高考数学一轮复习 单元能力测试卷9

合集下载

精选2019年数学高考第一轮复习完整版考核题库(含答案)

精选2019年数学高考第一轮复习完整版考核题库(含答案)

2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x x e e y --= D .31y x =+(2012天津文)2.曲线=xy e 在点A (0,1)处得切线斜率为( ) A .1 B .2 C .e D .1e(2011江西文4) 3.由直线0,3,3==-=y x x ππ与曲线x y cos =所围成的封闭图形的面积为A.21B. 1C. 23D. 3二、填空题4.一份试卷有10个题目,分为,A B 两组,每组5题,要求考生选择6题,且每组至多选择4题,则考生有 ▲ 种不同的选答方法.5.已知空间中两点P 1(x ,2,3)和P 2(5,x +3,7)间的距离为6,则x= .6.某小卖部为了了解冰糕销售量y(箱)与气温x(C ︒)之间的关系,随机统计了某4天卖出的冰糕的箱数与当天气温,并制作了对照表(如左所示):由表中数据算得线性回归方程a bx y+=ˆ中的2-≈b ,预测当气温为25C ︒时, 冰糕销量为 杯.分析:线性回归方程a bx y+=ˆ恒过(,)x y ,由表中算得(,)x y =(10,40)代入回归方程,可得a =60,即ˆ260yx =-+,将5x =-代入回归方程,得ˆy =70. 7.已知225,xx-+= 则88x x -+=8.如果在今后若干年内我国国民经济生产总值都保持年平均9%的增长率,则要达到国民经济生产总值比2006年翻两番的年份大约是___.(0374.2109lg ,4771.03lg ,3010.02lg ===)9.已知函数))(2(log )(1*+∈+=N n n n f n ,定义使)()2()1(k f f f ⋅⋅⋅⋅为整数的数)(*∈N k k 叫做企盼数,则在区间[1,2009]内这样的企盼数共有 ▲ 个.10.已知直线,a b 相交于点P 夹角为60,过点P 作直线,又知该直线与,a b 的夹角均为60,这样的直线可作______条11.已知直线l m αβ⊥⊂平面,直线平面,有下列命题:;l m αβ①若∥,则⊥②若αβ∥,则l ∥m ;,,l m l m αβαβ③若∥则⊥;④若⊥则∥。

2021届高考数学一轮复习:第09章 平面解析几何 检测B卷 单元检测(人教版A)(解析版)

2021届高考数学一轮复习:第09章 平面解析几何 检测B卷 单元检测(人教版A)(解析版)

平面解析几何 章节验收测试卷B 卷姓名班级准考证号1.如图,AB 是平面α的斜线段,A 为斜足,点C 满足sin sin (0)CAB CBA λλ∠=∠>,且在平面α内运动,则( )A .当1λ=时,点C 的轨迹是抛物线B .当1λ=时,点C 的轨迹是一条直线 C .当2λ=时,点C 的轨迹是椭圆D .当2λ=时,点C 的轨迹是双曲线抛物线 【答案】B 【解析】在ABC ∆中,∵sin sin (0)CAB CBA λλ∠=∠>,由正弦定理可得:BCACλ=, 当1λ=时,BC AC =,过AB 的中点作线段AB 的垂面β, 则点C 在α与β的交线上,即点C 的轨迹是一条直线, 当2λ=时,2BC AC =,设B 在平面α内的射影为D ,连接BD ,CD ,设BD h =,2AD a =,则22BC CD h =+, 在平面α内,以AD 所在直线为x 轴,以AD 的中点为y 轴建立平面直角坐标系,设(,)C x y ,则22()CA x a y =++,22()CD x a y =-+,222()CB x a y h =-++,∴22222()2()x a y h x a y -++=++,化简可得2222516393a h x a y ⎛⎫++=+ ⎪⎝⎭.∴C 的轨迹是圆. 故选:B .2.已知椭圆C :2214x y +=上的三点A ,B ,C ,斜率为负数的直线BC 与y 轴交于M ,若原点O 是ABC ∆的重心,且BMA ∆与CMO ∆的面积之比为32,则直线BC 的斜率为( )A .24-B .14-C .36-D .33-【答案】C 【解析】设11(,)B x y ,22(,)C x y .(0,)M m .33(,)A x y ,直线BC 的方程为y kx m =+. ∵原点O 是ABC ∆的重心,∴BMA ∆与CMO ∆的高之比为3,又BMA ∆与CMO ∆的面积之比为32,则2BM MC =.即2BM MC =u u u u r u u u u r ,1220x x ⇒+=…①联立2244y kx m x y =+⎧⇒⎨+=⎩()222418440k x mkx m +++-=. 122814km x x k -+=+,21224414m x x k-=+…②,由①②整理可得:22223614m k m k =-+…③ ∵原点O 是ABC ∆的重心,∴()3122814kmx x x k=-+=+,3211222()[()2]14my y y k x x m k=-+=-++=-+. ∵223344x y +=,∴22222282()4()41441414km m k m k k -+=⇒+=++…④. 由③④可得2112k =,∵k 0<.∴3k =. 故选:C .3.设12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 为双曲线右支上一点,若1290F PF ︒∠=,c=2,213PF F S ∆=,则双曲线的两条渐近线的夹角为( ) A .5π B .4π C .6π D .3π 【答案】D 【解析】由题意可得22121216132PF PF PF PF ⎧+=⎪⎨=⎪⎩,可得212)4PF PF -=(, 可得1222PF PF a -==,可得a=1,22213b =-可得渐近线方程为:3y x =,可得双曲线的渐近线的夹角为3π, 故选D.4.已知,A B 为椭圆22143x y +=上的两个动点,()M 1,0-,且满足MA MB ^,则MA BA ⋅u u u r u u u r 的取值范围为( ) A .[]3,4 B .9,94⎡⎤⎢⎥⎣⎦C .[]1,9D .9,44⎡⎤⎢⎥⎣⎦【答案】C 【解析】,A B 为椭圆22143x y +=上的两个动点,()M 1,0-为其左焦点.MA MB ^,则有0MA MB ⋅=u u u r u u u r.2()MA BA MA MA MB MA ⋅=⋅-=u u u r u u u r u u u r u u u r u u u r u u u r .设(,)M x y ,则223(1)4x y =-.222222211(1)(1)3(1)24(4)444x MA x y x x x x =++=++-=++=+u u u r .由[2,2]x ∈-,得221(4)[1,9]4MA x =+∈u u u r .故选C.5.长方体1111ABCD A B C D -中,1AB BC ==, 12BB =,设点A 关于直线1BD 的对称点为P ,则P 与1C 两点之间的距离为( )A .2B .3C .1D .12【答案】C 【解析】将长方体中含有1ABD 的平面取出,过点A 作1AM BD ⊥,垂足为M ,延长AM 到AP ,使MP AM =,则P 是A 关于1BD 的对称点,如图所示,过P 作1PE BC ⊥,垂足为E ,连接PB ,1PC ,依题意1AB =,13AD =,12BD =,160ABD ∠=︒,30BAM ∠=︒,30PBE ∠=︒,12PE =,3BE =,所以11PC =. 故选C .6.下列命题中:①若命题0:p x R ∃∈,2000x x -≤,则:p x R ⌝∀∈,20x x ->;②将sin 2y x =的图象沿x 轴向右平移6π个单位,得到的图象对应函数为sin 26y x π⎛⎫=- ⎪⎝⎭; ③“0x >”是“12x x+≥”的充分必要条件; ④已知()0,0M x y 为圆222x y R +=内异于圆心的一点,则直线200x x y y R +=与该圆相交.其中正确的个数是( )A .4B .3C .2D .1【答案】C 【解析】对于①,若命题0:p x R ∃∈,2000x x -≤,则:p x R ⌝∀∈,20x x ->;故①正确;对于②,将sin 2y x =的图象沿x 轴向右平移6π个单位,得到的图象对应函数为sin 23y x π⎛⎫=- ⎪⎝⎭,故②错误;对于③,“0x >”是“12x x+≥”的充分必要条件,故③正确; 对于④,因为()0,0M x y 为圆222x y R +=内异于圆心的一点,则20022x y R +<,所以圆心()0,0到直线200x x y y R +=的距离d R =>,所以该直线与该圆相离,故④错误,故选C.7.已知双曲线()222210,0x y a b a b-=>>的一条渐近线为l ,圆()22:4C x y b +-=与l 交于第一象限A 、B 两点,若3ACB π∠=,且3OB OA =,其中O 为坐标原点,则双曲线的离心率为( )A.3 B.3 C.5D.3【答案】D 【解析】双曲线()222210,0x y a b a b-=>>的一条渐近线为:b y x a =圆()22:4C x y b +-=的圆心坐标为()0,b ,半径为23ACB π∠=Q ABC ∆∴是边长为2的等边三角形∴2AB =,圆心到直线by x a=又2AB OB OA OA =-= 1OA ∴=,3OB = 在OBC ∆,OAC ∆中,由余弦定理得:2223414cos cos 62b b BOC AOC b b+-+-∠=∠==,解得:b =圆心到直线b y x a =c ab ==3c e a ∴===本题正确选项:D8.已知双曲线2222:1x y C a b-=(0,0a b >>)的焦距为2c ,直线l 与双曲线C 的一条斜率为负值的渐近线垂直且在y 轴上的截距为2cb-;以双曲线C 的右焦点为圆心,半焦距为半径的圆Ω与直线l 交于,M N两点,若MN =,则双曲线C 的离心率为( ) A .35 B .53C .3D .13【答案】C 【解析】双曲线的渐近线的方程为b y x a=±, ∵直线l 与双曲线C 的一条斜率为负值的渐近线垂直且在y 轴上的截距为2cb-,∴直线l 的方程为2a c y x b b=-,即20ax by c --=,∵双曲线的右焦点为(),0c ,其到l的距离d c a ==-,又∵半径为c 的圆Ω与直线l 交于,M N两点且MN =, ∴()22259c a c c -+=,化简得2251890c ac a -+=,即()()3530c a c a --=, 得3c a =或35c a =,即3ce a==或35(舍去),故选C.9.已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,以OF 为直径的圆与双曲线C 的渐近线交于不同原点O 的A B ,两点,若四边形AOBF 的面积为()2212a b +,则双曲线C 的渐近线方程为( )A .y x =±B .y =C .y x =±D .2y x =±【答案】C 【解析】根据题意,OA AF ⊥,双曲线C 的焦点F 到C 的一条渐近线b y xa =±b =,则||AF b =,所以||OA a =,所以()2212ab a b =+,所以1ba=,所以双曲线C 的渐近线方程为y x =±. 10.已知,A B 为抛物线22(0)x py p =>上的两个动点,以AB 为直径的圆C 经过抛物线的焦点F ,且面积为2π,若过圆心C 作该抛物线准线l 的垂线CD ,垂足为D ,则||CD 的最大值为( )A .2 BC D .12【答案】A 【解析】根据题意,222AB ππ⎛⎫= ⎪⎝⎭,∴AB =设||||AF a BF b ==,,过点A 作AQ l ⊥于Q ,过点B 作BP l ⊥于P , 由抛物线定义,得AF AQ BF BP ==,,在梯形ABPQ 中, ∴2CD AQ BP a b =+=+, 由勾股定理得,228a b =+,∵2222282244a b a b ab CD ab ++++⎛⎫==== ⎪⎝⎭2222424ab a b +++=…, 所以2CD ≤(当且仅当a b =时,等号成立).11.在平面直角坐标系中,设点(),P x y ,定义[]OP x y =+,其中O 为坐标原点,对于下列结论:()1符合[]2OP =的点P 的轨迹围成的图形面积为8; ()2设点P 是直线:3220x y +-=上任意一点,则[]1min OP =;()3设点P 是直线:()1y kx k R =+∈上任意一点,则使得“[]OP 最小的点有无数个”的充要条件是1k =;()4设点P 是椭圆2219x y +=上任意一点,则[]10max OP =.其中正确的结论序号为( ) A .()()()123 B .()()()134C .()()()234D .()()()124【答案】D 【解析】()1由[]2OP =,根据新定义得:2x y +=,由方程表示的图形关于,x y 轴对称和原点对称,且()202,02x y x y +=≤≤≤≤,画出图象如图所示:四边形ABCD 为边长是228,故()1正确;()()2,P x y 3220x y +-=上任一点,可得31y x =, 可得312x y x x +=+-, 当0x ≤时,[]31112OP x ⎛=-+≥ ⎝⎭;当03x <<时,[]31123OP x ⎛⎛=+-∈ ⎝⎝⎭; 当3x ≥[]3113OP x ⎛=-++≥ ⎝⎭[]OP 的最小值为1,故()2正确; ()()311x y x y k x +≥+=++Q ,当1k =-时,11x y +≥=,满足题意;而()11x y x y k x +≥-=--,当1k =时,11x y +≥-=,满足题意,即1k =±都能 “使[]OP 最小的点P 有无数个”,()3不正确;()4Q 点P 是椭圆2219x y +=上任意一点,因为求最大值,所以可设3cos x θ=,sin y θ=,0,2πθ⎡⎤∈⎢⎥⎣⎦,[]()3cos sin OP x y θθθϕ=+=+=+,0,2πθ⎡⎤∈⎢⎥⎣⎦,[]max OP ∴=()4正确. 则正确的结论有:()1、()2、()4,故选D .12.已知点P 是双曲线22221(0,0)x y a b a b -=>>右支上一点,1F 、2F 分别是双曲线的左、右焦点,M 为12PF F V 的内心,若121212MPF MPF MF F S S S =+V V V 成立,则双曲线的离心率为( )A .4B .52C .2D .53【答案】C 【解析】如图,设圆M 与12PF F V 的三边12F F 、1PF 、2PF 分别相切于点E 、F 、G ,连接ME 、MF 、MG , 则12ME F F ⊥,1MF PF ⊥,2MG PF ⊥,它们分别是12MF F V ,1MPF V ,2MPF V 的高, 111122MPF rS PF MF PF ∴=⨯⨯=V ,222122MPF rS PF MG PF V =⨯⨯=121212122MF F rS F F ME F F =⨯⨯=V ,其中r 是12PF F V 的内切圆的半径.121212MPF MPF MF F S S S =+V V V Q1212224r r rPF PF F F ∴=+ 两边约去2r得:121212PF PF F F =+121212PF PF F F ∴-=根据双曲线定义,得122PF PF a -=,122F F c =2a c ∴=⇒离心率为2ce a== 故选:C .13.已知双曲线22221(0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,过点1F 作圆222x y a +=的切线交双曲线右支于点M ,若12F MF ∠4π=,则双曲线的离心率为______.【答案】3 【解析】设切点为N ,连接ON ,过2F 作2F A MN ⊥,垂足为A ,如下图:由圆的切线性质可知:1ON F M ⊥,ON a =,由三角形中位线定理可知:22AF a =,21AF F M ⊥,在12Rt AF F ∆中,2211222AF F F AF b =-=,在2Rt AF M ∆中,12F MF ∠4π=,所以2MA a =,222F M a =,由双曲线定义可知:122F M F M a -=,即222b a a +-=,所以b =,而c =所以c ,因此ce a==即双曲线的离心率为.14.在平面直角坐标系xOy 中,已知点A ,F 分别为椭圆C :22221(0)x y a b a b+=>>的右顶点、右焦点,过坐标原点O 的直线交椭圆C 于P ,Q 两点,线段AP 的中点为M ,若Q ,F ,M 三点共线,则椭圆C 的离心率为______. 【答案】13【解析】由题意知:P ,Q 关于原点对称,可设(),Q m n ,(),P m n -- 又(),0A a ,(),0F c ,则,22a m n M -⎛⎫-⎪⎝⎭ (),FQ m c n ∴=-u u u r ,,22a m n FM c -⎛⎫=--⎪⎝⎭u u u u r Q Q ,F ,M 三点共线 //FQ FM ∴u u u r u u u u r()22n a m m c n c -⎛⎫∴--=- ⎪⎝⎭,整理可得:13c a = 即椭圆C 的离心率:13e =本题正确结果:1315.已知椭圆2243x y +=1的左、右焦点分别为12,F F ,过1F 的直线1l 与过2F 的直线2l 交于点M ,设M 的坐标为()00,x y ,若12l l ⊥,则下列结论序号正确的有______.①204x +203y <1②204x +203y >1③04x +03y <1 ④2200431x y +>【答案】①③④ 【解析】()()121,0,1,0F F -,因为12l l ⊥,120MF MF =u u u u r u u u u rg ,所以()()()()0000110x x y y --⨯-+-⨯-=即22001x y +=,M 在圆221x y +=上,它在椭圆的内部,故2200143x y +<,故①正确,②错误; O 到直线143x y +=的距离为3412155⨯=>,O 在直线143x y+=的下方, 故圆221x y +=在其下方即00143x y +<,故③正确;22220000431x y x y +≥+=,但222200004,3x x y y ==不同时成立,故22220000431x y x y +>+=,故④成立,综上,填①③④.16.已知F 是抛物线24y x =的焦点,A ,B 在抛物线上,且ABF ∆的重心坐标为11(,)23,则FA FB AB-=__________.【答案】17【解析】设点A (),A A x y ,B (),B B x y ,焦点F(1,0),ABF ∆的重心坐标为11,23⎛⎫ ⎪⎝⎭,由重心坐标公式可得1132A B x x ++=,0133A B y y ++=,即1=2A B x x +,=1A B y y + , 由抛物线的定义可得()22=114A BA B A B y y FA FB x x x x --+-+=-=, 由点在抛物线上可得22=4=4A A B By x y x ⎧⎨⎩,作差2244A B A B y y x x -=-,化简得4=4+A B AB A B A By y k x x y y -==-,代入弦长公式得=--A B A B y y y y ,则17FA FB AB-=,17.已知椭圆22221(0)x y a b a b+=>>,()2,0A 是长轴的一个端点,弦BC 过椭圆的中心O ,点C 在第一象限,且0AC BC ⋅=u u u r u u u r,||2||OC OB AB BC -=+u u u r u u u r u u u r u u u r .(1)求椭圆的标准方程;(2)设P 、Q 为椭圆上不重合的两点且异于A 、B ,若PCQ ∠的平分线总是垂直于x 轴,问是否存在实数λ,使得PQ AB =λu u u r u u u r?若不存在,请说明理由;若存在,求λ取得最大值时的PQ 的长.【答案】(1) 223144x y += (2)【解析】(1)∵0AC BC ⋅=u u u r u u u r,∴90ACB ∠=︒,∵||2||OC OB AB BC -=+u u u r u u u r u u u r u u u r.即||2||BC AC =u u u r u u u r ,∴AOC △是等腰直角三角形, ∵()2,0A ,∴()1,1C , 而点C 在椭圆上,∴22111a b +=,2a =,∴243b =, ∴所求椭圆方程为223144x y +=.(2)对于椭圆上两点P ,Q , ∵PCQ ∠的平分线总是垂直于x 轴, ∴PC 与CQ 所在直线关于1x =对称,PC k k =,则CQ k k =-,∵()1,1C ,∴PC 的直线方程为()11y k x =-+,①QC 的直线方程为()11y k x =--+,②将①代入223144x y +=,得()()22213613610k x k k x k k +--+--=,③∵()1,1C 在椭圆上,∴1x =是方程③的一个根,∴2236113P k k x k--=+, 以k-替换k ,得到2236131Q k k x k +-=+. ∴()213P Q PQ P Qk x x kk x x +-==-, ∵90ACB ∠=o ,()2,0A ,()1,1C ,弦BC 过椭圆的中心O , ∴()2,0A ,()1,1B --,∴13AB k =, ∴PQ AB k k =,∴PQ AB ∥,∴存在实数λ,使得PQ AB =λu u u r u u u r,2222124||1313k k PQ k k --⎛⎫⎛⎫=+ ⎪ ⎪++⎝⎭⎝⎭u u u r 221602301396k k =≤++, 当2219k k =时,即33k =±时取等号, max 230||PQ =u u u r , 又||10AB =u u u r,max23023310λ==,∴λ取得最大值时的PQ 的长为230. 18.如图,在平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,P 为C 椭圆上一点,且2PF 垂直于x 轴,连结1PF 并延长交椭圆于另一点Q ,设1PQ FQ λ=.(1)若点P 的坐标为()2,3,求椭圆C 的方程及λ的值;(2)若45λ≤≤,求椭圆C 的离心率的取值范围.【答案】(1)2211612x y +=;103λ=(2)37⎢⎣⎦【解析】(1)因为2PF 垂直于x 轴,且点P 的坐标为()2,3, 所以2224a b c -==,22491a b +=, 解得216a =,212b =,所以椭圆的方程为2211612x y +=.所以()12,0F -,直线1PF 的方程为()324y x =+, 将()324y x =+代入椭圆C 的方程,解得267Q x =-,所以126210726327P Q F Q x x PQ FQ x x λ+-====--+. (2)因为2PF x ⊥轴,不妨设P 在x 轴上方,()0,P c y ,00y >.设()11,Q x y ,因为P 在椭圆上,所以220221y c a b +=,解得20b y a =,即2,b P c a ⎛⎫ ⎪⎝⎭. (方法一)因为()1,0F c -,由1PQ FQ λ=得,()11c x c x λ-=--,211by y aλ-=-,解得111x c λλ+=--,()211b y a λ=--,所以()21,11b Q c a λλλ⎛⎫+-- ⎪ ⎪--⎝⎭. 因为点Q 在椭圆上,所以()222221111b e aλλλ+⎛⎫+= ⎪-⎝⎭-,即()()()2222111e e λλ++-=-,所以2(2)2e λλ+=-,从而222e λλ-=+. 因为45λ≤≤,所以21337e ≤≤.7e ≤≤, 所以椭圆C的离心率的取值范围⎣⎦.19.已知椭圆C :()222211x y a b a b +=>>1x =(1)求椭圆方程;(2)设直线y kx m =+交椭圆C 于A ,B 两点,且线段AB 的中点M 在直线1x =上,求证:线段AB 的中垂线恒过定点.【答案】(1)2214x y +=(2)见解析【解析】(1)由直线1x =,得椭圆过点⎛ ⎝⎭,即221314a b +=,又2c e a ===,得224a b =, 所以24a =,21b =,即椭圆方程为2214x y +=.(2)由2214x y y kx m ⎧+=⎪⎨⎪=+⎩得()222148440k x kmx m +++-=,由222222644(14)(44)1664160k m k m m k ∆=-+-=-++>, 得2214m k <+. 由122814kmx x k +=-+,设AB 的中点M 为()00,x y ,得024114kmx k=-=+,即2144k km +=-, ∴0021144m y kx m k k=+==-+. ∴AB 的中垂线方程为()1114y x k k+=--. 即134y x k ⎛⎫=-- ⎪⎝⎭,故AB 的中垂线恒过点3,04N ⎛⎫⎪⎝⎭. 20.在平面直角坐标系xOy 中,已知椭圆22x C y 13+=:,如图所示,斜率为k (k >0)且不过原点的直线l 交椭圆C 于两点A ,B ,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线x =﹣3于点D (﹣3,m ).(1)求m 2+k 2的最小值;(2)若|OG|2=|OD|•|OE|,求证:直线l 过定点. 【答案】(1)2;(2)见解析 【解析】(1)设直线l 的方程为y =kx+t (k >0),由题意,t >0,由方程组22y kx tx y 13=+⎧⎪⎨+=⎪⎩,得(3k 2+1)x 2+6ktx+3t 2﹣3=0,由题意△>0,所以3k 2+1>t 2, 设A (x 1,y 1),B (x 2,y 2),由根与系数的关系得1226kt x x 3k 1+=-+,所以1222ty y 3k 1+=+, 由于E 为线段AB 的中点,因此E E223kt tx y 3k 13k 1,=-=++, 此时E OE E y 1k x 3k ==-,所以OE 所在直线的方程为1y x 3k=-,又由题意知D (﹣3,m ),令x =﹣3,得1m k=,即mk =1, 所以m 2+k 2≥2mk =2,当且仅当m =k =1时上式等号成立,此时由△>0得0<t <2,因此当m =k =1且0<t <2时,m 2+k 2取最小值2. (2)证明:由(1)知D 所在直线的方程为1y x 3k=-, 将其代入椭圆C 的方程,并由k >0,解得22G 3k 13k 1⎛⎫ ++⎝,,又221E D 3k 3k 13k 1,,,⎛⎫⎛⎫- ⎪⎝⎭++⎝, 由距离公式及t >0得22222229k 1|OG |((3k 13k 13k 1+=+=+++,()22219k 1OD 3k +⎛⎫=-+= ⎪⎝⎭,2222223kt t 9k 1OE 3k 13k 13k 1⎛⎫⎛⎫+=-+= ⎪ ⎪+++⎝⎭⎝⎭,由|OG|2=|OD|•|OE|,得t =k ,因此直线l 的方程为y =k (x+1),所以直线l 恒过定点(﹣1,0).21.已知点()1,0F ,动点P 到直线2x =的距离与动点P 到点F(1)求动点P 的轨迹C 的方程;(2)过点F 作任一直线交曲线C 于A ,B 两点,过点F 作AB 的垂线交直线2x =于点N ,求证:ON 平分线段AB .【答案】(1)2212x y +=(2)见证明【解析】(1)设(),P x y ,由动点P 到直线2x =的距离与动点P 到点F=2212x y +=.(2)设AB 的直线方程为1x my =+,则NF 的直线方程为()1y m x =--,联立()12y m x x ⎧=--⎨=⎩,解得()2,N m -,∴直线ON 的方程为2m y x =-,联立22112x my x y =+⎧⎪⎨+=⎪⎩得()222210m y my ++-=, 设()11,A x y ,()22,B x y ,则12222my y m +=-+,设AB 的中点为()00,M x y ,则120222y y my m +==-+, ∴002212x my m =+=+,∴222,22m M m m ⎛⎫- ⎪++⎝⎭, 将点M 坐标代入直线ON 的方程222222m my m m =-⋅=-++, ∴点M 在直线ON 上,∴ON 平分线段AB .22.已知椭圆M :22221(0)x y a b a b +=>>P的坐标为2⎭. (1)求椭圆M 的方程;(2)设直线l 与椭圆M 交于A ,B 两点,且以线段AB 为直径的圆过椭圆的右顶点C ,求ABC ∆面积的最大值.【答案】(1)2214x y +=;(2)1624 【解析】 (1)由已知2c e a ==,又222a b c =+,则2a b =. 椭圆方程为222214x y b b +=,将)2代入方程得1b =,2a =,故椭圆的方程为2214x y +=;(2)不妨设直线AB 的方程x ky m =+,联立2214x y x ky m ⎧+=⎪⎨⎪=+⎩消去x 得()2224240k y kmy m +++-=.设11(,)A x y ,22(,)B x y ,则有12224km y y k -+=+,212244m y y k -⋅=+①又以线段AB 为直径的圆过椭圆的右顶点C ,∴0CA CB ⋅=u u u r u u u r,由11(2,)CA x y =-u u u r ,22(2,)CB x y =-u u u r得()()1212220x x y y --+=,将11x ky m =+,22x ky m =+代入上式得()()2212121(2)(2)0ky y k m y y m ++-++-=,将①代入上式求得65m =或2m =(舍), 则直线l 恒过点6(,0)5.∴1211||22ABCS DC y y ∆=-== 设211(0)44t t k =<≤+,则ABC S ∆=在1(0,]4t ∈上单调递增, 当14t =时,ABC S ∆取得最大值1624.。

2012届高考数学第一轮专题复习测试卷第九讲 指数与指数函数 学生

2012届高考数学第一轮专题复习测试卷第九讲  指数与指数函数 学生

指数与指数函数一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.下列结论中正确的个数是( )①当a <0时,(a 2)32=a 3;②n a n =|a |;③函数y =(x -2)12-(3x -7)0的定义域是(2,+∞);④若100a =5,10b =2,则2a +b =1.A .0B .1C .2D .3 2.(36a 9)4·(63a 9)4(a ≥0)的化简结果是( ) A .a 16 B .a 8C .a 4D .a 23.若函数y =(a 2-5a +5)·a x 是指数函数,则有( )A .a =1或a =4B .a =1C .a =4D .a >0,且a ≠14.在平面直角坐标系中,函数f (x )=2x +1与g (x )=21-x 图象关于( )A .原点对称B .x 轴对称C .y 轴对称D .直线y =x 对称5.若函数f (x )=a |2x -4|(a >0,a ≠1),满足f (1)=19,则f (x )的单调递减区间是( ) A .(-∞,2] B .[2,+∞)C .[-2,+∞)D .(-∞,-2]6.已知函数f (x )=⎝⎛⎭⎫13x -log 2x ,实数a 、b 、c 满足f (a )f (b )f (c )<0(0<a <b <c ),若实数x 0是方程f (x )=0的一个解,那么下列不等式中,不可能成立的是( )A .x 0<aB .x 0>bC .x 0<cD .x 0>c二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.已知不论a 为何正实数,y =a x +1-2的图象恒过定点,则这个定点的坐标是________.8.函数y =(13)x -3x 在区间[-1,1]上的最大值为________. 9.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.10.设f (x )=e x +e -x 2,g (x )=e x -e -x2,计算f (1)g (3)+g (1)f (3)-g (4)=________,f (3)g (2)+g (3)f (2)-g (5)=________,并由此概括出关于函数f (x )和g (x )的一个等式,使上面的两个等式是你写出的等式的特例,这个等式是________.三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.已知函数f (x )=b ·a x(其中a ,b 为常量且a >0,a ≠1)的图象经过点A (1,6),B (3,24).(1)试确定f (x );(2)若不等式⎝⎛⎭⎫1a x +⎝⎛⎭⎫1b x -m ≥0在x ∈(-∞,1]时恒成立,求实数m 的取值范围.12.已知函数f (x )=⎝⎛⎭⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值.(3)若f (x )的值域是(0,+∞),求a 的取值范围.13.已知函数f (x )=2x -12|x |(1)若f (x )=2,求x 的值;(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.。

高考数学一轮复习 第一章 单元测试卷

高考数学一轮复习 第一章 单元测试卷

第一章单元测试卷一、选择题(本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求) 1.(2014·陕西)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=( )A.[0,1] B.[0,1)C.(0,1] D.(0,1)答案 B解析∵x2<1,∴-1<x<1,∴M∩N={x|0≤x<1}.故选B.2.(2014·浙江理)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=( )A.∅B.{2}C.{5} D.{2,5}答案 B解析由题意知U={x∈N|x≥2},A={x∈N|x≥5},所以∁U A={x∈N|2≤x<5}={2}.故选B. 3.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩(∁N B)等于( )A.{1,5,7} B.{3,5,7}C.{1,3,9} D.{1,2,3}答案 A解析即在A中把B中有的元素去掉.4.“x>0”是“3x2>0”成立的( )A.充分不必要条件B.必要不充分条件C.既不充分也不必要条件D.充要条件答案 A解析当x>0时,3x2>0成立;但当3x2>0时,得x2>0,则x>0或x<0,此时不能得到x>0.5.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数.则下列命题中为真命题的是( ) A.(綈p)或q B.p且qC.(綈p)且(綈q) D.(綈p)或(綈q)答案 D解析由于命题p是真命题,命题q是假命题,因此,命题綈q是真命题,于是(綈p)或(綈q)是真命题.6.命题“对任意的x∈R,x3-x2+1≤0”的否定是( )A.不存在x∈R,x3-x2+1≤0B.存在x∈R,x3-x2+1≤0C.存在x∈R,x3-x2+1>0D.对任意的x∈R,x3-x2+1>0答案 C解析 应用命题否定的公式即可.7.原命题:“设a ,b ,c ∈R ,若a >b ,则ac 2>bc 2”,在原命题以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4答案 C解析 c =0时,原命题为假,逆命题为真,根据命题间的关系应选C. 8.已知∁Z A ={x ∈Z |x <6},∁Z B ={x ∈Z |x ≤2},则A 与B 的关系是( ) A .A ⊆B B .A ⊇B C .A =B D .∁Z A ∁Z B 答案 A9.设全集为R ,集合M ={y |y =2x +1,-12≤x ≤12},N ={x |y =lg(x 2+3x )},则韦恩图中阴影部分表示的集合为( )答案 C解析 ∵-12≤x ≤12,y =2x +1,∴0≤y ≤2,∴M ={y |0≤y ≤2}.∵x 2+3x >0,∴x >0或x <-3,∴N={x |x >0或x <-3},韦恩图中阴影部分表示的集合为(∁R M )∩N ,又∁R M ={x |x <0或x >2},∴(∁R M )∩N ={x |x <-3或x >2},故选C.10.若命题“∃x 0∈R ,使得x 20+mx 0+2m -3<0”为假命题,则实数m 的取值范围是( ) A .[2,6] B .[-6,-2] C .(2,6) D .(-6,-2)答案 A解析 ∵命题“∃x 0∈R ,使得x 20+mx 0+2m -3<0”为假命题,∴命题“∀x ∈R ,使得x 2+mx +2m -3≥0”为真命题,∴Δ≤0,即m 2-4(2m -3)≤0,∴2≤m ≤6.11.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4 B .a ≤4 C .a ≥5 D .a ≤5答案 C解析 命题“∀x ∈[1,2],x 2-a ≤0”为真命题的充要条件是a ≥4,故其充分不必要条件是实数a 的取值范围是集合[4,+∞)的非空真子集,正确选项为C.12.已知f (x )=ln(x 2+1),g (x )=(12)x -m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是( )A .[14,+∞)B .(-∞,14]C .[12,+∞)D .(-∞,-12]答案 A解析 当x ∈[0,3]时,[f (x )]min =f (0)=0,当x ∈[1,2]时,[g (x )]min =g (2)=14-m ,由[f (x )]min ≥[g (x )]min ,得0≥14-m ,所以m ≥14,故选A.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知集合A ={1,a,5},B ={2,a 2+1}.若A ∩B 有且只有一个元素,则实数a 的值为________. 答案 0或-2解析 若a =2,则a 2+1=5,A ∩B ={2,5},不合题意舍去. 若a 2+1=1,则a =0,A ∩B ={1}.若a 2+1=5,则a =±2.而a =-2时,A ∩B ={5}. 若a 2+1=a ,则a 2-a +1=0无解. ∴a =0或a =-2.14.已知命题p :α=β是tan α=tan β的充要条件. 命题q :∅⊆A .下列命题中为真命题的有________. ①p 或q ;②p 且q ;③綈p ;④綈q . 答案 ①③15.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m +n =________.答案 0解析 由|x +2|<3,得-3<x +2<3,即-5<x <1.又A ∩B =(-1,n ),则(x -m )(x -2)<0时必有m <x <2,从而A ∩B =(-1,1),∴m =-1,n =1,∴m +n =0.16.由命题“存在x ∈R ,使x 2+2x +m ≤0”是假命题,求得m 的取值范围是(a ,+∞),则实数a 的值是________.答案 1解析 ∵“存在x ∈R ,使x 2+2x +m ≤0”是假命题, ∴“任意x ∈R ,使x 2+2x +m >0”是真命题. ∴Δ=4-4m <0,解得m >1,故a 的值是1.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知集合A ={x |x 2-3x +2=0},B ={x |x 2-ax +a -1=0},若A ∪B =A ,求实数a 的值. 答案 a =2或a =3解析 A ={1,2},∵A ∪B =A ,∴B ⊆A ,∴B =∅或{1}或{2}或{1,2}. 当B =∅时,无解;当B ={1}时,⎩⎪⎨⎪⎧1+1=a ,1×1=a -1,得a =2;当B ={2}时,⎩⎪⎨⎪⎧ 2+2=a ,2×2=a -1,无解;当B ={1,2}时,⎩⎪⎨⎪⎧1+2=a ,1×2=a -1,得a =3.综上:a =2或a =3. 18.(本小题满分12分)π为圆周率,a ,b ,c ,d ∈Q ,已知命题p :若a π+b =c π+d ,则a =c 且b =d . (1)写出p 的否定并判断真假;(2)写出p 的逆命题、否命题、逆否命题并判断真假;(3)“a =c 且b =d ”是“a π+b =c π+d ”的什么条件?并证明你的结论. 答案 (1)p 的否定是假命题 (2)都是真命题 (3)充要条件,证明略解析 (1)原命题p 的否定是:“若a π+b =c π+d ,则a ≠c 或b ≠d ”.假命题. (2)逆命题:“若a =c 且b =d ,则a π+b =c π+d ”.真命题. 否命题:若“a π+b ≠c π+d ,则a ≠c 或b ≠d ”.真命题. 逆否命题:“若a ≠c 或b ≠d ,则a π+b ≠c π+d ”真命题. (3)“a =c 且b =d ”是“a π+b =c π+d ”的充要条件. 证明如下:充分性:若a =c ,则a π=c π. ∵b =d ,∴a π+b =c π+d .必要性:∵a π+b =c π+d ,∴a π-c π=d -b . 即(a -c )π=d -b .∵d -b ∈Q ,∴a -c =0且d -b =0. 即a =c 且b =d .∴“a =c 且b =d ”是“a π+b =c π+d ”的充要条件. 19.(本小题满分12分)设关于x 的不等式x (x -a -1)<0(a ∈R )的解集为M ,不等式x 2-2x -3≤0的解集为N . (1)当a =1时,求集合M ; (2)若M ⊆N ,求实数a 的取值范围. 答案 (1){x |0<x <2} (2)[-2,2]解析 (1)当a =1时,由已知得x (x -2)<0,解得0<x <2. 所以M ={x |0<x <2}.(2)由已知得N ={x |-1≤x ≤3}.①当a <-1时,因为a +1<0,所以M ={x |a +1<x <0}. 因为M ⊆N ,所以-1≤a +1<0,所以-2≤a <-1. ②当a =-1时,M =∅,显然有M ⊆N ,所以a =-1成立. ③当a >-1时,因为a +1>0,所以M ={x |0<x <a +1}. 因为M ⊆N ,所以0<a +1≤3,所以-1<a ≤2. 综上所述,a 的取值范围是[-2,2]. 20.(本小题满分12分)已知p :指数函数f (x )=(2a -6)x在R 上是单调减函数;q :关于x 的方程x 2-3ax +2a 2+1=0的两根均大于3,若p 或q 为真,p 且q 为假,求实数a 的取值范围.答案 (52,3]∪[72,+∞)解析 p 真,则指数函数f (x )=(2a -6)x的底数2a -6满足0<2a -6<1,所以3<a <72.q 真,令g (x )=x 2-3ax +2a 2+1,易知其为开口向上的二次函数.因为x 2-3ax +2a 2+1=0的两根均大于3,所以①Δ=(-3a )2-4(2a 2+1)=a 2-4>0,a <-2或a >2;②对称轴x =--3a 2=3a2>3;③g (3)>0,即32-9a +2a 2+1=2a 2-9a +10>0,所以(a -2)(2a -5)>0.所以a <2或a >52.由⎩⎪⎨⎪⎧a <-2或a >2,3a 2>3,a <2或a >52,得a >52.p 真q 假,由3<a <72及a ≤52,得a ∈∅.p 假q 真,由a ≤3或a ≥72及a >52,得52<a ≤3或a ≥72.综上所述,实数a 的取值范围为(52,3]∪[72,+∞).21.(本小题满分12分)我们知道,如果集合A ⊆S ,那么把S 看成全集时,S 的子集A 的补集为∁S A ={x |x ∈S ,且x ∉A }.类似的,对于集合A ,B ,我们把集合{x |x ∈A ,且x ∉B }叫做集合A 与B 的差集,记作A -B .据此回答下列问题:(1)若A ={1,2,3,4},B ={3,4,5,6},求A -B ; (2)在下列各图中用阴影表示出集合A -B ;(3)若集合A ={x |0<ax -1≤5},集合B ={x |-12<x ≤2},有A -B =∅,求实数a 的取值范围.答案 (1){1,2} (2)略 (3){a |a <-12或a ≥3或a =0} 解析 (1)根据题意知A -B ={1,2}.(2)(3)∵A -B =∅,∴A ⊆B .A ={x |0<ax -1≤5},则1<ax ≤6.当a =0时,A =∅,此时A -B =∅,符合题意;当a >0时,A =(1a ,6a ],若A -B =∅,则6a≤2,即a ≥3;当a <0时,A =[6a ,1a ),若A -B =∅,则6a >-12,即a <-12.综上所述,实数a 的取值范围是{a |a <-12或a ≥3或a =0}. 22.(本小题满分12分)已知P ={x |x 2-8x -20≤0},S ={x ||x -1|≤m }.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件.若存在,求实数m 的取值范围; (2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件.若存在,求实数m 的取值范围. 答案 (1)m 不存在 (2)m ≤3 解析 (1)P ={x |-2≤x ≤10},S ={x |1-m ≤x ≤m +1}.若x ∈P 是x ∈S 的充要条件,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴m 不存在.(2)若存在实数m ,使x ∈P 是x ∈S 的必要条件, ∴S ⊆P .若S =∅,即m <0时,满足条件.若S ≠∅,应有⎩⎪⎨⎪⎧m +1≥1-m ,1-m ≥-2,m +1≤10,解之得0≤m ≤3.综上得,m ≤3时,x ∈P 是x ∈S 的必要条件.1.(2015·广东广州测试)已知集合A ={x |x ∈Z 且32-x ∈Z },则集合A 中的元素个数为( )A .2B .3C .4D .5答案 C解析 ∵32-x ∈Z ,x ∈Z ,∴2-x 的取值有-3,-1,1,3,x 值分别为5,3,1,-1,故集合A 中的元素个数为4,故选C.2.设集合M 是R 的子集,如果点x 0∈R 满足:∀a >0,∃x ∈M,0<|x -x 0|<a ,称x 0为集合M 的聚点.则下列集合中以1为聚点的有( )①{nn +1|n ∈N };②{2n|n ∈N *};③Z ;④{y |y =2x}. A .①④ B .②③ C .①② D .①②④答案 A 解析 ①集合中{n n +1|n ∈N }中的元素是极限为1的数列,1是集合{nn +1|n ∈N }的聚点;②集合{2n |n ∈N *}中的元素是极限为0的数列,最大值为2,即|x -1|≤1,对于a =13,不存在0<|x -1|<13,所以1不是集合{2n|n ∈N *}的聚点; ③对于某个a <1,比如a =0.5,此时对任意的x ∈Z ,都有x -1=0或者x -1≥1,也就是说不可能0<|x -1|<0.5,从而1不是整数集Z 的聚点;④该集合为正实数集,从而1是集合{y |y =2x}的聚点.3.对于任意实数x ,[x ]表示不超过x 的最大整数,如[1.1]=1,[-2.1]=-3.定义在R 上的函数f (x )=[2x ]+[4x ]+[8x ],若A ={y |y =f (x ),0<x <1},则A 中元素的最大值与最小值之和为( )A .11B .12C .14D .15答案 A解析 当0<x <18时,[2x ]=0,[4x ]=0,[8x ]=0;当78≤x <1时,[2x ]=1,[4x ]=3,[8x ]=7; ∴A 中元素的最大值与最小值之和为7+3+1=11,选A.4.(2015·朝阳期中)同时满足以下4个条件的集合记作A k :①所有元素都是正整数;②最小元素为1;③最大元素为2 014;④各个元素可以从小到大排成一个公差为k (k ∈N *)的等差数列.那么集合A 33∪A 61中元素的个数是( )A .96B .94C .92D .90答案 B解析 A 33中元素是首项为1,公差为33的等差数列,那么设项数为m ,则有1+33(m -1)=2 014,解得m =62;A 61中元素是首项为1,公差为61的等差数列,那么设项数为n ,则有1+61(n -1)=2 014,解得n =34;A 33∩A 61中元素是首项为1,公差为33×61的等差数列,那么设项数为q ,则有1+33×61(q -1)=2 014,解得q =2.所以设P 表示元素个数,则有:P (A 33∪A 61)=P (A 33)+P (A 61)-P (A 33∩A 61)=34+62-2=94.5.(2015·顺义第一次统练)设非空集合M 同时满足下列两个条件: ①M ⊆{1,2,3,…,n -1};②若a ∈M ,则n -a ∈M (n ≥2,n ∈N *). 则下列结论正确的是( )A .若n 为偶数,则集合M 的个数为2n 2个B .若n 为偶数,则集合M 的个数为2n2-1个C .若n 为奇数,则集合M 的个数为2n -12个 D .若n 为奇数,则集合M 的个数为2n +12个答案 B解析 当n =2时,M ⊆{1},且满足1∈M,2-1∈M ,故集合M 的个数为1个;当n =3时,M ⊆{1,2},且1∈M,3-1=2∈M ,故集合M 的个数为1个;当n =4时,M ⊆{1,2,3},且1∈M,4-1=3∈M,2∈M,4-2=2∈M .故集合M 的个数为3,故可排除A ,C ,D ,选B.6.(2015·湖北天门调研)设集合M ={y |y =|cos 2x -sin 2x |,x ∈R },N ={x ||2x 1-3i|<1,i 为虚数单位,x ∈R },则M ∩N 等于( )A .(0,1)B .(0,1]C .[0,1)D .[0,1]答案 C解析 M ={y |y =|cos2x |,x ∈R }=[0,1],N ={x ||1+3i2x |<1}={x ||x |<1}={x |-1<x <1},M ∩N =[0,1),故选C.。

高考数学一轮复习讲练测(新教材新高考)专题9-4 双曲线 教师版

高考数学一轮复习讲练测(新教材新高考)专题9-4   双曲线  教师版

专题9.4双曲线练基础1.(2021·江苏高考真题)已知双曲线()222210,0x y a b a b -=>>的一条渐近线与直线230x y -+=平行,则该双曲线的离心率是()AB C .2D【答案】D 【分析】写出渐近线,再利用斜率相等,进而得到离心率【详解】双曲线的渐近线为b y x a =±,易知by x a=与直线230x y -+=平行,所以=2b e a ⇒故选:D.2.(2021·北京高考真题)若双曲线2222:1x y C a b-=离心率为2,过点,则该双曲线的程为()A .2221x y -=B .2213y x -=C .22531x y -=D .22126x y -=【答案】B 【分析】分析可得b =,再将点代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c ea == ,则2c a =,b ==,则双曲线的方程为222213x y a a-=,将点的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故b =,因此,双曲线的方程为2213y x -=.故选:B3.(2021·山东高考真题)已知1F 是双曲线22221x y a b-=(0a >,0b >)的左焦点,点P 在双曲线上,直线1PF 与x 轴垂直,且1PF a =,那么双曲线的离心率是()AB C .2D .3【答案】A 【分析】易得1F 的坐标为(),0c -,设P 点坐标为()0,c y -,求得20by a=,由1PF a =可得a b =,然后由a ,b ,c 的关系求得222c a =,最后求得离心率即可.【详解】1F 的坐标为(),0c -,设P 点坐标为()0,c y -,易得()22221c y a b--=,解得20b y a =,因为直线1PF 与x 轴垂直,且1PF a =,所以可得2b a a=,则22a b =,即a b =,所以22222c a b a =+=,离心率为e =故选:A .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为()A B C .2D .3【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解.【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22bAB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.5.(2019·北京高考真题(文))已知双曲线2221x y a-=(a >0)则a =()B.4C.2D.12【答案】D 【解析】∵双曲线的离心率ce a==,c =,∴a a=,解得12a =,故选D.6.(全国高考真题(文))双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,焦点到渐近线的,则C 的焦距等于().A.2B.C.4D.【答案】C 【解析】设双曲线的焦距为2c,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C.7.(2017·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为()A.221412x y -= B.221124x y -= C.2213x y -= D.2213y x -=【答案】D 【解析】由题意结合双曲线的渐近线方程可得:2222tan 60c c a bba⎧⎪=⎪=+⎨⎪⎪==⎩ ,解得:221,3a b ==,双曲线方程为:2213y x -=.本题选择D 选项.8.(2021·全国高考真题(理))已知双曲线22:1(0)x C y m m-=>0my +=,则C 的焦距为_________.【答案】4【分析】将渐近线方程化成斜截式,得出,a b 的关系,再结合双曲线中22,a b 对应关系,联立求解m ,再由关系式求得c ,即可求解.【详解】0my +=化简得y =,即b a 2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =.故答案为:4.9.(2019·江苏高考真题)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是_____.【答案】y =.【解析】由已知得222431b-=,解得b =或b =,因为0b >,所以b =.因为1a =,所以双曲线的渐近线方程为y =.10.(2020·全国高考真题(文))设双曲线C :22221x y a b-=(a >0,b >0)的一条渐近线为y =2x ,则C 的离心率为_________.【答案】3【解析】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为2y x =,所以2b a =,2213c b e a a==+=.故答案为:3练提升1.(2018·全国高考真题(理))设1F ,2F 是双曲线2222:1x y C a b-=()的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF =,则C 的离心率为()53C.22【答案】B 【解析】由题可知22,PF b OF c==PO a∴=在2Rt PO F 中,222cos P O PF bF OF c∠==在12PF F △中,22221212212cos P O 2PF F F PF b F PF F F c+-∠==)2222246322b c abc a b cc+-∴=⇒=⋅e 3∴=故选B.2.(2020·云南文山·高三其他(理))已知双曲线2221(0)x y a a-=>上关于原点对称的两个点P ,Q ,右顶点为A ,线段AP 的中点为E ,直线QE 交x 轴于(1,0)M ,则双曲线的离心率为()A B .53C D .103【答案】D 【解析】由已知得M 为APQ 的重心,∴3||3a OM ==,又1b =,∴c ==,即3c e a ==.故选:D.3.(2020·广东天河·华南师大附中高三月考(文))已知平行于x 轴的直线l 与双曲线C :()222210,0x y a b a b-=>>的两条渐近线分别交于P 、Q 两点,O 为坐标原点,若OPQ △为等边三角形,则双曲线C 的离心率为()A .2B .233C D .33【答案】A 【解析】因为OPQ △为等边三角形,所以渐近线的倾斜角为3π,所以22,3,bb b a a=∴=∴=所以2222223,4,4,2c a a c a e e -=∴=∴=∴=.故选:A4.(2021·广东广州市·高三月考)已知1F ,2F 分别是双曲线C :2213x y -=的左、右焦点,点P 是其一条渐近线上一点,且以线段12F F 为直径的圆经过点P ,则点P 的横坐标为()A .±1B .C .D .2±【答案】C 【分析】由题意可设00(,)3P x x ±,根据圆的性质有120F P F P ⋅= ,利用向量垂直的坐标表示,列方程求0x 即可.【详解】由题设,渐近线为3y x =±,可令00(,)3P x x ,而1(2,0)F -,2(2,0)F ,∴100(2,)3F P x =+± ,200(2,)3F P x x =- ,又220120403x F P F P x ⋅=-+= ,∴0x =故选:C5.(2020·广西南宁三中其他(理))圆22:10160+-+=C x y y 上有且仅有两点到双曲线22221(0,0)x y a b a b-=>>的一条渐近线的距离为1,则该双曲线离心率的取值范围是()A .B .55(,)32C .55(,42D .1)【答案】C 【解析】双曲线22221x y a b-=的一条渐近线为0bx ay -=,圆22:10160C x y y +-+=,圆心()0,5,半径3因为圆C 上有且仅有两点到0bx ay -=的距离为1,所以圆心()0,5到0bx ay -=的距离d 的范围为24d <<即24<<,而222+=a b c 所以524a c <<,即5542e <<故选C 项.6.【多选题】(2021·湖南高三)已知双曲线2222:1x y C a b-=(0a >,0b >)的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有()A .若a b =,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12PF F △的内切圆圆心的横坐标x a=D .若M 为直线2a xc =(c )上纵坐标不为0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小【答案】ABD 【分析】由a b =,得到222a c =,利用离心率的定义,可判定A 正确;由双曲线的几何性质和点到直线的距离公式,可判定B 正确;由双曲线的定义和内心的性质,可判定C 不正确;由正弦定理得到2MAF 外接圆的半径为222sin AF R AMF =∠,得出2sin AMF ∠最大时,R 最小,只需2tan AMF ∠最大,设2,a M t c ⎛⎫⎪⎝⎭,得到22tan tan()AMF NMF NMA ∠=∠-∠,结合基本不等式,可判定D 正确.【详解】对于A 中,因为a b =,所以222a c =,故C 的离心率ce a==A 正确;对于B 中,因为()1,0F c -到渐近线0bx ay -=的距离为d b ==,所以B 正确;对于C 中,设内切圆与12PF F △的边1221,,F F F P F P 分别切于点1,,A B C ,设切点1A (,0)x ,当点P 在双曲线的右支上时,可得121212PF PF PC CF PB BF CF BF -=+--=-1112A F A F =-()()22c x c x x a =+--==,解得x a =,当点P 在双曲线的左支上时,可得x a =-,所以12PF F △的内切圆圆心的横坐标x a =±,所以C 不正确;对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin AF R AMF =∠,所以当2sin AMF ∠最大时,R 最小,因为2a a c<,所以2AMF ∠为锐角,故2sin AMF ∠最大,只需2tan AMF ∠最大.由对称性,不妨设2,a M t c ⎛⎫ ⎪⎝⎭(0t >),设直线2a x c =与x 轴的交点为N ,在直角2NMF △中,可得222=tan a c NF c NM t NMF -∠=,在直角NMA △中,可得2=tan a a NA c NM tMA N -∠=,又由22222222tan tan tan tan()1tan tan 1NMF NMA AMF NMF NMA NMF NMAa a c a c ct t a a c a c c t t --∠-∠∠=∠-∠==+∠∠--⨯+-⋅22()c a ab c a t c t-=-+当且仅当()22ab c a t c t -=,即t =2tan AMF ∠取最大值,由双曲线的对称性可知,当t =2tan AMF ∠也取得最大值,所以D 正确.故选:ABD .7.【多选题】(2021·重庆巴蜀中学高三月考)已知点Q 是圆M :()2224x y ++=上一动点,点()2,0N ,若线段NQ 的垂直平分线交直线MQ 于点P ,则下列结论正确的是()A .点P 的轨迹是椭圆B .点P 的轨迹是双曲线C .当点P 满足PM PN ⊥时,PMN 的面积3PMN S =△D .当点P 满足PM MN ⊥时,PMN 的面积6PMN S = 【答案】BCD 【分析】根据PM PN -的结果先判断出点P 的轨迹是双曲线,由此判断AB 选项;然后根据双曲线的定义以及垂直对应的勾股定理分别求解出PM PN ⋅的值,即可求解出PMN S △,据此可判断CD 选项.【详解】依题意,2MQ =,4MN =,因线段NQ 的垂直平分线交直线MQ 于点P ,于是得PQ PN =,当点P 在线段MQ 的延长线上时,2PM PN PM PQ MQ -=-==,当点P 在线段QM 的延长线上时,2PN PM PQ PM MQ -=-==,从而得24PM PN MN -=<=,由双曲线的定义知,点M 的轨迹是双曲线,故A 错,B 对;选项C ,点P 的轨迹方程为2213y x -=,当PM PN ⊥时,2222616PM PN PM PN PM PN MN ⎧-=⎪⇒⋅=⎨+==⎪⎩,所以132PMN S PM PN ==△,故C 对;选项D ,当PM MN ⊥时,2222316PM PN PM PN PM MN ⎧-=-⎪⇒=⎨-==⎪⎩,所以162PMN S PM MN ==△,故D 对,故选:BCD.8.(2021·全国高二课时练习)双曲线()22122:10,0x y C a b a b-=>>的焦距为4,且其渐近线与圆()222:21C x y -+=相切,则双曲线1C 的标准方程为______.【答案】2213x y -=【分析】根据焦距,可求得c 值,根据渐近线与圆2C 相切,可得圆心到直线的距离等于半径1,根据a ,b ,c 的关系,即可求得a ,b 值,即可得答案.【详解】因为双曲线()22122:10,0x y C a b a b-=>>的焦距为4,所以2c =.由双曲线1C 的两条渐近线b y x a=±与圆()222:21C x y -+=相切,可得1=又224a b +=,所以1b =,a =所以双曲线1C 的标准方程为2213x y -=.故答案为:2213x y -=9.(2021·全国高二单元测试)已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,离心率为e ,若双曲线上一点P 使2160PF F ∠=︒,则221F P F F ⋅的值为______.【答案】3【分析】在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.分别运用余弦定理可求得答案.【详解】解:由已知得2124F F c ==.在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.当12PF x =+时,由余弦定理,得()222124242x x x +=+-⨯⨯,解得32x =,所以221314322F P F F ⋅=⨯⨯= .当12PF x =-时,由余弦定理,得()222124242x x x -=+-⨯⨯,无解.故2213F P F F ⋅=.故答案为:3.10.(2021·全国高二课时练习)如图,以AB 为直径的圆有一内接梯形ABCD ,且//AB CD .若双曲线1C 以A ,B 为焦点,且过C ,D 两点,则当梯形的周长最大时,双曲线1C 的离心率为______.1【分析】连接AC ,设BAC θ∠=,将梯形的周长表示成关于θ的函数,求出当30θ=︒时,l 有最大值,即可得到答案;【详解】连接AC ,设BAC θ∠=,2AB R c R ==,,作CE AB ⊥于点E ,则||2sin BC R θ=,()2||||cos 902sin EB BC R θθ=︒-=,所以2||24sin CD R R θ=-,梯形的周长221||2||||24sin 24sin 4sin 52l AB BC CD R R R R R R θθθ⎛⎫=++=++-=--+ ⎪⎝⎭.当1sin 2θ=,即30θ=︒时,l 有最大值5R ,这时,||BC R =,||3AC R =,1(31)(||||)22R a AC BC -=-=,31==+c e a .故答案为:31+练真题1.(2021·全国高考真题(理))已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为()A 72B 132C 7D 13【答案】A 【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案.【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==,所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即72e =.故选:A2.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =234x -OP |=()A.222B.4105C.710【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数234y x =-由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==.故选:D.3.(2019·全国高考真题(理))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为()B.C.2D.【答案】A 【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c == ,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2c OA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=,故选A.4.(2019·全国高考真题(理))双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为()A.324B.2C.D.【答案】A 【解析】由2,a b c ===.,2P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在22y x =上,113322224PFO P S OF y ∴=⋅==△,故选A.5.(2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【分析】先求出右焦点坐标,再利用点到直线的距离公式求解.【详解】由已知,3c ===,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===.6.(2019·全国高考真题(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB = ,120F B F B ⋅=,则C 的离心率为____________.【答案】2.【解析】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 603ba==,所以该双曲线的离心率为221()1(3)2c be a a==+=+=.。

2015届高考数学一轮总复习 阶段性测试题9(立体几何)

2015届高考数学一轮总复习 阶段性测试题9(立体几何)

阶段性测试题九(立体几何)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2014·抚顺二中期中)已知a,b,c是三条不同的直线,α,β,γ是三个不同的平面,下述命题中真命题的是()A.若a⊥c,b⊥c,则a∥b或a⊥bB.若α⊥β,β⊥γ,则α∥βC.若a⊂α,b⊂β,c⊂β,a⊥b,a⊥c,则α⊥βD.若a⊥α,b⊂β,a∥b,则α⊥β[答案] D[解析]由a⊥c,b⊥c知,a与b可平行可相交,也可异面,故A错;由直棱柱相邻两个侧面与底面都垂直知B错;当α∩β=l,a⊥l,b∥c∥l时,可满足C的条件,故C错;∵a∥b,a⊥α,∴b⊥α,又b⊂β,∴α⊥β,∴D正确.2.(2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)已知不重合的两条直线l,m和不重合的两个平面α,β,下列命题正确的是()A.l∥m,l∥β,则m∥βB.α∩β=m,l⊂α,则l∥βC.α⊥β,l⊥α,则l∥βD.l⊥m,m⊥β,l⊥α,则α⊥β[答案] D[解析]l⊄β,l∥m,m⊂β时,l∥β,故A错;α∩β=m,当l⊂α且l∥m时,l∥β,当l与m 相交时,l与β相交,故B错;α⊥β,当l⊂β,l与α和β的交线垂直,l⊥α时,但l∥β不成立,故C错;∵l⊥m,l⊥α,∴m⊂α或m∥α,又m⊥β,∴α⊥β,故D正确.3.(2014·山东省博兴二中质检)某四面体的三视图如图所示,该四面体四个面的面积值最大的是()A.8B.6 2C.8 2 D.10[答案] D[解析]由三视图知,该几何体直观图如图,其中△ABC为以B为直角的直角三角形,AB=4,BC=3,高P A=4,∴S△ABC=12×4×3=6,S△P AB=12×4×4=8,S△PBC=12PB·BC=12×42×3=62,S△P AC=12AC·P A=12×5×4=10,故选D.4.(2014·河南淇县一中模拟)将正方体(如图(a)所示)截去两个三棱锥,得到图(b)所示的几何体,则该几何体的侧视图为()[答案] B[解析]在侧视图中,D1的射影为C1,A的射影为B,D的射影为C,AD1的射影BC1为实线(右下到左上),B1C为虚线,故选B.5.(文)(2014·浙北名校联盟联考)一个几何体的三视图如图所示,则该几何体的体积为()A .4B .8C .4 3D .8 3[答案] B[解析] 作出几何体的直观图如图,这是一个三棱锥P -ABC ,其中P 在底面射影为D 点,PD =23,AD =3,CD =1,E 为AC 的中点,BE ⊥AC ,BE =23,故几何体的体积V =13S △ABC ·PD =13×(12·AC ·BE )·PD =8,故选B.(理)(2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)一个几何体的三视图如图所示,则该几何体的体积为( )A .1B .2C .3D .4 [答案] A[解析] 由三视图知,该几何体是一个三棱锥P -ABC ,其中底面△ABC 为直角三角形,∠A 为直角,顶点P 到A ,C 的距离相等,P 点在底面的射影D ,满足AC ∥BD ,且BD =12AC =1,PD =3,画出其直观图如图所示,其体积V =13S △ABC ·PD =13×(12×2×1)×3=1.6.(2014·辽宁师大附中期中)已知一个几何体的三视图如图所示,则该几何体的表面积为( )A .24+6πB .24+4πC .28+6πD .28+4π [答案] A[解析] 由三视图知,该几何体为组合体,其上部为半球,半球的直径为22,下部为长方体,长、宽、高为2,2,3,其表面积为2×4×3 +12×4π·(222)2+π·(222)2=24+6π,故选A.7.(2014·高州四中质量监测)已知某几何体的三视图如图所示,其中正视图中半圆的直径为2,则该几何体的体积为( )A .24-π3B .24-π2C .24-32πD .24-π[答案] C[解析] 由三视图知,该几何体是由长、宽、高分别为3、4、2的长方体内挖去一个底半径为1,高为3的半圆柱后剩余部分,其体积V =3×4×2-12(π×12×3)=24-32π.8.(2014·山西曲沃中学期中)已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2.∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为( )A.33B.233C.433D.533[答案] C[解析] 设球心为O ,△ABO 所在平面截球O 得截面如图,∵OA =OB =AB =OS =OC =2,∠ASC =∠BSC =45°,∴SC ⊥平面ABO ,V S -ABC =V S -ABO +V C -ABO =2V S -ABO =2×13×(34×22)×2=433,故选C.9.(文)(2014·陕西工大附中四模)如下图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )[答案] C[解析] 若俯视图为A ,则该几何体是棱长为1的正方体,体积V =1;若俯视图为B ,则该几何体是底半径为12,高为1的圆柱,其体积V =π·(12)2·1=π4;若俯视图为D ,则该几何体是底半径为1,高为1的圆柱的14,其体积V =14·π·12·1=π4;若俯视图为C ,则该几何体是直三棱柱,底面直角三角形两直角边长为1,棱柱高为1,体积为V =(12×1×1)×1=12,因此选C.(理)(2014·开滦二中期中)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =2,BC =3,D 、E 分别是AC 1和BB 1的中点,则直线DE 与平面BB 1C 1C 所成的角为( )A.π6B.π4C.π3D.π2[答案] A[解析] 取AC 中点F ,则DF 綊BE ,∴DE ∥BF , ∴BF 与平面BB 1C 1C 所成的角为所求, ∵AB =1,BC =3,AC =2,∴AB ⊥BC ,又AB ⊥BB 1,∴AB ⊥平面BCC 1B 1,作GF ∥AB 交BC 于G ,则GF ⊥平面BCC 1B 1,∴∠FBG 为直线BF 与平面BCC 1B 1所成的角,由条件知BG =12BC =32,GF =12AB =12,∴tan ∠FBG =GF BG =33,∴∠FBG =π6.10.(2014·绵阳市南山中学检测)设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,有下列四个命题:①若m ⊂β,α⊥β,则m ⊥α; ②若α∥β,m ⊂α,则m ∥β; ③若n ⊥α,n ⊥β,m ⊥α,则m ⊥β; ④若α⊥γ,β⊥γ,m ⊥α,则m ⊥β. 其中正确命题的序号是( ) A .①③ B .①② C .③④ D .②③[答案] D[解析] 由两个平面平行的性质知②正确;∵n ⊥α,n ⊥β,∴α∥β,又m ⊥α,∴m ⊥β,∴③正确,故选D.11.(文)(2014·云南景洪市一中期末)一个几何体的三视图如图所示,其中俯视图与左视图均为半径是1的圆,则这个几何体的体积是( )A.4π3 B .π C.2π3 D.π3[答案] B[解析] 由三视图知,这是一个半径为1的球,截去14,故其体积为V =34·(4π3·13)=π.(理)(2014·吉林延边州质检)正方体ABCD -A 1B 1C 1D 1中,E 为棱BB 1的中点(如图),用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的左视图为( )[答案] C[解析] 由条件知AE ∥平面DD 1C 1C ,平面AEC 1与平面DD 1C 1C 相交,故交线与AE 平行,∵E 为BB 1的中点,故取DD 1的中点F ,∴AE 綊C 1F ,故截面为AEC 1F (如图1),截去正方体的上半部分后,剩余部分几何体直观图如图2,故其左视图形状与直角梯形FD 1A 1A 相同,且C 1E 的射影为虚线,由于B 1E =12AA 1,故E 点射影在直角梯形下底的中点,故选C.12.(文)(2014·吉林省实验中学一模)已知正三棱锥P -ABC ,点P 、A 、B 、C 都在半径为3的球面上,若P A 、PB 、PC 两两互相垂直,则球心到截面ABC 的距离为( )A. 2B. 3C.33D.233[答案] C[解析] 由条件知,以P A 、PB 、PC 为三棱作长方体P ADB -CA 1D 1B 1,则该长方体内接于球,体对角线PD 1为球的直径,由于三棱锥P -ABC 为正三棱锥,∴AB =AC =BC ,∴P A =PB =PC ,设P A =a ,则3a =23,∴a =2.设球心到截面的距离为h ,则由V A -PBC =V P -ABC 得, 13(12×2×2)×2=13×34×(22)2×(3-h ), ∴h =33. (理)(2014·成都七中模拟)平面四边形ABCD 中,AD =AB =2,CD =CB =5,且AD ⊥AB ,现将△ABD 沿着对角线BD 翻折成△A ′BD ,则在△A ′BD 折起至转到平面BCD 内的过程中,直线A ′C 与平面BCD 所成的最大角的正切值为( )A .1 B.12 C.33D. 3[答案] C[解析] 如下图,OA =1,OC =2,在△ABD 绕直线BD 旋转过程中,OA 绕点O 旋转形成半圆,显然当A ′C 与圆相切时,直线A ′C 与平面BCD 所成角最大,最大角为30°,其正切值为33,选C.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(2014·山西省太原五中月考)如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,则CP +P A 1的最小值为________.[答案]8+2 6[解析] 由题意可知,△BCC 1为等腰直角三角形,∵AC =6,BC =CC 1=2,∠ACB =90°,∴∠A 1B =10,BC 1=2,∵A 1B 2=A 1C 21+BC 21,∴∠AC 1B 为直角,将△BCC 1与△A 1BC 1所在平面铺平如图,设A 1C 交BC 1于Q ,则当点P 与Q 重合时,CP +P A 1取到最小值,最小值为A 1C .A 1C =A 1C 21+C 1C 2-2A 1C 1·C 1C cos135° =6+2-2×6×2×(-22)=8+2 6.14.(文)(2014·抚顺市六校联合体期中)已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.[答案] 12π[解析] 由V =13Sh =13×(3)2·h =322知,h =322,设正方形ABCD 的中心为M ,则MA =62,∴OA 2=OM 2+MA 2=(322)2+(62)2=3,∴S 球=4π·OA 2=12π.(理)(2014·抚顺二中期中)右图是一个空间几何体的三视图,如果主视图和左视图都是边长为2的正三角形,俯视图为正方形,那么该几何体的体积为________.[答案]433[解析] 由三视图知,几何体是正四棱锥,底面正方形边长为2,棱锥的斜高为2,故高h =22-12=3,∴体积V =13×4×3=433.15.(文)(2014·西安市长安中学期中)一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为________.[答案]3(8-π)6[解析] 根据三视图,该几何体是一个组合体,其中左侧是半个圆锥,右侧是底面为正方形的四棱锥,由于侧视图是一个边长为2的等边三角形,所以高为 3.所以其体积为V =13·(12π·12+22)·3=3(8+π)6.(理)(2014·浙江台州中学期中)把边长为1的正方形ABCD 沿对角线BD 折起,形成三棱锥C -ABD ,它的主视图与俯视图如图所示,则二面角C -AB -D 的正切值为________.[答案] 2[解析] 三棱锥C -ABD 直观图如图,由主视图与俯视图知,平面CBD ⊥平面ABD ,CO ⊥平面ABD ,作OE ∥AD ,∵AD ⊥AB ,∴OE ⊥AB ,连结CE ,则CE ⊥AB ,∴∠CEO 为二面角C -AB -D 的平面角,在Rt △COE 中,OE =12AD =12,CO =22,∴tan ∠CEO =COOE= 2.16.(文)(2014·华安、连城、永安、漳平、泉港一中,龙海二中六校联考)点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,则下列四个命题:①三棱锥A -D 1PC 的体积不变; ②A 1P ∥平面ACD 1; ③DP ⊥BC 1;④平面PDB 1⊥平面ACD 1. 其中正确的命题序号是________. [答案] ①②④[解析] ①VA -D 1PC =VP -AD 1C ,∵BC 1∥AD 1,AD 1⊂平面AD 1C ,∴BC 1∥平面AD 1C ,∴无论P 在BC 1上任何位置,P 到平面AD 1C 的距离为定值,∴三棱锥A -D 1PC 的体积不变,∴①正确;②∵A 1C 1∥AC ,BC 1∥AD 1,A 1C 1∩BC 1=C 1,AC ∩AD 1=A ,∴平面A 1BC 1∥平面AD 1C ,∵A 1P ⊂平面A 1BC 1,∴A 1P ∥平面ACD 1,∴②正确;③假设DP ⊥BC 1,∵DC ⊥平面BCC 1B 1,∴DC ⊥BC 1, ∴BC 1⊥平面ABCD ,与正方体ABCD -A 1B 1C 1D 1矛盾, ∴③错误;④∵B 1B ⊥AC ,BD ⊥AC ,∴AC ⊥平面B 1BD ,∴AC ⊥B 1D ,同理可证AD 1⊥B 1D ,∴B 1D ⊥平面ACD 1,∵B 1D ⊂平面PDB 1,∴平面PDB 1⊥平面ACD 1,∴④正确.(理)(2014·成都七中模拟)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 是BC 1的中点,P 是BB 1一动点,则(AP +MP )2的最小值为________.[答案] 52[解析] 将平面ABB 1A 1展开到与平面CBB 1C 1共面,如下图,易知当A 、P 、M 三点共线时(AP +MP )2最小.AM 2=AB 2+BM 2-2AB ×BM cos135°=12+(22)2-2×1×22×(-22)=52. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(2014·天津市六校联考)在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,已知BC =1,∠BCC 1=π3,AB =CC 1=2.(1)求证:BC 1⊥平面ABC ;(2)试在棱CC 1(不包含端点C ,C 1)上确定一点E 的位置,使得EA ⊥EB 1; (3)(理)在(2)的条件下,求AE 和平面ABC 1所成角正弦值的大小. [解析] (1)∵BC =1,∠BCC 1=π3,CC 1=2,∴BC 1=3,∴BC 2+BC 21=CC 21,∴BC 1⊥BC ,∵AB ⊥侧面BB 1C 1C ,BC 1⊂平面BB 1C 1C , ∴BC 1⊥AB 且BC ∩AB =B , ∴BC 1⊥平面ABC .(2)E 为C 1C 的中点.连接BE ,∵BC =CE =1,∠BCC 1=π3,等边△BEC 中,∠BEC =π3,同理:B 1C 1=C 1E =1,∠B 1C 1E =2π3,∴∠B 1EC 1=π6,∴∠BEB 1=π2,∴EB 1⊥EB ,∵AB ⊥侧面BB 1C 1C ,EB 1⊂平面BB 1C 1C , ∴EB 1⊥AB 且EB ∩AB =B ,∴B 1E ⊥平面ABE ,EA ⊂平面ABE ,∴EA ⊥EB 1. (3)∵AB ⊥侧面BB 1C 1C ,AB ⊂平面ABC 1, ∵平面BCC 1B 1⊥平面ABC 1,过E 作BC 1的垂线交BC 1于F ,则EF ⊥平面ABC 1, 连接AF ,则∠EAF 为所求, ∵BC ⊥BC 1,EF ⊥BC 1,∴BC ∥EF , ∵E 为C 1C 的中点,∴F 为C 1B 的中点,∴EF =12,由(2)知AE =5,∴sin ∠EAF =125=510.18.(本小题满分12分)(文)(2014·长沙市重点中学月考)如图所示,圆柱的高为2,底面半径为7,AE 、DF是圆柱的两条母线,过AD 作圆柱的截面交下底面于BC ,四边形ABCD 是正方形.(1)求证BC ⊥BE ;(2)求四棱锥E -ABCD 的体积. [解析] (1)∵AE 是圆柱的母线,∴AE ⊥底面EBC ,又BC ⊂底面EBC ,∴AE ⊥BC , 又∵截面ABCD 是正方形,所以BC ⊥AB , 又AB ∩AE =A ,∴BC ⊥平面ABE , 又BE ⊂平面ABE ,∴BC ⊥BE .(2)∵母线AE ⊥底面EBC ,∴AE 是三棱锥A -BCE 的高, 由(1)知BC ⊥平面ABE ,BC ⊂平面ABCD , ∴平面ABCD ⊥平面ABE , 过E 作EO ⊥AB ,交AB 于O ,又∵平面ABCD ∩平面ABE =AB ,EO ⊂平面ABE , ∴EO ⊥平面ABCD ,即EO 就是四棱锥E -ABCD 的高, 设正方形ABCD 的边长为x ,则AB =BC =x , BE =AB 2-AE 2=x 2-4,又∵BC ⊥BE ,∴EC 为直径,即EC =27, 在Rt △BEC 中,EC 2=BE 2+BC 2, 即(27)2=x 2+x 2-4,∴x =4, ∴S 四边形ABCD =4×4=16,OE =AE ·BE AB =2×42-44=3,∴V E -ABCD =13·OE ·S 四边形ABCD =13×3×16=1633.(理)(2014·湖南长沙实验中学、沙城一中联考)在三棱柱ABC -A 1B 1C 1中,侧面ABB 1A 1,ACC 1A 1均为正方形,∠BAC =90°,点D 是棱B 1C 1的中点.(1)求证:A 1D ⊥平面BB 1C 1C ; (2)求证:AB 1∥平面A 1DC ; (3)求二面角D -A 1C -A 的余弦值.[解析] (1)证明:因为侧面ABB 1A 1,ACC 1A 1均为正方形, 所以AA 1⊥AC ,AA 1⊥AB ,所以AA 1⊥平面ABC , 所以AA 1⊥平面A 1B 1C 1.因为A 1D ⊂平面A 1B 1C 1,所以AA 1⊥A 1D , 又因为CC 1∥AA 1,所以CC 1⊥A 1D , 又因为A 1B 1=A 1C 1,D 为B 1C 1中点, 所以A 1D ⊥B 1C 1. 因为CC 1∩B 1C 1=C 1, 所以A 1D ⊥平面BB 1C 1C .(2)证明:连结AC 1,交A 1C 于点O ,连结OD , 因为ACC 1A 1为正方形,所以O 为AC 1中点, 又D 为B 1C 1中点,所以OD 为△AB 1C 1中位线, 所以AB 1∥OD ,因为OD ⊂平面A 1DC ,AB 1⊄平面A 1DC , 所以AB 1∥平面A 1DC .(3)因为侧面ABB 1A 1,ACC 1A 1均为正方形,∠BAC =90°,所以AB ,AC ,AA 1两两互相垂直,如图所示建立直角坐标系A -xyz . 设AB =1,则C (0,1,0),B (1,0,0),A 1(0,0,1),D (12,12,1).A 1D →=(12,12,0),A 1C →=(0,1,-1),设平面A 1DC 的法向量为n =(x ,y ,z ),则有 ⎩⎪⎨⎪⎧n ·A 1D →=0,n ·A 1C →=0,∴⎩⎪⎨⎪⎧x +y =0,y -z =0,取x =1,得n =(1,-1,-1).又因为AB ⊥平面ACC 1A 1,所以平面ACC 1A 1的法向量为AB →=(1,0,0), 设二面角D -A 1C -A 的平面角为θ,则θ=π-〈n ,AB →〉, ∴cos θ=cos(π-〈n ,AB →〉) =-n ·AB →|n |·|AB →|=-13=-33,所以,二面角D -A 1C -A 的余弦值为-33. 19.(本小题满分12分)(文)(2014·黄石二中检测)如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC =2AB =2,且BC 1⊥A 1C .(1)求证:平面ABC 1⊥平面A 1ACC 1;(2)设D 是A 1C 1的中点,判断并证明在线段BB 1上是否存在点E ,使DE ∥平面ABC 1;若存在,求三棱锥E -ABC 1的体积.[解析] (1)证明:在直三棱柱ABC -A 1B 1C 1中,有A 1A ⊥平面ABC .∴A 1A ⊥AC ,又A 1A =AC ,∴A 1C ⊥AC 1.又BC 1⊥A 1C ,∴A 1C ⊥平面ABC 1,∵A 1C ⊂平面A 1ACC 1,∴平面ABC 1⊥平面A 1ACC 1.(2)存在,E 为BB 1的中点.取A 1A 的中点F ,连EF ,FD ,当E 为B 1B 的中点时,EF ∥AB ,DF ∥AC 1, ∴平面EFD ∥平面ABC 1,则有ED ∥平面ABC 1. 当E 为BB 1的中点时,V E -ABC 1=V C1-ABE=13×2×12×1×1=13. (理)(2014·保定市八校联考)如图,在底面是直角梯形的四棱锥P -ABCD 中,∠DAB =90°,P A ⊥平面ABCD ,P A =AB =BC =3,梯形上底AD =1.(1)求证:BC ⊥平面P AB ;(2)在PC 上是否存在一点E ,使得DE ∥平面P AB ?若存在,请找出;若不存在,说明理由; (3)求平面PCD 与平面P AB 所成锐二面角的正切值. [解析] (1)证明:∵BC ∥AD 且∠DAB =90°,∴BC ⊥AB ,又P A ⊥平面ABCD ,∴BC ⊥P A , 而P A ∩AB =A ,∴BC ⊥平面P AB .(2)延长BA 、CD 相交于Q 点,假若在PC 上存在点E ,满足DE ∥平面P AB ,则由平面PCQ 经过DE 与平面P AB 相交于PQ 知DE ∥PQ ,∵AD ∥BC 且AD =1,BC =3, ∴PE CP =QD CQ =AD BC =13, 故E 为CP 的三等分点,PE =12CE .(3)过A 作AH ⊥PQ ,垂足为H ,连DH , 由(1)及AD ∥BC 知:AD ⊥平面P AQ , ∴AD ⊥PQ ,又AH ⊥PQ , ∴PQ ⊥平面HAD ,∴PQ ⊥HD .∴∠AHD 是平面PCD 与平面PBA 所成的二面角的平面角. 易知AQ =32,PQ =352,∴AH =AQ ·P A PQ =355,∴tan ∠AHD =AD AH =53,所以平面PCD 与平面P AB 所成二面角的正切值为53. 20.(本小题满分12分)(文)(2014·北京朝阳区期末)如图,在三棱锥P -ABC 中,平面P AC ⊥平面ABC ,P A ⊥AC ,AB ⊥BC .设D 、E 分别为P A 、AC 中点.(1)求证:DE∥平面PBC;(2)求证:BC⊥平面P AB;(3)试问在线段AB上是否存在点F,使得过三点D,E,F的平面内的任一条直线都与平面PBC 平行?若存在,指出点F的位置并证明;若不存在,请说明理由.[解析](1)证明:因为点E是AC中点,点D为P A的中点,所以DE∥PC.又因为DE⊄平面PBC,PC⊂平面PBC,所以DE∥平面PBC.(2)证明:因为平面P AC⊥平面ABC,平面P AC∩平面ABC=AC,又P A⊂平面P AC,P A⊥AC,所以P A⊥平面ABC.所以P A⊥BC.又因为AB⊥BC,且P A∩AB=A,所以BC⊥平面P AB.(3)当点F是线段AB中点时,过点D,E,F的平面内的任一条直线都与平面PBC平行.取AB中点F,连EF,DF.由(1)可知DE∥平面PBC.因为点E是AC中点,点F为AB的中点,所以EF∥BC.又因为EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC.又因为DE∩EF=E,所以平面DEF∥平面PBC,所以平面DEF内的任一条直线都与平面PBC平行.故当点F是线段AB中点时,过点D,E,F所在平面内的任一条直线都与平面PBC平行.(理)(2014·山东省博兴二中质检)如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q 为AD 的中点.(1)若P A =PD ,求证:平面PQB ⊥平面P AD ;(2)设点M 在线段PC 上,PM MC =12,求证:P A ∥平面MQB ;(3)在(2)的条件下,若平面P AD ⊥平面ABCD ,且P A =PD =AD =2,求二面角M -BQ -C 的大小.[解析] (1)连接BD ,∵四边形ABCD 为菱形,∠BAD =60°,∴△ABD 为正三角形, 又Q 为AD 中点,∴AD ⊥BQ .∵P A =PD ,Q 为AD 的中点,AD ⊥PQ , 又BQ ∩PQ =Q ,∴AD ⊥平面PQB ,∵AD ⊂平面P AD , ∴平面PQB ⊥平面P AD . (2)连接AC 交BQ 于点N ,由AQ ∥BC 可得,△ANQ ∽△CNB ,∴AQ BC =AN NC =12.又PM MC =12,∴PM MC =ANNC.∴P A ∥MN . ∵MN ⊂平面MQB ,P A ⊄平面MQB ,∴P A ∥平面MQB . (3)∵P A =PD =AD =2,Q 为AD 的中点,∴PQ ⊥AD . 又平面P AD ⊥平面ABCD ,∴PQ ⊥平面ABCD .以Q 为坐标原点,分别以QA 、QB 、QP 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则各点坐标为A (1,0,0),B (0,3,0),P (0,0,3).设平面MQB 的法向量n =(x ,y ,z ),可得⎩⎪⎨⎪⎧ n ·QB →=0,n ·MN →=0.∵P A ∥MN ,∴⎩⎪⎨⎪⎧n ·QB →=0,n ·P A →=0.∴⎩⎨⎧3y =0,x -3z =0,取z =1,得n =(3,0,1). 取平面ABCD 的法向量m =(0,0,1). cos 〈m ,n 〉=m ·n |m ||n |=12.故二面角M -BQ -C 的大小为60°.21.(本小题满分12分)(文)如图,E 是以AB 为直径的半圆弧上异于A ,B 的点,矩形ABCD 所在平面垂直于该半圆所在的平面,且AB =2AD =2.(1)求证:EA ⊥EC ;(2)设平面ECD 与半圆弧的另一个交点为F . ①求证:EF ∥AB ;②若EF =1,求三棱锥E -ADF 的体积.[解析] (1)∵E 是半圆上异于A ,B 的点,∴AE ⊥EB , 又∵平面ABCD ⊥平面ABE ,且CB ⊥AB , 由面面垂直性质定理得CB ⊥平面ABE , 又AE ⊂平面ABE ,∴CB ⊥AE , ∵BC ∩BE =B ,∴AE ⊥平面CBE , 又EC ⊂平面CBE ,∴AE ⊥EC .(2)①由CD ∥AB ,得CD ∥平面ABE , 又∵平面CDE ∩平面ABE =EF , ∴根据线面平行的性质定理得CD ∥EF , 又CD ∥AB ,∴EF ∥AB .②V E -ADF =V D -AEF =13×12×1×32×1=312.(理)(2014·浙江台州中学期中)如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上,过点E作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(折起后的点A 记作点P ),使得∠PEB =60°.(1)求证:EF ⊥PB .(2)试问:当点E 在线段AB 上移动时,二面角P -FC -B 的平面角的余弦值是否为定值?若是,求出定值,若不是,说明理由.[解析] (1)在Rt △ABC 中,∵EF ∥BC ,∴EF ⊥AB , ∴EF ⊥EB ,EF ⊥EP ,又∵EB ∩EP =E ,∴EF ⊥平面PEB . 又∵PB ⊂平面PEB ,∴EF ⊥PB .(2)解法一:∵EF ⊥平面PEB ,EF ⊂平面BCFE ,∴平面PEB ⊥平面BCFE ,过P 作PQ ⊥BE 于点Q ,垂足为Q ,则PQ ⊥平面BCFE ,过Q 作QH ⊥FC ,垂足为H .则∠PHQ 即为所求二面角的平面角.设PE =x ,则EQ =12x ,PQ =32x ,QH =(PE +EQ )sin π4=324x ,故tan ∠PHQ =PQ QH =63,cos ∠PHQ =155,即二面角P -FC -B 的平面角的余弦值为定值155. 解法二:在平面PEB 内,经P 点作PD ⊥BE 于D , 由(1)知EF ⊥平面PEB ,∴EF ⊥PD .∴PD ⊥平面BCFE .在平面PEB 内过点B 作直线BH ∥PD ,则BH ⊥平面BCFE .以B 点为坐标原点,BC →,BE →,BH →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.设PE =x (0<x <4)又∵AB =BC =4,∴BE =4-x ,EF =x , 在Rt △PED 中,∠PED =60°,∴PD =32x ,DE =12x , ∴BD =4-x -12x =4-32x ,∴C (4,0,0),F (x,4-x,0),P (0,4-32x ,32x ).从而CF →=(x -4,4-x,0),CP →=(-4,4-32x ,32x ).设n 1=(x 0,y 0,z 0)是平面PCF 的一个法向量,则 n 1·CF →=0,n 1·CP →=0,∴⎩⎪⎨⎪⎧x 0(x -4)+y 0(4-x )=0,-4x 0+(4-32x )y 0+32xz 0=0,∴⎩⎨⎧x 0-y 0=0,3x 0-z 0=0, 取y 0=1,得,n 1=(1,1,3).又平面BCF 的一个法向量为n 2=(0,0,1). 设二面角P -FC -B 的平面角为α,则 cos α=|cos 〈n 1,n 2〉|=155. 因此当点E 在线段AB 上移动时,二面角P -FC -B 的平面角的余弦值为定值155. 22.(本小题满分14分)(文)(2014·广东执信中学期中)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A 1B 1C 1D 1-ABCD ,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD -A 2B 2C 2D 2.(1)证明:直线B 1D 1⊥平面ACC 2A 2;(2)现需要对该零部件表面进行防腐处理.已知AB =10,A 1B 1=20,AA 2=30,AA 1=13(单位:cm),每平方厘米的加工处理费为0.20元,需加工处理费多少元?[解析] (1)∵四棱柱ABCD -A 2B 2C 2D 2的侧面是全等的矩形, ∴AA 2⊥AB ,AA 2⊥AD ,又∵AB ∩AD =A , ∴AA 2⊥平面ABCD .连接BD ,∵BD ⊂平面ABCD ,∴AA 2⊥BD . ∵底面ABCD 是正方形,∴AC ⊥BD . ∵AA 2∩AC =A ,∴BD ⊥平面ACC 2A 2, 根据棱台的定义可知,BD 与B 1D 1共面.又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥BD . ∴B 1D 1⊥平面ACC 2A 2.(2)∵四棱柱ABCD -A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形, ∴S 1=S 四棱柱上底面+S 四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1300(cm 2). 又∵四棱台A 1B 1C 1D 1-ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形, 等腰梯形的高h ′=132-(20-102)2=12.所以S 2=S 四棱台下底面+S 四棱台侧面 =(A 1B 1)2+4×12(AB +A 1B 1)h ′=202+4×12(10+20)×12=1120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1300+1120=2420(cm 2), 故所需加工处理费为0.2S =0.2×2420=484(元).(理)(2014·西安市长安中学期中)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,∠ADC =90°,平面P AD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,P A =PD =2,BC =12AD =1,CD = 3.(1)求证:平面PQB ⊥平面P AD ;(2)若M 为棱PC 的中点,求异面直线AP 与BM 所成角的余弦值. [解析] (1)∵BC =12AD ,Q 为AD 的中点,∴BC =DQ ,又∵AD ∥BC ,∴BC ∥DQ ,∴四边形BCDQ 为平行四边形,∴CD ∥BQ , ∵∠ADC =90°,∴∠AQB =90°,即QB ⊥AD ,又∵平面P AD ⊥平面ABCD ,且平面P AD ∩平面ABCD =AD ,∴BQ ⊥平面P AD ,又BQ ⊂平面PQB ,∴平面PQB ⊥平面P AD . (2)解法1:∵P A =PD ,Q 为AD 的中点,∴PQ ⊥AD .∵平面P AD ⊥平面ABCD ,且平面P AD ∩平面ABCD =AD ,∴PQ ⊥平面ABCD . 如图,以Q 为原点建立空间直角坐标系.则Q (0,0,0),A (1,0,0),P (0,0,3),B (0,3,0),C (-1,3,0), ∵M 是PC 中点,∴M (-12,32,32),∴AP →=(-1,0,3),BM →=(-12,-32,32),设异面直线AP 与BM 所成角为θ,则cos θ=|cos 〈AP →,BM →〉|=AP →·BM →|AP →|·|BM →|=277,∴异面直线AP 与BM 所成角的余弦值为277.解法2:连接AC 交BQ 于点O ,连接OM ,则OM ∥P A , 所以∠BMO 就是异面直线AP 与BM 所成的角.OM =12P A =1,BO =12BQ =32,由(1)知BQ ⊥平面P AD ,所以BQ ⊥P A ,∴BQ ⊥OM , ∴BM =BO 2+OM 2=(32)2+12=72, ∴cos ∠BMO =OM BM =172=277.。

2022高考数学(理)一轮复习单元测试(配最新高考+重点)第一章集合与常用逻辑用

2022高考数学(理)一轮复习单元测试(配最新高考+重点)第一章集合与常用逻辑用

2022高考数学(理)一轮复习单元测试(配最新高考+重点)第一章集合与常用逻辑用第一章集合与常用逻辑用语单元能力测试一、选择题(本大题共12小题,每小题5分,共60分)1、(2020山东理)已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则()UC A B 为( ) A .{}1,2,4B .{}2,3,4C .{}0,2,4 D .{}0,2,3,42 .(2020浙江理)设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)3、【2020韶关第一次调研理】若集合M 是函数lg y x =的定义域,N 是函数y =的定义域,则M ∩N 等于( )A .(0,1]B .(0,)+∞C .φD .[1,)+∞ 4、【2020厦门期末质检理2】“φ=2π”是“函数y=sin(x +φ)为偶函数的”A .充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5.(2020湖南理)命题“若α=4π,则tanα=1”的逆否命题是( )A .若α≠4π,则tanα≠1B .若α=4π,则tan α≠1C .若tanα≠1,则α≠4πD .若tanα≠1,则α=4π6、【2020泉州四校二次联考理】命题:R p x ∀∈,函数2()2cos 23f x x x =+≤,则( )A .p 是假命题;:R p x ⌝∃∈,2()2cos 23f x x x =+≤B .p 是假命题;:R p x ⌝∃∈,2()2cos 23f x x x =+> C .p 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+≤ D .p 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+> 7、(2020湖北理)命题“0x ∃∈R Q ,30x ∈Q ”的否定是( )A .0x ∃∉R Q ,30x ∈QB .0x ∃∈R Q ,30x ∉QC .x ∀∉RQ ,3x ∈Q D .x ∀∈RQ ,3x ∉Q8、【2020深圳中学期末理】设集合A={-1, 0, 1},集合B={0, 1, 2, 3},定义A *B={(x, y)| x ∈A ∩B, y ∈A ∪B},则A *B 中元素个数是()A.7B.10C.25D.529、【2020粤西北九校联考理3】下列命题错误..的是( ) A. 2"2""320"x x x >-+>是的充分不必要条件;B. 命题“2320,1x x x -+==若则”的逆否命题为“21,320若则x x x =-+≠”;C.对命题:“对0,k >方程20x x k +-=有实根”的否定是:“ ∃k >0,方程20x x k +-=无实根”;D. 若命题:,p x A B p ∈⋃⌝则是x A x B ∉∉且;10、【江西省新钢中学2020届高三第一次考试】在△ABC 中,设命题,sin sin sin :Ac C b B a p ==命题q:△ABC 是等边三角形,那么命题p 是命题q 的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件11、(2020浙江宁波市期末)已知()f x 是定义在实数集R 上的增函数,且(1)0f =,函数()g x 在(,1]-∞上为增函数,在[1,)+∞上为减函数,且(4)(0)0g g ==,则集合{|()()0}x f x g x ≥= ( )(A ) {|014}x x x ≤≤≤或(B ){|04}x x ≤≤(C ){|4}x x ≤ (D ) {|014}x x x ≤≤≥或 12.定义:设A 是非空实数集,若∃a ∈A ,使得关于∀x ∈A ,都有x ≤a (x ≥a ),则称a 是A 的最大(小)值 .若B 是一个不含零的非空实数集,且a 0是B 的最大值,则( )A .当a 0>0时,a -10是集合{x -1|x ∈B }的最小值B .当a 0>0时,a -10是集合{x -1|x ∈B }的最大值C .当a 0<0时,-a -10是集合{-x -1|x ∈B }的最小值D .当a 0<0时,-a -10是集合{-x -1|x ∈B }的最大值二、填空题(本大题共4小题,每小题5分,共20分,把正确答案填在题中横线上) 13、(2020上海理)若集合}012|{>+=x x A ,}21|{<-=x x B ,则A ∩B=_________ .14、【2020江西师大附中高三下学期开学考卷】若自然数n 使得作加法(1)(2)n n n ++++运算均不产生进位现象,则称n 为“给力数”,例如:32是“给力数”,因323334++不产生进位现象;23不是“给力数”,因232425++产生进位现象.设小于1000的所有“给力数”的各个数位上的数字组成集合A ,则集合A 中的数字和为__________ 15、【2020三明市一般高中高三上学期联考】下列选项叙述:①.命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =” ②.若命题p :2,10x R x x ∀∈++≠,则p ⌝:2,10x R x x ∃∈++= ③.若p q ∨为真命题,则p ,q 均为真命题④.“2x >”是“2320x x -+>”的充分不必要条件 其中正确命题的序号有_______ 16、【2020泉州四校二次联考理】已知集合22{(,)||||1|1},{(,)|(1)(1)1}A x y x a y B x y x y =-+-≤=-+-≤,若A B φ⋂≠,则实数a 的取值范畴为 .三、解答题(本大题共6小题,共70分,解承诺写出文字说明、证明过程或演算步骤)17.(本小题满分12分) (2011年朝阳区高三上学期期中)设关于x 的不等式(1)0()x x a a --<∈R 的解集为M ,不等式2230x x --≤的解集为N .(Ⅰ)当1a =时,求集合M ;(Ⅱ)若M N ⊆,求实数a 的取值范畴.18、(本小题满分12分) 【山东省潍坊一中2020届高三时期测试理】已知集合{}}0)1(2|{,0)13(2)1(3|22<+--=<+++-=a x a x x B a x a x x A ,(Ⅰ)当a=2时,求B A ⋂;(Ⅱ)求使A B ⊆的实数a 的取值范畴19.(本小题满分10分) 【2020北京海淀区期末】若集合A 具有以下性质: ①A ∈0,A ∈1;②若A y x ∈,,则A y x ∈-,且0≠x 时,Ax∈1.则称集合A 是“好集”. (Ⅰ)分别判定集合{1,0,1}B,有理数集Q 是否是“好集”,并说明理由; (Ⅱ)设集合A 是“好集”,求证:若A y x ∈,,则A y x ∈+; (Ⅲ)对任意的一个“好集”A ,分别判定下面命题的真假,并说明理由. 命题p :若A y x ∈,,则必有A xy ∈; 命题q :若A y x ∈,,且0≠x ,则必有Axy∈;20、(本小题满分12分)(山东省潍坊市2020届高三上学期期中四县一校联考) 已知集合{}{}R x x B x x x R x A x x ∈<=++≥+∈=-,42|,)23(log )126(log |32222.求⋂A (C R B ).21.(本小题满分12分)已知c >0,设命题p :函数y =c x为减函数,命题q :当x ∈[12,2]时,函数f (x )=x +1x >1c 恒成立.假如p 或q 为真命题,p 且q 为假命题,求c 的取值范畴.22.(本小题满分12分) 【山东省微山一中2020届高三10月月考理】设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a )(x +4)≤0的解集. (1)求A ∩B ; (2)若C ⊆∁R A ,求a 的取值范畴.祥细答案 一、选择题 1、【答案】C【解析】}4,0{=A C U,因此{0,24}U C A B =() ,,选C.2. 【答案】B【解析】A =(1,4),B =(-1,3),则A ∩(C R B )=(3,4).【答案】B 3、【答案】A【解析】因为集合M 是函数lg y x =的定义域,;0>x N 是函数y = 因此01≥-x ,(](](0,),,1,0,1M N M N =+∞=-∞⋂=4、【答案】A【解析】φ=2π时,y=sin(x +φ)=x cos 为偶函数;若y=sin(x +φ)为偶函数,则k=ϕZk ∈+,2ππ;选A;5、【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,因此 “若α=4π,则tanα=1”的逆否命题是 “若tanα≠1,则α≠4π”.6、【答案】D【解析】3)62sin(212sin 32cos 12sin 3cos 2)(2≤++=++=+=πx x x x x x f ;P 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+>;7、【答案】D解析:依照对命题的否定知,是把谓词取否定,然后把结论否定.因此选D 8、【答案】B【解析】解:A ∩B ={ 0, 1},A ∪B {-1, 0, 1, 2, 3},x 有2种取法, y 有5种取法由乘法原理得2×5=10,故选B 。

高考数学一轮复习全套课时作业9-9n次独立重复试验与二项分布

高考数学一轮复习全套课时作业9-9n次独立重复试验与二项分布

作业9.9n 次独立重复试验与二项分布一、单项选择题1.某道路的A ,B ,C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒,35秒,45秒.某辆车在这条路上行驶时,三处都不停车的概率是()A.35192B.25192C.55192D.651922.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A .0.648B .0.432C .0.36D .0.3123.某产品的正品率为78,次品率为18,现对该产品进行测试,设第ξ次首次测到正品,则P(ξ=3)=()A .C 3×78B .C 3×18×78×184.(2021·沈阳市高三检测)2020年初,新型冠状肺炎在欧洲暴发后,我国第一时间内向相关国家捐助医疗物资,并派出由医疗专家组成的医疗小组奔赴相关国家.现有四个医疗小组甲、乙、丙、丁,和4个需要援助的国家可供选择,每个医疗小组只去一个国家,设事件A =“4个医疗小组去的国家各不相同”,事件B =“小组甲独自去一个国家”,则P(A|B)=()A.29B.13C.49D.595.(2021·四川绵阳高三模拟)用电脑每次可以从区间(0,1)内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于13的概率为()A.127B.23C.827D.496.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是()A.49B.29C.23D.137.已知随机变量ξ~P(ξ=2)等于()A.316B.1243C.13243D.802438.(2020·浙江温州九校第一次联考)抽奖箱中有15个形状一样,颜色不一样的乒乓球(2个红色,3个黄色,其余为白色),抽到红球为一等奖,黄球为二等奖,白球不中奖.有90人依次进行有放回抽奖,则这90人中中奖人数的期望值和方差分别是()A .6,0.4B .18,14.4C .30,10D .30,209.(2021·河南省项城市期末)某群体中每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体10位成员中使用移动支付的人数,D(X)=2.4,P(X =4)<P(X =6),则p =()A .0.7B .0.6C .0.4D .0.3二、多项选择题10.(2021·山东昌乐二中高二月考)一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是35;②从中有放回地取球6次,每次任取一球,恰好有两次白球的概率为80243;③现从中不放回地取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;④从中有放回地取球3次,每次任取一球,则至少有一次取到红球的概率为2627.则其中正确结论的序号是()A .①B .②C .③D .④11.(2021·江苏海安高级中学高二期中)甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以A 1,A 2,A 3表示由甲箱中取出的是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱中取出的球是红球的事件,则下列结论正确的是()A .P(B)=25B .P(B|A 1)=511C .事件B 与事件A 1相互独立D .A 1,A 2,A 3两两互斥12.设火箭发射失败的概率为0.01,若发射10次,其中失败的次数为X ,则下列结论正确的是()A .E(X)=0.1B .P(X =k)=0.01k ×0.9910-kC .D(X)=0.99D .P(X =k)=C 10k ×0.01k ×0.9910-k三、填空题与解答题13.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.X 表示在未来3天内日销售量不低于100个的天数,则E(X)=________,方差D(X)=________.14.(2021·浙江台州模拟)某同学从家中骑自行车去学校,途中共经过6个红绿灯路口.如果他恰好遇见2次红灯,则这2次红灯的不同的分布情形共有________种;如果他在每个路口遇见红灯的概率均为13,用ξ表示他遇到红灯的次数,则E(ξ)=________.(用数字作答)15.(2021·重庆市南开中学高三模拟)无症状感染者被认为是新冠肺炎疫情防控的难点之一.国际期刊《自然》杂志中一篇文章指出,30%~60%的新冠感染者无症状或者症状轻微,但他们传播病毒的能力并不低,这些无症状感染者可能会引起新一轮的疫情大暴发.我们把与病毒携带者有过密切接触的人群称为密切接触者.假设每名密切接触者成为无症状感染者的概率均为13,那么4名密切接触者中,至多有2人成为无症状感染者的概率为________.16.(2021·福建漳州市高三质检)勤洗手、常通风、戴口罩是切断新冠肺炎传播的有效手段.经调查疫情期间某小区居民人人养成了出门戴口罩的好习惯,且选择佩戴一次性医用口罩的概率为p ,每人是否选择佩戴一次性医用口罩是相互独立的.现随机抽取5位该小区居民,其中选择佩戴一次性医用口罩的人数为X ,且P(X =2)<P(X =3),D(X)=1.2,则p 的值为________.17.(2021·长沙高三检测)近年来,国资委党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某扶贫小组为更好地执行精准扶贫政策,为某扶贫县制定了具体的扶贫政策,并对此贫困县2015年到2019年居民家庭人均纯收入(单位:百元)进行统计,数据如下表:年份20152016201720182019年份代号(t)12345人均纯收入(y)5.86.67.28.89.6并调查了此县的300名村民对扶贫政策的满意度,得到的部分数据如下表所示:满意不满意45岁以上村民1505045岁以下村民50(1)求人均纯收入y 与年份代号t 的线性回归方程;(2)是否有99.9%的把握认为村民的年龄与对扶贫政策的满意度具有相关性?(3)若以该村村民的年龄与对扶贫政策的满意度的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不满意扶贫政策的45岁以上的村民人数为X ,求X 的分布列及数学期望.参考公式:回归直线y ^=a ^+b ^x 中斜率和截距的最小二乘估计公式分别为:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2,a ^=y --b ^x -;K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d.临界值表:P(K 2≥k 0)0.1000.0500.0250.0100.001k 02.7063.8415.0246.63510.82818.(2021·广西高三下学期开学考)高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:每周移动支付次数1次2次3次4次5次6次及以上男10873215女5464630合计1512137845(1)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,能否在犯错误概率不超过0.005的前提下,认为“移动支付活跃用户”与性别有关?(2)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中,随机抽取4名用户:①求抽取的4名用户中,既有男“移动支付达人”又有女“移动支付达人”的概率;②为了鼓励男性用户使用移动支付,对抽出的男“移动支付达人”每人奖励300元,记奖励总金额为X,求X的分布列及数学期望.附公式及表如下:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2≥k0)0.1500.1000.0500.0250.0100.0050.001 k0 2.072 2.706 3.841 5.024 6.6357.87910.828作业9.9n 次独立重复试验与二项分布参考答案1.答案A 解析三处都不停车的概率是P =2560×3560×4560=35192.2.答案A 解析该同学通过测试的概率为C 32·0.62·0.4+C 33·0.63=0.648.故选A.3.答案C解析因为某产品的正品率为78,次品率为18,现对该产品进行测试,设第ξ次首次测到正品,所以“ξ=3”表示第一次和第二次都测到了次品,第三次测到正品,所以P(ξ=3)×78.故选C.4.答案A解析事件A =“4个医疗小组去的国家各不相同”,事件B =“小组甲独自去一个国家”,则P(AB)=A 4444=332,P(B)=C 41·3344=2764,P(A|B)=P (AB )P (B )=29.故选A.5.答案C 解析由题意可得:每个实数都大于13的概率为P =1-13=23,则3个实数都大于13的概率为=827.故选C.6.答案A 解析记A 表示“第一个圆盘的指针落在奇数所在的区域”,则P(A)=23,B 表示“第二个圆盘的指针落在奇数所在的区域”,则P(B)=23.所以P(AB)=P(A)P(B)=23×23=49.7.答案D 解析已知ξ~P(ξ=k)=C n k p k q n -k .当ξ=2,n =6,p =13时,P(ξ=2)=C 6-2=C 6=80243.8.答案D解析由题意中奖的概率为2+315=13,因此每个人是否中奖服从二项分布因此90人中中奖人数的期望值为90×13=30,方差为90×13×20.9.答案B解析某群体中每位成员使用移动支付的概率都为p ,可看做是独立重复事件,该群体10位成员中使用移动支付的人数X ~B(10,p),(X )=2.4,(X =4)<P (X =6),(1-p )=2.4,104p 4(1-p )6<C 106p 6(1-p )4,解得p =0.4或0.6,且p>0.5,故p =0.6.故选B.10.答案ABD解析一袋中有大小相同的4个红球和2个白球,①从中任取3球,恰有一个白球的概率是P =C 42C 21C 63=35②从中有放回地取球6次,每次任取一球,每次取到白球的概率为P =26=13,则恰好有两次白球的概率为P =C 6=80243,故正确;③设A ={第一次取到红球},B ={第二次取到红球}.则P(A)=23,P(AB)=4×36×5=25,所以P(B|A)=P (AB )P (A )=35,故错误;④从中有放回地取球3次,每次任取一球,每次抽到红球的概率为P =46=23,则至少有一次取到红球的概率为P =1-C 3=2627,故正确.故选ABD.11.答案BD解析因为每次取一球,所以A 1,A 2,A 3是两两互斥的事件,故D 正确;因为P(A 1)=510,P(A 2)=210,P(A 3)=310,所以P(B|A 1)=P (BA 1)P (A 1)=510×511510=511,故B 正确;同理P(B|A 2)=P (BA 2)P (A 2)=210×411210=411,P(B|A 3)=P (BA 3)P (A 3)=310×411310=411,故P(B)=P(BA 1)+P(BA 2)+P(BA 3)=510×511+210×411+310×411=922,故A 、C 错误.故选BD.12.答案AD 解析∵X ~B(10,0.01),∴E(X)=10×0.01=0.1,D(X)=10×0.01×0.99=0.099.∴P(X =k)=C 10k ×0.01k ×0.9910-k .故选AD.13.答案 1.80.72解析由题意知,日销售量不低于100个的频率为(0.006+0.004+0.002)×50=0.6,且X ~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.14.答案152解析他恰好遇见2次红灯的不同的分布情形共有C 62=15(种),他遇到红灯的次数ξ的值可能为0,1,2,3,4,5,6.他在每个路口遇见红灯的概率均为13,他遇到红灯的次数ξ满足二项分布.即ξ~E(ξ)=6×13=2.15.答案89解析至多有2人成为无症状感染者包括0人成为无症状感染者,1人成为无症状感染者,2人成为无症状感染者三种情况,且每种情况是互斥的,所以所求概率为C 4+C 41·13·+C 42=16+32+2481=89.16.答案35解析D(X)=1.2,所以5p(1-p)=1.2,p =35或p =25,因为P(X =2)<P(X =3),所以C 52p 2(1-p)3<C 53p 3·(1-p)2,p>12,所以p =35.17.答案(1)y ^=0.98t +4.66(2)有99.9%的把握认为村民的年龄与对扶贫政策的满意度具有相关性(3)分布列略,数学期望为12解析(1)依题意:t -=15×(1+2+3+4+5)=3,y -=15×(5.8+6.6+7.2+8.8+9.6)=7.6,故∑5i =1(t i -t -)2=4+1+0+1+4=10,∑5i =1(t i -t -)(y i -y -)=(-2)×(-1.8)+(-1)×(-1)+0×(-0.4)+1×1.2+2×2=9.8,b ^=∑5i =1(t i -t -)(y i -y -)∑5i =1(t i -t -)2=0.98,∴a ^=y --b ^t -=7.6-0.98×3=4.66.∴y ^=0.98t +4.66.(2)依题意,完善表格如下:满意不满意总计45岁以上村民1505020045岁以下村民5050100总计200100300计算得K 2的观测值为k =300×(150×50-50×50)2200×100×200×100=300×5000×5000200×100×200×100=18.75>10.828,故有99.9%的把握认为村民的年龄与对扶贫政策的满意度具有相关性.(3)依题意,X 的可能取值为0,1,2,3,从该贫困县中随机抽取一人,则取到不满意扶贫政策的45岁以上村民的概率为16,故P(X =0)=C 30=125216,P(X =1)=C 31×16=2572,P(X =2)=C 32×56×=572,P(X =3)=C 33=1216,故X 的分布列为:则数学期望为E(X)=0E (X )=3×16=18.答案(1)在犯错误概率不超过0.005的前提下,能认为“移动支付活跃用户”与性别有关(2)①6481②分布列答案见解析,数学期望为400元思路(1)由题意完成列联表,结合列联表计算可得K 2=2450297≈8.249>7.879.所以在犯错误概率不超过0.005的前提下,能认为“移动支付活跃用户”与性别有关.(2)视频率为概率,在我市“移动支付达人”中,随机抽取1名用户,该用户为男“移动支付达人”的概率为13,为女“移动支付达人”的概率为23.①由对立事件公式可得满足题意的概率值.②记抽出的男“移动支付达人”人数为Y ,则X =300Y.由题意得Y ~Y 的分布列,然后利用均值和方差的性质可得X 的分布列,计算可得结果.解析(1)由表格数据可得2×2列联表如下:非移动支付活跃用户移动支付活跃用户合计男252045女154055合计4060100将列联表中的数据代入公式计算得:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100×(25×40-20×15)245×55×40×60=2450297≈8.249>7.879.所以在犯错误概率不超过0.005的前提下,能认为“移动支付活跃用户”与性别有关.(2)视频率为概率,在我市“移动支付达人”中,随机抽取1名用户,该用户为男“移动支付达人”的概率为13,为女“移动支付达人”的概率为23.①抽取的4名用户中,既有男“移动支付达人”,又有女“移动支付达人”的概率为P =1=6481.②记抽出的男“移动支付达人”人数为Y ,则X =300Y.由题意得Y ~P(Y =0)=C 4=1681,P(Y =1)=C 4=3281,P(Y =2)=C 4=827,P(Y =3)=C 4=881,P(Y =4)=C 4=181.所以Y 的分布列为:Y 01234P16813281827881181所以X 的分布列为:X 03006009001200P16813281827881181由E(Y)=4×13=43,得X 的数学期望E(X)=300·E(Y)=400(元).讲评本题主要考查离散型随机变量的分布列,二项分布的性质,独立性检验及其应用等知识,意在考查学生的转化能力和计算求解能力.。

高考数学一轮复习概率与统计单元专项练习题附参考答案

高考数学一轮复习概率与统计单元专项练习题附参考答案

高考数学一轮复习概率与统计单元专项练习题附参考答案1.(理)设,那么的展开式中的系数不可能是( )A.10B.40C.50D.80(文)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是( )A.20B.30C.40D.502.(理)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱所代表的化工产品放在同一仓库是平安的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么平安存放的不同方法种数为( )A.96B.48C.24D.0(文)从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A. B. C. D.3.甲:A1、A2是互斥事件;乙:A1、A2是对立事件,那么( )A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件,也不是乙的必要条件4.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,,270;使用系统抽样时,将学生统一随机编号1,2,,270,并将整个编号依次分为10段。

如果抽得号码有以下四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的以下结论中,正确的选项是( )A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样5.在正方体上任选3个顶点连成三角形,那么所得的三角形是直角非等腰三角形的概率为( )A. B. C. D.6.在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就()A.越大B.越小C.无法判断D.以上都不对7.(理)抛掷两个骰子,至少有一个4点或5点出现时,就说这些试验成功,那么在10次试验中,成功次数的期望是( )A. B. C. D.(文)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将局部数据丧失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,那么a, b的值分别为( )A.0,27,78B.0,27,83C.2.7,78D.2.7,838.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.这组数据的平均数为10,方差为2,那么|x-y|的值为( )A.1B.2C.3D.49.一项研究要确定是否能够根据施肥量预测作物的产量。

最新版精选2019年高考数学第一轮复习测试版题库(含标准答案)

最新版精选2019年高考数学第一轮复习测试版题库(含标准答案)

2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.若非空集合A,B,C 满足A ∪B=C ,且B 不是A 的子集,则 A .“x ∈C ”是“x ∈A ”的充分条件但不是必要条件 B . “x ∈C ”是“x ∈A ”的必要条件但不是充分条件 C . “x ∈C ”是“x ∈A ”的充分条件D . “x ∈C ”是“x ∈A ”的充分条件也不是“x ∈A ”必要条件(2008湖北理)2.集合A= {x ∣12x -≤≤},B={x ∣x<1},则()R AB ð= (D )(A ){x ∣x>1} (B) {x ∣x ≥ 1} (C) {x ∣12x <≤ } (D) {x ∣12x ≤≤} (2007)3.若实数,a b 满足0,0a b ≥≥,且0ab =,则称a 与b 互补,记(,),a b a b ϕ-那么(,)0a b ϕ=是a 与b 互补的A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件4.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A. 充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件5.已知数列{an }满足a1=3,an+1 - an + 1=0 (n ∈N* ), 则数列{an }的通项公式为 A. an= n 2 +2 B. an= n +2 C. an=4-n D. an= 2 n +16.lgx,lgy,lgz 成等差数列是y2=xz 成立的 A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件二、填空题7.函数2)1(log )(++=x x f a ,0(>a 且)1≠a 必过定点 ▲ ;8.已知函数()f x 是偶函数,并且对于定义域内任意的x ,满足()()12f x f x +=-, 若当23x <<时,()f x x =,则)5.2007(f =__________ _9.已知当椭圆的长半轴长为a ,短半轴长为b 时,椭圆的面积是πab .请针对椭圆2212516x y +=,求解下列问题: (1)若m ,n 是实数,且|m |≤5,|n |≤4.求点P (m ,n )落在椭圆内的概率;(2)若m ,n 是整数,且|m |≤5,|n |≤4.求点P (m ,n )落在椭圆外的概率以及点P 落在椭圆上的概率。

高考数学一轮复习全套课时作业9-7古典概型

高考数学一轮复习全套课时作业9-7古典概型

作业9.7古典概型一、单项选择题1.一枚硬币连掷2次,恰好出现1次正面的概率是()A.12B.14C.34D .02.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于()A.110B.18C.16D.153.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为()A.132B.164C.332D.3644.用数字1,2,3组成无重复数字的三位数,那么所有的三位数中是奇数的概率为()A.13B.16C.12 D.235.(2021·河南新乡市高三模拟)连续掷三次骰子,先后得到的点数分别为x ,y ,z ,那么点P(x ,y ,z)到原点O 的距离不超过3的概率为()A.427B.7216C.1172D.166.(2021·辽宁大连市高三模拟)为了普及垃圾分类的知识,某宣传小组到小区内进行宣传.该小组准备了100张垃圾的图片,其中可回收垃圾40张.为了检验宣传成果,该小组从这100张图片中选取20张做调查问卷,则这20张中恰有10张可回收垃圾的概率是()A.C 4010C 10020B.C 4010·C 6010C 10020C .C 20D .C 207.(2021·广州市摸底调研考试)2021年广东新高考将实行“3+1+2”模式,即语文、数学、英语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则他们选课相同的概率为()A.136B.116C.18D.168.(2021·衡中调研卷)2021年1月,河北石家庄突发新冠疫情,衡水市某医院从3名呼吸科、3名重症科和3名急诊科医生中选派5人组成一个医疗专家小组支援石家庄,则该院呼吸科、重症科和急诊科医生都至少有1人的概率为()A.89B.23C.67D.139.(2021·河南郑州模拟)现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为()A.110B.15C.310D.2510.(2021·石家庄教学质量检测)袋中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数:343432341342234142243331112342241244431233214344142134由此可以估计,恰好第三次就停止摸球的概率为()A.19B.16C.29D.518二、多项选择题11.(2021·江苏连云港高三月考)在4件产品中,有一等品2件,二等品1件(一等品与二等品都是正品),次品1件,现从中任取2件,则下列说法正确的是()A .两件都是一等品的概率是13B .两件中有1件是次品的概率是12C .两件都是正品的概率是13D .两件中至少有1件是一等品的概率是56三、填空题和解答题12.从13,12,2,3,5,9中任取两个不同的数,分别记为m ,n ,则“log m n >0”的概率为________.13.(2021·衡水中学模拟)2020年初,新冠肺炎疫情期间,某大学学生志愿者团队开展“爱心辅学”活动,为抗疫前线工作者子女在线辅导功课.现随机安排甲、乙、丙3名志愿者为某学生辅导数学、物理、化学、生物4门学科,每名志愿者至少辅导1门学科,每门学科由1名志愿者辅导,则数学学科恰好由甲辅导的概率为________.14.甲、乙两人参加法律知识竞赛,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一题.(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙两人中至少有一人抽到选择题的概率是多少?15.(2021·衡水中学模拟)某中学有初中生1800人,高中生1200人.为了解学生本学期课外阅读时间,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中生”和“高中生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:[0,10),[10,20),[20,30),[30,40),[40,50],并分别加以统计,得到如图所示的频率分布直方图.(1)写出a 的值;(2)试估计该校所有学生中,阅读时间不少于30个小时的学生人数;(3)从阅读时间不足10个小时的样本学生中随机抽取2人,求至少抽到1名高中生的概率.16.(2021·湘赣名校联考)算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠,算盘从右至左档位依次为个位、十位、百位、…….例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百、千位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字大于200的概率为()A.38B.12C.23D.3417.(2021·《高考调研》原创题)某机构有项业务是测试手机电池的续航时间,现有美国产的iPhone 和中国产的小米、华为、OPPO 四种品牌的手机需要测试,其中华为有Mate 40和P40两种型号,其他品牌的手机都只有一种型号.已知每款手机的测试时间都为1个月,测试顺序随机,每款手机测试后不再测试,同一品牌的两个型号不会连续测试.在未来4个月内,测试的手机都是国产手机的概率为________.作业9.7古典概型参考答案1答案A 解析列举出所有基本事件,找出“只有1次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有1次出现正面的包括(正,反),(反,正)2个,故其概率为24=12.2.答案D 解析在正六边形中,6个顶点选取4个,种数为15.选取的4点能构成矩形的,只有对边的4个顶点(例如AB 与DE),共有3种,∴所求概率为315=15.3.答案D解析基本事件为(1,1),(1,2),…,(1,8),(2,1),(2,2),…,(8,8),共64种.两球编号之和不小于15的情况有三种,分别为(7,8),(8,7),(8,8),∴所求概率为364.4.答案D解析用数字1,2,3组成无重复数字的三位数共有A 33种,列举如下:123,132,213,231,312,321,其中奇数有4个,故三位数中是奇数的概率P =46=23.故选D.5.答案B解析点P(x ,y ,z)到原点O 的距离不超过3,则x 2+y 2+z 2≤3,即x 2+y 2+z 2≤9,连续掷三次骰子,得到的点的坐标共有6×6×6=216(个),其中(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1)满足条件,则点P(x ,y ,z)到原点O 的距离不超过3的概率为P =7216.故选B.6.答案B解析由题知,该小组从这100张图片中选取20张共有C 10020个结果,而这20张中恰有10张可回收垃圾的共有C 4010·C 6010个结果,由古典概型的概率公式得这20张中恰有10张可回收垃圾的概率为C 4010·C 6010C 10020.故选B.7.答案D解析小明与小芳选课所有可能的结果有C 42C 42种,他们选课相同的结果有C 42种,故所求的概率P =C 42C 42C 42=16,故选D.8.答案C解析从9人中选5人有C 95=126种选法,三科医生都至少有1人,则按人数分为311,221,选派方法数为C 31C 31C 31C 33+C 31C 31C 32C 32=108,∴所求概率为P =108126=67.故选C.9.答案C 解析将5张奖票不放回地依次取出共有A 55=120种不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票,共有3A 32A 21A 11=36(种)取法,所以P=36120=310.故选C.10.答案C解析由题意,得随机数的前两位只能出现1或2中的一个,第三位出现另外一个,所以满足条件的随机数为142,112,241,142,故恰好第三次就停止摸球的概率为418=29,故选C.11答案BD解析由题意设一等品编号为a ,b ,二等品编号为c ,次品编号为d ,从中任取2件的基本情况有(a ,b),(a ,c),(a ,d),(b ,c),(b ,d),(c ,d),共6种;对于A ,两件都是一等品的基本情况有(a ,b),共1种,故两件都是一等品的概率P 1=16,故错误;对于B ,两件中有1件是次品的基本情况有(a ,d),(b ,d),(c ,d),共3种,故两件中有1件是次品的概率P 2=36=12,故正确;对于C ,两件都是正品的基本情况有(a ,b),(a ,c),(b ,c),共3种,故两件都是正品的概率P 3=36=12,故错误;对于D ,两件中至少有1件是一等品的基本情况有(a ,b),(a ,c),(a ,d),(b ,c),(b ,d),共5种,故两件中至少有1件是一等品的概率P 4=56,故正确.故选BD.12.答案715解析log m n>0等价于m>1且n>1,或0<m<1且0<n<1,从13,12,2,3,5,9中任取两个不同的数组成数对(m ,n),共有A 62=30种取法,其中满足log m n>0的有A 22+A 42=2+12=14(种),所以“log m n >0”的概率为1430=715.13.答案13解析根据题意,要求甲、乙、丙3名志愿者每名志愿者至少辅导1门学科,每门学科由1名志愿者辅导,则必有1人辅导2门学科,则有C 42A 33=6×6=36种情况,若甲辅导数学,则有C 32A 22+C 31A 22=12种情况,则数学学科恰好由甲辅导的概率为13.14.答案(1)415(2)1315解析甲、乙两人从10道题中不放回地各抽一道题,先抽的有10种抽法,后抽的有9种抽法,故所有可能的抽法有10×9=90(种),即基本事件总数是90.(1)记“甲抽到选择题,乙抽到判断题”为事件A ,下面求事件A 包含的基本事件数:甲抽选择题有6种抽法,乙抽判断题有4种抽法,所以事件A 的基本事件数为6×4=24.∴P(A)=2490=415.(2)“甲、乙两人中至少有一人抽到选择题”的对立事件是“甲、乙两人都未抽到选择题”,即都抽到判断题.记“甲、乙两人都抽到判断题”为事件B ,“至少有一人抽到选择题”为事件C ,则B 包含的基本事件数为4×3=12.∴由古典概型概率公式,得P(B)=1290=215.由对立事件的性质可得P(C)=1-P(B)=1-215=1315.15.答案(1)0.03(2)870(3)0.7解析(1)由题意得a =0.1-0.04-0.02-0.005×2=0.03.(2)∵初中生中,阅读时间不少于30个小时的频率为(0.020+0.005)×10=0.25,∴所有初中生中,阅读时间不少于30个小时的学生约有0.25×1800=450(人).同理,高中生中,阅读时间不少于30个小时的频率为(0.030+0.005)×10=0.35,∴所有高中生中,阅读时间不少于30个小时的学生约有0.35×1200=420(人).∴该校所有学生中,阅读时间不少于30个小时的学生人数约为450+420=870.(3)由分层抽样知,抽取的初中生有60名,高中生有40名.记“从阅读时间不足10个小时的样本学生中随机抽取2人,至少抽到1名高中生”为事件A.初中生中,阅读时间不足10个小时的频率为0.005×10=0.05,样本人数为0.05×60=3.高中生中,阅读时间不足10个小时的频率为0.005×10=0.05,样本人数为0.05×40=2.则从阅读时间不足10个小时的样本学生中随机抽取2人,所有可能的情况有C 52=10(种),其中至少有1名高中生的情况有C 52-C 32=7(种),∴所求概率为710=0.7.16.答案D解析依题意得所拨数字共有C 41C 42=24种可能.要使所拨数字大于200,则若上珠拨的是千位档或百位档,则所拨数字一定大于200,有C 21C 42=12(种);若上珠拨的是个位档或十位档,则下珠一定要拨千位档,再从个、十、百位档里选一个下珠,有C 21C 31=6(种),则所拨数字大于200的概率为12+624=34.故选D.17.答案17解析在未来4个月内,测试的手机有如下两种情况:①当华为手机出现两次时,有C 22C 32A 22A 32=36(种)情况;②当华为手机出现一次时,有C 21A 44=48(种)情况.故共有36+48=84(种)情况.而其中未来这4个月中测试的手机都是国产手机的情况有A 22A 32=12(种),故所求概率P =1284=17.。

高考数学第一轮复习单元试卷-直线与圆

高考数学第一轮复习单元试卷-直线与圆

直线与圆魏鹏程 王开军一.选择题(1) 平行四边形ABCD 的一条对角线固定在A(3,-1),C(2,-3)两点,D 点在直线3x-y+1=0上移动,则B 点轨迹所在的方程为 ( )A 3x-y-20=0B 3x-y-10=0C 3x-y-9=0D 3x-y-12=0 (2)方程x+y-6y x ++3k=0仅表示一条射线,则实数k 的取值范围 ( ) A (-∞,3) B (-∞,0]或k=3 C k=3 D (- ∞,0)或k=3 (3)入射光线沿x-2y+3=0射向直线l : y=x 被其反射后的光线所在的方程是( )A x+2y-3=0B x+2y+3=0C 2x-y-3=0D 2x-y+3=0 (4) “a =b ”是“直线2)()222=-+-+=b y a x x y 与圆(相切”的 ( ) A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分又不必要条件 (5) 设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )A B C D(6)由动点P向圆x 2 + y 2=1引两条切线PA 、PB,切点分别为A 、B ,∠APB=60°,则动点P的轨迹方程为 ( )A x 2+y 2=4B x 2+y 2=3C x 2+y 2=2D x 2+y 2=1 (7) 从原点向圆0271222=+-+y y x 作两条切线,则这两条切线的夹角为( )A6π B 3π C 2πD 32π(8)已知圆x 2+y 2+2x-6y+F=0与x+2y-5=0交于A, B 两点, O 为坐标原点, 若OA⊥OB, 则F 的值为 ( )A 0B 1C -1D 2(9) 若圆222)1()1(R y x =++-上有且仅有两个点到直线4x +3y =11的距离等于1,则半径R 的取值范围是 ( )A R >1B R <3C 1<R <3D R ≠2(10) 已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是 ( )A ),(2222-B ),(22-C ),(4242-D ),(8181- (11)、曲线()2412≤-+=x x y 与直线()42+-=x k y 有两个交点时,实数k 取值范围是 ( )A 、⎥⎦⎤⎝⎛43125,B 、⎪⎭⎫ ⎝⎛43125,C 、⎪⎭⎫ ⎝⎛4331,D 、⎪⎭⎫ ⎝⎛1250,(12)如图,直线1l 、2l 、3l 的斜率分别是1k 、2k 、k ,则 ( ) A 、1k <2k <3k B 、2k <1k <3kC 、3k <2k <1kD 、1k <3k <2k 二.填空题(13) 已知圆6(10)1()2(2221+=-+-x C y x C :与圆:、B 两点,则AB 所在的直线方程是__________。

2022高三数学高考一本通立体几何第一轮复习单元测试 棱柱

2022高三数学高考一本通立体几何第一轮复习单元测试 棱柱

棱柱一、选择题1、下列命题中,真命题的个数是( )(1)正棱柱的棱长都相等;(2)直棱柱的侧棱就是直棱柱的高;(3)直棱柱的侧面是矩形;(4)有一个侧面是矩形的棱柱是直棱柱;(5)有一条侧棱垂直于底面的棱柱是直棱柱。

A :2个 B :3个 C :4个 D :5个2、长方体的高等于h, 底面积等于S ,过相对侧棱的截面面积为S 1,则长方体的侧面积为( )A B C D3、(2022,北京春季高考)两个完全相同的长方体的长、宽、高分别为5cm ,4cm ,3cm ,把它们重叠在一起组成一个新长方体,在这些新长方体中,最长的对角线的长底是( ) A :cm B :7cm C :5cm D :10cm4、如图,已知多面体ABC -DEFG 中,AB 、AC 、AD 两两互相垂直,平面ABC // 平面DEFG ,平面DEF 平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为( )A :2B :4C :6D :85、斜三棱柱的一个侧面面积为S ,另一条侧棱到这个侧面的距离为a ,则这三个棱柱的体积是( )A:31Sa B:41Sa C:21Sa D:32Sa6、斜三棱柱A 1B 1C 1-ABC 中,各棱长为a ,A 1B =A 1C =a ,则该棱柱的侧面积和体积分别为( )A :(123+)a 2, 42 a 3B :13+ a 2,42a 3 C :123+ a 2,123a 3 ) D :13+ a 2,123a 3 7、平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,BAD =60°,对角面BB 1D 1D 是边长为a 的正方形,且B 1BC =60°,此平行六面体的高为 。

8、如图,在直四棱柱ABCD -A 1B 1C 1D 1中,当底面四边形ABCD 满足条件 时,有A 1CB 1D 1(注:填上你认为正确的一种条件即可)9、一个正本棱柱形容器ABC -A 1B 1C 1,以三角形ABC 为底面成水平放置,其高为2a ,内盛水若干,水面高度为,若将此容器放倒,使它的一个侧面为底面成水平放置,这时水面恰为中截面,则= 。

平面向量单元测试-2023届高考数学一轮复习(含答案)

平面向量单元测试-2023届高考数学一轮复习(含答案)

平面向量单元测试-2023届高考数学一轮复习(含答案)《平面向量》单元测试考试时间:120分钟 满分:150分一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知向量(),3a k =,()1,4b =,()2,1c =,且()23a b c -⊥,则实数k 的值为( )A .32-B .152C .32D .32.在平行四边形ABCD 中,E 是边CD 的中点,AE 与BD 交于点F .若AB a =,AD b =,则AF =( )A .1344a b +B .2133ab C .3144a b +D .1233a b +3.如图,ABC 中,3BD DC =,AE mAB =,AF nAC =,0m >,0n >,则13m n+=( )A .3B .4C .43D .344.如图,在平行四边形ABCD 中,点E 在线段BD 上,且EB mDE =(m R ∈),若AC AE AD λμ=+(λ,μ∈R )且20λμ+=,则m =( )A .13B .3C .14D .45.已知平面向量,,a b c 满足1a =,2b =,a 与b 的夹角为45,当1c b -=时,a c ⋅的最大值为( )A .1B .2C .3D .46.如图,在平行四边形ABCD 中,点E 是CD 的中点,点F 为线段BD 上的一动点,若AF x AE yDC =+,且0x m >>,0y >,则()my x m -的最大值为( )A .8243B .4243C .381D .4817.已知ABC 中,()min 2,||3R AB AC BQ QA AB BC λλ===+=∈,()1221,33AP AB AC μμμ=+-≤≤,则PQ 的最小值为( )A .3B .5CD 8.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,()(sin sin )sin sin a c A C b B a B +-+=,24b a +=,32CA CD CB =-,则线段CD 长度的最小值为( )A .2B C .3 D 二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.已知平面向量()1,0a =,()1,23b =,则下列说法正确的是( ) A .4a b +=B .()2a b a +⋅=C .向量a b +与a 的夹角为30︒D .向量a b +在a 上的投影向量为2a10.已知向量()3,1a =,()2,3b =,()1,2c =-,若()()ma c a nb ++∥(m ,n ∈R ),则(),m n 可能是( ) A .()2,1B .()0,1-C .()3,2D .11,2⎛⎫-- ⎪⎝⎭11.已知向量()()2,1,cos ,sin (0π)a b θθθ==<<,则下列命题正确的是( ) A .·a bB .存在θ,使得=+a b a b +C .若a b ⊥,则tan θ=D .若b 在a 上的投影向量为,则向量a 与b 的夹角为2π3 12.下列说法正确的是( )A .已知向量()2,3a =-,(),21b x x =-,若a ∥b ,则2x =B .若向量a ,b 共线,则a b a b +=+C .已知正方形ABCD 的边长为1,若点M 满足12DM MC =,则43AM AC ⋅= D .若O 是ABC 的外心,3AB =,5AC =,则OA BC ⋅的值为8-三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.已知向量a ,b 满足2a =,1b =,()5a a b ⋅+=,则cos ,a b =____________. 14.设向量,a b 的夹角的余弦值为13-,且|2||3|6a b ==,则|2|a b +=___________. 15.在ABC 中,点D 在边BC 上,且2BD DC =,若AD AC AB λμ=+,则λμ=____16.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知ABC 的面积为S ,且2||2AC AB AC S -⋅=,则C =______.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知向量,a b 满足||2,||1a b ==,且()(2)9a b a b -⋅-=. (1)求|3|a b +;(2)记向量b 与向量3a b +的夹角为θ,求cos θ.18.如图,在矩形ABCD 中,点E 在边AB 上,且2AE EB =,M 是线段CE 上一动点.(1)若M 是线段CE 的中点,AM mAB nAD =+,求m n +的值; (2)若9AB =,43CA CE ⋅=,求解AD .19.如图,已知正方形ABCD 的边长为2,过中心O 的直线l 与两边AB ,CD 分别交于点M ,N .(1)若Q 是BC 的中点,求QM QN ⋅的取值范围;(2)若P 是平面上一点,且满足2(1)OP OB OC λλ=+-,求PM PN ⋅的最小值.20.已知向量()cos ,sin OA a αα==,()2cos ,2sin OB b ββ==,()0,OC c d ==(0d >),其中O 为坐标原点,且π0π2βα<<<<. (1)若()a b a ⊥-,求βα-的值;(2)若向量a 在向量c b c d ⋅=,求AOB 的面积,21.已知函数()f x a b =⋅,其中()(cos ,sin2,2cos ,R a x x b x x ==∈. (1)求函数()y f x =的单调递减区间;(2)在ABC 中,角,,A B C 所对的边分别为(),,,2,a b c f A a =且3sin 2sin B C =,求ABC 的面积.22.已知向量(1,3=-m ,()sin ,cos n x x =,函数()()f x m n n =+⋅,在ABC 中,内角,,A B C 的对边分别为,,a b c ,且()1f C =. (1)求C 的大小;(2)若ABC D 在边AC 上,且12CD DA =,求BD 的最小值.《平面向量》课时作业参考解析1.D【解析】由已知得,()()()232,331,423,6a b k k -=-=--. 又()23a b c -⊥,所以()230a b c -⋅=,即()()()23,62,12236k k --⋅=--4120k =-=.解得,3k =.故选:D. 2.D【解析】12AE AD DE AD AB =+=+.设AF AE λ=()01λ<<,则1122BF AF AB AD AB AB AD AB λλλ⎛⎫⎛⎫=-=+-=+- ⎪ ⎪⎝⎭⎝⎭,又BD AD AB =-,且,,B F D 三点共线,则,BF BD 共线,即R μ∃∈,使得BF BD μ=,即12AD AB AD AB λλμμ⎛⎫+-=- ⎪⎝⎭,又,AB AD 不共线,则有12λμλμ=⎧⎪⎨-=-⎪⎩,解得2323λμ⎧=⎪⎪⎨⎪=⎪⎩,所以,22112123323333AF AE AD AB AB AD a b ⎛⎫==+=+=+ ⎪⎝⎭. 故选:D.3.B【解析】由题意得:()33134444AD AB BD AB BC AB AC AB AB AC =+=+=+-=+, AE mAB =,AF nAC =,1344AD AE AF m n∴=+, ,,E D F 三点共线,13144m n ∴+=,即134m n+=.故选:B. 4.B【解析】方法1:在平行四边形ABCD 中,因为EB =mDE ,所以()AB AE m AE AD -=-,所以11AE AB m =++1m AD m+,又∵AB DC AC AD ==-, ∴()111mAE AC AD AD m m=-+++,∴()()11AC m AE m AD =++-, 又∵AC AE AD λμ=+,∴1m λ=+,1m μ=-,(平面向量基本定理的应用) 又∵20λμ+=,∴()1210m m ++-=,解得3m =,故选:B.方法2:如图,以A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则()0,0A ,设(),0B a ,(),D b c ,∵AB DC = 则 (),C a b c +,又∵EB mDE =,设(),E x y ,则()()11mb a x a x m x b m y m y c mc y m ⎧+⎧=⎪⎪-=-⎪⎪+⇒⎨⎨-=-⎪⎪=⎪⎪+⎩⎩即:,11mb a mc E m m +⎛⎫⎪++⎝⎭,∴,11mb a mc AE m m +⎛⎫= ⎪++⎝⎭,(),AC a b c =+,(),AD b c =, 又∵AC AE AD λμ=+,20λμ+=,∴2AC AE AD μμ=-+ ∴()(),=2,,11mb a mc a b c b c m m μμ+⎛⎫+-+⎪++⎝⎭∴2()121a bm a b b m mc c c m μμμμ-+⎧+=+⎪⎪+⎨-⎪=+⎪+⎩①②由②得1=1m mμ+-,将其代入①得3m =,故选:B. 5.B【解析】1a =,2b =,a 与b 的夹角为45,∴可设()1,0a =,()1,1b =,设(),c x y =,由1c b -=得:()()22111x y -+-=,则点C 轨迹是以()1,1为圆心,1为半径的圆,a c x ⋅=,∴当2x =时,a c ⋅取得最大值2.故选:B.6.B【解析】由题意可得12AE AD DE AB AD =+=+,所以,1122x AB AD y AB A x A F xAE x yDC y B AD ⎛⎫⎛⎫=++=++ ⎪= ⎪⎝⎭⎝⎭+,因为F 为线段BD 上的点,所以,存在()0,1λ∈,使得DF DB λ=, 所以,()AF AD AB AD λ-=-,则()1AF AB AD λλ=+-,所以,121x y x λλ⎧+=⎪⎨⎪=-⎩,则312x y +=,因为03102x y x >⎧⎪⎨=->⎪⎩,则203x <<, 所以,()()()3321223my x m m x x m m x m x ⎛⎫⎛⎫-=--=-- ⎪ ⎪⎝⎭⎝⎭223232323448383839m x m x m m m m m ⎛⎫⎛⎫⎛⎫≤⋅-+-=-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 令()32344839f m m m m ⎛⎫=-+ ⎪⎝⎭,其中203m <<, 则()238432233839833f m m m m m ⎛⎫⎛⎫⎛⎫'=-+=-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,当209m <<时,()0f m '>,此时函数()f m 单调递增, 当2293m <<时,()0f m '<,此时函数()f m 单调递减,所以,()max 249243f m f ⎛⎫== ⎪⎝⎭,当且仅当29m =,49x =时,()my x m -取最大值4243.故选:B. 7.C【解析】如图,设点O 为BC 上的一点,令BO BC λ=,即AB BC AB BO AO λ==++,当AO BC ⊥时AO 取最小值3,此时根据勾股定理可得BO OC ==ABC 为等边三角形,当点O 为BC 的中点时建立如图直角坐标系:()0,3A ,3,0B,)C,()3AB =--,()3,3AC =-()226AB μμ=--,())()()131,31AC μμμ-=---()()213,33AP AB AC μμμ=+-=---,故),3Pμ-因为2BQ QA =,所以2Q ⎛⎫ ⎪ ⎪⎝⎭,则32PQ μ⎛⎫=+ ⎪ ⎪⎝⎭3PQ ⎛== 因为1233μ≤≤,所以当13μ=时PQ 取最小值,min 23PQ =:C 8.D【解析】由()(sin sin )sin sin a c A C b B a B +-+=及正弦定理, 得2()()a c a c b ab +-+=,即222a b c ab +-=,由余弦定理得,2221cos 22a b c C ab +-==,∵()0,C π∈,∴3C π=. 由32CA CD CB =-,1233CD CA CB =+,两边平方,得22144999CD CA CA CB CB =+⋅+,即222144cos 999CD b a ab C =++22142999b a ab =++()212299b a ab -=+()221122992b a b a +⎛+-⎫≥ ⎪⎝⎭()21212b a =+, 当且仅当224b a b a =⎧⎨+=⎩,即12a b =⎧⎨=⎩时取等号,即2214(2)123CD b a ≥+=,∴线段CD D . 9.ABD【解析】由题意得((11,0a b +=++=, 所以(224a b +=+,故A 正确;()21202a b a +⋅=⨯+=,故B 正确;()21cos ,142a ab a a b a a b⋅++===⨯+, 0,πa a b ≤+≤,∴π,3a ab +=,故C 错误;向量a b +在a 上的投影向量为()2a a baa aa⋅+⋅=,故D 正确,故选:ABD . 10.ABD【解析】由题意得()32,13a nb n n +=++,()31,2ma c m m +=-+, 由()()ma c a nb ++∥可得()()()()3221331n m n m ++=+-,整理得1mn n =+. 对于选项A ,2111⨯=+,故选项A 正确; 对于选项B ,()0111⨯-=-+,故选项B 正确; 对于选项C ,3221⨯≠+,故选项C 错误; 对于选项D ,()111122⎛⎫-⨯-=-+ ⎪⎝⎭,故选项D 正确,故选:ABD . 11.ABD【解析】对于A ,()2cos sin a b θθθϕ⋅=++,其中tan 0,2πϕϕ⎛⎫=∈ ⎪⎝⎭,所以当=2πθϕ+,a b ⋅A 正确.对于B ,因为0πθ<<,所以当a b λ=,且0λ>时,a b a b +=+,即θ使得cos θ=,sin θ=时,符合题意,所以B 正确. 对于C ,若a b ⊥,则2cos sin 0a b θθ⋅=+=,此时tan θ=C 错误. 对于D ,b 在a 上的投影向量为cos ,3cos ,63a ba b a b a a a⋅==-, 所以1cos ,2a b =-,所以a 和b 的夹角为2π3,D 正确. 故选:ABD. 12.CD【解析】对于A ,因为()2,3a =-,(),21b x x =-,a ∥b , 所以2(21)3x x --=,解得27x =,故错误;对于B ,因为向量a ,b 共线,当向量a ,b 同向时,则有a b a b +=+;当向量a ,b 反向时,则有||a b a b +=-,故错误;对于C ,因为12DM MC =,所以M 为CD 的三等分点中靠近D 的点, 所以13AM AD DM AD DC =+=+,AC AD DC =+,所以2211414()()||||1033333AM AC AD DC AD DC AD DC DC AD ⋅=+⋅+=++⋅=++=,故正确;对于D ,因为O 是ABC 的外心,所以||||||OA OB OC R ===(R 为ABC 的外接圆半径),又因为OB OA AB -=,所以22()||OB OA AB -=,即2229R OA OB -⋅=,① 同理可得22225R OA OC -⋅=,②由①-②可得:8OA OC OA OB ⋅-⋅=-,即有()8OA OC OB OA BC ⋅-=⋅=-,故正确. 故选:CD.13.【解析】∵()242cos ,5a a b a a b a b ⋅+=+⋅=+=,∴1cos ,2a b =14.【解析】由题意|2||3|6a b ==,所以||3,||2,a b ==所以1cos 232,3a b a b θ⎛⎫⋅=⋅=⨯⨯-=- ⎪⎝⎭所以2|2|(2)a b ab +=+2244a a b b =+⋅+==15.【解析】由2BD DC =,得23BD BC =, 则在ABC 中,()22123333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+, 因AD λAC μAB =+,故2313λμ⎧=⎪⎪⎨⎪=⎪⎩,因此2λμ=. 16.【解析】22||cos sin 222AC AB AC b bc A bc AS -⋅-===,则()cos sin b c A A =+,由正弦定理得()()()sin cos sin sin sin πsin sin cos cos sin C A A B A C A C A C A C ⎡⎤+==-+=+=+⎣⎦,故 ()sin cos sin 0C C A -=,∵sin 0A ≠,∴πsin cos sin 04C C C ⎛⎫-=-= ⎪⎝⎭,∵()0,πC ∈,∴π4C =.17.【解析】(1)因为()(2)9a b a b -⋅-=,所以22329a a b b -⋅+=. 因为向量,a b 满足||2,||1a b ==,所以2223219a b -⋅+⨯=,所以1a b ⋅=-.所以()2222|3|3692a b a ba ab b +=+=+⋅+=+(2)因为()231323a b b b a b ⋅+=-+⋅==+,所以()32cos 173b a bb a bθ⋅+==⨯⨯+ 18.【解析】(1)因为点E 在边AB 上,且2AE EB =,所以23AE AB =, 因为M 是线段CE 的中点,所以1()2AM AC AE =+112()223AB AD AB =++⨯5162AB AD =+, 因为AM mAB nAD =+,,AB AD 不共线,所以51,62m n ==, 所以514623m n +=+=;(2)由题意可得CA CD CB AB AD =+=--,13CE CB BE AD AB =+=--, 因为43CA CE ⋅=,所以1()()433AB AD AD AB --⋅--=,所以1()()433AB AD AD AB +⋅+=,所以22144333AD AB AB AD ++⋅=,因为9AB =,0AB AD ⋅=,所以2219433AD +⨯=,得216AD =,所以4AD =. 19.【解析】(1)因为直线l 过中心O 且与两边AB 、CD 分别交于点M 、N . 所以O 为MN 的中点,所以OM ON =-, 所以()()QM QN QO OM QO ON ⋅=+⋅+22QO OM =-.因为Q 是BC 的中点,所以||1QO =,1||2OM ≤≤2210QO OM -≤-≤, 即的QM QN ⋅取值范围为[1,0]-;(2)令2OT OP =,则 2(1)OT OP OB OC λλ==+-,∴OT OB OC OC λλ=+-,即:OT OC OB OC λλ-=-,∴CT CB λ= ∴点T 在BC 上,又因为O 为MN 的中点,所以||1OT ≥,从而1||2OP ≥,()()PM PN PO OM PO ON ⋅=+⋅+22PO OM =-,因为1||2OM ≤≤,所以2217244PM PN PO OM ⋅=-≥-=-, 即PM PN ⋅的最小值为74-.20.【解析】(1)由题知(2cos cos ,2sin sin )b a βαβα-=--,因为()a b a ⊥-, 所以()cos (2cos cos )sin (2sin sin )2cos()10a b a αβααβααβ⋅-=-+-=--= 即1cos()2αβ-=,因为π0π2βα<<<<,所以0αβπ<-<,所以3παβ-=,所以3πβα-=-(2)由题知sin a c d d c α⋅==sin α=, 因为2απ<<π,所以23πα=,又2sin b c d d β⋅==,即1sin 2β=,因为02βπ<<,所以6πβ=,易知,2AOB π∠=,1,2OA OB ==,所以112AOBSOA OB =⨯=21.【解析】(1)因为函数()f x a b =⋅,其中()(cos ,sin2,2cos ,R a x x b x x ==∈,所以,()22cos cos212sin 216f x a b x x x x x π⎛⎫=⋅==+=++ ⎪⎝⎭,由题意有()3222Z 262k x k k πππππ+≤+≤+∈,解得()2Z 63k x k k ππππ+≤≤+∈, 所以,函数()y f x =的单调递减区间为()2,63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ; (2)结合(1)得()12sin 212,sin 2662f A A A ππ⎛⎫⎛⎫=++=+= ⎪ ⎪⎝⎭⎝⎭,因为0A π<<,所以132666A πππ<+<,所以,5266A ππ+=,解得3A π=,因为3sin 2sin B C =,所以332,2b c c b ==,又在ABC 中,a =所以,由余弦定理得2222772cos34a b c bc b π==+-=,解得3,2c b ==,所以1232ABC S =⨯⨯=△.22【解析】(1)()1sin ,cos m n x x +=+,()()()22sin 1sin cos cos sin sin cos f x x x x x x x x x∴=++=++πsin 12sin 13x x x ⎛⎫=+=-+ ⎪⎝⎭,()π2sin 113f C C ⎛⎫∴=-+= ⎪⎝⎭,πsin 03C ⎛⎫∴-= ⎪⎝⎭,()0,πC ∈,ππ2π,333C ⎛⎫∴-∈- ⎪⎝⎭,π03C ∴-=,解得:π3C =.(2)1sin 2ABCSab C ===2ab ∴=;12CD DA =,13CD b ∴=, 在BCD △中,由余弦定理得:2222211112cos 3393BD a b a b C a b ab ⎛⎫=+-⋅=+- ⎪⎝⎭,2111223333BD a b ab ab ∴≥⋅-==(当且仅当13a b =,即a =,b 时取等号),BD ∴≥BD .。

高考理科数学第一轮复习测试题9

高考理科数学第一轮复习测试题9

(时间:40分钟 满分:60分)一、填空题(每小题5分,共40分)1.已知直线ρsin ⎝⎛⎭⎫θ+π4=22,则极点到该直线的距离是________. 解析 由题意知,ρsin θ+ρcos θ=1,∴x +y -1=0,由点到直线的距离公式得所求的距离d =22. 答案222.(2011·汕头调研)在极坐标系中,ρ=4sin θ是圆的极坐标方程,则点A ⎝⎛⎭⎫4,π6到圆心C 的距离是________.解析 将圆的极坐标方程ρ=4sin θ化为直角坐标方程为x 2+y 2-4y =0,圆心坐标为(0,2).又易知点A ⎝⎛⎭⎫4,π6的直角坐标为(23,2),故点A 到圆心的距离为0-232+2-2 2=2 3. 答案 2 33.在极坐标系中,过圆ρ=6cos θ-22sin θ的圆心且与极轴垂直的直线的极坐标方程为________.解析 由ρ=6cos θ-22sin θ⇒ρ2=6ρcos θ-22ρsin θ,所以圆的直角坐标方程为x 2+y 2-6x +22y =0,将其化为标准形式为(x -3)2+(y +2)2=11,故圆心的坐标为(3,-2),所以过圆心且与x 轴垂直的直线的方程为x =3,将其化为极坐标方程为ρcos θ=3. 答案 ρcos θ=34.(2011·华南师大模拟)在极坐标系中,点M ⎝⎛⎭⎫4,π3到曲线ρcos ⎝⎛⎭⎫θ-π3=2上的点的距离的最小值为________.解析 依题意知,点M 的直角坐标是(2,23),曲线的直角坐标方程是x +3y -4=0,因此所求的距离的最小值等于点M 到该直线的距离,即为|2+23×3-4|12+32=2.答案 25.(2011·广州广雅中学模拟)在极坐标系中,圆ρ=4上的点到直线ρ(cos θ+3sin θ)=8的距离的最大值是________.解析 把ρ=4化为直角坐标方程为x 2+y 2=16,把ρ(cos θ+3sin θ)=8化为直角坐标方程为x +3y -8=0,∴圆心(0,0)到直线的距离为d =82=4.∴直线和圆相切,∴圆上的点到直线的最大距离是8. 答案 86.在极坐标系中,曲线C 1:ρ=2cos θ,曲线C 2:θ=π4,若曲线C 1与C 2交于A 、B 两点,则线段AB =________.解析 曲线C 1与C 2均经过极点,因此极点是它们的一个公共点.由⎩⎪⎨⎪⎧ρ=2cos θ,θ=π4得⎩⎪⎨⎪⎧ρ=2,θ=π4,即曲线C 1与C 2的另一个交点与极点的距离为2,因此AB = 2. 答案27.(2011·湛江模拟)在极坐标系中,圆C 的极坐标方程为:ρ2+2ρcos θ=0,点P 的极坐标为⎝⎛⎭⎫2,π2过点P 作圆C 的切线,则两条切线夹角的正切值是________.解析 圆C 的极坐标方程:ρ2+2ρcos θ=0化为普通方程:(x +1)2+y 2=1,点P 的直角坐标为(0,2),圆C 的圆心为(-1,0).如图,当切线的斜率存在时,设切线方程为y =kx +2,则圆心到切线的距离为|-k +2|k 2+1=1,∴k =34,即tan α=34.易知满足题意的另一条切线的方程为x =0.又∵两条切线的夹角为α的余角,∴两条切线夹角的正切值为43.答案 438.若直线3x +4y +m =0与曲线ρ2-2ρcos θ+4ρsin θ+4=0没有公共点,则实数m 的取值范围是________.解析 注意到曲线ρ2-2ρcos θ+4ρsin θ+4=0的直角坐标方程是x 2+y 2-2x +4y +4=0,即(x -1)2+(y +2)2=1.要使直线3x +4y +m =0与该曲线没有公共点,只要圆心(1,-2)到直线3x +4y +m =0的距离大于圆的半径即可,即|3×1+4×-2 +m |5>1,|m -5|>5,解得,m <0,或m >10.答案 (-∞,0)∪(10,+∞) 二、解答题(共20分)9.(10分)设过原点O 的直线与圆(x -1)2+y 2=1的一个交点为P ,点M 为线段OP 的中点,当点P 在圆上移动一周时,求点M 轨迹的极坐标方程,并说明它是什么曲线.解 圆(x -1)2+y 2=1的极坐标方程为ρ=2cos θ⎝⎛⎭⎫-π2≤θ≤π2,设点P 的极坐标为(ρ1,θ1),点M 的极坐标为(ρ,θ),∵点M 为线段OP 的中点,∴ρ1=2ρ,θ1=θ,将ρ1=2ρ,θ1=θ代入圆的极坐标方程,得ρ=cos θ.∴点M 轨迹的极坐标方程为ρ=cos θ-⎝⎛⎭⎫π2≤θ≤π2,它表示圆心在点⎝⎛⎭⎫12,0,半径为12的圆.10.(10分)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,已知点P 的直角坐标为(1,-5),点M 的极坐标为⎝⎛⎭⎫4,π2,若直线l 过点P ,且倾斜角为π3,圆 C 以M 为圆心、4为半径.(1)求直线l 的参数方程和圆C 的极坐标方程; (2)试判定直线l 和圆C 的位置关系.解 (1)由题意,直线l 的普通方程是y +5=(x -1)tan π3,此方程可化为y +5sin π3=x -1cos π3,令y +5sinπ3=x -1cos π3=a (a 为参数),得直线l 的参数方程为⎩⎨⎧x =12a +1,y =32a -5(a 为参数).如图,设圆上任意一点为P (ρ,θ),则在△POM 中,由余弦定理,得PM 2=PO 2+OM 2-2·PO ·OM cos ∠POM ,∴42=ρ2+42-2×4ρcos ⎝⎛⎭⎫θ-π2. 化简得ρ=8sin θ,即为圆C 的极坐标方程. (2)由(1)可进一步得出圆心M 的直角坐标是(0,4), 直线l 的普通方程是3x -y -5-3=0,圆心M 到直线l 的距离d =|0-4-5-3|3+1=9+32>4,所以直线l 和圆C 相离.。

高二数学测试题高考数学第一轮章节复习考试题(附答案和解释)

高二数学测试题高考数学第一轮章节复习考试题(附答案和解释)

高二数学测试题2021届高考数学第一轮章节复习考试题(附答案和解释)第6章第4节一、选择题1.等差数列{an}的前n项和为Sn,若S2=2,S4=10,则S6等于()A.12B.18C.24D.42[答案] C[解析] 由题意设Sn=An2+Bn,又∵S2=2,S4=10,∴4A+2B=2,16A+4B=10,解得A=34,B=-12,∴S6=36×34-3=24.2.数列{an}的前n项和为Sn,若an=1?n+1??n+2?,则S8等于()A.25B.130C.730D.56[答案] A[解析] ∵an=1?n+1??n+2?=1n+1-1n+2,而Sn=a1+a2+…+an=12-13+13-14+…+1n-1n+1+1n+1-1n+2=12-1n+2=n2?n+2?,∴S8=82×?8+2?=25.3.数列1×12,2×14,3×18,4×116,…的前n项和为()A.2-12n-n2n+1B.2-12n-1-n2nC.12(n2+n+2)-12nD.12n(n+1)+1-12n-1[答案] B[解析]S=1×12+2×14+3×18+4×116+…+n×12n=1×121+2×122+ 3×123+…+n×12n,①则12S=1×122+2×123+3×124+…+(n-1)×12n+n×12n+1,②①-②得12S=12+122+123+…+12n-n×12n+1=121-12n1-12-n2n+1=1-12n-n2n+1.∴S=2-12n-1-n2n.4.122-1+132-1+142-1+…+1?n+1?2-1的值为()A.n+12?n+2?B.34-n+12?n+2?C.34-121n+1+1n+2D.32-1n+1+1n+2[答案] C[解析] ∵1?n+1?2-1=1n2+2n=1n?n+2?=121n-1n+2.∴Sn=121-13+12-14+13-15+…+1n-1n+2=1232-1n+1-1n+2=3 4-121n+1+1n+2.5.(2021?汕头模拟)已知an=log(n+1)(n+2)(n∈N*),若称使乘积a1?a2?a3?…?an为整数的数n为劣数,则在区间(1,2021)内所有的劣数的和为()A.2026B.2046C.1024D.1022[答案] A[解析]∵a1?a2?a2?…?an=lg3lg2?lg4lg3?…?lg?n+2?lg?n+1?=lg ?n+2?lg2=log2(n+2)=k,则n=2k-2(k∈Z).令12021,得k=2,3,4, (10)∴所有劣数的和为4?1-29?1-2-18=211-22=2026.6.(2021?威海模拟)已知数列{an}的前n项和Sn=n2-4n+2,则|a1|+|a2|+…+|a10|=()A.66B.65C.61D.56[答案] A[解析] 当n≥2时,an=Sn-Sn-1=2n-5;当n=1时,a1=S1=-1,不符合上式,∴an=-1,n=1,2n-5,n≥2,∴{|an|}从第3项起构成等差数列,首项|a3|=1,末项|a10|=15.∴|a1|+|a2|+…+|a10|=1+1+?1+15?×82=66.7.(文)(20XX?江西)公差不为零的等差数列{an}的前n项和为Sn,若a4是a3与a7的等比中项,S8=32,则S10等于()A.18B.24C.60D.90[答案] C[解析] 由题意可知a42=a3×a7S8=32,∴?a1+3d?2=?a1+2d??a1+6d?8a1+8×72×d=32,∴a1=-3d=2,∴S10=10×(-3)+10×92×2=60,选C.(理)(20XX?重庆)设{an}是公差不为0的等差数列,a1=2且a1,a3,a6成等比数列,则{an}的前n项和Sn=()A.n24+7n4B.n23+5n3C.n22+3n4D.n2+n[答案] A[解析] 设等差数列公差为d,∵a1=2,∴a3=2+2d,a6=2+5d.又∵a1,a3,a6成等比数列,∴a32=a1a6,即(2+2d)2=2(2+5d),整理得2d2-d=0.∵d≠0,∴d=12,∴Sn=na1+n?n-1?2d=n24+74n.故选A. 8.在等比数列{an}中,a1=2,前n项和为Sn,若数列{an+1}也是等比数列,则Sn等于()A.2n+1-2B.3nC.2nD.3n-1[答案] C[解析] 解法1:由{an}为等比数列可得an+1=an?q,an+2=an?q2由{an+1}为等比数列可得(an+1+1)2=(an+1)(an+2+1),故(an?q+1)2=(an+1)(an?q2+1),化简上式可得q2-2q+1=0,解得q=1,故an为常数列,且an=a1=2,故Sn=n?a1=2n,故选C.解法2:设等比数列{an}的公比为q,则有a2=2q且a3=2q2,由题设知(2q+1)2=3?(2q2+1),解得q=1,以下同解法1.二、填空题9.设f(x)=12x+2,则f(-9)+f(-8)+…+f(0)+…+f(9)+f(10)的值为________.[答案] 52[解析]∵f(-n)+f(n+1)=12-n+2+12n+1+2=2n1+2n?2+12n+1+2=2n?2 +12n+1+2=22,∴f(-9)+f(-8)+…+f(0)+…+f(9)+f(10)=52.10.(2021?启东模拟)对于数列{an},定义数列{an+1-an}为数列{an}的“差数列”,若a1=2,{an}的“差数列”的通项为2n,则数列{an}的前n项和Sn=________.[答案] 2n+1-2[解析] ∵an+1-an=2n,∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2n-1+2n-2+…+22+2+2=2-2n1-2+2=2n-2+2=2n,∴Sn=2-2n+11-2=2n+1-2.11.(2021?江门模拟)有限数列A={a1,a2,…,an},Sn为其前n项的和,定义S1+S2+…+Snn为A的“凯森和”;如果有99项的数列{a1,a2,…,a99}的“凯森和”为1000,则有100项的数列{1,a1,a2,…,a99}的“凯森和”为________.[答案] 991[解析] ∵{a1,a2,…,a99}的“凯森和”为S1+S2+…+S9999=1000,∴S1+S2+…S99=1000×99,数列{1,a1,a2,…,a99}的“凯森和”为:1+?S1+1?+?S2+1?+…+?S99+1?100=100+S1+S2+…+S99100=991.三、解答题12.(2021?重庆文)已知{an }是首项为19,公差为-2的等差数列,Sn为{an}的前n项和.(1)求通项an及Sn;(2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及其前n项和Tn.[解析] 本题主要考查等差数列的基本性质,以及通项公式的求法,前n项和的求法,同时也考查了学生的基本运算能力.(1)因为{an}为首项a1=19,公差d=-2的等差数列,所以an=19-2(n-1)=-2n+21,Sn=19n+n?n-1?2(-2)=-n2+20n.(2)由题意知bn-an=3n-1,所以bn=3n-1-2n+21Tn=b1+b2+…+bn=(1+3+…+3n-1)+Sn=-n2+20n+3n-12.13.已知数列{an}的前n项和Sn=2n2-3n.(1)求证:数列{an}是等差数列;(2)若bn=an?2n,求数列{bn}的前n项和Tn.[解析] (1)证明:a1=S1=-1,当n≥2时,an=Sn-Sn-1=2n2-3n-2(n-1)2+3(n-1)=4n-5. 又a1适合上式,故an=4n-5(n∈N*).当n≥2时,an-an-1=4n-5-4(n-1)+5=4,所以{an}是等差数列且d=4,a1=-1.(2)bn=(4n-5)?2n,∴Tn=-21+3?22+…+(4n-5)?2n,①2Tn=-22+…+(4n-9)?2n+(4n-5)?2n+1,②①-②得-Tn=-21+4?22+…+4?2n-(4n-5)?2n+1=-2+4?4?1-2n-1?1-2-(4n-5)?2n+1=-18-(4n-9)?2n+1,∴Tn=18+(4n-9)?2n+1.14.设数列{an}的前n项和为Sn,已知a1=1,且an+2SnSn-1=0(n≥2),(1)求数列{Sn}的通项公式;(2)设Sn=1f?n?,bn=f(12n)+1.记Pn=S1S2+S2S3+…+SnSn+1,Tn=b1b2+b2b3+…+bnbn+1,试求Tn,并证明Pn12.[解析] (1)解:∵an+2SnSn-1=0(n≥2),∴Sn-Sn-1+2SnSn-1=0.∴1Sn-1Sn-1=2.又∵a=1,∴Sn=12n-1(n∈N+).(2)证明:∵Sn=1f?n?,∴f(n)=2n-1.∴bn=2(12n)-1+1=(12)n-1.Tn=(12)0?(12)1+(12)1?(12)2+…+(12)n-1?(12)n=(12)1+( 12)3+(12)5+…+(12)2n-1=23[1-(14)n].∵Sn=12n-1(n∈N+)∴Pn=11×3+13×5+…+1?2n-1??2n+1?=121-12n+112.15.(2021?山东理)已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn.(1)求an及Sn;(2)令bn=1an2-1(n∈N*),求数列{bn}的前n项和Tn.[解析] 本题考查等差数列的通项公式与前n项和公式的应用、裂项法求数列的和,熟练掌握数列的基础知识是解答好本类题目的关键.对(1)可直接根据定义求解,(2)问采用裂项求和即可解决.(1)设等差数列{an}的公差为d,因为a3=7,a5+a7=26,所以有a1+2d=72a1+10d=26,解得a1=3,d=2,所以an=3+2(n-1)=2n+1;Sn=3n+n?n-1?2×2=n2+2n.(2)由(1)知an=2n+1,所以bn=1an2-1=1?2n+1?2-1=14?1n?n+1?=14?1n-1n+1,所以Tn=14?1-12+12-13+…+1n-1n+1=14?1-1n+1=n4?n+1?,即数列{bn}的前n项和Tn=n4?n+1?.[点评] 数列在高考中主要考查等差、等比数列的定义、性质以及数列求和,解决此类题目要注意合理选择公式,对于数列求和应掌握经常使用的方法,如:裂项、叠加、累积.本题应用了裂项求和.。

高考数学(理)一轮复习课时训练:9-2二项式定理(含答案)

高考数学(理)一轮复习课时训练:9-2二项式定理(含答案)

课时规范训练A 组 基础演练1.(1+2x )5的展开式中,x 2的系数等于( )A .80B .40C .20D .10 解析:选B.T k +1=C k 515-k (2x )k =C k 5×2k ×x k ,令k =2,则可得含x 2项的系数为C 25×22=40. 2.⎝⎛⎭⎫x 2-2x 35展开式中的常数项为( ) A .80B .-80C .40D .-40解析:选C.T k +1=C k 5(x 2)5-k ⎝⎛⎭⎫-2x 3k =C k 5(-2)k x 10-5k ,令10-5k =0得k =2.∴常数项为T 3=C 25(-2)2=40.3.(x -2y )8的展开式中,x 6y 2项的系数是( )A .56B .-56C .28D .-28解析:选A.二项式的通项为T r +1=C r 8x8-r (-2y )r ,令8-r =6,即r =2,得x 6y 2项的系数为C 28(-2)2=56.4.已知⎝⎛⎭⎫x -a x 8展开式中常数项为1 120,其中a 是常数,则展开式中各项系数的和是( ) A .28B .38C .1或38D .1或28解析:选C.由题意知C 48·(-a )4=1 120,解得a =±2,令x =1,得展开式中各项系数的和为(1-a )8=1或38.5.如果⎝⎛⎭⎫2x +1x 2n 的展开式中含有常数项,则正整数n 的最小值为( ) A .3B .5C .6D .10解析:选B.⎝⎛⎭⎫2x +1x 2n 的展开式的通项为T r +1=C r n ·(2x )n -r ⎝⎛⎭⎫1x 2r =∵n ,r ∈N ,且r ≤n ,∴n =5r ∈N ,即n 的最小值为5.6.在⎝⎛⎭⎪⎫x 2-13x n 的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( )A .-7B .7C .-28D .28解析:选B.由题意有n =8,T k +1=C k 8⎝⎛⎭⎫128-k (-1)k x 8-43k ,k =6时为常数项,常数项为7. 7.已知C 0n +2C 1n +22C 2n +22C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C n n 等于( )A .63B .64C .31D .32解析:选A.逆用二项式定理得C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =(1+2)n =3n =729,即3n =36,所以n =6,所以C 1n +C 2n +C 3n +…+C n n =26-C 0n =64-1=63.故选A.8.若⎝⎛⎭⎫x 2-1x n 的展开式中第三项与第五项的系数之比为314,则展开式中常数项是( ) A .-10 B .10C .-45D .45解析:选D.因为展开式的通项公式为T r +1=C r n (x 2)n -r ·=C r n (-1)r,所以C 2n C 4n =314, 解得n =10,所以T r +1=C r 10·(-1)r ·,令20-5r 2=0,则r =8.所以常数项为T 9=C 810=C 210=45. 9.在⎝⎛⎭⎫2x 2-1x 5的二项展开式中,x 的系数为( ) A .10B .-10C .40D .-40解析:选D.因为T k +1=C k 5(2x 2)5-k ⎝⎛⎭⎫-1x k=C k 525-k x 10-2k (-1)k x -k =C k 525-k (-1)k x 10-3k ,令10-3k =1,得k =3,所以x 的系数为C 3525-3(-1)3=-40. 10.(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n 等于( )A .6B .7C .8D .9解析:选B.(1+3x )n 的展开式中含x 5的项为C 5n (3x )5=C 5n 35x 5,展开式中含x 6的项为C 6n 36x 6,由两项的系数相等得C 5n ·35=C 6n ·36,解得n =7. B 组 能力突破1.(4x -2-x )6(x ∈R )展开式中的常数项是( ) A .-20B .-15C .15D .20解析:选C.设展开式的常数项是第k +1项,则T k +1=C k 6·(4x )6-k ·(-2-x )k =C k 6·(-1)k ·212x -2kx ·2-kx =C k 6·(-1)k ·212x -3kx ,∴12x -3kx =0恒成立.∴k =4,∴T 5=C 46·(-1)4=15. 2.若(1+x )+(1+x )2+…+(1+x )n =a 0+a 1(1-x )+a 2(1-x )2+…+a n (1-x )n ,则a 0-a 1+a 2-…+(-1)n a n 等于( )A.34(3n -1) B.34(3n -2) C.32(3n -2) D.32(3n -1) 解析:选D.在展开式中,令x =2得3+32+33+…+3n =a 0-a 1+a 2-a 3+…+(-1)n a n , 即a 0-a 1+a 2-a 3+…+(-1)n a n =-3n 1-3=32(3n -1). 3.设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,则a 10+a 11=________.解析:a 10,a 11分别是含x 10和x 11项的系数,所以a 10=-C 1121,a 11=C 1021,所以a 10+a 11=C 1021-C 1121=0.答案:04.(2016·高考山东卷)若⎝⎛⎭⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________. 解析:T r +1=,令10-52r =5, 解之得r =2,所以a 3C 25=-80,a =-2.答案:-25.(2016·高考天津卷)⎝⎛⎭⎫x 2-1x 8的展开式中x 7的系数为________.(用数字作答) 解析:T r +1=C r 8x16-2r (-1)r x -r =(-1)r ·C r 8x 16-3r ,令16-3r =7,得r =3,所以x 7的系数为(-1)3C 38=-56. 答案:-566.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n -2n +C n -1n +C n n =121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项是T 8=C 715(3x )7和T 9=C 815(3x )8.答案:T 8=C 715(3x )7和T 9=C 815(3x )8。

2021届高考数学一轮复习第一部分考点通关练第二章函数导数及其应用考点测试9指数与指数函数含解析人教B版

2021届高考数学一轮复习第一部分考点通关练第二章函数导数及其应用考点测试9指数与指数函数含解析人教B版

考点测试9 指数与指数函数高考概览高考在本考点的常考题型为选择题,分值5分,中等难度 考纲研读1.了解指数函数模型的实际背景2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算3.理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点4.体会指数函数是一类重要的函数模型一、基础小题 1.设2x=8y +1,9y=3x -9,则x +y 的值为( )A .18B .21C .24D .27答案 D 解析 因为2x=8y +1=23(y +1),所以x =3y +3,因为9y =3x -9=32y,所以x -9=2y ,解得x =21,y =6,所以x +y =27.2.化简(a >0,b >0)的结果是( )A.b aB .abC .a 2b D .a b答案 D 解析 原式==ab -1=ab .故选D.3.若f (x )=(2a -3)a x为指数函数,则f (x )在定义域内( ) A .为增函数 B .为减函数 C .先增后减 D .先减后增答案 A解析 由指数函数的定义知2a -3=1,解得a =2,所以f (x )=2x,所以f (x )在定义域内为增函数.故选A.4.已知,则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b答案 A 解析 a =,由2<3得a <c ,由23>25,得a >b ,故c >a >b .故选A.5.当x >0时,函数f (x )=(a 2-1)x的值总大于1,则实数a 的取值范围是( ) A .1<a <2B .-1<a <1C .a >2或a <- 2D .-2<a < 2答案 C解析 ∵x >0时,f (x )=(a 2-1)x 的值总大于1,∴a 2-1>1,即a 2>2.∴a >2或a <- 2.故选C.6.下列函数中,在(0,+∞)内单调递减的是( ) A .y =22-xB .y =x -11+xC .D .y =-x 2+2x +a答案 A解析 根据题意,依次分析选项:对于A ,y =22-x=4×⎝ ⎛⎭⎪⎫12x,在(0,+∞)内单调递减,符合题意;对于B ,y =x -1x +1=1-2x +1,在(0,+∞)内单调递增,不符合题意;对于C ,y ==log 2x ,在(0,+∞)内单调递增,不符合题意;对于D ,y =-x 2+2x +a =-(x -1)2+a +1,在(0,1)内单调递增,不符合题意.故选A.7.已知函数f (x )满足对一切x ∈R ,f (x +2)=-1f x都成立,且当x ∈(1,3]时,f (x )=2-x,则f (2019)=( )A.14 B .18 C .116 D .132答案 B解析 由已知条件f (x +2)=-1f x可得f (x )=-1fx -2,故f (x +2)=f (x -2),易得f (x )是周期为4的周期函数,∴f (2019)=f (3+504×4)=f (3),∵当x ∈(1,3]时,f (x )=2-x ,∴f (3)=2-3=18,即f (2019)=18.故选 B.8.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数.例如:[-2.1]=-3,[3.1]=3,已知函数f (x )=2x+31+2x +1,则函数y =[f (x )]的值域为( ) A.⎝ ⎛⎭⎪⎫12,3 B .(0,2] C .{0,1,2} D .{0,1,2,3}答案 C解析 因为f (x )=2x+31+2x +1=121+2x +1+521+2x +1=12+521+2x +1,2x +1>0,所以0<11+2x +1<1,所以12<12+521+2x +1<3,即12<f (x )<3,所以y =[f (x )]的值域为{0,1,2},故选C. 9.下列说法中,正确的是( ) ①任取x ∈R 都有3x >2x;②当a >1时,任取x ∈R 都有a x >a -x; ③y =(3)-x是增函数; ④y =2|x |的最小值为1;⑤在同一坐标系中,y =2x 与y =2-x的图象关于y 轴对称. A .①②④ B .④⑤ C .②③④ D .①⑤答案 B解析 ①中令x =-1,则3-1<2-1,故①错误;②中当x <0时,a x <a -x,故②错误;③中y =(3)-x =⎝⎛⎭⎪⎫33x ,∵0<33<1,∴y =⎝ ⎛⎭⎪⎫33x为减函数,故③错误;④中x =0时,y 取最小值1,故④正确;⑤由函数图象变换,可知y =2x与y =2-x的图象关于y 轴对称,故⑤正确.故选B.10.已知f (x )是定义在R 上的奇函数,且满足f (x )=f (2-x ),当x ∈[0,1]时,f (x )=4x-1,则在(1,3)上,f (x )≤1的解集是( )A.⎝ ⎛⎦⎥⎤1,32 B .⎣⎢⎡⎦⎥⎤32,52 C.⎣⎢⎡⎭⎪⎫32,3 D .[2,3)答案 C解析 ∵0≤x ≤1时,f (x )=4x-1,∴f (x )在区间[0,1]上是增函数,又f (x )是奇函数,∴f (x )在区间[-1,1]上是增函数.∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称,∴f (x )在区间(1,3)上是减函数,又f ⎝ ⎛⎭⎪⎫12=1,∴f ⎝ ⎛⎭⎪⎫32=1,∴在区间(1,3)上不等式f (x )≤1的解集为⎣⎢⎡⎭⎪⎫32,3,故选C.11.求值:=________.答案14380解析 原式=0.4-1-1+(-2)-4+2-3+0.1=104-1+116+18+110=14380.12.已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -2|},则f (x )的最小值为________.答案 e解析 由题意得,f (x )=⎩⎪⎨⎪⎧e |x |,x ≥1,e |x -2|,x <1.当x ≥1时,f (x )=e |x |=e x≥e(当x =1时,取等号);当x <1时,f (x )=e|x -2|=e2-x>e.故f (x )的最小值为f (1)=e.二、高考小题13.(2019·全国卷Ⅰ)已知a =log 20.2,b =20.2,c =0.20.3,则( ) A .a <b <c B .a <c <b C .c <a <b D .b <c <a答案 B解析 因为a =log 20.2<0,b =20.2>1,0<c =0.20.3<1,所以a <c <b .故选B. 14.(2017·全国卷Ⅰ)设x ,y ,z 为正数,且2x=3y=5z,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2x D .3y <2x <5z答案 D解析 令t =2x =3y =5z,∵x ,y ,z 为正数,∴t >1.则x =log 2t =lg t lg 2,同理,y =lg t lg 3,z =lg t lg 5.∴2x -3y =2lg t lg 2-3lg t lg 3=lg t 2lg 3-3lg 2lg 2×lg 3=lg t lg 9-lg 8lg 2×lg 3>0,∴2x >3y .又2x -5z =2lg t lg 2-5lg t lg 5=lg t 2lg 5-5lg 2lg 2×lg 5=lg t lg 25-lg 32lg 2×lg 5<0,∴2x<5z ,∴3y <2x <5z .故选D.15.(2018·上海高考)已知常数a >0,函数f (x )=2x2x +ax 的图象经过点P ⎝ ⎛⎭⎪⎫p ,65,Q ⎝ ⎛⎭⎪⎫q ,-15.若2p +q=36pq ,则a =________.答案 6解析 由已知条件知f (p )=65,f (q )=-15,所以⎩⎪⎨⎪⎧2p2p+ap =65, ①2q 2q+aq =-15, ②①+②,得2p2q +aq +2q2p+ap2p +ap 2q+aq=1, 整理得2p +q=a 2pq ,又2p +q=36pq ,∴36pq =a 2pq ,又pq ≠0,∴a 2=36,∴a =6或a =-6,又a >0,∴a =6. 16.(2015·江苏高考)不等式<4的解集为________.答案 {x |-1<x <2} 解析 不等式<4可转化为<22,利用指数函数y =2x 的性质可得,x 2-x <2,解得-1<x <2,故所求解集为{x |-1<x <2}.17.(2015·福建高考)若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________.答案 1解析 因为f (1+x )=f (1-x ),所以函数f (x )的图象关于直线x =1对称,所以a =1.函数f (x )=2|x -1|的图象如图所示.因为函数f (x )在[m ,+∞)上单调递增,所以m ≥1,所以实数m 的最小值为1.三、模拟小题18.(2020·河北张家口摸底)化简的结果为( )A .-4aB .4aC .11aD .4ab答案 B解析 原式==4ab 0=4a ,故选B.19.(2019·湖北八校联考)若,则函数y =2x的值域是( )A.⎣⎢⎡⎭⎪⎫18,2 B .⎣⎢⎡⎦⎥⎤18,2 C.⎝ ⎛⎦⎥⎤-∞,18 D .[2,+∞)答案 B 解析 因为=24-2x ,则x 2+1≤4-2x 即x 2+2x -3≤0,所以-3≤x ≤1.所以18≤y ≤2.20.(2019·沧州模拟)已知函数f (x )=e x -1-e-x +1,则下列说法正确的是( )A .函数f (x )的最小正周期是1B .函数f (x )是单调递减函数C .函数f (x )的图象关于直线x =1轴对称D .函数f (x )的图象关于(1,0)中心对称 答案 D解析 函数f (x )=ex -1-e-x +1,即f (x )=ex -1-1e x -1,可令t =e x -1,即有y =t -1t,由y =t -1t在t >0时单调递增,t =e x -1在R 上单调递增,可得f (x )在R 上为增函数,则A ,B 均错误;由f (2-x )=e1-x-ex -1,可得f (x )+f (2-x )=0,即有f (x )的图象关于点(1,0)对称,则C 错误,D 正确.故选D.21.(2020·湖南衡阳高三摸底考试)设函数f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎪⎨⎪⎧f x,f x ≤K ,K ,f x >K .给出函数f (x )=2x +1-4x,若对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则( )A .K 的最大值为0B .K 的最小值为0C .K 的最大值为1D .K 的最小值为1答案 D解析 根据题意可知,对于任意x ∈(-∞,1],若恒有f K (x )=f (x ),则f (x )≤K 在x ≤1时恒成立,即f (x )的最大值小于或等于K 即可.令2x =t ,则t ∈(0,2],f (t )=-t 2+2t =-(t -1)2+1,可得f (t )的最大值为1,所以K ≥1,故选D.22.(2019·江苏省镇江市期末)已知函数f (x )=12x -2x ,则满足f (x 2-5x )+f (6)>0的实数x 的取值范围是________.答案 (2,3)解析 根据题意,函数f (x )=12x -2x ,f (-x )=12-x -2-x=-⎝ ⎛⎭⎪⎫12x -2x =-f (x ),即f (x )为奇函数,又由y =12x 在R 上为减函数,y =-2x在R 上为减函数,则f (x )在R 上为减函数,则f (x 2-5x )+f (6)>0⇒f (x 2-5x )>-f (6)⇒f (x 2-5x )>f (-6)⇒x 2-5x <-6,解得2<x <3,即x 的取值范围为(2,3).23.(2019·浦东新区模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 4x 2+16,x ≥2,⎝ ⎛⎭⎪⎫12|x -a |,x <2,若对任意的x 1∈[2,+∞),都存在唯一的x 2∈(-∞,2),满足f (x 1)=f (x 2),则实数a 的取值范围为________.答案 [-2,6)解析 当x 1∈[2,+∞)时, x 14x 21+16=14x 1+16x 1∈⎝ ⎛⎦⎥⎤0,116.当x 2∈(-∞,2)时,(1)若a ≥2,则f (x )=⎝ ⎛⎭⎪⎫12|x -a |=⎝ ⎛⎭⎪⎫12a -x 在(-∞,2)上是单调递增函数,所以f (x 2)∈⎝ ⎛⎭⎪⎫0,⎝ ⎛⎭⎪⎫12a -2.若满足题目要求,则⎝ ⎛⎦⎥⎤0,116⊆⎝ ⎛⎭⎪⎫0,⎝ ⎛⎭⎪⎫12a -2,所以⎝ ⎛⎭⎪⎫12a -2>116=⎝ ⎛⎭⎪⎫124,∴a -2<4,a <6.又a ≥2,所以a ∈[2,6).(2)若a <2,则f (x )=⎝ ⎛⎭⎪⎫12|x -a |=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12a -x,x <a ,⎝ ⎛⎭⎪⎫12x -a,a ≤x <2.如果f (x )在(-∞,a )上是单调递增函数, 此时f (x 2)∈(0,1);如果f (x )在[a,2)上是单调递减函数,此时f (x 2)∈⎝ ⎛⎦⎥⎤⎝ ⎛⎭⎪⎫122-a ,1.若满足题目要求,则116≤⎝ ⎛⎭⎪⎫122-a,∴a ≥-2,又a <2,所以a ∈[-2,2).综上,a ∈[-2,6).一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2019·兰州模拟)已知函数.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求实数a 的值; (3)若f (x )的值域是(0,+∞),求实数a 的值. 解 (1)当a =-1时,,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而指数函数y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1,即当f (x )有最大值3时,实数a 的值等于1. (3)由指数函数的性质知,要使的值域为(0,+∞),则应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0(因为若a ≠0,则g (x )为二次函数,其值域不可能为R ).故a 的值为0.2.(2020·河南洛阳高三阶段考试)已知函数f (x )=a |x +b |(a >0,a ≠1,b ∈R ).(1)若f (x )为偶函数,求实数b 的值;(2)若f (x )在区间[2,+∞)上是增函数,试求实数a ,b 应满足的条件. 解 (1)因为f (x )为偶函数,所以对任意的x ∈R ,都有f (-x )=f (x ),即a|x +b |=a|-x +b |,|x +b |=|-x +b |,解得实数b =0.(2)记h (x )=|x +b |=⎩⎪⎨⎪⎧x +b ,x ≥-b ,-x -b ,x <-b .①当a >1时,f (x )在区间[2,+∞)上是增函数,即h (x )在区间[2,+∞)上是增函数, 所以-b ≤2,b ≥-2.②当0<a <1时,f (x )在区间[2,+∞)上是增函数,即h (x )在区间[2,+∞)上是减函数,但h (x )在区间[-b ,+∞)上是增函数,故不存在a ,b 的值,使f (x )在区间[2,+∞)上是增函数.所以f (x )在区间[2,+∞)上是增函数时,实数a ,b 应满足的条件为a >1且b ≥-2. 3.(2019·渭南模拟)已知定义域为R 的函数f (x )=-2x+b2x +1+a 是奇函数.(1)求实数a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求实数k 的取值范围. 解 (1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b2+a =0,解得实数b =1,所以f (x )=-2x+12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a ,解得实数a =2.(2)由(1)知f (x )=-2x+12x +1+2=-12+12x +1,由上式易知f (x )在R 上为减函数,又因为f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因为f (x )是R 上的减函数, 所以由上式推得t 2-2t >-2t 2+k . 即对一切t ∈R 有3t 2-2t -k >0, 从而Δ=4+12k <0,解得k <-13.故实数k 的取值范围为⎝⎛⎭⎪⎫-∞,-13. 4.(2020·山东枣庄高三摸底考试)已知函数f (x )=e x+a ·e -x,x ∈R . (1)当a =1时,证明:f (x )为偶函数;(2)若f (x )在[0,+∞)上单调递增,求实数a 的取值范围;(3)若a =1,求实数m 的取值范围,使m [f (2x )+2]≥f (x )+1在R 上恒成立. 解 (1)证明:当a =1时,f (x )=e x+e -x,定义域(-∞,+∞)关于原点对称,而f (-x )=e -x +e x =f (x ),所以f (x )为偶函数.因为x 1<x 2,函数y =e x 为增函数,所以,则,又因为f (x )在[0,+∞)上单调递增,所以f (x 1)<f (x 2),故f (x 1)-f (x 2)<0, 所以对任意的0≤x 1<x 2恒成立,所以a ≤1.故实数a 的取值范围为(-∞,1].(3)由(1)(2)知函数f (x )=e x +e -x在(-∞,0]上单调递减,在[0,+∞)上单调递增,所以其最小值f (0)=2,且f (2x )=e 2x+e-2x=(e x +e -x )2-2,设t =e x +e -x,则t ∈[2,+∞),1t ∈⎝ ⎛⎦⎥⎤0,12,则不等式m [f (2x )+2]≥f (x )+1恒成立, 等价于m ·t 2≥t +1,即m ≥t +1t 2恒成立, 而t +1t 2=1t 2+1t =⎝ ⎛⎭⎪⎫1t +122-14, 当且仅当1t =12,即t =2时t +1t 2取得最大值34,故m ≥34.因此实数m 的取值范围为⎣⎢⎡⎭⎪⎫34,+∞.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学一轮复习 单元能力测试卷9一、选择题(本大题共12小题,每小题5分,共60分.) 1.若曲线x 2m +4+y 29=1的一条准线方程为x =10,则m 的值为( ) A .8或86 B .6或56 C .5或56D .6或86答案 D解析 由准线是x =10及方程形式知曲线是焦点在x 轴上的椭圆,所以a 2=m +4,b 2=9,则c =m -5,于是m +4m -5=10,解得m =6或86.∵m +4>9,∴m >5,均符合题意. 2.已知椭圆x 2a 2+y 2b2=1(a >b >0)的面积为S =abπ,现有一个椭圆,其中心在坐标原点,一个焦点坐标为(4,0),且长轴长与短轴长的差为2,则该椭圆的面积为( )A .15π B.154π C .3πD.2554π 答案 D解析 由题意得⎩⎪⎨⎪⎧a 2-b 2=c 2=42,2a -2b =2,则⎩⎪⎨⎪⎧a +b =16,a -b =1,得到⎩⎪⎨⎪⎧a =172,b =152.所以S =abπ=172×152π=2554π.3.过抛物线y =14x 2准线上任一点作抛物线的两条切线,若切点分别为M ,N ,则直线MN过定点( )A .(0,1)B .(1,0)C .(0,-1)D .(-1,0)答案 A解析 特殊值法,取准线上一点(0,-1).设M (x 1,14x 12),N (x 2,14x 22),则过M 、N 的切线方程分别为y -14x 12=12x 1(x -x 1),y -14x 22=12x 2(x -x 2).将(0,-1)代入得x 12=x 22=4,∴MN 的方程为y =1,恒过(0,1)点.4.设双曲线16x 2-9y 2=144的右焦点为F 2,M 是双曲线上任意一点,点A 的坐标为(9,2),则|MA |+35|MF 2|的最小值为( )A .9 B.365 C.425D.545答案 B解析 双曲线标准方程为x 29-y 216=1,离心率为53,运用第二定义,将35|MF 2|转化为M 到右准线的距离.5.抛物线y =-ax 2(a <0)的焦点坐标是( ) A .(0,a4)B .(0,14a )C .(0,-14a )D .(0,-a4)答案 C解析 因为a <0,所以方程可化为x 2=1-a y ,所以焦点坐标为(0,-14a).故选C.6.设F 1、F 2分别是双曲线x 2-y 29=1的左、右焦点.若点P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|等于( )A.10 B .210 C. 5D .2 5答案 B解析 F 1(-10,0),F 2(10,0),2c =210,2a =2. ∵PF 1→·PF 2→=0,∴|PF 1→|2+|PF 2→|2=|F 1F 2|2=4c 2=40∴(PF 1→+PF 2→)2=|PF 1→|2+|PF 2→|2+2PF 1→·PF 2→=40,∴|PF 1→+PF 2→|=210.7.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0).若c 是a 与m 的等比中项,n 2是m 2与c 2的等差中项,则椭圆的离心率等于( )A.13 B.33 C.12D.22答案 B解析 ∵c 2=am,2n 2=c 2+m 2,又n 2=c 2-m 2, ∴m 2=13c 2,即m =33c .∴c 2=33ac ,则e =c a =33.8.设双曲线以椭圆x 225+y 29=1长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( )A .±2B .±43C .±12D .±34答案 C解析 椭圆x 225+y 29=1中,a =5,c =4.设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).所以c =5,a 2c =4.所以a 2=20,b 2=c 2-a 2=5.所以双曲线方程为x 220-y 25=1.所以其渐近线方程为y =±520x =±12x ,所以其斜率为±12.解决此题关键是分清椭圆与双曲线中的a ,b ,c 关系,这也是极易混淆之处. 9.已知椭圆x 23+y 24=1的两个焦点为F 1、F 2,M 是椭圆上一点,且|MF 1|-|MF 2|=1,则△MF 1F 2是( )A .锐角三角形B .钝角三角形C .直角三角形D .等边三角形答案 C解析 由x 23+y 24=1知a =2,b =3,c =1,e =12.则|MF 1|+|MF 2|=4, 又|MF 1|-|MF 2|=1.∴|MF 1|=52,|MF 2|=32,又|F 1F 2|=2.∴|MF 1|>|F 1F 2|>|MF 2|,cos ∠MF 2F 1=|MF 2|2+|F 1F 2|2-|MF 1|22|MF 2||F 1F 2|=0,∴∠MF 2F 1=90°.即△MF 1F 2是直角三角形.10.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF的面积为a 22(O 为原点),则两条渐近线的夹角为( )A .30°B .45°C .60°D .90°答案 D解析 由y =b a x 和x =a 2c 得A (a 2c ,abc),∴S △=12·ab c ·c =12ab ,又∵S △=12a 2,∴a =b ,∴其夹角为90°.11. 已知两点M (-3,0),N (3,0),点P 为坐标平面内一动点,且|MN →|·|MP →|+MN →·NP →=0,则动点P (x ,y )到点A (-3,0)的距离的最小值为( )A .2B .3C .4D .6答案 B解析 因为M (-3,0),N (3,0),所以MN →=(6,0),|MN →|=6,MP →=(x +3,y ),NP →=(x -3,y ).由|MN →|·|MP →|+MN →·NP →=0得6x +32+y 2+6(x -3)=0,化简整理得y 2=-12x ,所以点A 是抛物线y 2=-12x 的焦点,所以点P 到A 的距离的最小值就是原点到A (-3,0)的距离,所以d =3.12.如图,过抛物线x 2=4py (p >0)焦点的直线依次交抛物线与圆x 2+(y -p )2=p 2于点A 、B 、C 、D ,则AB →·CD →的值是( )A .8p 2B .4p 2C .2p 2D .p 2答案 D解析 |AB →|=|AF |-p =y A ,|CD →|=|DF |-p =y D ,|AB →|·|CD →|=y A y D =p 2.因为AB →,CD →的方向相同,所以AB →·CD →=|AB →|·|CD →|=y A y D =p 2.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知正方形ABCD ,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为________. 答案2-1解析 令AB =2,则AC =22,∴椭圆中c =1,2a =2+22⇒a =1+2, 可得e =c a=12+1=2-1.命题思路 本题考查椭圆概念和基本量的关系.14.若焦点在x 轴上的椭圆x 245+y 2b2=1上有一点,使它与两个焦点的连线互相垂直,则b的取值范围是________.答案 -3102≤b ≤3102且b ≠0解析 设椭圆的两焦点为F 1(-c,0),F 2(c,0)以F 1F 2为直径的圆与椭圆有公共点时,在椭圆上必存在点满足它与两个焦点的连线互相垂直,此时条件满足c ≥b ,从而得c 2≥b 2⇒a 2-b 2≥b 2⇒b 2≤12a 2=452,解得-3102≤b ≤3102且b ≠0. 15.设双曲线x 2-y 2=1的两条渐近线与直线x =22围成的三角形区域(包含边界)为E ,P (x ,y )为该区域的一个动点,则目标函数z =x -2y 的最小值为________.答案 -2216.以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为非零常数,若|PA →|-|PB →|=k ,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动弦AB ,O 为坐标原点,若OP →=12(OA →+OB →),则动点P 的轨迹为椭圆;③方程2x 2-5x +2=0的两根可分别作为椭圆和双曲线的离心率;④双曲线x 225-y 29=1与椭圆x 235+y 2=1有相同的焦点.其中真命题的序号为________(写出所有真命题的序号). 答案 ③④解析 ①错误,当k >0且k <|AB |,表示以A 、B 为焦点的双曲线的一支;当k >0且k =|AB |时表示一条射线;当k >0且k >|AB |时,不表示任何图形;当k <0时,类似同上.②错误.P是AB 中点,且P 到圆心与A 的距离平方和为定值.故P 的轨迹应为圆.③④正确,很易验证.多选题的特点是知识点分散,涉及面广,且只有每一个小题都做对时才得分.故为易错题,要求平时掌握知识点一定要准确,运算要细致.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)设抛物线y 2=2px (p >0)被直线y =2x -4截得的弦AB 长为3 5. (1)求抛物线的方程;(2)设直线AB 上有一点Q ,使得A 、Q 、B 到抛物线的准线的距离成等差数列,求Q 点坐标. 解析 (1)将y =2x -4代入y 2=2px 得 (2x -4)2=2px ,即2x 2-(8+p )x +8=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8+p2,x 1x 2=4. 所以|AB |=1+22[8+p 22-4×4]=3 5.所以p =2.所以抛物线的方程为y 2=4x .(2)①当x >-1时,设Q (x ,y ),因为抛物线的准线为x =-1. 所以由题意得2(x +1)=(x 1+1)+(x 2+1). 即x =x 1+x 22=52,所以y =2x -4=1. 即Q 点坐标为(52,1).②当x <-1时,2(-x -1)=(x 1+1)+(x 2+2) ∴x =-x 1+x 22-2=-92,y =-13∴Q =(-92-13)综上,Q 为(52,1)或(-92,-13).18.(本小题满分12分)在平面直角坐标系xOy 中,有一个以F 1(0,-3)和F 2(0,3)为焦点、离心率为32的椭圆.设椭圆在第一象限的部分为曲线C ,动点P 在C 上,C 在点P 处的切线与x 、y 轴的交点分别为A 、B ,且向量OM →=OA →+OB →.求:(1)点M 的轨迹方程; (2)|OM →|的最小值.解析 (1)椭圆方程可写为y 2a 2+x 2b 2=1,式中a >b >0,且⎩⎪⎨⎪⎧a 2-b 2=3,3a=32.得a 2=4,b 2=1,∴曲线C 的方程为x 2+y 24=1(x >0,y >0).y =21-x 2(0<x <1),y ′=-2x 1-x2.设P (x 0,y 0),因P 在C 上,有0<x 0<1,y 0=21-x 02,y ′|x =x 0=-4x 0y 0,得切线AB 的方程为y =-4x 0y 0(x -x 0)+y 0.设A (x,0)和B (0,y ),由切线方程得x =1x 0,y =4y 0. 由OM →=OA →+OB →得M 的坐标为(x ,y ),由x 0,y 0满足C 的方程,得点M 的轨迹方程为 1x2+4y2=1(x >1,y >2).(2)∵|OM →|2=x 2+y 2,y 2=41-1x 2=4+4x 2-1, ∴|OM →|2=x 2-1+4x 2-1+5≥4+5=9,且当x 2-1=4x 2-1,即x =3>1时,上式取等号. 故|OM →|的最小值为3.19.(本小题满分12分)已知点A (3,0),点B 在x 轴上,点M 在直线x =1上移动,且MA →·MB →=0,动点C 满足MC →=3BC →.(1)求C 点的轨迹D 的方程;(2)设直线l :y =k (x -1)与曲线D 有两个不同的交点E ,F ,点P (0,1),当∠EPF 为锐角时,求k 的取值范围.解析 (1)设M (1,y 0),C (x ,y ),B (b,0). ∵MC →=3BC →,∴b =1+2x 1+2,0=y 0+2y 1+2.①又MA →·MB →=0, MA →=(2,-y 0),MB →=(b -1,-y 0),∴2(b -1)+y 02=0.②由①②得y 2=13(1-x ),这就是C 点的轨迹D 的方程.(2)l :y =k (x -1)代入y 2=13(1-x )得3k 2x 2+(1-6k 2)x +3k 2-1=0,解得x 1=1,x 2=3k 2-13k 2,则y 1=0,y 2=-13k . 设E (1,0),则F (3k 2-13k 2,-13k), PE →=(1,-1),PF →=(3k 2-13k 2,-13k-1). 当∠EPF 为锐角时,PE →·PF →=3k 2-13k 2+(13k +1)>0,解得k <-12或k >13. 当PF →=λPE →时,有k =-1,应舍去.故k 的取值范围为(-∞,-1)∪(-1,-12)∪(13,+∞).20.(本小题满分12分)如右图所示,等腰三角形ABC 的底边BC 的两端点是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两焦点,且AB 的中点D 在椭圆E 上.(1)若∠ABC =60°,|AB |=4,试求椭圆E 的方程; (2)设椭圆离心率为e ,求cos ∠ABC .解析 (1)因为∠ABC =60°,且△ABC 为等腰三角形,所以△ABC 是正三角形. 又因为点B ,C 是椭圆的两焦点,设椭圆焦距为2c ,则2c =|BC |=|AB |=4,如右图所示,连结CD ,由AB 中点D 在椭圆上,得2a =|BD |+|CD |=12|AB |+32|AB |=2+23,所以a =1+3,从而a 2=4+23,b 2=a 2-c 2=23, 故所求椭圆E 的方程为x 24+23+y 223=1.(2)设椭圆的长半轴长、短半轴长、半焦距分别为a ,b ,c ,且|AD |=|DB |=m ,连结CD , 则|BO |=|OC |=c ,|DC |=2a -m , 在Rt △AOB 中,cos ∠ABC =c2m.① 在△BCD 中,由余弦定理,得 cos ∠ABC =2c2+m 2-2a -m 22×2c ×m.②由①②式得2m =2a 2-c 2a ,代入①式得cos ∠ABC =ac 2a 2-c 2=e2-e2.21.(本小题满分12分)如右图所示,F 1(-3,0),F 2(3,0)是双曲线C 的两焦点,直线x =43是双曲线C 的右准线,A 1,A 2是双曲线C 的两个顶点,点P 是双曲线C 右支上异于A 2的一个动点,直线A 1P ,A 2P 交双曲线C 的右准线分别于M ,N 两点.(1)求双曲线C 的方程; (2)求证:F 1M →·F 2N →是定值.解析 (1)由已知,c =3,a 2c =43,所以a =2,b 2=c 2-a 2=5.所以所求双曲线C 的方程为x 24-y 25=1.(2)设P 的坐标为(x 0,y 0),M ,N 的纵坐标分别为y 1,y 2,因为A 1(-2,0),A 2(2,0), 所以A 1P →=(x 0+2,y 0),A 2P →=(x 0-2,y 0),A 1M =(103,y 1),A 2N →=(-23,y 2).因为A 1P →与A 1M 共线, 所以(x 0+2)y 1=103y 0,所以y 1=10y 03x 0+2.同理,y 2=-2y 03x 0-2.因为F 1M →=(133,y 1),F 2N →=(-53,y 2).所以F 1M →·F 2N →=-659+y 1y 2==-659-20y 029x 02-4=-659-20×5x 02-449x 02-4=-659-259=-10.22.(本小题满分12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(-c,0)和F 2(c,0)(c >0),过点E (a 2c,0)的直线与椭圆相交于A ,B 两点,且F 1A ∥F 2B ,|F 1A |=2|F 2B |.(Ⅰ)求椭圆的离心率; (Ⅱ)求直线AB 的斜率;(Ⅲ)设点C 与点A 关于坐标原点对称,直线F 2B 上有一点H (m ,n )(m ≠0)在△AF 1C 的外接圆上,求n m的值.解析 (Ⅰ)由F 1A ∥F 2B 且|F 1A |=2|F 2B |,得|EF 2||EF 1|=|F 2B ||F 1A |=12,从而a 2c -c a 2c+c =12.整理,得a 2=3c 2.故离心率e =c a =33. (Ⅱ)由(Ⅰ),得b 2=a 2-c 2=2c 2.所以椭圆的方程可写为2x 2+3y 2=6c 2.设直线AB 的方程为y =k (x -a 2c),即y =k (x -3c ).由已知设A (x 1,y 1),B (x 2,y 2),则它们的坐标满足方程组⎩⎪⎨⎪⎧y =k x -3c ,2x 2+3y 2=6c 2.消去y 并整理,得(2+3k 2)x 2-18k 2cx +27k 2c 2-6c 2=0. 依题意,Δ=48c 2(1-3k 2)>0,得-33<k <33. 而x 1+x 2=18k 2c2+3k2,①用心 爱心 专心 - 11 - x 1x 2=27k 2c 2-6c 22+3k 2.② 由题设知,点B 为线段AE 的中点,所以 x 1+3c =2x 2.③ 联立①③解得x 1=9k 2c -2c 2+3k 2,x 2=9k 2c +2c 2+3k 2. 将x 1,x 2代入②中,解得k =±23. (Ⅲ)解法一 由(Ⅱ)可知x 1=0,x 2=3c 2. 当k =-23时,得A (0,2c ),由已知得C (0,-2c ). 线段AF 1的垂直平分线l 的方程为y -22c =-22(x +c 2),直线l 与x 轴的交点(c 2,0)是△AF 1C 的外接圆的圆心.因此外接圆的方程为(x -c 2)2+y 2=(c 2+c )2. 直线F 2B 的方程为y =2(x -c ),于是点H (m ,n )的坐标满足方程组 ⎩⎪⎨⎪⎧ m -c 22+n 2=9c 24,n =2m -c .由m ≠0,解得⎩⎪⎨⎪⎧ m =53c ,n =223c ,故n m =225. 当k =23时,同理可得n m =-225. 解法二 由(Ⅱ)可知x 1=0,x 2=3c 2. 当k =-23时,得A (0,2c ),由已知得C (0,-2c ). 由椭圆的对称性知B ,F 2,C 三点共线.因为点H (m ,n )在△AF 1C 的外接圆上,且F 1A ∥F 2B ,所以四边形AF 1CH 为等腰梯形.由直线F 2B 的方程y =2(x -c ),知点H 的坐标为(m ,2m -2c ).因为|AH |=|CF 1|,所以m 2+(2m -2c -2c )2=a 2,解得m =c (舍)或m =53 c .则n =223c .所以n m =225. 当k =23时,同理可得n m =-225.。

相关文档
最新文档