1.配方法微教案

合集下载

【学案】配方法——教案、学案、教学设计资料文档

【学案】配方法——教案、学案、教学设计资料文档

一、教案概述【学案】配方法——教案、学案、教学设计资料文档二、教学目标1. 理解配方法的定义和作用。

2. 学会使用配方法解一元二次方程。

3. 能够应用配方法解决实际问题。

三、教学内容1. 配方法的定义和作用。

2. 配方法解一元二次方程的步骤。

3. 配方法在实际问题中的应用。

四、教学过程1. 引入:通过举例介绍配方法的概念和作用。

2. 讲解:讲解配方法解一元二次方程的步骤。

3. 练习:学生独立完成练习题,巩固配方法的应用。

4. 应用:学生分组讨论,解决实际问题。

五、教学评价1. 课堂讲解的清晰度和连贯性。

2. 学生的参与度和积极程度。

3. 学生练习题的完成情况。

4. 学生解决实际问题的能力。

六、教学资源1. PPT课件:配方法的概念和步骤。

2. 练习题:一元二次方程的配方法解题练习。

3. 实际问题案例:需要使用配方法解决的问题。

4. 小组讨论工具:白板、彩笔等。

七、教学步骤1. 引入配方法的概念:通过举例介绍配方法的作用。

2. 讲解配方法的步骤:解释配方法的解题思路。

3. 练习题解答:学生独立完成练习题,教师进行解答和讲解。

4. 小组讨论:学生分组讨论,解决实际问题。

八、教学策略1. 案例教学:通过实际问题案例,让学生理解配方法的应用。

2. 练习题训练:通过练习题,巩固学生的配方法解题能力。

3. 小组讨论:鼓励学生进行合作学习,提高解决问题的能力。

4. 反馈和评价:及时给予学生反馈,鼓励他们的学习进步。

九、教学延伸1. 探究其他解一元二次方程的方法:比较配方法和其他方法的优缺点。

2. 解决更复杂的一元二次方程:引导学生思考如何解决更复杂的问题。

3. 应用配方法解决实际问题:寻找更多的实际问题,让学生进行练习。

十、教学反思1. 教学效果评价:评估学生对配方法的理解和应用能力。

2. 教学方法改进:根据学生的反馈,调整教学方法和策略。

3. 教学内容拓展:考虑是否需要进一步拓展配方法的相关知识。

4. 学生学习支持:提供更多的学习资源和支持,帮助学生巩固知识。

公开课教案(配方法)

公开课教案(配方法)

公开课教案(配方法)第一章:教学目标与内容简介一、教学目标1. 让学生理解配方法的含义和作用。

2. 培养学生运用配方法解决问题的能力。

3. 提高学生对数学知识的兴趣和积极性。

二、教学内容简介1. 配方法的定义和基本步骤。

2. 配方法在解决实际问题中的应用。

3. 配方法与其他数学方法的联系和区别。

第二章:教学准备与过程三、教学准备1. 教学课件或黑板。

2. 练习题和案例。

3. 教学辅助工具,如计数器、几何模型等。

四、教学过程1. 引入新课:通过一个实际问题引入配方法的概念。

2. 讲解配方法:解释配方法的定义和基本步骤。

3. 案例分析:分析一些实际问题,引导学生运用配方法解决。

4. 练习与讨论:学生分组练习,教师解答疑问,引导学生总结配方法的应用规律。

第三章:教学重点与难点1. 配方法的定义和基本步骤。

2. 配方法在解决实际问题中的应用。

六、教学难点1. 理解配方法的本质和原理。

2. 灵活运用配方法解决不同类型的问题。

第四章:教学评价与反思七、教学评价1. 课堂参与度:观察学生在课堂中的积极参与和提问情况。

2. 练习正确率:评估学生练习题的正确率,及时给予反馈。

3. 学生作品:评估学生的练习作品,关注学生的理解和应用能力。

八、教学反思1. 总结教学中的成功之处和改进之处。

2. 分析学生的学习情况,调整教学策略和方法。

3. 反思教学过程中的师生活动,提高教学质量。

第六章:教学活动与策略九、教学活动1. 小组合作:学生分组讨论,共同解决实际问题,培养团队合作能力。

2. 互动提问:教师引导学生提问,培养学生的思考和表达能力。

3. 案例研究:学生选择一个案例进行深入研究,提高学生的分析能力。

1. 情境创设:通过生活情境引入配方法,提高学生的学习兴趣。

2. 逐步引导:教师引导学生逐步探索配方法的应用,培养学生的自主学习能力。

3. 激励评价:教师及时给予学生鼓励和评价,提高学生的学习动力。

第七章:教学拓展与延伸十一、教学拓展1. 对比分析:比较配方法与其他数学方法在解决同一问题时的优缺点。

初中数学配方法教案

初中数学配方法教案

初中数学配方法教案教学目标:1. 理解配方法的含义和作用;2. 学会使用配方法解决简单的一元二次方程;3. 能够运用配方法解决实际问题。

教学重点:1. 配方法的含义和作用;2. 使用配方法解决一元二次方程的步骤。

教学难点:1. 理解配方法的本质;2. 灵活运用配方法解决实际问题。

教学准备:1. 教学课件或黑板;2. 练习题。

教学过程:一、导入(5分钟)1. 引导学生回顾一元二次方程的解法,如因式分解、公式法等;2. 提问:除了这些方法,还有没有其他解决一元二次方程的方法呢?二、新课讲解(15分钟)1. 介绍配方法的含义:将一元二次方程转化为两个一元一次方程的方法;2. 讲解配方法的作用:简化方程的解法,避免复杂的计算;3. 示例讲解:以一个具体的一元二次方程为例,展示配方法的使用步骤和过程;4. 引导学生总结配方法的步骤:确定方程的系数、找到合适的数使得方程两边相等、解两个一元一次方程。

三、练习巩固(15分钟)1. 让学生独立完成一些配方法的练习题,如解一元二次方程;2. 引导学生总结解题经验,讨论遇到的问题和解决方法。

四、拓展应用(15分钟)1. 让学生尝试运用配方法解决实际问题,如面积问题、距离问题等;2. 引导学生总结配方法在实际问题中的应用方法和技巧。

五、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结配方法的含义、作用和步骤;2. 强调配方法在解决实际问题中的应用价值和重要性。

六、作业布置(5分钟)1. 让学生完成一些配方法的练习题,巩固所学知识;2. 鼓励学生尝试运用配方法解决实际问题,提高解决问题的能力。

教学反思:本节课通过讲解配方法的含义、作用和步骤,让学生掌握了配方法的基本原理和应用技巧。

在教学过程中,注意引导学生主动参与、积极思考,提高学生的学习兴趣和积极性。

同时,通过练习题和实际问题的解决,让学生巩固所学知识,提高解决问题的能力。

但在教学过程中,也要注意观察学生的反应,对于理解有困难的学生,要及时给予个别辅导和指导,确保他们能够掌握配方法。

配方法(1)教案

配方法(1)教案

17.2一元二次方程的解法——配方法(1)一、教学目标:.知识与技能1. 使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0,b≠0,c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;2. 在理解的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”过程与方法过程与方法:通过观察、探究、发现和归纳总结配方法一般步骤。

情感、态度与价值观:通过配方法的学习,培养学生的细心和耐心,从而养成良好的数学学习习惯。

二、教学重点:掌握配方法的推导过程,能够熟练地进行配方。

教学难点:凑配成完全平方的方法与技巧。

三、教学过程:(一)课前探究1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)2.不完全一元二次方程的哪几种形式?(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))3.对于前两种不完全的一元二次方程ax2=0 (a≠0)和ax2+c=0 (a≠0),我们已经学会了它们的解法。

特别是结合换元法,我们还会解形如(x+m)2=n(n≥0)的方程。

练习:解方程:(x-3)2=4 (让学生说出过程)。

解:方程两边开方,得x-3=±2,移项,得x=3±2。

所以x1=5,x2=1. (并代回原方程检验,是不是根)4.其实(x-3)2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。

(把这个展开过程写在黑板上)(x-3)2=4,①x2-6x+9=4, ②x2-6x+5=0.③(二)合作交流探究新知1.逆向思维我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m)2=n的形式。

这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m)2。

2.通过观察,发现规律问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。

(添一项+1)即(x2+2x+1)=(x+1)2.练习,填空:x2+4x+( )=(x+ )2; y2+6y+( )=(y+ )2.3:总结规律:对于x2+px,再添上一次项系数一半的平方,就能配出一个含未知数的一个次式的完全平方式。

(九年级数学教案)配方法教案1

(九年级数学教案)配方法教案1

配方法教案1九年级数学教案教学内容间接即通过变形运用开平方法降次解方程.教学目标理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,•引入不能直接化成上面两种形式的解题步骤.重难点关键1.重点:讲清"直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.2.•难点与关键:不可直接降次解方程化为可直接降次解方程的"化为"的转化方法与技巧.教学过程一、复习引入(学生活动)请同学们解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4) 4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=± 或mx+n=± (p≥0).如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面三个方程的解法呢?问题2:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→ x2+6x+32=16+9左边写成平方形式→ (x+3)2=•25 •降次→x+3=±5 即x+3=5或x+3=-5解一次方程→x1=2,x2= -8可以验证:x1=2,x2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1.用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x- =0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略三、巩固练习教材P38 讨论改为课堂练习,并说明理由.教材P39 练习1 2.(1)、(2).●四、应用拓展例3.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B•两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,•几秒后△PCQ•的面积为Rt△ACB面积的一半.分析:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.•根据已知列出等式.解:设x秒后△PCQ的面积为Rt△ACB面积的一半.根据题意,得: (8-x)(6-x)= × ×8×6整理,得:x2-14x+24=0(x-7)2=25即x1=12,x2=2x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.所以2秒后△PCQ的面积为Rt△ACB面积的一半.●五、归纳小结本节课应掌握:左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.●六、布置作业1.教材P45 复习巩固2.3(1)(2)2.选用作业设计.●一、选择题1.将二次三项式x2-4x+1配方后得( ).A.(x-2)2+3B.(x-2)2-3C.(x+2)2+3D.(x+2)2-32.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是( ).A.x2-8x+(-4)2=31B.x2-8x+(-4)2=1C.x2+8x+42=1D.x2-4x+4=-113.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m 等于( ).A.1B.-1C.1或9D.-1或9●二、填空题 1.方程x2+4x-5=0的解是________.2.代数式的值为0,则x的值为________.3.已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_______,•所以求出z的值即为x+y的值,所以x+y的值为______.●三、综合提高题1.已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形的周长.2.如果x2-4x+y2+6y+ +13=0,求(xy)z的值.3.新华商场销售某种冰箱,每台进货价为2500•元,•市场调研表明:•当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元?。

配方法教学设计

配方法教学设计

配方法教学设计一、教学目标1、让学生理解配方法的概念和基本原理。

2、掌握用配方法解一元二次方程的步骤。

3、通过配方法的学习,培养学生的观察、分析和解决问题的能力。

二、教学重难点1、重点(1)配方法的基本原理。

(2)用配方法解一元二次方程。

2、难点(1)如何在方程两边加上适当的常数,使左边成为一个完全平方式。

(2)配方法的灵活运用。

三、教学方法讲授法、练习法、讨论法相结合四、教学过程1、导入通过一个简单的一元二次方程 x²+ 6x + 5 = 0 ,提问学生如何求解。

引导学生思考能否将方程转化为一个完全平方式的形式,从而引出配方法的概念。

2、知识讲解(1)配方法的概念解释配方法就是将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。

(2)配方法的基本原理以方程 x²+ 6x + 5 = 0 为例,方程左边加上 9 可以构成完全平方式(x + 3)²,即 x²+ 6x + 9 9 + 5 = 0 ,变形为(x + 3)² 4 = 0 。

(3)用配方法解一元二次方程的步骤第一步:将方程移项,使常数项在等式右边,得到形如 x²+ bx =c 的式子。

第二步:在等式两边同时加上一次项系数一半的平方,即(b/2)²。

第三步:将左边配成完全平方式,写成(x + b/2)²的形式。

第四步:直接开平方求解。

3、例题讲解例 1:用配方法解方程 x²+ 4x 5 = 0解:移项得 x²+ 4x = 5两边同时加上 4 得 x²+ 4x + 4 = 5 + 4即(x + 2)²= 9开平方得 x + 2 = ±3解得 x₁= 1 , x₂=-5例 2:用配方法解方程 2x² 5x + 2 = 0解:方程两边同时除以 2 得 x² 5/2 x + 1 = 0移项得 x² 5/2 x =-1两边同时加上 25/16 得 x² 5/2 x + 25/16 =-1 + 25/16即(x 5/4)²= 9/16开平方得 x 5/4 = ±3/4解得 x₁= 2 , x₂= 1/24、课堂练习让学生自己动手练习几道用配方法解一元二次方程的题目,如 x²8x + 12 = 0 , 3x²+ 6x 5 = 0 等。

配方法教案模板小学

配方法教案模板小学

教学目标:1. 让学生掌握配方法的基本概念和步骤。

2. 培养学生运用配方法解决实际问题的能力。

3. 培养学生观察、分析、归纳、总结的能力。

教学重点:1. 配方法的基本概念和步骤。

2. 配方法在实际问题中的应用。

教学难点:1. 配方法的灵活运用。

2. 配方法在解决实际问题中的应用。

教学准备:1. 教学课件。

2. 课堂练习题。

教学过程:一、导入新课1. 教师通过展示一些实际问题,引导学生回顾已学过的解决问题的方法,如列式计算、画图等。

2. 引出配方法,让学生初步了解配方法的基本概念。

二、新课讲授1. 教师讲解配方法的基本概念和步骤,结合具体例子进行演示。

2. 学生跟随教师一起进行配方法的步骤练习,巩固所学知识。

三、课堂练习1. 教师出示一些配方法的练习题,让学生独立完成。

2. 学生相互讨论,共同解决练习题中的问题。

3. 教师巡视课堂,解答学生在练习中遇到的问题。

四、课堂小结1. 教师引导学生总结配方法的基本概念和步骤。

2. 学生分享自己在课堂练习中的收获和体会。

五、布置作业1. 完成课后练习题,巩固所学知识。

2. 搜集生活中与配方法相关的问题,尝试运用配方法解决。

教学反思:1. 本节课通过实际问题的引入,让学生初步了解配方法的基本概念,提高了学生的学习兴趣。

2. 在新课讲授过程中,教师注重引导学生进行观察、分析、归纳、总结,培养了学生的思维能力。

3. 课堂练习环节,教师鼓励学生相互讨论,共同解决问题,提高了学生的合作意识。

4. 教师在课后要关注学生的学习情况,及时调整教学策略,确保教学目标的实现。

一元二次方程解法--配方法--微教案

一元二次方程解法--配方法--微教案

一元二次方程解法--配方法--微教案微课大赛---微课教案编写人:XXX配方法解一元二次方程》教学设计教学背景】本单元是一元二次方程的重点内容,也是二次函数的基础。

大纲要求学生会用直接开平方法、配方法、公式法、因式分解法解一元二次方程,使学生能够根据方程的特征灵活运用一元二次方程的各种解法求方程的根。

因此,我根据学生的认知水平和研究心理及研究兴趣自己设计了教学方案,制作了精美课件,增加了这一单元的可操作性,力争使学生对一元二次方程的解法问题有规可循,取得一定的突破。

教学目标】1.理解并掌握配方法;2.通过探索配方法的过程,培养观察、比较、分析、转化、归纳的能力;3.通过配方法的探究活动,培养学生勇于探索的良好研究惯,感受转化的数学思想。

教学重点】用配方法解二次项系数是1的一元二次方程。

教学难点】配方法解一元二次方程步骤的探索。

教法学法】学生在老师的指导下根据开方运算总结出直接开平方方法解一元二次方程,然后教师依据“自主、互动、反馈”模式指导学生依据“转化思想”逐步探索利用配方法解一元二次方程的步骤。

教学过程】一、导入新课提问:1.你能解出下列一元二次方程吗?1)x²=92)(x+1)²=93)x²+2x+1=94)x²+2x=82.要一开始给你一元二次方程:x²+2x-8=0,你会解吗?设计意图】:设置一系列由易到难的题,激起学生的兴趣。

第二题的设置点燃了学生思考的火花,对用配方法解题有点思路,就是把老师刚才的思路倒推到(x+1)²=9就可以解出来。

形成基本思路是将方程转化成一边是平方的形式,另一边是非负数的形式,然后两边开平方便可以求出它的根,为新课的讲解奠定基础。

二、讲授新课1.总结配方规律让学生填上适当的数,使下列等式成立:1) x²+12x+。

= (x+6)²2) x²-4x+。

= (x-。

)²3) x²+8x+。

配方法(一)教学设计(优秀范文5篇)

配方法(一)教学设计(优秀范文5篇)

配方法(一)教学设计(优秀范文5篇)第一篇:配方法(一)教学设计第二节、配方法(一)一、学生知识状况分析:学生在八年级上学期已经学习过开平方,知道一个正数有两个平方根,会利用开方求一个正数的两个平方根,并且也学习了完全平方公式。

在本章前面几节课中,又学习了一元二次方程的概念,并经历了用估算法求一元二次方程的根的过程,初步理解了一元二次方程解的意义。

在相关知识的学习过程中,学生已经经历了用计算器估算一元二次方程解的过程,解决了一些简单的现实问题,感受到解一元二次方程的必要性和作用,基于学生的学习心理规律,在学习了估算法求解一元二次方程的基础上,学生自然会产生用简单方法求其解的欲望;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、教学目标分析:知识与技能会用开方法解形如(x+m)2=n(n≥0)的方程,理解配方法,会用配方法解二次项系数为1,一次项系数为偶数的一元二次方程。

过程与方法1、经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效模型,增强学生的数学应用意识和能力。

2、体会转化的数学思想方法。

3、能根据具体问题中的实际意义检验结果的合理性。

情感态度与价值观1、体会数学与人类社会的密切联系,了解数学的价值。

增进对数学的理解和学好数学的信心。

2、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。

三、教与学互动设计:第一环节:创设情境,导入新课(1)工人师傅想在一块足够大的长方形铁皮上裁出一个面积为100CM2正方形,请你帮他想一想,这个正方形的边长应为;若它的面积为75CM2,则其边长应为。

(选1个同学口答)(2)如果一个正方形的边长增加3cm后,它的面积变为64cm2,则原来的正方形的边长为。

若变化后的面积为48cm2呢?(小组合作交流)(3)你会解下列一元二次方程吗?(独立练习)x2=5;(x+2)2=5; x2+12x+36=0。

公开课教案(配方法)

公开课教案(配方法)

公开课教案(配方法)第一章:配方法简介1.1 配方法的定义配方法是一种将一个多项式表示为两个或多个多项式的乘积的形式的方法。

通过配方法,可以将一个多项式转化为更容易求解或分析的形式。

1.2 配方法的应用配方法在解决方程、不等式、函数等方面有广泛应用。

通过配方法,可以简化计算过程,提高解题效率。

第二章:配方法的基本步骤2.1 确定多项式的次数在进行配方法之前,确定多项式的次数。

次数最高的项称为最高次项,次数最低的项称为最低次项。

2.2 选择配方法根据多项式的特点,选择合适的配方法。

常见的配方法有因式分解、合成法、差乘法等。

2.3 应用配方法将多项式按照配方法进行转化,得到新的表达式。

新的表达式应该更容易求解或分析。

2.4 验证结果将得到的解或结果代入原多项式中,验证其正确性。

确保配方法没有导致误差的产生。

第三章:配方法的应用实例3.1 方程的解法利用配方法将方程转化为更容易求解的形式。

通过配方法,可以快速找到方程的根。

3.2 不等式的解法利用配方法将不等式转化为更容易分析的形式。

通过配方法,可以快速确定不等式的解集。

3.3 函数的简化利用配方法将函数表达式简化。

通过配方法,可以更容易分析和理解函数的性质。

第四章:配方法的拓展4.1 多项式的合成利用配方法将两个或多个多项式合成一个多项式。

通过配方法,可以简化计算过程,提高解题效率。

4.2 多项式的分解利用配方法将一个多项式分解为两个或多个多项式的乘积。

通过配方法,可以快速得到多项式的因式分解形式。

第五章:配方法的练习题5.1 配方法的应用题设计与配方法相关的应用题,让学生通过实际问题练习配方法。

题目可以涉及方程、不等式、函数等方面的应用。

5.2 配方法的练习题提供一些多项式,让学生利用配方法进行化简、求解等操作。

通过练习题,巩固学生对配方法的理解和应用能力。

第六章:配方法在代数运算中的应用6.1 配方法在因式分解中的应用利用配方法将多项式进行因式分解。

配方法教学设计

配方法教学设计

配方法教学设计一、教学目标1、使学生理解配方法,会用配方法解一元二次方程。

2、通过对配方法的探究,培养学生观察、分析、归纳、概括的能力。

3、让学生在探索配方法的过程中,感受数学的严谨性和数学方法的多样性,体验数学学习的乐趣。

二、教学重难点1、教学重点:掌握用配方法解一元二次方程。

2、教学难点:如何配方。

三、教学方法讲授法、讨论法、练习法四、教学过程(一)引入新课同学们,咱们先来玩一个小游戏。

假设老师有一个神秘的盒子,这个盒子里装着一些数字。

老师告诉你们,当我在这个数字上加上 5,然后平方,得到的结果是 49 。

你们能猜猜这个数字是多少吗?这时候大家就开始七嘴八舌地讨论啦,有的同学说:“老师,是不是 2 呀?” 有的说:“不对不对,应该是 4 。

” 那咱们一起来算一算。

假设这个数字是 x ,那么根据题意可以列出方程:(x + 5)²= 49 。

接下来咱们就要用今天要学的配方法来解开这个方程,找到这个神秘的数字啦。

(二)讲解新课1、什么是配方法咱们先来看一个简单的方程 x²+ 6x + 4 = 0 。

为了用配方法解方程,我们要把方程左边变成一个完全平方式。

那怎么变呢?我们在方程两边加上 9 ,得到 x²+ 6x + 9 + 4 9 = 0 ,整理一下就是(x +3)² 5 = 0 。

这就是配方法,通过在方程两边加上一个适当的常数,把方程左边变成一个完全平方式。

2、用配方法解方程咱们再来看看刚才那个方程(x + 5)²= 49 。

这时候咱们就可以开平方啦,得到 x + 5 = ±7 。

所以 x =-5 ± 7 ,也就是 x₁= 2 ,x₂=-12 。

咱们再来看一个例子,解方程 x² 4x 5 = 0 。

首先在方程两边加上4 ,得到 x² 4x + 45 4 = 0 ,整理一下就是(x 2)² 9 = 0 。

九年级数学上册《配方法》教案、教学设计

九年级数学上册《配方法》教案、教学设计
(二)过程与方法
1.通过导入实际问题,激发学生对配方法的学习兴趣,引导学生主动探究配方法的应用。
2.采用讲解、示范、讨论等教学方法,帮助学生掌握配方法的步骤和要领。
3.设计丰富的例题和练习题,让学生在实际操作中巩固所学知识,提高解题能力。
4.引导学生总结配方法的使用规律,培养学生的抽象思维和归纳能力。
难点:引导学生从实际问题中抽象出一元二次方程,并运用配方法进行求解。
3.重点:通过小组讨论,培养学生的合作意识和团队协作能力。
难点:引导学生学会倾听、表达、交流,形成良好的讨论氛围,提高讨论效果。
(二)教学设想
1.针对重点和难点,采用以下教学策略:
a.讲解与示范:以生动的语言和具体的例题,阐述配方法的原理和应用,让学生在模仿中掌握配方法。
3.引入新课:在学生尝试解决问题的基础上,引入配方法的概念,告诉学生今天我们将学习一种解决这类问题的方法——配方法。
(二)讲授新知
1.配方法的定义:介绍配方法的概念,即通过添加和减去同一个数,使一元二次方程的左边成为一个完全平方公式,从而求解方程。
2.配方法的步骤:
a.将一元二次方程写成标准形式:ax^2 + bx + c = 0。
b.选择一道实际问题时,运用配方法求解,并将解题过程和答案写在作业本上。
c.总结配方法的步骤和要领,以书面形式提交。
2.选做题:
a.完成课后拓展题:根据已学的配方法,尝试解决更复杂的一元二次方程,如含参方程、分式方程等。
b.针对课堂所学,设计一道与实际生活相关的一元二次方程问题,并运用配方法求解。
3.小组合作作业:
b.变式练习:设计不同类型的练习题,让学生在解题过程中灵活运用配方法,巩固所学知识。

《配方法》教案及说课稿范文

《配方法》教案及说课稿范文

《配方法》教案及说课稿范文教学目标:知识与技能:理解配方法的原理,掌握配方法的应用步骤,能够运用配方法解决实际问题。

过程与方法:通过观察、分析、归纳等方法,培养学生的逻辑思维能力和解决问题的能力。

情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探索的精神。

教学重点:配方法的原理和应用步骤。

教学难点:理解配方法的本质和灵活运用。

教学准备:教师准备:配方法的相关案例和练习题。

学生准备:预习配方法的相关知识。

教学过程:一、导入(5分钟)1. 引导学生回顾一元二次方程的解法,提出问题:有没有其他方法解决一元二次方程呢?2. 学生思考,教师引出配方法的概念。

二、新课讲解(15分钟)1. 讲解配方法的原理和步骤。

2. 通过具体案例,演示配方法的应用过程。

3. 引导学生跟随老师一起完成一个案例的配方法操作。

三、课堂练习(10分钟)1. 学生独立完成配方法案例。

2. 教师挑选几个学生的作业进行点评,指出优点和需要改进的地方。

四、拓展应用(10分钟)1. 学生分组讨论,思考配方法在其他数学问题中的应用。

2. 每组选择一个问题,进行展示和分享。

五、总结与反思(5分钟)1. 学生总结本节课的学习内容,分享自己的收获。

2. 教师对学生的表现进行点评,指出进步和需要继续努力的地方。

说课稿:是教学目标,我希望通过这个教案,让学生们理解和掌握配方法的原理和应用步骤,培养他们的逻辑思维能力和解决问题的能力。

我也希望学生们能够激发对数学的兴趣,培养团队合作意识和勇于探索的精神。

是教学重难点,配方法的原理和应用步骤是本节课的重点,而理解配方法的本质和灵活运用是难点。

为了解决这个难点,我设计了具体的案例和练习题,让学生们在实践中理解和掌握配方法。

在教学过程中,我会引导学生回顾一元二次方程的解法,引出配方法的概念。

接着,我会通过具体案例,演示配方法的应用过程,并让学生们跟随我一起完成一个案例的配方法操作。

我会让学生们独立完成配方法案例,并进行点评。

《配方法》教案

《配方法》教案

《配方法》教案教学目标(一)教学知识点1.会用配方法解简单的数字系数的一元二次方程.2.了解用配方法解一元二次方程的基本步骤.(二)能力训练要求1.理解配方法;知道“配方”是一种常用的数学方法.2.会用配方法解简单的数字系数的一元二次方程.3.能说出用配方法解一元二次方程的基本步骤.(三)情感与价值观要求通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力.教学重点用配方法求解一元二次方程.教学难点理解配方法.教学方法讲练结合法.教学过程回顾与复习1:我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.用配方法解一元二次方程的方法的助手:平方根的意义:如果x2=a,那么x=±a.完全平方式:式子a2±2ab+b2叫完全平方式,且a2±2ab+b2=(a±b)2回顾与复习2:用配方法解一元二次方程的步骤:移项:把常数项移到方程的右边;配方:方程两边都加上一次项系数绝对值一半的平方;变形:方程左边分解因式,右边合并同类项;开方:根据平方根的意义,方程两边开平方;求解:解一元一次方程;定解:写出原方程的解.随堂练习:用配方法解下列方程:1.x 2-2=02.x 2+4x =23.3x 2+8x -3=0这个方程与前2个方程不一样的是二次项系数不是1,而是3.基本思想是:如果能转化成前2个方程的形式,则方程即可解决.你想到了什么办法?例、解方程:3x 2+8x -3=0解:3x 2+8x -3=0 x 2+38x -1=0 1.化1:把二次项系数化为1; x 2+38x =1 2.移项:把常数项移到方程的右边; x 2+38x +(34)2=1+(34)2 3.配方:方程两边都加上一次项系数绝对值一半的平方; (x +34)2=(35)2 4.变形:方程左边分解因式,右边合并同类项; x +34=±35 5.开方:根据平方根的意义,方程两边开平方; x +34=35 或 x +34=-35 6.求解:解一元一次方程; 所以x 1==31, x 2=-3 7.定解:写出原方程的解. 心动不如行动:用配方法解下列方程1.3x 2-9x +2=02.2x 2+6=7x做一做:一个小球以15m/s 的初速度竖直向上弹出,它在空中的高度h (m)与时间t (s)满足关系: h =15t -5t 2,小球何时能达到10m 高?解:根据题意,得:15t -5t 2=10即t 2-3t =-2t 2-3t +(23)2=-2+(23)2 (t -23)2=41 即t -23=21 或t -23=-21 所以t 1=2, t 2=1答:在1s 时,小球达到10m ;至最高点后下落,在2s 时其高度又为10m.小结与拓展本节复习了哪些旧知识呢?继续请两个“老朋友”助阵和加深对“配方法”的理解运用:平方根的意义:如果x 2=a ,那么x =±a .完全平方式:式子 a 2±2ab +b 2叫完全平方式,且a 2±2ab +b 2=(a ±b )2 本节课又学会了哪些新知识呢?用配方法解二次项系数不是1的一元二次方程的步骤:化1:把二次项系数化为1;移项:把常数项移到方程的右边;配方:方程两边都加上一次项系数绝对值一半的平方;变形:方程左边分解因式,右边合并同类项;开方:根据平方根的意义,方程两边开平方;求解:解一元一次方程;定解:写出原方程的解.用一元二次方程这个模型来解答或解决生活中的一些问题(即列一元二次方程解应用题).。

公开课教案(配方法)

公开课教案(配方法)

公开课教案(配方法)章节一:认识配方法1. 教学目标让学生了解配方法的概念和意义,能够识别简单的配方法问题。

2. 教学内容介绍配方法的定义,通过具体例题讲解配方法的应用。

3. 教学步骤a. 引入配方法的概念,引导学生思考如何将一个表达式配成完全平方形式。

b. 通过具体例题,演示配方法的操作步骤和思路。

c. 让学生尝试解决一些简单的配方法问题,并及时给予指导和反馈。

4. 作业布置让学生完成课后练习,巩固对配方法的理解和应用。

章节二:配方法的运用1. 教学目标让学生掌握配方法的基本步骤,能够灵活运用配方法解决实际问题。

2. 教学内容通过练习题讲解配方法在不同类型问题中的应用。

3. 教学步骤a. 回顾配方法的定义和步骤,提醒学生注意配方法的关键点。

b. 提供不同类型的练习题,让学生独立运用配方法解决问题。

4. 作业布置让学生完成课后练习,进一步巩固对配方法的应用。

章节三:配方法与完全平方公式1. 教学目标让学生理解配方法与完全平方公式的关系,能够熟练运用完全平方公式。

2. 教学内容介绍配方法与完全平方公式的联系,通过例题讲解完全平方公式的应用。

3. 教学步骤a. 引导学生回顾配方法的过程,让学生意识到配方法的目的是为了得到完全平方形式。

b. 讲解完全平方公式的定义和推导过程,让学生理解完全平方公式的意义。

c. 提供一些应用完全平方公式的例题,让学生独立解决问题,并及时给予指导和反馈。

4. 作业布置让学生完成课后练习,巩固对完全平方公式的理解和应用。

章节四:配方法在代数式求值中的应用1. 教学目标让学生学会使用配方法在代数式求值问题中,提高解题效率。

2. 教学内容通过具体例题讲解配方法在代数式求值问题中的应用。

3. 教学步骤a. 引导学生回顾配方法的基本步骤和应用技巧。

b. 提供一些代数式求值的练习题,让学生运用配方法简化问题。

4. 作业布置章节五:配方法在解方程中的应用1. 教学目标让学生掌握配方法在解一元二次方程中的应用,提高解题能力。

配方法教案[合集五篇]

配方法教案[合集五篇]

配方法教案[合集五篇]第一篇:配方法教案一元二次方程的解法--配方一教学目标1、了解什么是配方法;2、会用配方法准确而熟练解一元二次方程;3、理解配方法的关键、基本思想和步骤;4、体会转化、类比、降次的思想。

二教学过程1、前提测评一般地,对于形如x2=a(a≥0)或(x+m)2=n(n≥0)的方程,根据平方根的定义, 两边直接开平方。

这种解一元二次方程的方法叫做开平方法.练习1(1)方程 x2=0.25 的根是(2)方程 2x2=18 的根是(3)方程(2x -1)2= 9 的根是 2.选择适当的方法解下列方程:(1)x2- 81=0(2)x2 =50(3)(x+1)2=4(4)x2+2x+5=0 2方程x+6x+9=2 可以化成_________,进行降次,得________,方程的根为______ ,。

思考:那么其它的一元二次方程是不是也可以仿照上面的练习,方程左边写成未知项的完全平方式,右边是一个常数的形式?2、新课讲解问题:要使一块长方形场地的长比宽多6m,并且面积为16m2,场地的长和宽应各是多少?解:设场地的宽为(x+60)m,列方程得x(x+6)=162x+6x-16=0 即方程 x2+6x-16=0和方程x+6x+9=2 有何联系与区别呢?2在此进行简单的分析。

解:x2+6x-16=0 移项x2+6x=16 方程两边同时加上9,使左边配成完全平方式得X2+6x+9=16+9 左边写成完全平方(x+3)2=25两边开平方得x+3=±5X+3=5或x+3=-5解得x1=2x2=-8概念:把一元二次方程的左边配成一个完全平方式,然后用开平方法求解,这种解一元二次方程的方法叫做配方法.提出用配方法解一元二次方程的关键是什么?——配方那么怎样进行配方?有什么规律吗?探索规律:(1)x2+8x+=(x+)2(2)x2-4x+=(x-)2(3)x2-6x+=(x-)2 思考:当二次项系数是1时,常数项与一次项的系数有怎样的关系?规律:当二次项系数是1时,常数项是一次项系数一半的平方。

《配方法》教案

《配方法》教案

《配方法》教案教学目标(一)教学知识点1.会用配方法解简单的数字系数的一元二次方程.2.了解用配方法解一元二次方程的基本步骤.(二)能力训练要求1.理解配方法;知道“配方”是一种常用的数学方法.2.会用配方法解简单的数字系数的一元二次方程.3.能说出用配方法解一元二次方程的基本步骤.(三)情感与价值观要求通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力.教学重点用配方法求解一元二次方程.教学难点理解配方法.教学方法讲练结合法.教学过程回顾与复习1:我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.用配方法解一元二次方程的方法的助手:平方根的意义:如果x2=a,那么x=±a.完全平方式:式子a2±2ab+b2叫完全平方式,且a2±2ab+b2=(a±b)2回顾与复习2:用配方法解一元二次方程的步骤:移项:把常数项移到方程的右边;配方:方程两边都加上一次项系数绝对值一半的平方;变形:方程左边分解因式,右边合并同类项;开方:根据平方根的意义,方程两边开平方;求解:解一元一次方程;定解:写出原方程的解.随堂练习:用配方法解下列方程:1.x 2-2=02.x 2+4x =23.3x 2+8x -3=0这个方程与前2个方程不一样的是二次项系数不是1,而是3.基本思想是:如果能转化成前2个方程的形式,则方程即可解决.你想到了什么办法?例、解方程:3x 2+8x -3=0解:3x 2+8x -3=0x 2+38x -1=0 1.化1:把二次项系数化为1;x 2+38x =1 2.移项:把常数项移到方程的右边;x 2+38x +(34)2=1+(34)2 3.配方:方程两边都加上一次项系数绝对值一半的平方;(x +34)2=(35)2 4.变形:方程左边分解因式,右边合并同类项; x +34=±35 5.开方:根据平方根的意义,方程两边开平方; x +34=35 或 x +34=-35 6.求解:解一元一次方程;所以x 1==31, x 2=-3 7.定解:写出原方程的解. 心动不如行动:用配方法解下列方程1.3x 2-9x +2=02.2x 2+6=7x做一做:一个小球以15m/s 的初速度竖直向上弹出,它在空中的高度h (m)与时间t (s)满足关系:h =15t -5t 2,小球何时能达到10m 高?解:根据题意,得:15t -5t 2=10即t 2-3t =-2t 2-3t +(23)2=-2+(23)2(t -23)2=41 即t -23=21 或t -23=-21 所以t 1=2, t 2=1答:在1s 时,小球达到10m ;至最高点后下落,在2s 时其高度又为10m. 小结与拓展本节复习了哪些旧知识呢?继续请两个“老朋友”助阵和加深对“配方法”的理解运用: 平方根的意义:如果x 2=a ,那么x =±a .完全平方式:式子 a 2±2ab +b 2叫完全平方式,且a 2±2ab +b 2=(a ±b )2 本节课又学会了哪些新知识呢?用配方法解二次项系数不是1的一元二次方程的步骤:化1:把二次项系数化为1;移项:把常数项移到方程的右边;配方:方程两边都加上一次项系数绝对值一半的平方;变形:方程左边分解因式,右边合并同类项;开方:根据平方根的意义,方程两边开平方;求解:解一元一次方程;定解:写出原方程的解.用一元二次方程这个模型来解答或解决生活中的一些问题(即列一元二次方程解应用题).。

配方法教案

配方法教案

配方法教案
教案名称:配方法的介绍和实施
教学目标:
1.了解配方法的概念和作用。

2.掌握配方法的基本步骤和操作方法。

3.能够灵活运用配方法解决实际问题。

教学重点:
1.配方法的基本概念和作用。

2.配方法的基本步骤和操作方法。

教学难点:
1.如何运用配方法解决实际问题。

2.如何确保配方法的准确性和有效性。

教学过程:
一、导入(5分钟)
通过显示配方法的定义和作用,引导学生思考配方法的意义和重要性。

二、讲解(10分钟)
1.介绍配方法的基本概念和作用。

2.讲解配方法的基本步骤和操作方法。

三、实操(10分钟)
1.将学生分成小组,每个小组选取一个实际问题。

2.引导学生根据所选问题,运用配方法解决问题。

四、讨论(10分钟)
1.每个小组将解决问题的思路和方法进行汇报。

2.其他小组提问和讨论,共同探讨配方法的有效性和准确性。

五、总结(5分钟)
通过回顾讲解和实操的内容,总结配方法的基本步骤和操作方法,并强调配方法的作用和价值。

六、作业布置(5分钟)
布置作业,要求学生运用配方法解决一个实际问题,并撰写一份总结报告。

教学反思:
本节课通过介绍和实操相结合的方式,使学生能够深入理解配方法的基本概念和作用,并能够灵活运用配方法解决实际问题。

同时,在讨论环节,通过小组竞赛的形式,激发了学生的兴趣和思考能力。

但是,在实操环节可能存在时间不够充分的问题,需要在教学中做更好的时间控制。

公开课教案(配方法)

公开课教案(配方法)

公开课教案(配方法)一、教学目标:1. 让学生理解配方法的概念和意义。

2. 培养学生运用配方法解决问题的能力。

3. 提高学生对数学知识的兴趣和积极性。

二、教学内容:1. 配方法的基本概念和原理。

2. 配方法在不同类型题目中的应用。

3. 配方法的解题步骤和技巧。

三、教学重点与难点:1. 配方法的基本概念和原理。

2. 配方法在不同类型题目中的应用。

3. 配方法的解题步骤和技巧。

四、教学方法:1. 采用讲授法,讲解配方法的基本概念、原理和应用。

2. 采用案例分析法,分析不同类型题目中的应用。

3. 采用实践操作法,让学生动手练习解题。

五、教学过程:1. 导入新课:通过一个实际问题,引入配方法的概念和意义。

2. 讲解配方法的基本概念和原理:讲解配方法的定义、特点和作用。

3. 案例分析:分析不同类型题目中的应用,讲解解题步骤和技巧。

4. 课堂练习:布置一些相关题目,让学生动手练习。

6. 课后作业:布置一些课后题目,巩固所学知识。

六、教学评估:1. 课堂练习环节,通过观察学生的解题过程和答案,评估学生对配方法的理解和运用能力。

2. 课后作业的完成情况,评估学生对课堂所学知识的掌握程度。

3. 学生课堂参与度和提问回答,了解学生的学习兴趣和积极性。

七、教学资源:1. 教学PPT:呈现配方法的基本概念、原理和应用案例。

2. 练习题库:提供不同类型题目,供学生课堂练习和课后巩固。

3. 教学视频:讲解配方法的相关知识点,辅助学生理解。

八、教学进度安排:1. 第一课时:介绍配方法的基本概念和原理。

2. 第二课时:讲解配方法在不同类型题目中的应用。

4. 第四课时:课后作业布置和答疑。

九、教学反思:1. 课后及时反思教学效果,观察学生对配方法的理解和运用情况。

2. 根据学生的反馈,调整教学方法和策略,提高教学效果。

3. 不断丰富和更新教学资源,提高教学质量。

十、课后作业:1. 巩固配方法的基本概念和原理。

2. 练习不同类型的题目,提高配方法的运用能力。

《配方法》教学设计(新)

《配方法》教学设计(新)

《配方法》教学设计(新)教学目标:1.掌握《配方法》的基本知识和概念。

2.能够运用《配方法》解决实际问题。

3.培养学生的科学思维能力和创新精神。

教学重点:教学内容:2.《配方法》在化学分析中的应用。

教学方法:1.讲授法。

2.实验法。

3.讨论法。

教学过程:一、引入课题教师可通过观察实验现象,引发学生的兴趣,以激发学生学习的热情。

例如:在实验中发现了同一种物质在不同条件下具有不同的颜色,提出“如何准确地测定同一种物质在不同条件下的颜色?”问题,引出本节课的探究。

二、知识讲解介绍《配方法》的基本概念和思想,例如《配方法》是一种使用一定物质之间的特异性反应,通过化学方法分离、鉴定和定量分析物质的方法等。

通过讲解《配方法》在化学分析中的应用,如:氧化还原反应、络合反应等。

运用《配方法》解决实际问题,例如:如何测定同一种物质在不同条件下的颜色的变化?三、实验操作学生可以通过实验来验证《配方法》的基本概念和思想,并掌握实验操作的技巧,如:使用酸性高锰酸钾测定亚铁离子的含量。

四、讨论总结通过观察实验现象,学生可以进行讨论,总结《配方法》的特点和不足之处,并提出改进方法。

五、作业布置布置相应的作业,如:按照不同的题型,对《配方法》的相关知识进行回答。

六、课堂检测通过课堂检测,检验学生对于本节课的掌握情况,如:选择题、解答题等。

教学反思:通过本节课的教学,学生对《配方法》的相关知识得到了一定的了解,也在实验中掌握了相关的操作技巧。

同时,利用讨论的方式,培养了学生的科学思维能力和创新精神,达到了预期的教学目标。

在教学过程中,教师应注重引发学生的兴趣,让他们自主地进行探究和思考,从而提高学生的学习效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程的解法——配方法
备课人: 黄寻良(东莞市光明中学)
[教学目标] 使学生掌握配方法的推导过程,能够熟练地进行配方;使学生会用配方法
解数字系数的一元二次方程。

[教学重点] 掌握配方法的推导过程,能够熟练地进行配方。

[教学难点] 掌握配方法的推导过程,能够熟练地进行一元二次方程一般形式ax 2+bx+c=
0(a≠0)的配方。

[教学关键] 会用配方法解数字系数的一元二次方程。

[教学过程]
[复习引入]
027)1(2=-x 018)1)(2(2=--x
016)1(4
1)3(2=-+x 944)4(2=++x x [导入新课]
044:12=++x x 变题 04:22=+x x 变题
444:2=++x x 解 20
)2(:212-===+x x x 解
4
,0224
)2(212-==±=+=+x x x x
054:32=-+x x 变题
54:2=+x x 解
9442=++x x
5
,1329
)2(212-==±=+=+x x x x
[举一反三]
例1、用配方法解下列方程:
01662=-+x x
166:2=+x x 解
22231636+=++x x
8
,25325
)3(212-==±=+=+x x x x
通过配成完全平方式的形式解出一元二次方程的根的方法,叫做配方法。

[课堂练习]
___)(___)
(___)(___)(222222
22
____2
1)4(_____5)3(_____8)2(_____2)1(-+-+=+-=++=+-=++y y y y x x x x y y x x [趁热打铁]
2.解下列方程:
128)4()6(11
294)5(0
364)4(0
463)3(04
7)2(0
910)1(22222+=+-=-+=--=-+=--=++x x x x x x x x x x x x x x
[画龙点睛]
配方法解题步骤:
(1)先整理方程成一般形式
(2)把二次项系数化为1
(3)配方:方程两边同时加上一次项系数的一半的平方;
(4)左边化为完全平方式,右边相加
(5)利用直接开平方法解方程即可.。

相关文档
最新文档