第三章 单相交流电路的分析与计算
单相交流电路
单相交流电路
• 例1:已知一交流电表达式为 u=220sin(314t+1200), 试求其频率。
单相交流电路
单相交流电路
• 例 2:已知电阻 R= 100Ω,两端电压 u= 10√-2sin 314t V,试求通 过电阻的电流有效值。
例3:已知电阻 R= 100Ω,两端电压为 u=10√-2sin 314t V,试求通过电阻的电流瞬时值。
Hale Waihona Puke 单相交流电路• 周期单位换算
1m s 103 s 1us 106 s 1ns 109 s
• ②频率 交流电1秒钟内重复的次数称为频率,用字母f表示。其
单位是赫兹,简称赫,用字母Hz表示。如果交流电在1秒钟内变化 了一次,我们称该交流电的频率是1赫兹。比赫兹大的常用单位是 千赫(KHz )和兆赫(MHz ).
1KH Z 103 H Z 1MH Z 106 H Z
单相交流电路
• 根据周期和频率的定义可知,周期和频率互为倒数,即
f 1 1 或T T f
• •
•
如我国工农业及生活中使用的交流电频率为50Hz(习惯上称为工频),其周期 为1/50=0.02秒。 ③角频率 在式e=BVL=BmVLsinα中,角度α的大小反映着线圈中感生电动势 大小和方向的变化。这种以电磁关系计量交流电变化的角度称为电角度。当然 电角度并不是在任何情况下都等于线圈实际转过的机械角度,只有在发电机的 两个磁极中的电角度才等于机械角度(因为发电机的磁极是被设计成特殊形状 的:在磁极中心处磁感应强度最强,在中心两侧磁感应强度按争先规律逐渐减 小。) 1 1 f 或T T f 所谓角频率(即电角速度)是指交流电在1秒钟内变化的电角度,用字母 ω表 示,单位是弧度/秒(rad/s)。如果交流电在1秒钟内变化了1次,则电角度正好 变化了2π弧度,也就是说该交流电的角频率ω= 2π弧度/秒。若交流电1秒钟内 变化了f次,则可的角频率与频率的关系式为 ω= 2πf
《单相,三相交流电路》计算公式定理归纳
公式:I=U/R
定义:导体中的电流与电压成正比,与电阻成反比
适用范围:纯电阻电路
注意事项:电流、电压、电阻必须是同一时刻的数值
基尔霍夫电压定律:在任意一个电路中,任意时刻,沿任意闭合路径绕一周,各段电压的代数和等于零。
适用范围:适用于一切集总参数电路,包括交流电路和直流电路。
定义:基尔霍夫定律是电路的基本定律之一,它包括基尔霍夫电流定律和基尔霍夫电压定律。
定理内容:对于只含线性时不变二端元件的单口网络,其正向和反向的入端阻抗值在正弦交流稳态下一定相等;对于有n个线性时不变二端元件的复杂二端网络正向和反向的入端阻抗矩阵一定相等。
注意事项:在使用互易定理时需要注意其适用范围和限制条件,避免出现误判或错误应用。
汇报人:
无功功率:Q=UIsinθ
阻抗定义:表示电路元件对交流电的阻碍作用
阻抗计算公式:Z=R+jX,其中R为电阻,X为电抗
阻抗与频率的关系:阻抗随频率的变化而变化
阻抗的意义:阻抗的大小决定了电路的性能和稳定性
提高功率因数的方法:采用无功补偿装置、提高设备自然功率因数、采用人工补偿装置
定义:功率因数是指交流电路中电压与电流之间的相位差与功率之间的比值
计算公式:功率因数 = 有功功率 / 总功率
功率因数与电路性能的关系:功率因数越高,电路性能越好,反之则越差
PART THREE
电压计算公式:U=IR
电流计算公式:I=U/R
三相交流电路中,各相电压和电流的幅值相等,相位互差120度
三相交流电路中,线电压是相电压的√3倍,线电流等于相电流
说明:其中P为功率,U为电压,I为电流,cosθ为功率因数
功率因数定义:功率因数是指交流电路中有功功率与视在功率的比值
单相交流电路解读
例3-3 已知两正弦量u = 311sin(314t 30°) V, i= 5sin(314t 90°) A,请指出两者的相位关系, 并求当计时起点改为t = 0.00333s时,u和i的初相位、 瞬时值及其相位关系。 解:相位差为
ui (30 ) (90 ) 120
相位关系为,u比i滞后,或i比u超前。 当计时起点改为t = 0.00333s时, u和i的初相位分别为
(4)当 12 = 或时,一个正弦量到达正最大值时, 另一个正弦量到达负最大值,此时称第1个正弦量与第 2个正弦量反相,如图3.2 (c)所示; (5)当 或时,一个正弦量到达零时,另一个正弦量到 达正最大值(或负最大值),此时称第1个正弦量与第2
个正弦量正交。如图3.2 (d)所示。
大小和方向随时间按正弦规律变化的正弦电流、正弦
电压、正弦电动势等物理量统称为正弦量。 正弦量的三要素:幅值、频率和初相位。 一个正弦交流电压的瞬时值可用三角函数式(解析式)来 表示,
即u(t) = Umsin( t u )
同理,电流和电动势分别为
i(t) = Imsin( t i ) e(t) = Emsin( t e )
一个复数A有以下4种表达式。
1) 代数形式
A = a + jb 式中, a叫做复数A的实部,b叫做复数A的虚部。 2)三角函数式 A=a+jb = A (cos jsin)
式中,A 叫做复数A的模,又称为A的绝对值, 叫做 复数A的辐角 。
3)指数形式 A =(cos jsin) = 4)极坐标形式 A=∠
3.1.2 正弦量的相位差
图3.2 两同频率正弦量的相位关系
(1)当 12 > 0时,i1比i2先到达正最大值,此时
单相交流电路的研究实验报告
单相交流电路的研究实验报告单相交流电路的研究实验报告引言:单相交流电路是电力系统中最基本的电路之一,广泛应用于家庭、工业和商业领域。
为了深入了解单相交流电路的特性和性能,我们进行了一系列的实验研究。
本实验报告将介绍实验的目的、实验装置、实验步骤以及实验结果和分析。
一、实验目的本实验旨在通过实际操作和测量,研究单相交流电路的特性和性能,包括电压、电流、功率等参数的测量和分析。
二、实验装置1. 电源:使用交流电源提供电压源。
2. 变压器:将高电压转换为适用于实验的低电压。
3. 电阻箱:用于调节电路中的电阻值。
4. 电流表和电压表:用于测量电流和电压。
5. 示波器:用于观察电路中的电压和电流波形。
三、实验步骤1. 搭建单相交流电路:根据实验要求,将电源、变压器、电阻箱、电流表和电压表按照电路图连接起来。
2. 测量电压和电流:打开电源,调节变压器和电阻箱的参数,分别测量电路中的电压和电流值。
3. 记录数据:将测量到的电压和电流值记录下来,并绘制电压和电流的波形图。
4. 计算功率:根据测量到的电压和电流值,计算电路中的功率值。
5. 分析结果:根据实验数据和计算结果,分析单相交流电路的特性和性能。
四、实验结果与分析通过实验测量和计算,我们得到了一系列的实验结果。
首先,我们观察到电压和电流的波形图呈正弦波形,符合单相交流电路的特点。
其次,我们发现电路中的电压和电流存在一定的相位差,这是由于电路中的电感和电容等元件引起的。
此外,我们计算得到的功率值表明,单相交流电路在不同负载下的功率变化较大,这与负载的阻抗有关。
根据实验结果,我们可以得出以下结论:单相交流电路的特性和性能受到电阻、电感和电容等元件的影响。
电路中的电压和电流呈正弦波形,且存在一定的相位差。
在不同负载下,电路的功率表现出不同的特点。
五、实验总结通过本次实验,我们深入了解了单相交流电路的特性和性能。
通过实际操作和测量,我们得到了电压、电流和功率等参数的实验结果,并对其进行了分析。
《单相交流电路》课件
• 单相交流电路概述 • 单相交流电路的基本原理 • 单相交流电路的元件与设备 • 单相交流电路的计算与分析 • 单相交流电路的故障诊断与维护 • 单相交流电路的未来发展与趋势
目录
Part
01
单相交流电路概述
定义与特点
定义
单相交流电路是指电源产生的电 流随时间按正弦规律变化的电路 。
维护与保养建议
建议一:定期检查
建议二:清洁散热
建议三:更换老化元件
对电气设备进行定期检查 ,确保无安全隐患。
保持电气设备散热良好, 防止过热损坏。
及时更换老化或损坏的元 件,确保电气性能稳定。
Part
06
单相交流电路的未来发展与趋 势
新技术与新材料的应用
高效电力电子转换技术
随着电力电子技术的进步,高效、紧 凑的电力电子转换器在单相交流电路 中将得到广泛应用,提高能源利用效 率。
负载的种类繁多,根据其工作原理和 用途可分为电阻性、电感性和电容性 负载。
保护装置
保护装置是为了保护电路和设备 的安全而设置的装置,如熔断器
、断路器和漏电保护器等。
熔断器是一种常见的保护装置, 当电路发生短路或过载时,熔断
器会熔断,从而切断电路。
断路器能够自动切断电路,防止 过载和短路引起的故障扩大。漏 电保护器能够在发生漏电时迅速
电线与电缆是传输电能的导体,常用的电线和电缆有铜线、铝线和橡胶电缆等。
电线与电缆的规格和型号根据电流大小和电压高低而定,不同规格的电线与电缆具 有不同的载流量和电阻值。
电线与电缆的绝缘层材料和厚度也影响其电气性能和使用寿命。
负载
负载是指使用电能的设备或器件,如 灯泡、电动机和加热器等。
单相交流电路实验报告
单相交流电路实验报告单相交流电路实验报告摘要:本实验主要通过搭建单相交流电路,观察和分析电路中电流、电压和功率的变化规律,以及不同元件对电路的影响。
实验结果表明,交流电路中的电流和电压呈正弦变化,且相位差为90度。
不同电阻和电感的接入会对电路的电流和功率产生不同的影响。
1. 引言单相交流电路是电工学中的基础知识之一,了解交流电路的特性对于电路设计和故障排除都具有重要意义。
本实验通过搭建单相交流电路,以观察和分析电路中的电流、电压和功率的变化规律。
2. 实验目的- 了解单相交流电路的基本原理和特性;- 掌握测量交流电路中电流和电压的方法;- 分析不同元件对电路中电流和功率的影响。
3. 实验装置- 交流电源;- 电阻箱;- 电感;- 电压表;- 电流表;- 示波器。
4. 实验步骤4.1 搭建基本的单相交流电路,包括电源、电阻和电感。
4.2 调节交流电源的电压,使其保持在合适的范围内。
4.3 使用电压表和电流表分别测量电路中的电压和电流。
4.4 使用示波器观察电路中电压和电流的波形,并记录相关数据。
4.5 更换不同电阻和电感,观察电路中电流和功率的变化。
5. 实验结果与分析在实验过程中,我们观察到电路中的电流和电压均呈正弦变化的波形。
根据实验数据,我们可以计算出电流和电压的频率、幅值和相位差。
实验结果表明,电流和电压之间的相位差约为90度,符合理论的预期。
此外,我们还发现不同电阻和电感的接入会对电路中的电流和功率产生不同的影响。
当电阻增加时,电路中的电流减小,功率也相应减小。
而当电感增加时,电路中的电流增加,功率也相应增加。
这与电阻和电感对电流的阻碍和促进作用相吻合。
6. 结论通过本次实验,我们深入了解了单相交流电路的特性和变化规律。
我们通过测量和分析电流、电压和功率的变化,得出了电流和电压之间相位差为90度的结论,并且验证了电阻和电感对电路中电流和功率的影响。
7. 实验总结本实验通过搭建单相交流电路,观察和分析电路中的电流、电压和功率的变化规律,加深了对交流电路的理解。
单相交流电路解析
摘要 在单相交流电路中可以有若干个独立的交流电源,它们必须是同频 率的正弦量。所涉及的无源元件有电阻、电感和电容。单相交流电路的 计算方法仍然是直流电路中讲过的支路电流法、回路电流法、网孔电流 法、结点电压法、戴维南/诺顿定理、叠加定理等,但与直流电路不同的 是:电阻变为阻抗;电导变为导纳;电压、电流变为相应的相量。 在复杂的交流电路的计算中,还常常借助于相量图进行分析。由于 应用了电感、电容元件,而这些元件是不消耗有功功率的,因此功率的 计算比直流电路复杂得多,包括有功功率、无功功率、视在功率等,也 可以借助于复数功率进行功率的计算。
1 1 Z 2 jwL j 250 j 250 0 jwC1 jwC2
Zin R R2 // Z 2 R 110 A2 0
220 A1 2A 110
3、相量计算(一)
已知电路结构如右,其中R=75欧, XC=100欧,XL=48欧,电流表的读数为4A。 求:电源电压U和总电流I相量 分析:
(c )
R A L
C1
A1 A2
A3
C2
在正弦交流电路中,由于元件性质不同,因此各电流、电压的相位不同, 有效值不能直接相加、减,必须用相量或用相量图进行计算。分析可知,(a)、 (b)中US,V1,V2之间、US,V1,V2,V3之间分别组成直角三角形关系,(c)中A,A1, A2,A3之间组成直角三角形关系。即可利用相量图或相量进行计算。 方程式及结果如下:
U 2 I j2 A C j30 2 U (24 j18 j50) I U 160V
I I 4 j3 537 A I R C
I * jX U 24751V U 2 R
交流电路
第三节 交流电路1.单相交流电路 (一)概速直流电:电动势、电压、电流的大小和方向都不随时间的改变而变化,最多是大小和方向有些脉动但方向不会改变。
交流电:电动势、电压、电流的大小和方向随时间作周期性的变化,这种大小和方向随时间变化而变化的电,称为交流电。
日常用的交流电,其大小及方向随时间按正弦规律变化,称为正铉交流电.如图1-16所示。
(a)电路图图1-16所示 正铉交流电产生及其波形.1. 交流电大小的物理量ιφ∆∆(1)瞬时值—正弦量任意瞬间的值(用i 、u 、e 表示)(2)幅 值—瞬时值之中的最大值(用Im 、Um 、Em 表示)(3)有效值—交流电“i ”的大小等效于直流电“I ”的热效应。
(4)平均值:交流电正半周内,其瞬时值的平均数称为交流电的平均值。
常用英文字母加下角“P ”表示。
如Ip 、Up 、Ep 分别表示交流电流、电压、电动势的平均值描述交流电大小的4个物理量:瞬时值、幅 值、有效值、平均值之间有下列两个主要关系。
以交流电流为例:I=0.707Im 或I=Im/2Ip=0.637Im2. 交流电变化快慢的物理量(1)周期。
T —正弦量变化一次所需的时间(单位:秒)(2)频率f —每秒正弦量变化的次数(单位: Hz )关系:f=1/T中国电力标准频率:50 Hz(3)角频率 :每秒正弦量转过的弧度幅值和有效值3. 正炫交流电初相角、相位、相位差正铉交流电.的数学表达式为:i=Im sin(ωt+φ)式中:i---交流电的瞬时值Im-----交流电的最大值ω---交流电的角频率Tf ππω22==Φ---交流电的初相角,即t=0时的相位角,也称初相位; ωt+φ称为交流电的相位两个同频率正铉交流电初相角之差,称为这两个交流电的相位差。
交流电电路中,用相位差来表示同频率正铉交流电的相位关系,以区别交流电在时间上的先后顺序。
4. 趋肤效应在直流电电路中均匀导线横截面上的电流密度是均匀的。
电工学第三章
3-1正弦交流电的基本概念 3-1-1 正弦交流电的三要素 正弦交流电: 大小和方向都随时间按正弦规律作周期性变化 的电量(电压、电流、电动势)。
i
设正弦交流电流:
Im
O
t
T
i I m sin t
初相角:决定正弦量起始位置 角频率:决定正弦量变化快慢 in( t 2 )
I I1 I 2
i i1 i 2
上节复习:
1、写出下列正弦量对应的相量,并作出相量图
i1 4 2 s in ( t 3 0 )
i2 1 0 2 c o s ( t 1 2 0 )
i3 1 4 .1 4 s in ( t 1 5 0 )
相量的模=正弦量的最大值
相量辐角=正弦量的初相角
U
U
u U m sin ( t )
电压的有效值相量
U
U
相量的模=正弦量的最大值
相量辐角=正弦量的初相角
例1:
u 10 sin( 314 t 60 )
写出其相量形式
U 5 2 60
U m 10 60
3-1-3 正弦交流电的参考方向
i
O
i I m sin t
ωt
i 0,实际方向与参考方向相 同
i 0,实际方向与参考方向 相反
3-2正弦交流电的相量表示法
1.正弦量的表示方法 波形图
O
u/i
ωt
瞬时值表达式
u U m sin ( t )
i I m s in
第3章_单相正弦电路的基础知识
dt
L
dt
电感元件上电压、电流的有效值关系为: UL XL I XL=2πf L=ωL,虽然式中感抗和电阻类似,等于元 件上电压与电流的比值,但它与电阻有所不同,电 阻反映了元件上耗能的电特性,而感抗则是表征了 电感元件对正弦交流电流的阻碍作用,这种阻碍作 用不消耗电能,只能推迟正弦交流电流通过电感元 件的时间。
eL N dt L dt
2. 电感元件上的电压、电流关系 di 由于L上u、i 为动态关 u L u L eL L dt 系,所以L 是动态元件 设通过L中的电流为: i 2 I sin t d ( I m sint ) di 则L两端的电压为:
uL L
i
由式可推出L上电压 I mL cost 电流之间的相位上存 U Lm sin( t 90) 在90°的正交关系, 且电压超前电流。 电压电流之间的数量关系: ULm=Imωt =ImXL 其中XL是电感对正弦交流电流所呈现的电抗,简称 感抗,单位和电阻一样,也是欧姆。
第3章 单相正弦交流电路的基本知识
3.1 正弦 交流电路的 基本概念
3.2 正弦量 的有效值
3.3 交流 电路中的 常用元件
本章学习目的及要求
正弦交流电路的基本理论和基本分析 方法是学习电路分析的重要内容之一,应 很好掌握。通过本章的学习,要求理解正 弦交流电的基本概念;熟悉正弦交流电的 表示方法;深刻理解相量的概念,牢固掌 握单一参数及非单一参数的一般正弦交流 电路的分析与计算方法。
i 2 I sin ( t ) u 2 U sin ( t )
uip
则
p u i U m sint I m sint UI UI cos 2t
实验三 单相交流电路
实验三 单相交流电路——日光灯功率因数的提高一、实验目的1、了解日光灯结构和工作原理。
2、学习提高功率因数的方法,了解提高功率因数的意义。
3、熟悉功率表的使用。
二、实验原理图3-1 日光灯电路 图3-2 日光灯等效电路日光灯结构如图3-1所示,由灯管、启辉器和镇流器(带铁芯的电感线圈)组成。
开关闭合时,日光灯管不导电,全部电压加在启辉器两触片之间,使启辉器中氖气击穿,产生气体放电,此放电产生的一定热量使双金属片受热膨胀与固定片接通,于是有电流通过日光灯管的灯丝和镇流器。
短时间后双金属片冷却收缩与固定片断开,电路中的电流突然减小;根据电磁感应定律,这时镇流器两端产生一定的感应电动势,使日光灯管两端电压产生400至500V 高压,灯管内气体电离放电,产生紫外线,涂在灯管内壁上的荧光粉吸收后辐射出了可见光。
日光灯点燃后,灯管两端的电压降为100V 左右,这时由于镇流器的限流作用,灯管中电流不会过大。
同时并联在灯管两端的启辉器,也因电压降低而不能放电,其触片保持断开状态。
由此可知,启辉器相当于一个自动开关,能自动接通和断开电路;镇流器除感应高压使灯管放电外,在日光灯正常工作时,起限流作用。
日光灯正常工作后,启辉器断开,灯管相当于一电阻R ,镇流器可等效为电阻R L 和电感L 的串联,所以整个电路可等效为一R 、L 串联电路,相当于一个感性负载,其电路模型如图3-2所示。
其中,镇流器是个电感量较大的线圈,所以整个电路功率因数不高。
若日关灯电路作为负载接入图3-3所示电路中(◎表示电流测量专用插口),则可采用在日光灯两端并联电容的方法来提高整个电路的功率因数。
其原理如图3-4所示,当未接电容时(C=0),电路总电流记为0I ,此时电路总电流即为流经日关灯电路电流LR I I =0;当并联接入电容C (C=C 1)后,电路总电流1I 减小(1I <0I ),且01cos cos ϕϕ>,总电路功率因素提高;当C 电容量增加过多时(称为过补偿),则总电流又将增大(2I >0I ),且02cos cos ϕϕ<。
第三章单相正弦交流电路【PPT课件】PPT课件
HOME
R-L-C串联交流电路中的复数形式欧姆定律
I
U IZ
Z R j(L 1 ) C
Z:复数阻抗
实部为阻 虚部为抗
R U R
U jL U L
1
jC
U C
感抗 容抗
HOME
3.4.1 阻抗三角形
I
Z R jபைடு நூலகம் 1
C
Z 是一个复数,但并不是正弦交流
U
量,上面不能加点。
R U R
j
L
1
C
IZ
Z
R
j(L
1
C
)
Z
Z
R2
(L
1
C
)
2
tg 1
L
1
C
U
I
R
Z
>0 ,u领先i =0 ,u与i同相 <0 ,u落后i
HOME
tg 1
L
1
C
R
时L ,1C 表示u 0领先 i --电路呈感性
时L,
1 C
表示u0落后 i
--电路呈容性
当L 1C时, 0表示 u 、i同相 --电路呈电阻性
第三章单相正弦交 流电路【PPT课件】
3.4 电阻、电感、电容串联的电路
相量模型
I
jLR U R
U
1
jC
U L
U C
相量方程式:
U U R U L UC
设 I I0 (参考相量)
U R IR
则 U L I jL
U C
I
1
jC
HOME
U IR I jL I 1 jC
I
R
单相三相交流电路功率计算公式汇总
单相三相交流电路功率计算公式汇总单相交流电路功率计算公式:
1. 有功功率(P)计算公式:P = UIcosφ
其中,U为电压,I为电流,φ为电压和电流的相位差(即功率因数的反余弦值)。
2.视在功率(S)计算公式:S=UI
视在功率是指电压和电流的乘积,单位为伏特安(VA)。
3. 无功功率(Q)计算公式:Q = UISinφ
无功功率是指电压和电流的乘积与功率因数的正弦值的乘积,单位为伏特安乘以安(VAr)。
4. 功率因数(pf)计算公式:pf = cosφ
功率因数是有功功率与视在功率的比值,无量纲。
三相交流电路功率计算公式:
1.三相有功功率(P)计算公式:
P = √3 * U * I * cosφ
其中,√3为根号3,U为相电压,I为相电流,φ为电压和电流的相位差(即功率因数的反余弦值)。
2.三相视在功率(S)计算公式:
S=√3*U*I
视在功率是指相电压和相电流的乘积,单位为伏特安(VA)。
3.三相无功功率(Q)计算公式:
Q = √3 * U * I * sinφ
无功功率是指相电压和相电流的乘积与功率因数的正弦值的乘积,单
位为伏特安乘以安(VAr)。
4. 功率因数(pf)计算公式:pf = cosφ
功率因数是有功功率与视在功率的比值,无量纲。
需要注意的是,以上公式适用于理想情况下,即电压和电流正弦波形
完美,并且不考虑电路的复杂性和功率因素的非线性影响。
在实际应用中,可能还需要考虑电路中的电感、电容和电阻等元件的影响,以及电路的非
线性特性。
因此,在实际计算中可能需要更复杂的公式和方法来考虑这些
因素。
实验三·单相交流调压电路
实验(三):单相交流调压电路实验一、实验目的(1)加深理解单相交流调压电路的工作原理。
(2)加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。
二、预习内容要点(1) 熟悉实验电路(包括主电路、触发控制电路)。
(2) 按实验电路要求matlab仿真,用示波器观察移相控制信号α的情况。
(3) 主电路接电阻负载,用示波器观察不同α角时输出电压和晶闸管两端的电压波形,并用电压表测出输出电压的有效值。
为使读数便利,可取α为30°、60°、90°进行观察和分析(4) 主电路改接电阻电感负载,在不同控制角α和不同负载阻抗角θ情况下用示波器观察和记录负载电压和电流的波形。
(5) 特别注意观察上述α<θ情况下出现较大的直流分量,此时L 固定,加大R直至消除直流分量。
三、实验仿真模型图1.1 单相交流调压阻感性电路四、实验内容及步骤1.对单相交流调压带电阻性负载的运行情况进行仿真并记录分析改变脉冲延迟角时的波形(至少3组)。
(1)器件的查找以下器件均是在MATLAB R2017b环境下查找的,其他版本类似。
有些常用的器件比如示波器、脉冲信号等可以在库下的Sinks、Sources中查找;其他一些器件可以搜索查找(3)参数设置1.双击交流电源把电压设置为220V,频率为50Hz;2.双击脉冲把周期设为0.02s,占空比设为80%,延迟角设为30度,60度,,90度,由于属性里的单位为秒,故把其转换为秒即,(30/360)*0.02;3.双击负载把电阻设为10Ω;4.双击示波器把Number of axes设为6;仿真波形及分析当α=30°时,当α=60°时,当α=90°时,2.对单相交流调压电路带阻感性负载的运行情况进行仿真并记录分析改变脉冲延迟角时的波形(至少3组)。
参数设置双击负载把电阻设为10Ω;电感为0.01H;其余参数不变。
当α=30°时,当α=60°时,当α=90°时,五、实验总结1、在交流调压电路中,当负载为阻性时,输出电压的有效值随相控角增大而减小。
技校电工学第五版第三章 单相交流电路(优.选)
第三章单相交流电路§3-1 交流电的基本概念一、填空题(将正确答案填写在横线上)1.正弦交流电流是指电流的大小和方向均按正弦规律变化的电流。
2.交流电的周期是指交流电每重复变化一次所需的时间,用符号T表示,其单位为秒(S);交流电的频率是指交流电1S内变化的次数,用符号f表示,其单位为赫兹(Hz),周期与频率的关系是T=1/f或f=1/T。
3.我国动力和照明用电的标准频率为50Hz,习惯上称为工频,其周期是0.02s,角频率是314rad/s。
4.正弦交流电的三要素是周期(频率或角频率)、有效值(最大值)和初相位。
5.已知一正弦交流电流i=sin(314t-π/4)A,则该交流电的最大值为1A,有效值为0.707A,频率为50Hz,周期为0.02S,初相位为-π/4。
6.阻值为R的电阻接入2V的直流电路中,其消耗功率为P,如果把阻值为R/2的电阻接到最大值为2V的交流电路中,它消耗的功率为P。
7.如图3-1所示正弦交流电流,其电流瞬时值表达式是:i=4sin314t(A)。
8.常用的表示正弦量的方法有解析式、波形图和相量图。
9.作相量图时,通常取逆(顺、逆)时针转动的角度为正,同一相量图中,各正弦量的频率应相同。
用相量表示正弦交流电后,它们的加、减运算可按平行四边形法则进行。
二、判断题(正确的,在括号内画√;错误的,在括号内画×)1.正弦交流电的三要素是指:有效值、频率和周期。
(×)2.用交流电压表测得交流电压是220V,则此交流电压的最大值是380V。
(×) 3.一只额定电压为220V的白炽灯,可以接到最大值为311V的交流电源上。
(√)4.用交流电流表测得交流电的数值是平均值。
(×)三、选择题(将正确答案的序号填写在括号内)1.交流电的周期越长,说明交流电变化得(B).A.越快B.越慢C.无法判断*2.某一正弦交流电压的周期为0.Ols,其频率为(C)。
单相交流电路实验报告
单相交流电路实验报告单相交流电路实验报告概述:本实验旨在通过搭建单相交流电路,深入了解交流电的特性和基本原理。
通过实验,我们将探究交流电的波形特点、电压与电流的相位关系以及电路中的功率计算等内容。
实验材料:1. 电源:交流电源2. 电阻:用于限制电流流动的元件3. 电感:用于储存电能的元件4. 电容:用于储存电荷的元件5. 万用表:用于测量电压和电流的工具6. 示波器:用于观察电压和电流波形的仪器实验步骤:1. 搭建基本的单相交流电路:将电源、电阻、电感和电容按照电路图连接起来。
2. 测量电流和电压:使用万用表分别测量电路中的电流和电压值,并记录下来。
3. 观察波形:将示波器接入电路中,观察电压和电流的波形特点,并记录下来。
4. 计算功率:根据测得的电压和电流值,计算电路中的功率,并进行分析。
实验结果与分析:通过实验,我们得到了电流和电压的波形图,并进行了分析。
我们发现,交流电的电压和电流都是周期性变化的,呈现出正弦波形。
电压和电流的周期相同,且具有相同的频率。
在电路中,电流和电压之间存在相位差。
通过观察波形图,我们可以看到电流波形相对于电压波形存在一定的滞后。
这是因为电感和电容在电路中的作用,导致电路中的电流与电压之间存在相位差。
根据测得的电流和电压值,我们可以计算出电路中的功率。
功率的计算公式为P = U * I * cosθ,其中U为电压值,I为电流值,θ为电压和电流之间的相位差。
通过计算,我们可以得到电路中的实际功率值。
实验中,我们还观察到电路中的无功功率和视在功率。
无功功率指的是电路中由于电感和电容的存在而产生的无效功率,它不会对电路中的有用功率产生影响。
视在功率则是电路中的总功率,它包含了有用功率和无功功率。
通过实验,我们深入了解了交流电路的特性和基本原理。
我们了解到交流电的波形特点、电压与电流的相位关系以及功率的计算方法。
这些知识对于我们理解电路中的能量传输和电器设备的工作原理具有重要意义。
电力电子技术-第三章--单相整流讲解
3.1.1 单相半波可控整流电路
(Single Phase Half Wave Controlled Rectifier)
1. 电阻负载的工作情况
在工业生产中,某些负载基本上是电阻性的, 如电阻加热炉、电解和电镀等。
电阻性负载的特点是电压与电流成正比,波形 相同并且同相位,电流可以突变。 • 1. 工作原理 • 首先假设以下几点: • (1) 开关元件是理想的,即开关元件(晶闸管)导通 时,通态压降为零,关断时电阻为无穷大; • 一般认为晶闸管的开通与关断过程瞬时完成。 • (2) 变压器是理想的,即变压器漏抗为零,绕组的 电阻为零、励磁电流为零。
id 的连续波形每周期分为两 段:u2过零前一段流经SCR, 时宽为π-α;之后一段流经 VDR ,时宽为π+α。由两器 件电流拼合而成。
若近似认为id为一条水平线,恒为Id,则有
SCR 平均值: I a I
dVT
2 d
(2-5)
SCR 有效值:
IVT
1
2
a
I
d2d
(t
在ωt=0到α期间,晶闸管uAK大于零, 但门极没有触发信号,处于正向关断状
态,输出电压、电流都等于零。
在ωt=α时,门极有触发信号,晶闸管 被触发导通,负载电压ud= u2。 在ωt1时刻,触发VT使其开通,u2加 于负载两端,id从0开始增加。这时,交 流电源一方面供给电阻R消耗的能量, 另一方面供给电感L吸收的磁场能量。
)
a 2
I
(2-6)
d
VDR 平均值: VDR 有效值:
a IdVDR 2 Id
(2-7)
IVDR
1
2
2 a
单相交流电路功率的初步分析
单相交流电路功率的初步分析摘要:在单相交流电路中,视在功率、有功功率、无功功率和功率因数反映电路提供功率的能力、电路实际消耗功率、储能元件与电源之间能量交换的能力、电路功率利用率是电路运行非常重要的几个指标;同时在江苏省的高校单独招生考试电子电工、机电等专业试题中都占有较高的比重。
本文从它们的定义、实质、实例求解三个方面作一个初步分析。
关键词:交流电路功率初步解析单相交流电路的功率是中等职业学校电子电工、机电等专业的专业基础课《电工基础》中非常重要的一个章节。
视在功率、有功功率、无功功率和功率因数反映电路提供功率的能力、电路实际消耗功率、储能元件与电源之间能量交换的能力、电路功率利用率是电路运行非常重要的几个指标(瞬时功率无较大的实际意义);同时本节中的视在功率、有功功率、无功功率和功率因数既是学生学习的难点又是我省单招考试的重点。
为此,本文特从它们的定义、实质、实例求解三方面对上述单相交流电路中的视在功率、有功功率、无功功率和功率因数作一个初步分析。
一、定义(一)视在功率:单相交流电路端电压和电流有效值的乘积,记为S=UI=QP22 ,单位伏安(VA)。
(二)功率因数:单相交流电路有功功率与视在功率的比值,记为λ=P/S=cosΦ(Φ为单相交流电路端电压与电流间的相位差角,也称为功率因数角)。
(三)有功功率(也称平均功率):单相交流电路瞬时功率在一个周期内的平均值,记为P = UIcosΦ= UR IR,单位瓦特(W)。
(四)无功功率:单相交流电路内储能元件与电源之间能量交换的最大值,记为Q=UIsinΦ,单位乏(var)。
为什么要用上述这么多功率表达单相交流电路的功率呢?因为:在直流电路中,当电路处于稳态时,储能元件上功率为零(UL =0或IC=0),电阻上消耗的功率既为电路总的功率;但是单相交流电路中既有电阻性元件消耗能量又有储能元件与交流电源时刻不停地进行能量交换,导致电源提供的功率被耗能和储能两种元件所利用,单一功率不能表达出各功率之间的关系,所以用三种上述功率和功率因数重点描述单相交流电路的功率。
03单相交流电路
时
Um U = 2 Em E= 2
时
角频率、 2 角频率、频率与周期 描述正弦交流量的变化快慢) (描述正弦交流量的变化快慢) i
ωt
T 每秒变化的弧度,单位→rad/s (1)角频率ω:每秒变化的弧度,单位→rad s ) 每秒变化的次数,单位→ (2)频率 f:每秒变化的次数,单位→Hz ) (3)周期 T:变化一周所需的时间,单位→s ) :变化一周所需的时间,单位→
i1 = 100 2 sin( 6280 t − 60 o ) A i2 = 10 2 sin( 6280 t + 30 ) A
o
正弦交流量四种表示方法的比较
u
波形图
ϕ
ωt
T
函数表达式 相量图
u = Um sin(ω t + ϕ )
ϕ
& U
相量表示
& U = a + jb = U ∠ϕ
强调! 强调! 正弦交流量的各种表示符号不能混淆 瞬时值 --- 小写字母 有效值 --- 大写字母 u、i、e U 、I 、E
b
ϕ
a
区别, 为了和电流 i 区别, 虚数单位用 j 表示。 表示。
对于任意两个复向量
A1= a1+jb1= |A1|∠ϕ1 A2= a2+jb2= |A2|∠ϕ2
若 A1=A2
则
a1= a2 b1= b2
A1±A2 = (a1±a2) + j (b1±b2 ) A1 · A2 = |A1| · |A2| ∠ϕ1 + ϕ2 A1 / A2 = |A1| / |A2| ∠ϕ1 - ϕ2
有效值是根据电流的热效应来定义的。 有效值是根据电流的热效应来定义的。
单相正弦交流电路
二、正弦交流电的基本物理量
3、频率 交流电在1秒内完成周期性变化的次数叫做 交流电的频率,用字母f表示,单位名称是赫 兹,简称赫,单位符号为Hz。频率较大的单 位有千赫(kHz)和兆赫(MHz),它们之间 的关系为 1千赫=1000赫 1兆赫=1000千赫
二、正弦交流电的基本物理量
根据以上定义,周期和频率的关系为
二、正弦交流电的基本物理量
注意,初相的大小与时间起点的选择密切相 关,而相位差与时间起点的选择无关。根据两 个同频率交流电的相位差,可以确立两个交流 电的相位关系。
二、正弦交流电的基本物理量
如果Δφ=φ1-φ2>0,那么i1超前i2,或者说i2 滞后i1; 如果Δφ=φ1-φ2=0,那么就称这两个交流 电同相; 如果Δφ=φ1-φ2=180°,那么就称这两个 交流电反相。 如果Δφ=φ1-φ2=90°,那么就称这两个 交流电正交。
O
ωt
• 当线圈按逆时针方向以速度υ作等速旋转时,线 圈边分别切割磁力线,产生感应电动势,其大小 为: e=Emsinα= Emsinωt 。
• 上式是从线圈平面与中性面重合的时刻开始计时 的,如果线圈平面与中性面成一夹角φ时开始计时 的,那么,经过时间t,线圈平面与中性面的夹角 是ωt+ φ ,感应电动势的公式变为: e=Emsin(ωt+ φ)
二、正弦交流电的基本物理量
例如,正弦交流电压u1=10sin(314t+60°), u2=5sin(314t-45°)则u1与u2的相位差为 (314t+60°)-(314t-45°)=105° 即u1超前u2 105°电角度。 若正弦交流电流i1=20sin(314t+30°), i2=8sin(314t+70°) 则i1与i2的相位差为 (314t+30°)-(314t+70°)=-40° 即i1滞后i2 40°电角度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节
正弦量的相量表示法
若一个相量相对于另一个相量在相量图的逆时针位置上,则说明该 相量具有超前的相位;相对地,另一个相量就具有滞后的相位。 2)几个同频率正弦量的加减,可以借助于相量图用平行四边形法则 或三角形法则进行运算。
图3-9 相量图的几种表示形式
第二节
2.相量的运算 解:因为
正弦量的相量表示法
第五节
功率因数的提高
六、考核标准 单控照明电路的安装考核标准见表3⁃1。
表3-1 单控照明电路的安装考核标准
第五节
功率因数的提高
表3-1 单控照明电路的安装考核标准
一、实训目的 1)掌握照明电路中荧光灯电路的安装方法。 2)掌握双控开关的工作原理及连接方法。 3)掌握插座的连接方法 二、实训器材
第四节
交流电路分析
图3-21 电路性质分析
三、电路功率分析 在RLC串联电路中,电阻是耗能元件,电感与电容都是储能元件, 因此电路中既有有功功率,又有无功功率。
第四节
交流电路分析
第四节
交流电路分析
第四节
交流电路分析
图3-22 功率三角形
第四节
交流电路分析
解:借用例3-5的求解内容可得
第四节
口内中心弹簧片上的接线端子,中性线接入螺旋部分。 6)照明装置的接线必须牢固,接触良好。 一、实训目的
1)掌握照明电路中白炽灯以及单控开关的安装方法。 2)掌握单相电能表的连线。 二、实训器材
第五节
功率因数的提高
白炽灯、圆台、螺口平灯座、开关、熔断器、塑料铜芯导线、 塑料软线、木螺钉、螺钉、通用电工工具、接线端子(XT)及单相电 能表等。 三、实训内容 1)安装圆台、螺口平灯座、开关及熔断器等。 2)安装灯头,连接电路。
交流电路分析
第五节
功率因数的提高
一、提高功率因数的意义 1.使电源设备得到充分利用 2.降低线路损耗和线路压降 二、提高功率因数的方法 按照供电规则,高压供电的工业企业平均功率因数不低于0.9。
图3-23 并联电容提高功率因数
第五节
功率因数的提高
第五节
功率因数的提高
(1)当cosφ=0.6时,该变压器能带动几台UN=220V、P=2.2kW的电动机? (2)当cosφ=0.9时,该变压器能带动几台UN=220V、P=2.2kW的电动机? 解:(1)当cosφ=0.6时,每台电动机取用的电流是
第二节
正弦量的相量表示法
一、正弦函数与有向线段 图3⁃5a所示为一个有向旋转线段OA,设正弦交流电压u=Um sin(ωt+ ψ) ,其波形如图3⁃5b所示。
图3-5 正弦量的表示方法
第二节
正弦量的相量表示法
1) OA的长度等于正弦交流电压的幅值Um; 2) OA的初始角(t= 0时,OA与正向横轴之间的夹角)等于正弦电压u 的初相位ψ; 3) OA以正弦交流电压的角频率ω 沿逆时针方向旋转。 二、相量表示法 正弦量可以用有向线段来表示,而有向线段又可用复数来表示,因
此正弦量可以用复数来表示。
图3-6 复数
第二节
正弦量的相量表示法
1.复数A的表示形式 (1)代数形式 (2)三角形式 (3) 指数形式 根据欧拉公式
(4) 极坐标形式 2.复数的加减乘除运算法则
第二节
正弦量的相量表示法
(1)加减运算 复数的加减运算通常用代数形式或三角函数式求解。 (2)乘除运算
3)检查电路,经指导教师同意后方可接通电源校验电路。 4)打开单相电能表的盒盖,观看盒盖背面的接线图,如图3-24所示。 四、实训电路
单控照明电路如图3⁃25所示,请根据图示电路进行接线。
第五节
功率因数的提高
图3-24 单相电能表接线图
第五节
功率因数的提高
图3-25 单控照明电路接线图
五、实训记录 1)写出实训要点、实训时所遇到的问题及解决方法。 2)思考题:开关为什么必须接到相线上?
(2)当cosφ=0.9时,每台电动机取用的电流是
第五节
功率因数的提高
一、常用照明灯具 1.白炽灯 2.荧光灯
二、照明灯具的安装 1.灯具的布置要求 2.照明灯具的一般安装要求 1)灯具的安装高度。
第五节
功率因数的提高
2)根据不同的安装场所和用途,选择照明灯具使用的不同类型的导 线线芯。 3)明插座的安装高度不宜低于1.3m;暗插座一般离地0.3m(住宅暗插 座应采用保护式),特殊场所不宜低于0.15m。 4)固定灯具需用接线盒及木台等配件。 5)当采用螺口灯座或灯头时,应将相线(即开关控制的相线)接入螺
图3-15 纯电感电路功率
三、电容元件的交流电路
第三节
单一参数元件的交流电路分析
将电容元件接在交流电路中,就组成了纯电容电路,如图3⁃16所示。 1.电压与电流的关系
第三节
单一参数元件的交流电路分析
图3-16 纯电容电路
第三节
单一参数元件的交流电路分析
图3-17 纯电容电路中电压与电流的波形图和相量图
5)检查电路,经指导教师同意后方可接通电源校验电路。 四、实训电路 双控照明电路如图3⁃26所示,请根据图示电路进行接线。
第五节
功率因数的提高
图3-26 双控照明电路接线图
五、实训记录 1)写出实训要点、实训时所遇到的问题及解决方法。
第五节
功率因数的提高
2)思考题:如何实现在三个不同的地方控制同一个照明负载? 六、考核标准 双控照明电路的安装考核标准见表3⁃2。
第二节
正弦量的相量表示法
3.正弦量的相量表达式 解:题中给出的是最大值,可直接写出其最大值相量表达式为
三、相量图和相量的运算 1.相量图 解:相量图如图3-8所示。
第二节
正弦量的相量表示法
图3-7 相量图
第二节
正弦量的相量表示法
图3-8 例3-3图
1)在相量图上能清楚地看出各个正弦量之间的相位关系,由于相位 差的选择范围为析 (1)瞬时功率p
第三节
单一参数元件的交流电路分析
图3-12 纯电阻电路功率
(2)平均功率(有功功率)P 指瞬时功率在一个周期内的平均值。
第三节
单一参数元件的交流电路分析
二、电感元件的交流电路 忽略了电阻的空心线圈,可认为是纯电感线圈(即电感元件),接 在交流电路中,就组成了纯电感电路,如图3⁃13所示。
第三章
单相交流电路的分析与计算
第三章
第一节 第二节 第三节
单相交流电路的分析与计算
正弦交流电 正弦量的相量表示法 单一参数元件的交流电路分析
第四节 第五节
交流电路分析 功率因数的提高
第一节
正弦交流电
图3-1 正弦交流电压波形
第一节
正弦交流电
图3-2 正弦交流电的三要素
一、正弦交流电的三要素
第一节
图3-31 题3-17图
(2)电源供给的总电流、总视在功率及功率因数。
表3-2 双控照明电路的安装考核标准
(1)u=100sin(ωt+30°)V
第五节
功率因数的提高
(2)u=220sin(ωt-45°)V (1)=100V (2)=(-3+j4)A (1)u=5sin(100t+90°)V,i=2cos100tA (2)u=5sin100tV,i=2cos100tA (3)u=5cos100tV,i=2sin100tA
第二节
正弦量的相量表示法
第三节
单一参数元件的交流电路分析
一、电阻元件的交流电路 由交流电源和电阻元件组成的电路称为纯电阻电路,如图3⁃10所示。
图3-10 纯电 阻电路
第三节
单一参数元件的交流电路分析
1.电压与电流的关系
第三节
单一参数元件的交流电路分析
图3-11 纯电阻电路中电压与电流的波形图和相量图
1.电压与电流的关系
第三节
单一参数元件的交流电路分析
第三节
单一参数元件的交流电路分析
图3-13 纯电感电路
第三节
单一参数元件的交流电路分析
图3-14 纯电感电路中电压与电流的波形图和相量图
第三节
单一参数元件的交流电路分析
2.功率关系分析
第三节
单一参数元件的交流电路分析
第三节
单一参数元件的交流电路分析
第五节
功率因数的提高
开关、插座、熔断器、塑料铜芯导线、塑料软线、荧光灯(包括荧 光灯灯管、镇流器、辉光启动器等)、木螺钉、螺钉、通用电工工 具及接线端子(XT)等。 三、实训内容 1)安装固定荧光灯灯座、辉光启动器座,将镇流器安装固定在灯架 上。
2)安装插座。 3)安装两个双控开关。 4)连接电路后装入荧光灯灯管和辉光启动器。
第三节
单一参数元件的交流电路分析
2.功率关系分析
第三节
单一参数元件的交流电路分析
第三节
单一参数元件的交流电路分析
图3-18 纯电容电路功率
第四节
交流电路分析
一、RLC串联电路中电压、电流之间的关系
第四节
交流电路分析
图3-19 电阻、电感与电容串联的交流电路
第四节
交流电路分析
第四节
交流电路分析
第四节
交流电路分析
第四节
交流电路分析
图3-20 阻抗 三角形
第四节
交流电路分析
(1)电路的复阻抗Z; (2)电路中的电流i,各元件端电压uR、uL、uC; 解:由u=220sin314tV可得 (1)
第四节
交流电路分析
(2)由
第四节
交流电路分析
第四节
交流电路分析
第四节
交流电路分析
二、电路性质分析 由φ=arctan[(XL-XC)/R]可知,φ的大小是由电源频率及元件参数决 定的,与电路中电压、电流的大小无关。