的倍数.56. 在一根100厘米长的木棍上,从左至右每隔6厘米染一个红点,同时从右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开.问:长度是1厘米的短木棍有多少根?解:因为100能被5整除,所以可以看做都是自左向右染色.因为6与5的最小公倍数是30,即在30厘米处同时染上红点,所以染色以30厘米为周期循环出现.一个周期的情况如下图所示:由上图知道,一个周期内有2根1厘米的木棍.所以三个周期即90厘米有6根,最后10厘米有1根,共7根.57. 某种商品按定价卖出可得利润960元,若按定价的80%出售,则亏损832元.问:商品的购入价是多少元?解:8000元.按两种价格出售的差额为960+832=1792(元),这个差额是按定价出售收入的20%,故按定价出售的收入为1792÷20%=8960(元),其中含利润960元,所以购入价为8000元.58. 甲桶的水比乙桶多20%,丙桶的水比甲桶少20%.乙、丙两桶哪桶水多?解:乙桶多.59. 学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人.如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?解:只做对两道题的人数为(10+13+15) -25 -2×1=11(人),只做对一道题的人数为25-11-1=13(人).60. 学校举行棋类比赛,设象棋、围棋和军棋三项,每人最多参加两项.根据报名的人数,学校决定对象棋的前六名、围棋的前四名和军棋的前三名发放奖品.问:最多有几人获奖?最少有几人获奖?解:共有13人次获奖,故最多有13人获奖.又每人最多参加两项,即最多获两项奖,因此最少有7人获奖.61. 在前1000个自然数中,既不是平方数也不是立方数的自然数有多少个?解:因为312<1000<322,103=1000,所以在前1000个自然数中有31个平方数,10个立方数,同时还有3个六次方数(16,26,36).所求自然数共有 1000-(31+10)+3=962(个).62. 用数字0,1,2,3,4可以组成多少个不同的三位数(数字允许重复)?解:4*5*5=100个63. 要从五年级六个班中评选出学习、体育、卫生先进集体各一个,有多少种不同的评选结果?解:6*6*6=216种64. 已知15120=24×33×5×7,问:15120共有多少个不同的约数?解: 15120的约数都可以表示成 2a×3b×5c×7d的形式,其中a=0,1,2,3,4,b=0,1,2,3,c=0,1,d=0,1,即a,b,c,d的可能取值分别有5, 4, 2, 2种,所以共有约数5×4×2×2=80(个).65. 大林和小林共有小人书不超过50本,他们各自有小人书的数目有多少种可能的情况?解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种.所以不超过 50本书的所有可能的分配情况共有1+2+3…+51=1326(种).66. 在右图中,从A点沿线段走最短路线到B点,每次走一步或两步,共有多少种不同走法?(注:路线相同步骤不同,认为是不同走法.)解:80种.提示:从A到B共有10条不同的路线,每条路线长5个线段.每次走一个或两个线段,每条路线有8种走法,所以不同走法共有8×10=80(种).67.有五本不同的书,分别借给3名同学,每人借一本,有多少种不同的借法?解:5*4*3=60种68.有三本不同的书被5名同学借走,每人最多借一本,有多少种不同的借法?解:5*4*3=60种69. 恰有两位数字相同的三位数共有多少个?解:在900个三位数中,三位数各不相同的有9×9×8=648(个),三位数全相同的有9个,恰有两位数相同的有900—648—9=243(个).70. 从1,3,5中任取两个数字,从2,4,6中任取两个数字,共可组成多少个没有重复数字的四位数?解:三个奇数取两个有3种方法,三个偶数取两个也有3种方法.共有3×3×4!=216(个).71. 左下图中有多少个锐角?解:C(11,2)=55个72. 10个人围成一圈,从中选出两个不相邻的人,共有多少种不同选法?解:c(10,2)-10=35种73. 一牧场上的青草每天都匀速生长.这片青草可供27头牛吃6周,或供23头牛吃9周.那么可供21头牛吃几周?解:将1头牛1周吃的草看做1份,则27头牛6周吃162份,23头牛9周吃207份,这说明3周时间牧场长草207-162=45(份),即每周长草15份,牧场原有草162-15×6=72(份).21头牛中的15头牛吃新长出的草,剩下的6头牛吃原有的草,吃完需72÷6=12(周).74.有一水池,池底有泉水不断涌出.要想把水池的水抽干, 10台抽水机需抽 8时,8台抽水机需抽12时.如果用6台抽水机,那么需抽多少小时?解:将1台抽水机1时抽的水当做1份.泉水每时涌出量为(8×12-10×8)÷(12-8)=4(份).水池原有水(10-4)×8=48(份),6台抽水机需抽48÷(6-4)=24(时).75.规定a*b=(b+a)×b,求(2*3)*5.解:2*3=(3+2)*3=1515*5=(15+5)*5=10076.1!+2!+3!+…+99!的个位数字是多少?解:1!+2!+3!+4!=1+2+6+24=33从5!开始,以后每一项的个位数字都是0所以1!+2!+3!+…+99!的个位数字是3.77(1).有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号.在200个信号中至少有多少个信号完全相同?解:4*4*4=64200÷64=3 (8)所以至少有4个信号完全相同.77.(2)在今年入学的一年级新生中有 370多人是在同一年出生的.试说明:他们中至少有2个人是在同一天出生的.解:因为一年最多有366天,看做366个抽屉因为370>366,所以根据抽屉原理至少有2个人是在同一天出生的.78.从前11个自然数中任意取出6个,求证:其中必有2个数互质.证明:把前11个自然数分成如下5组(1,2,3)(4,5)(6,7)(8,9)(10,11)6个数放入5组必然有2个数在同一组,那么这两个数必然互质.79.小明去爬山,上山时每时行2.5千米,下山时每时行4千米,往返共用3.9时.小明往返一趟共行了多少千米?80.长江沿岸有A,B两码头,已知客船从A到B每天航行500千米,从B到A每天航行400千米.如果客船在A,B两码头间往返航行5次共用18天,那么两码头间的距离是多少千米?解:800千米. 提示:从A到B与从B到A的速度比是5∶4,从A到B用81. 请在下式中插入一个数码,使之成为等式:1×11×111= 111111解答:91*11*111=11111182.甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1.问:乙数是多少?解:设乙数是x,那么甲数就是5x+1丙数是5(5x+1)+1=25x+6因此x+5x+1+25x+6=10031x=93 x=3所以乙数是383.12345654321×(1+2+3+4+5+6+5+4+3+2+1)是哪个数的平方解:12345654321=111111的平方1+2+3+4+5+6+5+4+3+2+1=36=6的平方所以原式=666666的平方.84.某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位.问:这个剧院一共有多少个座位?解:第一排有70-24*2=22个座位所以总座位数是(22+70)*25/2 =115085. 某城市举行小学生数学竞赛,试卷共有20道题.评分标准是:答对一道给3分,没答的题每题给1分,答错一道扣1分.问:所有参赛学生的得分总和是奇数还是偶数?为什么?解:一定是偶数,因为每个人20道题得分都分别是奇数,20个奇数的和一定是偶数.每个人的得分都是偶数,所以无论有多少参赛学生,参赛学生的得分总和一定是偶数.86. 可以分解为三个质数之积的最小的三位数是几?解:102=2*3*1787. 两个质数的和是39,求这两个质数的积.解:注意到奇偶性可以知道这2个质数分别是2和37它们的乘积是2*37=7488. 有1,2,3,4,5,6,7,8,9九张牌,甲、乙、丙各拿了三张.甲说:“我的三张牌的积是48.”乙说:“我的三张牌的和是15.”丙说:“我的三张牌的积是63.”问:他们各拿了哪三张牌?解:63=7*1*9 所以丙拿的1,7,948=2*3*8 所以甲拿的2,3,84+5+6=15 因此乙拿的是4,5,689. 四个连续自然数的积是3024,求这四个数.解:考虑末尾数字,1*2*3*4末尾是46*7*8*9末尾也是4其他情况下末尾都是011*12*13*14=24024太大6*7*8*9=3024刚好所以这4个数是6,7,8,990. 证明:任何一个三位数,连着写两遍得到一个六位数,这个六位数一定能被7,11,13整除.解:该数形如ABCABC=ABC*10011001=7*11*13所以这个六位数一定能被7,11,13整除.91.在1~100中,所有的只有3个约数的自然数的和是多少?解:4+9+25+49=8792. 有一种电子钟,每到正点响一次铃,每过九分钟亮一次灯.如果中午12点整它既响铃又亮灯,那么下一次既响铃又亮灯是什么时间?解:[60,9]=180180/60=3下次是下午3点钟.93. 有一个数除以3余2,除以4余1.问:此数除以12余几?解:除以3余2的数是2,5,8,11,14......除以4余1的数是1,5,9,......所以此数除以12余594. 把16拆成若干个自然数的和,要求这些自然数的乘积尽量大,应如何拆?解:16=3+3+3+3+2+2乘积是3*3*3*3*2*2=32495. 小明按1~ 3报数,小红按1~ 4报数.两人以同样的速度同时开始报数,当两人都报了100个数时,有多少次两人报的数相同?解:每12次作为一个周期1 2 3 1 2 3 1 2 3 1 2 31 2 3 4 1 2 3 4 1 2 3 4每个周期两人有3次报的数一样100=12*8+4所以两个人有8*3+3=27次报的数相同.96. 某自然数加10或减10皆为平方数,求这个自然数.解:设这个数是xx+10=m^2x-10=n^2m^2-n^2=20 (m+n)(m-n)=20m=6,n=4所以x=6^2-10=2697. 已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒.求火车的速度和长度.解:120秒行驶的距离是桥长+车长80秒行驶的距离是桥长-车长所以80(1000+车长)=120(1000-车长)车长=200米火车的速度是10米/秒98. 甲、乙二人按顺时针方向沿圆形跑道练习跑步,已知甲跑一圈要12分,乙跑一圈要15分,如果他们分别从圆形跑道直径的两端同时出发,那么出发后多少分甲追上乙?解:(1/2)/(1/12-1/15)=(1/2)/(1/60)=30分钟99. 甲、乙比赛乒乓球,五局三胜.已知甲胜了第一局,并最终获胜.问:各局的胜负情况有多少种可能?解:甲甲甲甲甲乙甲甲甲乙乙甲甲乙甲甲甲乙甲乙甲甲乙乙甲甲经枚举发现共有6种可能.100. 甲、乙二人 2时共可加工 54个零件,甲加工 3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?解:甲乙二人一小时共可加工零件27个设甲每小时加工x个,那么乙每小时加工27-x个根据条件得3x=4(27-x)+47x=112 x=16答:甲每小时加工零件16个.。
(word版)五年级数学思维训练60题
五年级数学思维训练试题1、一条水渠共6400米,前三个月平均每月修1200米,余下的要在2个月内完成,平均每月至少要完成多少米?2、王老师和李老师买同样的图书。
王老师花了256元买到8本,李老师花了192元,王老师比李老师多买了多少本图书?3、农具厂原方案每月生产农具 400件,技术革新后,9个月生产量就超过全年方案件,现在平均每月生产多少件?4、姐姐和妹妹沿环形跑道同方向跑步,姐姐每分钟跑 212米,妹妹每分钟跑187米,他们从同一地点出发,16分钟后,姐姐第一次追上妹妹,求跑道的长度。
5、甲乙两人同时从A、B两地相向而行,第一次相遇在离A地70千米的地方,两人仍以原速行进,各自到底后立即返回,又在离B地15千米的地方第二次相遇,两地相距多少千米?6、甲乙两艘军舰不停地往返于两个军事基地之间巡逻。
甲舰时速12千米,乙舰时速9千米,两舰从两个基地同时相向出发,第一次相遇时恰巧用了6小时。
这两个军事基地之间有多少千米?17、一列火车上午8时从A地出发开往B地,上午10时距A地180千米,AB两地相距540千米,行完全程共要几小时?8、苹果有50筐,比梨的筐数的2倍少2筐。
苹果和梨共有多少筐?9、一批布原方案做服装1800套,由于每套节约用布米,结果多做了100套,现在每套用布多少米?10、甲乙两位工人共同加工一批零件,20天完成了任务。
甲每天比乙多做3个,而乙在中途请假5天,于是乙所完成的零件数恰好是甲的一半,求这批零件的总数是多少个?12、某机器厂方案30天里完成10800台机床,由于改良技术,每天比原方案多制造180台,这样可以提前几天完成任务?13、有甲乙两袋大米,甲袋大米的重量是乙袋的倍,如果往乙袋中再参加5千克,两袋大米就一样多了。
原来甲乙两袋大米各有多少千克?14、一桶油连桶重45千克,倒出一半后连桶还剩23千克。
如果这种油每千克卖元,一桶油可以卖多少元?15、一个圆形跑道,财长700米。
五年级数学思维训练100题及解答
五年级数学思维训练100题及解答(1—5)
五年级数学思维训练100题及解答(6—10)
五年级数学思维训练100题及解答(11—15)
五年级数学思维训练100题及解答(16—20)
五年级数学思维训练100题及解答(20—25)
五年级数学思维训练100题及解答(26—30)
五年级数学思维训练100题及解答(31—35)
五年级数学思维训练100题及解答(36—40)
五年级数学思维训练100题及解答(41—45)
五年级数学思维训练100题及解答(46—50)
五年级数学思维训练100题及解答(51—55)
五年级数学思维训练100题及解答(56—60)
五年级数学思维训练100题及解答(61—65)
五年级数学思维训练100题及解答(66—70)
五年级数学思维训练100题及解答(71—75)
五年级数学思维训练100题及解答(76—80)
五年级数学思维训练100题及解答(81—85)
五年级数学思维训练100题及解答(86—90)
五年级数学思维训练100题及解答(91—95)
五年级数学思维训练100题及解答(96—100)。
五年级思维训练题120道
五年级思维训练题120道一、数与代数部分(40道)1. 计算:公式解析:把64分解成公式。
原式=公式。
因为公式,公式,公式。
所以结果为公式。
2. 一个数的小数点向右移动一位后,比原数大18。
原数是多少?解析:设原数为公式,小数点向右移动一位后这个数就变为公式。
根据题意可列方程公式。
即公式,解得公式。
3. 计算:公式解析:原式可转化为:公式。
可以发现中间项都可以消去,最后得到公式。
4. 有一个分数,分子加上1可约简为公式,分母减去1可约简为公式,这个分数是多少?解析:设这个分数的分子为公式,分母为公式。
根据题意可得方程组公式。
由第一个方程得公式,由第二个方程得公式,即公式。
那么公式,展开得公式,移项得公式,解得公式。
把公式代入公式得公式,所以这个分数是公式。
5. 两个数相除,商是22,余数是8,被除数、除数、商、余数之和是866,这两个数分别是多少?解析:设除数为公式,被除数为公式。
根据题意可列方程:公式。
整理得公式。
移项得公式。
解得公式。
被除数为公式。
二、图形与几何部分(40道)1. 一个平行四边形的底是12厘米,高是8厘米,如果底增加3厘米,高不变,那么面积增加多少平方厘米?解析:原来平行四边形的面积公式平方厘米。
底增加3厘米后,底为公式厘米,此时面积公式平方厘米。
面积增加了公式平方厘米。
2. 一个三角形的底是10厘米,高是8厘米,把这个三角形的底延长3厘米,高不变,三角形的面积增加了多少平方厘米?解析:原来三角形面积公式平方厘米。
底延长3厘米后,底为公式厘米,此时面积公式平方厘米。
面积增加了公式平方厘米。
3. 有一个长方体,长是8厘米,宽是6厘米,高是4厘米,在这个长方体上挖去一个棱长为2厘米的正方体,求剩下部分的表面积。
(分三种情况:在角上挖、在棱上挖、在面上挖)解析:(1)在角上挖:原来长方体表面积公式平方厘米。
在角上挖去一个小正方体后,表面积不变,还是208平方厘米。
(2)在棱上挖:原来长方体表面积公式平方厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级数学思维训练试题1、一条水渠共6400米,前三个月平均每月修1200米,余下的要在2个月内完成,平均每月至少要完成多少米?2、王老师和李老师买同样的图书。
王老师花了256元买到8本,李老师花了192元,王老师比李老师多买了多少本图书?3、农具厂原计划每月生产农具400件,技术革新后,9个月生产量就超过全年计划780件,现在平均每月生产多少件?4、姐姐和妹妹沿环形跑道同方向跑步,姐姐每分钟跑212米,妹妹每分钟跑187米,他们从同一地点出发,16分钟后,姐姐第一次追上妹妹,求跑道的长度。
5、甲乙两人同时从A、B两地相向而行,第一次相遇在离A地70千米的地方,两人仍以原速行进,各自到底后立即返回,又在离B地15千米的地方第二次相遇,两地相距多少千米?6、甲乙两艘军舰不停地往返于两个军事基地之间巡逻。
甲舰时速12千米,乙舰时速9千米,两舰从两个基地同时相向出发,第一次相遇时恰巧用了6小时。
这两个军事基地之间有多少千米?7、一列火车上午8 时从A地出发开往B地,上午10时距A 地180千米,已知AB两地相距540千米,行完全程共要几小时?8、苹果有50筐,比梨的筐数的2倍少2筐。
苹果和梨共有多少筐?9、一批布原计划做服装1800套,由于每套节约用布0.2米,结果多做了100套,现在每套用布多少米?10、甲乙两位工人共同加工一批零件,20天完成了任务。
已知甲每天比乙多做3个,而乙在中途请假5天,于是乙所完成的零件数恰好是甲的一半,求这批零件的总数是多少个?12、某机器厂计划30天里完成10800台机床,由于改进技术,每天比原计划多制造180台,这样可以提前几天完成任务?13、有甲乙两袋大米,甲袋大米的重量是乙袋的1.2倍,如果往乙袋中再加入5千克,两袋大米就一样多了。
原来甲乙两袋大米各有多少千克?14、一桶油连桶重45千克,倒出一半后连桶还剩23千克。
如果这种油每千克卖4.5元,一桶油可以卖多少元?15、一个圆形跑道,财长700米。
甲乙两人同时同地出发,相背而行。
甲每秒钟跑7.5米,乙每秒跑6.5米,几秒钟后两人相遇?10、客车和货车同时从甲乙两地相对开出,客车每小时行80千米,货车每小时行68千米。
两车在距中点30千米处相遇,甲乙两地相距多少千米?16、小麦每袋60千克,大米每袋90千克,今共运小麦、大米280袋,只知小麦的总重量大米的总重量多1800千克。
求小麦、大米各几袋?17、一本陈年老帐上记着:72只桶,共67.9 元。
这里处字迹已不清。
请把处数字补上,并求桶的单价。
18、将长25分米,宽20分米,高15分米的长方体木块锯成完全一样的尽可能大的正方体,不能有剩余,每个正方体的体积是多少?一共可锯多少块?19、一只船发现漏水时,已经进了水,水匀速进入船内。
如果10人淘水,6小时掏完;如果6人淘水,18小时淘完。
如果要求2小时之内淘完,至少要安排多少人淘水?20、妈妈给小伟出了许多课外数学训练题在假期中做。
若每天做2道题,则剩90道题没做;若每天做4道题,则可提前5天做完。
妈妈一共给小伟出了多少道题?21、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。
货车速度每小时60千米,客车速度每小时40千米,货车到达乙地后停留0.5小时,又以原速返回甲地,问从甲地出发几小时后两车相遇?22、今年,祖父的年龄是小明的年龄的6倍。
几年后,祖父的年龄将是小明的年龄的5倍。
又过几年以后,祖父的年龄将是小明的年龄的4倍。
祖父今年是多少岁?23、团体游园购买公园门票的票价表如下:购票人数50人以下51~100人100人以上每人门票价12元10元8元今有甲、乙两个旅游团,若分别购票,两团总计应付门票费1142元.如合在一起作为一个团体购票,总计只应付门票费864元.这两个旅游团各有多少人?24、一间会议室用边长是0.4米的方砖铺地,需要500块,如果改用边长是0.5米的方砖铺地需要多少块砖?25、有一堆砂子,第一次用去一半又0.5吨,第二次用去剩下的一半又0.5吨,第三次用去第二次剩下的一半又0.5吨,最后还剩下6吨,这堆砂子原来有多少吨?26、小林和小平的平均体重是33千克,小林和小群的平均体重是33.5千克,小平和小群的平均体重是34.5千克,小林重多少千克?27、一个学生从家到学校,先每分50米的速度走了2分钟,如果这样走下去,他会迟到8分钟,后来他改用每分钟60米的速度前进,结果早到学校5分钟,这个学生家到学校的路程是多少米?28、客车和货车同时从甲乙两地相向而行,客车比货车每小时多行8千米,经过3.5小时相遇,相遇时客车离乙站还有112千米,甲乙两地相距多少千米?29、甲、乙两车同时从相距528千米的两地相向而行,6小时后相遇,甲车每小时比乙车快6千米,求甲、乙两车每小时各行多少千米?(用方程解)新课标第一网30、水泥厂食堂运回3吨煤,计划可以烧饭20天,改进炉灶后,这批煤实际烧了25天。
实际平均每天比计划节约用煤多少千克?31、学校分配学生宿舍,如果每个房间住6人,那么有20人没有床位;如果每个房间住8人,则正好住满。
学生宿舍有多少个房间?(用方程解答)32、如图,梯形面积是多少平方厘米?33、有一根绳子长40米。
如果用这根绳子在靠墙的一块土地上围出一个直角三角形,围成的直角三角形面积最大是多少?(先画出示意图,再解答)34、有甲、乙两缸金鱼,甲缸的金鱼条数是乙缸的一半,如从乙缸里取出9条金鱼放人甲缸,这样两缸鱼的条数相等,求甲缸原有金鱼多少条.(用方程解)35、曙光小学本学期新购置课桌椅,买来5张桌子与9把椅子,共用1040元。
已知这种桌椅一套160元,每张桌子和每把椅子各多少元?36、新强买了1枝钢笔和1本笔记本共用3.6元,向伟买了同样的1枝钢笔和4本笔记本共用了10.5元,钢笔和笔记本的单价各是多少元?37、某停车场收费标准是:(1)1小时内收2.5元。
(2)超过1小时,每0.5小时收2.50元。
李叔叔在这个停车场交了20元,李叔叔在这个停车场停车几小时?38、一艘轮船从A港开往B港,计划每小时行20千米,实际每小时比计划多行2.4千米,这样行了4.5小时后,离B港还有11千米,求AB两港相距多少千米?39、小偷与警察相隔30秒先后逆向跑上一自动扶梯,小偷每秒可跨越3级阶梯,警察每秒可跨越4级阶梯。
已知该自动扶梯共有150级阶梯,每秒运行1.5级阶梯,问警察能否在自动扶梯上抓住小偷?40、有40名羽毛球运动员参加淘汰制的比赛,(即每赛一场选出一位胜者进入下一场),决出最后的冠军,一共要进行的比赛场次是()场。
41.在数列13,12,59,712,35,1118……中,第25个分数是()。
42.一个长方形把平面分成两部分,那么2个长方形最多把平面分成()部分。
43.今年,祖父的年龄是小明的年龄的6倍。
几年后,祖父的年龄将是小明的年龄的5倍。
又过几年以后,祖父的年龄将是小明的年龄的4倍。
求:祖父今年是多少岁?44.已知等式,其中□内是一个最简分数,那么□内的数是_______。
45.一项挖土方工程,如果甲队单独做,16天可以完成,乙队单独做要20天才可以完成。
现在两队同时施工,工作效率提高20%。
当工程完成时,突然遇到地下水,影响施工进度,使得每天少挖了47.25方土,结果共用了10天完成工程,问整个工程要挖多少方土?46.在算式1×2×3×4×...×100中,那么这个乘积的末尾连续的零的个数等于________个。
47.小红花每6天浇一次水,兰花第8天浇一次水,花匠今天给两种花同时浇了水,至少多少天后给这两种花同时浇水?48.把10克盐放入150克水中,盐占水的几分之几?盐点盐水的几分之几?49.学校运来一堆沙子。
修路用去85吨,砌墙用去61吨,还剩下65 吨,剩下的沙子比用去的沙子多多少吨?50.一个房间长6米,宽4米,高3米,如果在房间四壁贴墙纸,除去门窗7平方米,每平方米墙纸12.5元,共要多少元的墙纸?51.有三根钢丝,长度分别是12米、18米和30米,现在要把它们截成长度相同的小段,但每一根都不许剩余,每小段最长是多少米?一共可以截成多少段?52. 六年级有男生22人,女生比男生少211 ,全班有多少人?53. 某电视机厂上半月已生产了150000台电视机,还有全年计划的40%没完成,全年计划生产多少台电视机?54. 一段布,只做上衣,可做15件,只做裤子,可做10条,求这段布可做几套这样的衣服?55. 王师傅9月份的工资是3200元,按照个人所得税法规定,个人的月收入超过3000元的部分,应按照5%的税率征收个人所得税。
王师傅这个月应缴纳个人所得税多少元?56. 有一个圆形花坛,直径是16m,在它的周围修建一条2m宽的小路。
(圆周率取值3)(1)这条小路的面积是多少?(2)沿环形小路的边缘每隔5m装一盏灯,一共要安装多少盏灯?57.把8米长的绳子平均分成5段,每段长是这根绳子的(),每段长()米。
58.3千克的30%是()千克;1米是5米的();比4米多25%的是()59. 王师傅9月份的工资是3200元,按照个人所得税法规定,个人的月收入超过3000元的部分,应按照5%的税率征收个人所得税。
王师傅这个月应缴纳个人所得税多少元?60. 某电视机厂上半年已生产了150000台电视机,还有全年计划的40%没完成,全年计划生产多少台电视机?61. 一段布,只做上衣,可做15件,只做裤子,可做10条,求这段布可做几套这样的衣服?11。