实验六 生物氧化与电子传递

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六生物氧化与电子传递(3学时)

一实验目的与要求 1. 掌握电子在电子传递链中的传递过程;

2. 了解体外实验中研究电子传递链的方法。

二实验原理

生物氧化过程中代谢物脱下的氢由NAD+ 或FAD接受生成还原型NADH或FADH2,再经一系列电子传递体传递,最后与氧结合生成水。这些存在于线粒体内膜上的氧化还原酶及其辅酶依次排列,顺序地起传递电子或电子和质子的作用,称为电子传递链或呼吸链。

在体内,代谢中间产物琥珀酸在线粒体琥珀酸脱氢酶(辅酶FAD)的作用下脱氢氧化生成延胡索酸,脱下的氢使FAD还原成FADH2,再经电子传递链传递,即FADH2→Q→细胞色素(b→c1→c→aa3),最后与氧结合生成水。

在体外实验中,组织细胞生物氧化生成琥珀酸的量可采用在琥珀酸脱氢时伴有颜色变化的化合物作氢受体来研究。

本实验以2,6-二氯酚锭酚(DPI)为氢受体,蓝色的DPI从还原型黄素蛋白(FADH2)接受电子,生成无色的还原型DPI·2H,蓝色消失,其反应过程如下:

琥珀酸+FAD→延胡索酸+ FADH2

DPI(蓝色)+ FADH2→DPI·2H(无色)+FAD

根据褪色时间可测定生物氧化过程中各代谢物与琥珀酸之间在代谢途径中的距离。三、试剂及材料

磷酸钾缓冲溶液(PBS,50mmol/L,pH7.4):0.2mol/L磷酸二氢钾溶液500ml和0.2mol/L 氢氧化钠溶液395ml混合加水至2000ml。

猪心,2,6-二氯酚锭酚(1.5mmol/LPBS),葡萄糖溶液(90mmol/LPBS),琥珀酸溶液(90mmol/LPBS),乳酸溶液(90mmol/LPBS),NAD+(5mmol/L磷酸盐缓冲溶液)。

四、仪器设备

绞肉机,纱布,细砂,研钵,冰浴,恒温水浴。

五、操作方法

1. 心肌提取液的制备

称取绞碎的心肌糜3g,置250ml烧杯中,加冰冷的去离子水200ml,搅拌1min,静置1min,小心倾去水层,同法洗涤3次后,以细纱布过滤并轻轻挤压除去过多液体。将肉糜转移至冰冷的研钵中,加等量细砂和PBS5ml,在冰浴中研磨至糊状,再加PBS15ml,抽提(至少5min),双层纱布过滤,滤液收集于试管,置冰浴中备用。

2. 底物的氧化

取6支试管编号,按下表依次加入各试剂(单位ml)

管号 1 2 3 4 5 6

DPI 0.5 0.5 0.5 0.5 0.5 0.5 葡萄糖溶液0.5 0.5 ————

琥珀酸溶液——0.5 0.5 ——

乳酸溶液————0.5 0.5

NAD+0.5 —0.5 —0.5 —

将试管摇匀后于37℃中保温5min,加已经37℃水浴预保温5分钟的心肌提取液各1ml,混匀并继续保温。

3. 观察

观察各管颜色变化,记录各管褪色时间,30min不褪色者记为不褪色。分析实验结果所

说明的问题。

六、注意事项

1. 无色(还原型)DPI·2H与氧接触可重新氧化成蓝色的(氧化型)DPI,所以观察本实验结果时切勿振摇试管。

2. 体外实验亦可用甲烯蓝作为受氢体,再类似实验条件下蓝色的甲烯蓝(氧化型)受氢还原成无色甲烯蓝(还原型)。

七、思考题

1. 名词解释:电子传递链;氧化磷酸化作用;解偶联作用;高能化合物

2. 实验结果记录及分析

3. 讨论下列问题:

常见的呼吸链电子传递抑制剂有哪些?它们的作用机制是什么?

实验七SDS-聚丙烯酰胺凝胶电泳测定蛋白质分子量(4学时)

一、实验目的学习SDS-聚丙烯酰胺凝胶电泳测定蛋白质分子量的实验原理,掌握相应的实验技术。

二、实验原理

聚丙烯酰胺凝胶是由单体丙烯酰胺(Acrylamide,简称Acr)和交联剂N,N –甲叉双丙烯酰胺(Methylence-bisacry-lamide,简称Bis)在催化剂和加速剂的作用下聚合交联形成的具有分子筛效应的三维网状结构凝胶。凡以此凝胶为支持物的电泳均称为聚丙烯酰胺凝胶电泳(Polyacrylamide gel electrophoresis,简称PAGE)。凝胶筛孔大小、机械强度和透明度等物理参数,主要取决于凝胶浓度(T%)及交联度(C%),随着这两个参数的改变,可获得对待测分子进行分离、分辨的最适孔径。

T%=[(丙烯酰胺g + 甲叉双丙烯酰胺g)/总体积]×100

C%=[甲叉双丙烯酰胺g/(丙烯酰胺g + 甲叉双丙烯酰胺g)]×100 丙烯酰胺凝胶电泳根据其有无浓缩效应,分为连续系统与不连续系统两大类。在连续系统中缓冲溶液pH值及凝胶浓度相同,带电颗粒在电场的作用下主要靠电荷及分子筛效应得以分离;而在不连续系统中,不仅具有前两种效应,还具有浓缩效应,使电泳具有良好的清晰度和分辨率。

电泳时样品的浓缩效应主要由以下原因产生:(1)凝胶孔径的不连续。在不连续的PAGE 中,电泳凝胶由上下两层不同pH、不同孔径的浓缩胶和分离胶组成,在电场的作用下,蛋白质颗粒在大孔的浓缩胶中泳动的速度快,当进入小孔分离胶时,其泳动过程受阻,因而在两层凝胶交界处,由于凝胶孔径的这种不连续性造成样品位移受阻而压缩成很窄的区带。(2)缓冲体系离子成分及pH值的不连续性。在Tris-甘氨酸缓冲体系中,各胶层中均含有HCl,HCl在任何pH溶液体系中均容易离解出Cl-,它在电场中迁移率最大;甘氨酸等电点为6.0,在pH6.8的浓缩胶中,离解度很低,仅有0.1%~1%的NH2CH2COO-,因而在电场中的迁移速度很慢;大部分蛋白质pI在5.0左右,在此电泳环境中都以负离子形式存在。通电后,这三种负离子在浓缩胶中都向正极移动而且它们的泳动率按m d a ch > m p a p > m q a q排序(有效迁移率等于迁移率m与离解度a的乘积)。于是蛋白质就在快、慢离子形成的界面处,被压缩成极窄的区带。(3)是由电位梯度的不连续性所至。电泳开始后,由于Cl_-的迁移率最大,很快超过蛋白质,因此在快离子后面,形成一个离子浓度低的电导区,由此产生一个高的电位梯度,使蛋白质和慢甘氨酸离子在快离子后面加速移动,当快离子和慢离子的移动速度相等的稳定状态建立后,由于蛋白质的有效迁移率正好介于快、慢离子之间而被浓缩形成一狭小的区带。

当样品进入分离胶后,凝胶pH变为8.8,此时甘氨酸解离度大大增加,其有效迁移率

相关文档
最新文档