管理运筹学线性规划的对偶问题

合集下载

《运筹学》线性规划的对偶问题

《运筹学》线性规划的对偶问题

3、资源影子价格的性质
z y b1w1 b2w2 bi wi bmwm z z b1w1 b2w2 (bi bi )wi bmwm z bi wi
w
o i
z o bi
最大利润的增量 第i种资源的增量
第i种资源的边际利润
■影子价格越大,说明这种资源越是相对紧缺 ■影子价格越小,说明这种资源相对不紧缺 ■如果最优生产计划下某种资源有剩余,这种资源的影子 价格一定等于0
总利润(元)
单位产品的利润(元/件)
产品产量(件)
max z c1x1 c2 x 2 c2 x 2
s.t.
a11x1 a12x 2 a1n x n x n1
a 21x1 a 22x 2 a 2n x n
x n2
b1
b2
a m1x1 a m2 x 2 a mn x n
差额成本=机会成本 ——利润
5、互补松弛关系的经济解释
wix ni
0xwni
0 x ni i 0 wi
0 0
x jwmj
0xwjm j
0 0
w m x
j j
0 0
在利润最大化的生产计划中 (1)边际利润大于0的资源没有剩余 (2)有剩余的资源边际利润等于0 (3)安排生产的产品机会成本等于利润 (4)机会成本大于利润的产品不安排生产
4、产品的机会成本
增加单位资源可以增加的利润
max z c1x1 c2x2 c jx j cn xn
s.t.
a11x1 a12x 2 a1jx j a1nx n b1 w1
a 21x1 a 22x 2 a 2jx j a 2nx n b2 w2
a m1 x1 a m2 x 2 a mj x j a mn x n bm wm

运筹学04-线性规划的对偶问题

运筹学04-线性规划的对偶问题

生产计划问题
总结词
生产计划问题是线性规划对偶问题的另一个重要应用,主要研究如何安排生产 计划,以满足市场需求并实现利润最大化。
详细描述
在生产过程中,企业需要合理安排生产计划,以最小化生产成本并最大化利润。 通过线性规划对偶问题,可以确定最优的生产计划,使得生产过程中的资源得 到充分利用,同时满足市场需求。
对偶理论的发展趋势与未来研究方向
1 2 3
混合整数对偶
随着混合整数规划问题的日益增多,对偶理论在 处理这类问题中的研究将更加深入。
大数据优化
随着大数据技术的不断发展,如何利用对偶理论 进行大规模优化问题的求解将成为一个重要研究 方向。
人工智能与优化
人工智能和机器学习方法为优化问题提供了新的 思路,与对偶理论的结合将有助于开发更高效的 算法。
THANKS
感谢观看
线性规划问题的数学模型
目标函数
通常是一个线性函数,表示要优化的目标。
约束条件
通常是一组线性等式或不等式,表示决策变 量所受到的限制。
可行解集合
满足所有约束条件的解的集合,称为可行解 集合。
02
对偶问题概念
对偶问题的定义
线性规划的对偶问题是通过将原问题 的约束条件和目标函数进行转换,形 成与原问题等价的新问题。
对偶理论与实际问题的结合
01
02
03
供应链管理
在供应链优化问题中,对 偶理论可以用于协调供应 商和零售商之间的利益, 实现整体最优。
金融风险管理
在金融领域,对偶理论可 以用于评估和管理投资组 合的风险,提高投资效益。
交通调度
在交通调度问题中,对偶 理论可以用于优化车辆路 径和调度计划,提高运输 效率。

运筹学对偶问题的直观描述

运筹学对偶问题的直观描述

运筹学对偶问题的直观描述
运筹学中的对偶问题是指原始线性规划问题和对应的对偶线性规划问题之间的关系。

直观描述对偶问题可以从几个方面来理解。

首先,可以从成本和效益的角度来理解。

原始线性规划问题通常涉及最小化成本或者最大化利润,而对偶线性规划问题则涉及最大化成本或者最小化利润。

这种对偶关系可以被解释为在资源有限的情况下,通过最小化成本来实现最大化效益,或者通过最大化效益来实现最小化成本。

其次,可以从约束条件的角度来理解。

原始线性规划问题的约束条件对应着对偶线性规划问题的变量,而对偶线性规划问题的约束条件对应着原始线性规划问题的变量。

这种对偶关系可以被理解为在资源分配和利用的过程中,对约束条件和变量之间的转换和对应关系。

另外,可以从几何图形的角度来理解。

原始线性规划问题的最优解和对偶线性规划问题的最优解之间存在着一种对偶关系,即原始问题的最优解和对偶问题的最优解分别对应着凸集的两个相对的极值点,它们之间的距离可以被理解为对偶问题的最优值和原始问
题的最优值之间的关系。

总的来说,对偶问题在运筹学中具有重要的意义,它不仅可以帮助我们理解原始问题和对偶问题之间的关系,还可以为我们寻找最优解提供了一种新的视角和方法。

通过对偶问题的研究和理解,我们可以更好地解决实际生产和管理中的复杂问题。

运筹学第2章:线性规划的对偶理论

运筹学第2章:线性规划的对偶理论


标函数求极小时取“≥”号
注:对称形式与线性规划标准型是两种不同的形 式,对称形式中约束条件的符号由目标函数决定
从以下方面比较(LP1)与(LP2):
原问题
对偶问题 约束系数矩阵的转 臵 目标函数中的价格 系数向量 约束条件的右端项 向量 Min w=Y’b A’Y≥C’ Y≥0
A
b C 目标函数 约束条件 决策变量
非基变量 基变量
XB
0 b Xs C j - zj B
XN
N
Xs
I
0
初始 单纯形表
非基变量
CB
CN
基变量
最终
单纯形表
CB
XB
XB B-1b Cj - zj
I 0
Xs B-1 N B-1 CN-CBB-1N -CBB-1
XN
若B-1b为最优解,则
CB CB ( B 1B) 0 C N CB B N 0 CB B 1 0
令 y 2 y 2 , y3 y3 y3 ,则
min 2 y1 y2 4 y3
2 y1 3 y2 y3 1 3 y y y 4 1 2 3 s.t. 5 y1 6 y2 y3 3 y1 0, y2 0, y3无约束
n j 1 m j j
C X Y b, 即 c j x j y i bi
j 1 i 1
__
__
n
m
c x ( a
j 1 m i 1 n i i i 1 i 1 j 1
n
m
ij
yi ) x j aij x j yi ( a ji yi c j )
例1

运筹学第3章 对偶问题

运筹学第3章 对偶问题
y1 + 2 y2 + 4 y3 = 3 2 y1 + y2 + 3 y3 = 2
x1 > 0, x2 > 0
联立求解得: y1 = 0, y2 = 0.5, y3 = 0.5
三、影子价格
设 x* ( j = 1,L, n) 和 yi* (i = 1,L, n) 分别是原问题和 j 对偶问题的最优解,则由对偶性质,有
=b
BX B + NX N + IX S = b X ≥ 0, X ≥ 0 N B
S S
max z = C B X B + C N X N + 0 X s
将XB的系数 矩阵化为单 位矩阵
原来 BX B + NX N + IX IX B + B − 1 NX N + B − 1 X
= b = B
注 上表中我们将松弛变量与剩余变量统称为松弛变量
二、对偶问题的基本性质
1、对偶问题的对偶问题是原问题
max z=CX s.t. AX≤b X ≥0 对偶的定义 min w=b’Y s.t. A’Y≥C Y ≥0
min z’ = - CX s.t. -AX ≥-b X ≥0
对偶的定义
max w = -b’Y s.t. -A’Y≤-C Y ≥0
−1
b
项目
原问题变量
原问题松弛变量
原问 题最 终单 纯形 表
x1
x3 15/2 x1 7/2 x2 3/2 -σj 0 1 0 0
x2
0 0 1 0
x3
1 0 0 0
x4
5/4 1/4 -1/4 1/4
x5
15/2 -1/2 3/2 1/2

运筹学线性规划的对偶问题

运筹学线性规划的对偶问题

例5 已知线性规划问题 minω = 2x1 + 3x2 + 5x3 + 2x4 + 3x5 x1 + x2 + 2x3 + x4 + 3x5 ≥ 4 2x1 - x2 + 3x3 + x4 + x5 ≥ 3 xj ≥ 0,j = 1,2,3,4,5
已知其对偶问题的最优解为y1* = 4/5, y2* = 3/5;z = 5。试用对偶理论找 出原问题的最优解.
试用对偶理论证明上述线性规划问题无最优解。
证: 首先看到该问题存在可行解,例如X = (0,0,0) 而上述问题的对偶问题为
minω = 2y1 + y2 -y1 - 2y2 ≥ 1 y1 + y2 ≥ 1 y1 - y2 ≥ 0 y1 ,y2 ≥ 0
由第一约束条件可知对偶问题无可行解,因而无最优解。由此 原问题也无最优解。
0 0
无约束
m个
约束条件

=
约束条件右端项 目标函数变量的系数
对偶问题(或原问题) 目标函数 min
n个


约束条件

=
m个
0 0


变量

无约束
目标函数变量的系数
约束条件右端项
原问题中的价值向量与对偶问题中的资源向量对换(上下对换) 原问题: X在C和A的右边;
xj yi
y1 y2 ┇ ym
对偶关系 maxZ
x1 x2 ┅ xn
a11 a12 ┅ a1n a21 a22 ┅ a2n ┇┇ ┇ am1 am2 ┅ amn ≥≥┅≥ c1 c2 ┅ cm
原关 minω 系

运筹学:第1章 线性规划 第3节 对偶问题与灵敏度分析

运筹学:第1章 线性规划 第3节 对偶问题与灵敏度分析

s.t.
4x1 3x1
5x2 200 10x2 300
x1, x2 0
9x1 4x2 360
s.t.
34xx11
5x2 10 x
200 2 300
3x1 10x2 300
x1, x2 0
则D为
min z 360y1 200y2 300y3 300y4
9 y1 4 y2 3y3 3y4 7 s.t.4 y1 5y2 10 y3 10 y4 12
amn xn bm ym xn 0
机会成本 a1 j y1 a2 j y2 aij yi amj ym
表示减少一件产品所节省的可以增加的利润
(3)对偶松弛变量的经济解释——产品的差额成本
机会成本
利润
min w b1 y1 b2 y2 bm ym
a11 y1
st
a12
y1
a1n y1
max z CX
(P)
AX b
s
.t
.
X
0
(D)
min w Yb
s.t.
YA C Y 0
• (2)然后按照(D)、(P)式写出其对偶
例:写出下面线性规划的对偶规划模型:
max z 2x1 3x2
min w 3 y1 5y2 1y3
x1 2x2 3 y1 0
s.t.
2xx11
例如,在前面的练习中已知
max z 2.5x1 x2 的终表为
3x1 5x2 15 s.t.5x1 2x2 10
x1, x2 0
0 x3 9 2.5 x1 2
0 19 1 - 3
5
5
1
2
0
1
5

运筹学笔记4、5-特殊线性规划(整数规划、对偶问题)

运筹学笔记4、5-特殊线性规划(整数规划、对偶问题)

每个线性规划问题都有一个与之对应的对偶问题。

简单考虑如下的生产分配问题我们有下面的对偶问题:该问题的任意一个可行解对应的目标函数值都不小于原问题的目标函数值,但是两个问题的最优目标函数值(有限)相同。

一般而言:1、每个对偶变量对应原问题的一个约束条件2、原问题是等式约束则对偶变量无不等式约束(非负约束)3、原问题是不等式约束则对偶变量有不等式约束4、原问题变量和对偶问题约束条件同样具有如上规律任何原问题和对偶问题之间都存在下述相互关系:弱对偶性:原对偶问题任何可行解的目标值都是另一问题最优目标值的界(推论:原对偶问题目标值相等的一对可行解是各自的最优解)强对偶性:原对偶问题只要有一个有最优解,另一个就有最优解,并且最优目标值相等互为对偶的线性规划问题解之间关系有如下四种:原问题与对偶问题之间存在互补松弛性:一般形式的线性规划互补松弛定理:经济学中有所谓影子价格的概念:如果增加某些约束条件的数值,原问题的最优目标值应该增加,增加单位约束使得原问题最优值的增加量为该约束条件的影子价格。

影子价格可以由对偶线性规划问题清楚地描述:对偶单纯形法:当线性规划问题中地某个约束条件或价值变量中含有参数时,原问题称之为参数线性规划,它有如下的处理方法:1)固定λ的数值解线性规划问题2)确定保持当前最优基不变的λ的区间3)确定λ在上述区间附近的最优基,回2)如以下问题:在实际问题中,许多变量以及它们的约束条件往往是离散的,或者说限定在整数域上,这便引入了整数线性规划的概念。

具体而言,整数线性规划包含纯整数线性规划(所有变量是整数变量)、混合整数线性规划(同时包含整数和非整数变量)、0-1型整数线性规划(变量等于0或1)去除整数规划的整数约束后的问题称为其松弛问题。

一般情况,原问题的解并不一定是其松弛问题的最优解附近的整数解,例如:通常的解决办法是在松弛问题的基础上出发,不断地引入整数的约束条件,从而求出整数规划的解。

运筹学第二章线性规划的对偶理论

运筹学第二章线性规划的对偶理论

(5.5) (5.6)
4.3 对偶问题的基本性质
证: 设B是一可行基,于是A=(B,N)
max z=CBXB+ CNXN BXB+BXN +Xξ=b X,XB,Xξ ≥0
其中Yξ=(Yξ1, Yξ2)
min ω =Yb YB-Yξ1=CB YN-Yξ2=CN Y, Yξ1 Yξ2 ≥0
(5.5) (5.6)
x1﹐x2 ≥0
关系?
对原模型设: 1 2
A= 4 0 b=(8,16,12)T C=(2,3) 04
X=(x1,x2)T Y=(y1,y2 ,y3 ) 则可得:
4.1 对偶问题的提出
min ω=8 y1+16y2 +12y3
y1+4y2
≥2
2 y1 +4y3≥3

y1 , y2 ,y3≥0 12
max z=2x1+3x2 x1+ 2x2 ≤8
4x1
≤16
4x2 ≤12
x1﹐x2 ≥0
有何关 系?
对愿模型设: A= 4 0 04
b=(8,16,12)T C=(2,3)
X=(x1,x2)T
Y=(y1,y2 ,y3 ) 则可得:
max z=CX AX≤b (5.1) 和
min ω =Yb YA ≥ C (5.2)
120
A=
1 -3
0 2
1 1
1 -1 1
b=(2,3,-5,1)T C=(5,4, 6)
确定约束条件
YA
C
x1 ≥0 ﹐x2≤0, x3 无约束
解:因原问题有3个变 于是 量,4个约束条件, 所以对偶问题4个 变量,3个约束条

运筹学第2章-线性规划的对偶理论

运筹学第2章-线性规划的对偶理论
❖ 影子价格不是市场价格,而是在现有技术和管理条件下, 新增单位资源所能够创造的价值,是特定企业的一种边 际价格;不同企业或同一企业不同时期,同种资源的影 子价格可能不同;当市场价格高于影子价格,可以卖出; 相反,则应买进,以获取更大收益
Ma例x:Z ( 2第x一1 章3例x22)
2 x1 2 x2 12
当原问题和对偶问题都取得最优解时,这 一对线性规划对应的目标函数值是相等的:
Zmax=Wmin
二、原问题和对偶问题的关系
1、对称形式的对偶关系
(1)定义:若原问题是
MaxZ c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn b1
s.t.a21
x1
a22
二、 手工进行灵敏度分析的基本原则 1、在最优表格的基础上进行; 2、尽量减少附加计算工作量;
5y3 3
,y
2
3
0
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时, 那么上述的价格系统能保证不亏本又最富 有竞争力(包工及原材料的总价格最低)
内,使得产品的总利润最大 。
MaxZ 2x1 3x 2
2x1 2x2 12
s.t.54xx12
16 15
x1, x 2 0
它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力:
MinW 12y1 16y2 15y3
2y1 4y2
2
s.t.2y1y,1y
y1, y2, , ym 0

运筹学概论 第2章 线性规划的对偶理论

运筹学概论 第2章 线性规划的对偶理论
第二章 线性规划的对偶理论
线性规划的对偶问题 对偶问题的基本性质 影子价格
2020/4/29
第一节 线性规划的对偶问题
窗含西岭千秋雪,门泊东吴万里船 对偶是一种普遍现象
2020/4/
一、对偶问题的提出
例1 美佳公司计划制造甲、乙两种家电产品,已知制造一件甲需占用B 设备5小时,调试工序1小时;制造一件乙需占用A设备6小时,B设备2 小时,调试工序1小时; A设备每天可用15小时, B设备可用24小时, 调试工序每天可用5小时。已知售出一件甲获利2元,售出一件乙获利1 元,问该公司每天应制造两种家电各多少件,使获取的利润最大?
x1,x2,x3,x4 0
假设有商人要向厂方购买资源A和B,问他们 谈判原料价格的模型是怎样的?
2020/4/29
●设A、B资源的出售价格分别为 y1 和 y2 ●显然商人希望总的收购价越小越好(目标) ●工厂希望出售资源后所得不应比生产产品所得少(约束)
2020/4/29
maxZ x1 2x2 3x3 4x4
(2)
3y1 5y1
y2 y3 y3 4 6y2 y3 y3 3
(3) (4)
5y1 6y2 y3 y3 3
(5)
y1, y2 , y3, y3 0
(6)
y2=-y2’;y3=y3’-y3’’;(3)式 两端乘“-1”,(4)、(5)合并。
A’YC’
决策变量
X 0
Y 0
2020/4/29
min w Y 'b A 'Y C ' Y 0
max w ' Y 'b - A 'Y C ' Y 0
min z ' CX - AX b X 0

《运筹学》第二章 对偶问题

《运筹学》第二章 对偶问题


3 x1 2 x2
7x4 4
2 x1 3 x2 4 x3 x4 6
x1 0, x2 , x3 0, x4无 约 束
解:原问题的对偶问题为
mi nW 5 y1 4 y2 6 y3
4 y1 3 y2 2 y3 2

20
一组互为对偶的线性规划问题的解之间只有 下列三种情况:
(1)两个规划问题都有可行解(此时,两个规划问题都有最优 解,且最优值相等);
(2)两个规划问题都不可行; (3) 一个规划问题不可行,另一个规划问题有可行解,且具有
无界解。
21
(4)互补松弛性: 在线性规划问题的最优解中,
则 aij xj * = bi ;
bi , 则 y i* = 0 (4)’ 互补松弛性:
在线性规划问题的最优解中, 则 aij yi * = cj ;
>cj , 则 xj* = 0
n
若 y i * >0,
j=1 n
若 a ij xj * <
j=1
m
若 x j * >0,
i=1 m
若 a ij yi*
i=1 22
m
= 证b:i y∵i*
y1 3 y1

2 y2
3 y3 4 y3
3 5

2 y1 7 y2 y3 1
y1

0,
y2

0,
y

3


对偶问题的对 偶还是原问题
14
• 练习 写出下列线性规划问题的对偶问题.
max Z 4x1 3x2 2x3
4x1

运筹学-对偶问题

运筹学-对偶问题

对偶问题的应用场景
资源分配问题
在资源有限的情况下,如何合理分配资源以达到 最优目标。
运输问题
如何制定运输计划,使得运输成本最低且满足运 输需求。
生产计划问题
如何制定生产计划,使得生产成本最低且满足市 场需求。
投资组合优化问题
如何选择投资组合,使得投资收益最大且风险最 小。
02
对偶问题在运筹学中的重要性
对偶问题的理论完善与深化
对偶理论的数学基础
进一步深入研究对偶理论的数学基础,包括对偶映射、对偶函 数、对偶不等式等,为解决对偶问题提供更坚实的理论基础。
对偶问题的转化与求解
研究如何将复杂的对偶问题转化为更容易求解的形式,或 者设计有效的求解方法,以提高对偶问题的求解效率。
对偶理论与实际应用的结合
在对偶理论不断完善的基础上,进一步探索如何将其应用于实际问题 中,以解决实际问题的优化问题,提高决策的科学性和效率。
在整数规划中,对偶问题通常 是指将原问题的约束条件或目 标函数进行一些变换,使得原 问题与对偶问题在结构上存在 一定的对称性。
对偶问题的性质
02
01
03
对偶问题的最优解与原问题的最优解具有密切关系。
在线性规划中,如果原问题是最大化问题,则对偶问 题是最小化问题,反之亦然。
在整数规划中,对偶问题的约束条件和目标函数通常 与原问题存在一定的对称性。
02 求解步骤
03 1. 定义原问题和对偶问题。
04
2. 利用状态转移方程和最优子结构性质,求解对偶问 题。
05 3. 利用对偶问题的解,求解原问题。
博弈论中的对偶策略
1. 定义博弈中的策略空间和支付 函数。
求解步骤
2. 构造对偶问题。

运筹学--第二章 线性规划的对偶问题

运筹学--第二章 线性规划的对偶问题

习题二2.1 写出下列线性规划问题的对偶问题(1) max z =10x1+x2+2x3(2) max z =2x1+x2+3x3+x4st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4≤54x1+x2+x3≤20 2x1-x2+3x3=-4x j≥0 (j=1,2,3)x1-x3+x4≥1x1,x3≥0,x2,x4无约束(3) min z =3x1+2 x2-3x3+4x4(4) min z =-5 x1-6x2-7x3st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3≥15x2+3x3+4x4≥-5 -5x1-6x2+10x3≤202x1-3x2-7x3 -4x4=2=x1-x2-x3=-5 x1≥0,x4≤0,x2,,x3无约束x1≤0,x2≥0,x3无约束2.2 已知线性规划问题max z=CX,AX=b,X≥0。

分别说明发生下列情况时,其对偶问题的解的变化:(1)问题的第k个约束条件乘上常数λ(λ≠0);(2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上;(3)目标函数改变为max z=λCX(λ≠0);'x代换。

(4)模型中全部x1用312.3 已知线性规划问题min z=8x1+6x2+3x3+6x4st. x1+2x2+x4≥33x1+x2+x3+x4≥6x3 +x4=2x1 +x3 ≥2x j≥0(j=1,2,3,4)(1) 写出其对偶问题;(2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。

2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量st. 2x1 +x3+x4≤8 y12x1+2x2+x3+2x4≤12 y2x j≥0(j=1,2,3,4)对偶问题的最优解y1*=4;y2*=1,试对偶问题的性质,求出原问题的最优解。

2.5 考虑线性规划问题max z=2x1+4x2+3x3st. 3x1+4 x2+2x3≤602x1+x2+2x3≤40x1+3x2+2x3≤80x j≥0 (j=1,2,3)4748(1)写出其对偶问题(2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解;(3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶问题的解;(4)比较(2)和(3)计算结果。

运筹学 第03章 线性规划的对偶理论

运筹学 第03章 线性规划的对偶理论
A Ⅰ Ⅱ 设备可用机时数(工时) 2 2 12 B 4 0 16 C 0 5 15 产品利润(元/件) 2 3
1
引例
解:设Ⅰ、Ⅱ产品的生产数量分别为x1和x2,建立问题数学模型如下: max z =2x1+3x2
2x1+2x2≤12
4x1 ≤16 5x2 ≤15
xj≥0,j=1,2
现假设有另一家四海机器厂,为了扩大生产想租借常山机器厂拥有的设备资源,问常山厂分别以
例:写出下列线性规划问题的对偶问题 min w = x1 + 2x2 + 3x3 s.t. 2x1+3x2 + 5x3 2 3x1+ x2 + 7x3 3 x1,x2 , x3 0
2
原问题与对偶问题的形式关系
解: 令
例:写出下述线性规划问题的对偶问题
max z = c1x1 + c2x2 + c3x3 s.t. a11x1 + a12x2 + a13x3 ≤ b1 a21x1 + a22x2 + a23x3 = b2 a31x1 + a32x2 + a33x3 ≥ b3 x1≥0, x2≤0, x3 无约束
每小时什么样的价格才愿意出租自己的设备呢?
1
引例
设A、B、C设备的机时单价分别为y1、y2、y3,新的线性规划数学模型为 max z =2x1+3x2 2x1+2x2≤12 4x1 ≤16 min w=12y1+16y2+15y3
2y1+4y2
2y1
≥2
+5y3≥3
5x2 ≤15
xj≥0,j=1,2
若对偶变量 yi* 0 ,则原问题相应的约束条件 若约束条件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-x1+x2-3x3≤0
12
OR:SM
• ③转换成对称型
max Z ( x) 0 x1 2 x2 5x3
Y1
x1 0 x2 x3 2
Y2 Y/3
s.t.
2 x1 x2 x1 x2 3
6 x3 x3 0
6
y//3
x1
x2
3x3
0
x1, x2 , x3 0
(2)写出相应的对偶问题(4个约束,分别对应4个对偶变量 y1、y2、y/3、y//3)
买卖双方开始对资源的出让价格问题进行磋商,希望寻找一
个双方都认为比较满意的合理价格。
• 分析:设A、B、C三种材料的单价分别为y1、y2、y3.

对于卖方来说,生产单位甲产品所获收益为4万元,为保
证其总收入不少于405/2万元,则将生产单位甲产品所需资源
转让出去,该企业的收入不能少于4万元。故y1、y2、y3必须
max Z (x) CX minW ( y) Yb
AX b
s.t.
X
0
YA C s.t.Y 0
• 其中Y=(y1,y2,…,ym),其它同前。
• 3.1.3 一般问题的对偶问题——非对称型对偶问题
• • 线性规划有时以非对称型出现,那么如何从原始问题写出
它的对偶问题呢?
11
OR:SM
• 例1 写出下列线性规划的对偶问题
2
OR:SM
§3-1 线性规划的对偶理论

每一个线性规划问题都有一个与之相伴随的另一个问题。
这两个问题:一是,在数学模型上有着对应关系;二是,从
一个问题的最优解完全可以得出另一个问题最优解的全部信
息。
• 3.1.1 问题的提出

例1 引入一个资源价格问题。
3
OR:SM
类似于第2章例1的生产计划问题。某企业生产甲、乙两种 产品,需消耗A、B、C三种材料。据市场分析,单位甲、 乙产品的销售收益分别为4万元和5万元。单位甲、乙产品 对材料的消耗量及材料的供应量如表3.1所示。
max Z (x) c1x1 c2 x2 L cn xn
Y1
a11x1 a12 x2 L a1n xn b1
Y2 …
s.t.
La21Lx1
L
a22 x2 L LLLL
a2n xn LL
b2
ym
am1x1 am2 x2 L amn xn bm
x1, x2 ,L , xn 0

综上所述,资源价格问题的数学模型可描述为:
minW ( y) 45y1 80 y2 90 y3
y1 2 y2 y3 4
s.t.
y1
y2
3 y3
5
y1, y2 , y3 0
(3 2)
• 上述两个模型(3-1)和(3-2)是对同一问题的两种不 同考虑的数学描述,其间有着一定的内在联系,将逐一剖 析。
始问题,则(3-2)称为对偶问题。
8
OR:SM
• 3.1.2 对称型线性规划问题——对称型对偶问题

• 每一个线性规划问题都必然有与之相伴随的对偶问题 存在。先讨论对称型对偶问题;对于非对称型对偶问题, 可以先转化为对称型,然后再进行分析,也可以直接从 非对称型进行分析。
• 对称型线性规划问题数学模型的一般形式为
原问题:应如何制定生产计划,使总收益为最大。
表3.1
产品材料


供应量
A
1
1
45
B
2
1
80
C
1
3
90
收益
4万元/单甲
5万元/单乙
4
OR:SM
设计划安排:x1为甲产品的产量, x2为乙产品的产量。(决策变量)
则,该问题的数学模型为:
max Z (x) 4x1 5x2
x1 x2 45
s.t.2x1x1 3xx22
7
OR:SM
• 首先,分析这两个模型之间的对应关系:
• (1)一个问题的目标函数为极大化,约束条件为“≤”类 型,另一个问题的目标为极小化,约束条件为“≥”类型;
• (2)一个问题的变量个数等于另一个问题的约束条件个数; • (3)一个问题的右端常数(约束系数)是另一个问题的目
标函数的系数(成本系数); • (4)两个问题的系数矩阵互为转置。 • 我们把这种对应关系称为对偶关系。如果把(3-1)称为原
(3 3)
9
OR:SM
• 这种模型的特点是:

(1)目标函数是最大化类型(或是最小化类型);
• (2)所有约束条件都是“≤”型(或都是“≥”型);
• (3)所有决策变量都是始问题,根据原始与对偶问题
的对应关系可得(3-3)的对偶问题为
minW ( y) b1 y1 b2 y2 L bm ym
a11 y1 a21 y2 L am1 ym c1
s.t. La12Ly1L
a22 y2 L LLLL
L
am2 ym L
c2
a1n y1 a2n y2 L amn ym cn
y1, y2 ,L , ym 0
(3 4)
10
OR:SM
• 用矩阵表示的原始问题(3-3)和对偶问题(3-4)为
80 90
x1, x2 0
(3 1)
运用单纯形法,可求得其最优解为:
x1 45 / 2, x2 45 / 2 Z (x) 405 / 2
5
OR:SM
• 新问题:现在从另一角度来讨论这个问题。

假设该企业经过市场预测,准备进行转产,且把现有三
种材料进行转让,也恰好有一个制造商急需这批材料。于是
满足约束条件: y1+2y2+y3≥4

同样,将生产单位乙产品所需的资源转让出去,其收入
不能少于生产单位乙产品的收益5万元,所以y1、y2、y3还必
须满足约束条件: y1+y2+3y3≥5
6
OR:SM

对于买方来说,他希望在满足上述约束条件下使总的
支出 • 达到最小。
W(y) =45y1+80y2+90y3
《管理运筹学》
第3章
李存芳 博士/教授/硕士生导师
研究领域:战略管理、组织行为、运营管理 讲授课程:管理运筹学、管理系统工程、运营管理
经济学 单 位:江苏师范大学商学院 物流管理系 E-mail:licf66@
第 3 章 线性规划的对偶问题
内S容ub 提titl要e
第一节 线性规划的对偶理论 第二节 对偶单纯形法
max Z ( x) 2x2 5x3
x1 x3 2 s.t. 2x1x1 x2x23x63x306
x1, x2 , x3 0
解:(1)首先把上述非对称型问题化为对称型问题。
①在第一个约束条件的两边同×(-1)
②把第三个约束方程分解成两个
x1-x2+3x3≤0

x1-x2+3x3≥0
再将后一个两边同×(-1)改写成
相关文档
最新文档