高一数学知识点汇总讲解全套整合

合集下载

高一数学知识点全总结归纳

高一数学知识点全总结归纳

高一数学知识点全总结归纳数学作为一门理科学科,对于高中生们来说无疑是一门重要的学科之一。

高一是数学学科的起点,是打下扎实数学基础的关键阶段。

为了帮助广大高一学生掌握和巩固数学知识,本文将全面总结和归纳高一数学知识点,帮助学生们更好地学习和理解。

一、代数1. 数与代数式2. 数的四则运算3. 一元一次方程与不等式4. 二元一次方程组与解法5. 平方差与完全平方公式6. 平方根与立方根7. 二次根式与整式的乘法8. 因式分解与最大公因数、最小公倍数9. 分式及其性质10. 一元二次方程与不等式11. 二次函数与一次函数二、几何1. 平面直角坐标系与二维坐标变换2. 向量及其运算3. 直线与线段的性质4. 角与角度的度量5. 三角函数与三角恒等式6. 圆的性质与相关定理7. 相似与全等三角形8. 数列与等差数列9. 数列与等比数列10. 空间坐标系与三维向量11. 空间中的直线与平面12. 空间中的平面与直线三、概率与统计1. 事件与概率的基本概念2. 概率的计算方法3. 条件概率与独立事件4. 随机变量与概率分布5. 二项分布与泊松分布6. 抽样与统计分布7. 统计图与直方图8. 统计数据的分析与应用四、数学建模与应用1. 数学建模的基本步骤与方法2. 函数模型与线性规划3. 排队论与图论4. 矩阵与运算5. 微分与微分方程6. 积分与应用问题以上是高一数学的主要知识点总结,涵盖了代数、几何、概率与统计以及数学建模与应用等重要内容。

在学习过程中,要注重基础知识的理解和掌握,应用数学解题的方法和技巧,并通过大量的练习和实际应用,不断提升数学能力。

希望本文对高一学生的数学学习有所帮助,让他们能够在数学领域取得优秀的成绩。

高一数学知识点总结(完整版)

高一数学知识点总结(完整版)

高一数学知识总结必修一一、集合一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x R|x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A 注意:B与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集二、函数1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略3、恒成立问题的求解策略4、反函数的几种题型及方法5、二次函数根的问题——一题多解&指数函数y=a^xa^a*a^b=a^a+b(a>0,a、b属于Q)(a^a)^b=a^ab(a>0,a、b属于Q)(ab)^a=a^a*b^a(a>0,a 、b 属于Q)指数函数对称规律:1、函数y=a^x 与y=a^-x 关于y 轴对称2、函数y=a^x 与y=-a^x 关于x 轴对称3、函数y=a^x 与y=-a^-x 关于坐标原点对称&对数函数y=loga^x如果0>a ,且1≠a ,0>M ,0>N ,那么:○1 M a (log ·=)N M a log +N a log ; ○2 =NM a log M a log -N a log ; ○3 n a M log n =M a log )(R n ∈. 注意:换底公式 ab bc c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 幂函数y=x^a(a 属于R)1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸; (3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

高一数学知识点总结全解

高一数学知识点总结全解

高一数学知识点总结全解在高一学习数学的过程中,我们接触到了许多重要的数学知识点,这些知识点是我们建立数学基础的重要组成部分。

下面将对高一数学的知识点进行全面总结和解析。

一、集合论集合是高中数学的基础,了解集合的概念和常用符号是非常重要的。

集合的相关知识包括集合的定义、集合的表示方法、集合的运算、集合的关系等。

集合的定义:集合是由一定确定的对象组成的整体。

集合的表示方法:列举法和描述法。

集合的运算:交集、并集、差集和补集。

例如,对于集合A和集合B,交集可以表示为A∩B,并集可以表示为A∪B,差集可以表示为A-B,补集可以表示为A'。

集合的关系:包含关系、相等关系等。

二、函数函数是数学中的重要概念,也是高一数学的核心知识之一。

了解函数的定义、性质以及函数的表示方法对于数学学习至关重要。

函数的定义:函数是一个将每个元素x都对应到唯一的元素y的规律。

函数的表示方法:用公式表示、用图像表示和用表格表示等。

函数的性质:奇函数与偶函数、单调性、有界性、周期性等。

三、数列与数列求和数列是由一定规律排列的数所组成的序列,数列求和则是对数列中的元素进行求和运算。

理解数列及其求和公式对于掌握高一数学至关重要。

数列的定义:数列是按照一定的顺序排列的一列数。

数列求和公式:等差数列求和公式(首项、末项、项数)、等比数列求和公式(首项、公比、项数)。

四、三角函数与解三角形三角函数是关于角的函数,也是高一数学中的重要内容。

了解三角函数的定义、性质以及解三角形的方法对于数学学习至关重要。

三角函数的定义:正弦函数、余弦函数、正切函数等。

三角函数的性质:周期性、奇偶性等。

解三角形的方法:余弦定理、正弦定理以及解直角三角形的方法。

五、平面向量平面向量是平面上的有向线段,是高一数学中涉及到的另一个重要概念。

了解平面向量的性质、运算规则以及平面向量的应用对于数学学习至关重要。

平面向量的定义:平面向量是具有大小和方向的量。

平面向量的性质:共线、平行、相等等。

(完整版)高一数学必修1知识点归纳

(完整版)高一数学必修1知识点归纳

1、集合的概念:某些研究对象的全体叫集合,用大写字母表示;集合中的每个对象叫做这个集合的元素,用小写字母表示;2、集合的表示方法有:(1)列举法(把集合的所有元素一一列举并写在大括号内);(2)描述法(把集合中元素的公共属性描述出来写在大括号内);3、集合中元素的特征有无序性、互异性、确定性;4、元素与集合的关系有:属于()和不属于();∈∉5、集合分类:(1)把不含任何元素的集合叫做空集(); (2)含有有限个元素的集合叫做有限集;∅(3)含有无穷个元素的集合叫做无限集;6、常用数集及其记法:(1)自然数集:记作;(2)正整数集:记作;{}0,1,2,3, N {}1,2,3, N N *+或(3)整数集:记作;(4)有理数(包括整数和分数)集:记作;{}3,2,1,0,1,2,3,--- Z Q (5)实数(包括有理数和无理数)集:记作;R 7、集合与集合的关系有:子集(包含于,)、真子集(真包含于,)、相等(=);⊆Ø8、子集的概念:如果集合A 中的每一个元素都是集合B 中的元素,那么集合A 叫做集合B 的子集,记作;A B ⊆9、真子集的概念:若集合A 是集合B 的子集,且B 中至少有一个元素不属于A,那么集合A 叫做集合B 的真子集,记作;(真子集是除本身以外的子集)A B ⊂10、子集、真子集的性质:(1)传递性:若,,则;B A ⊆C B ⊆A C ⊆(2)空集是任意集合的子集,是任意非空集合的真子集;(3)任何一个集合是它本身的子集;(在写子集时首先注意两个特殊的子集----空集和它本身)11、集合相等:(1)若集合A 中的元素与集合B 中的元素完全相同,则称集合A 等于集合B,记作;A B =(2)(即互为子集)。

B A A B B A =⇔⊆⊆,12、n 个元素的集合其子集个数共有个;真子集有个(比子集少了它本身);)(N n ∈2n21n-非空子集有个;非空的真子集有个;21n-22n -13、集合的运算:(1)交集(公共元素) :A ∩B ={x|x ∈A 且x ∈B};(2)并集(所有元素) :A ∪B ={x|x ∈A 或x ∈B};(3)补集(剩余元素) :={x| 且x ∈U},U 为全集。

高一数学全部知识点

高一数学全部知识点

高一数学全部知识点高一数学是学生们接触到的第一门较为复杂的数学课程,它为后续的数学学习打下了基础。

本文将从数与代数、函数与方程、三角函数、几何与向量、概率与统计等五个方面来论述高一数学全部知识点。

一、数与代数1. 数的集合:自然数集、整数集、有理数集和实数集的介绍和运算性质。

2. 数的性质:数的比较、数的绝对值与相反数等概念。

3. 线性方程与不等式:一元一次方程和一元一次不等式的解法。

4. 分数与比例:分数的四则运算、比例与比例方程的求解。

5. 百分数:百分数的意义、百分数的应用。

二、函数与方程1. 函数的概念:函数的定义、函数的表示与性质。

2. 一次函数:一次函数的定义、图像、性质及其应用。

3. 二次函数:二次函数的定义、图像、性质及其应用。

4. 指数与对数:指数运算与对数运算的概念、性质及其应用。

5. 幂函数与根函数:幂函数与根函数的定义、图像、性质及其应用。

三、三角函数1. 常用角度:角度的概念、角度的弧度制与度数制的转换。

2. 三角比的概念:正弦、余弦、正切等三角函数的定义、计算与性质。

3. 三角函数的图像与性质:正弦、余弦、正切函数的图像、周期、对称性等特点。

4. 三角函数的应用:角度的应用、航空航天及地理测量中的应用。

四、几何与向量1. 四边形的性质:平行四边形、矩形、正方形、菱形、梯形等四边形的定义、性质与应用。

2. 圆的知识:圆的定义、圆心角、弧长与扇形面积的计算。

3. 直线与平面几何:直线角的性质、平行线与三角形的性质等。

4. 向量的概念与运算:向量的定义、向量的加法与数乘等。

五、概率与统计1. 概率的概念:随机事件、样本空间、事件的概率等。

2. 概率计算:加法原理、乘法原理、全概率公式与贝叶斯公式的应用。

3. 统计的概念:数据的收集与整理、频数表与频率表的制作。

4. 统计指标与图形:中位数、众数、平均数和箱线图、直方图、折线图等。

高一数学的内容涉及了多个方面,对于学生来说,需要细心理解并融会贯通。

(完整版)高一第一学期数学知识点整理,推荐文档

(完整版)高一第一学期数学知识点整理,推荐文档

高一第一学期数学知识点整理一、集合与命题1、集合及其表示法概念:集合元素的性质: ⑴ 确定性 ⑵ 互异性 ⑶ 无序性表示法:⑴ 列举法 ⑵ 描述法 ⑶ 图示法注意:集合中的元素是确定的,各不相同的,注意最后的检验(有限集的互异性)。

2、集合之间的关系:⑴ 子集 ⑵ 相等的集合 ⑶ 真子集含有个元素的集合:有个子集,个真子集,个非空子集,个非空真子集。

n A n 212-n 12-n 22-n 注意:集合与元素的属于关系与集合之间的包含关系,两者不能混淆。

3、集合的运算:⑴ 交集 ⑵ 并集 ⑶ 补集两个重要转化:① ;② 。

⇔=A B A B A ⊆⇔=A B A A B ⊆注意:⑴ 认清集合,区分数集与点集的不同运算意义。

⑵ 集合运算注意分类讨论和数形结合思想,注意节点处的等号问题,不要忽视的存在φ如,别忘了可能是;,别忘了、可能是。

B A ⊆A φφ=B A A B φ4、命题的形式及等价关系四种命题:原命题、逆命题、否命题、逆否命题注意:⑴ 确定一个命题是真命题,就必须证明;确定一个命题是假命题,只要举反例。

⑵ 互为逆否命题的两个命题为等价命题,原命题与逆否命题同真(假),逆命题与否命题同真(假)5、充分条件,必要条件,充要条件如:推不出A,则A 是B 的充分非必要条件,A B B ⇒6、子集与推出关系:设是非空集合,=,=,B A ,A {}α具有性质a a B {}β具有性质b b 则与等价⊆A B βα⇒ 二、不等式1、不等式的基本性质(8条性质)2、一元二次不等式的解法⑴ 一元二次不等式的解集与字母系数的关系。

⑵ 利用二次函数图像,解决一元二次不等式特殊解集()的问题。

R ,φ 注意:开口方向与判别式∆⑶ 准确分类讨论,解含有字母参数的一元二次不等式。

注意: 在不等式变形时,如遇两边同除以字母系数时,一定要对字母分三种情况进行讨论。

0,0,0<=>3、其他不等式的解法⑴ 分式不等式注意:⑴ 解分式不等式时,移项通分,一般不直接去分母,特殊情况分母符号确定可以去分母⑵ 分母不为零,尤其是出现不等号时,注意解集的开闭不同。

高一数学知识点整理

高一数学知识点整理

高一数学知识点整理一、函数与方程1. 函数的概念与性质:介绍函数的定义、定义域、值域、奇偶性、单调性等基本概念和性质。

2. 一次函数:介绍一次函数的定义、性质及其图象的特点,以及如何确定一次函数的解析式。

3. 二次函数:介绍二次函数的定义、性质及其图象的特点,以及如何确定二次函数的解析式。

4. 一元二次方程:介绍一元二次方程的定义、解的判别式、解的求法及其应用。

5. 二元一次方程组:介绍二元一次方程组的定义、解的方法及其应用。

二、平面几何1. 直线与角:介绍直线的性质、判定方法以及角的定义、性质等基本概念。

2. 三角形与全等:介绍三角形的定义、性质、判定方法以及全等三角形的判定条件。

3. 相似三角形与比例:介绍相似三角形的定义、性质、判定方法以及比例的基本性质。

4. 圆与圆周角:介绍圆的定义、性质,以及圆周角的定义、性质和计算方法。

5. 平行线与比例:介绍平行线的性质、判定方法以及平行线与比例的关系。

三、立体几何1. 空间几何体的表面积与体积:介绍球、圆柱、圆锥、棱柱、棱锥等几何体的表面积和体积计算方法。

2. 空间直线与平面的位置关系:介绍直线与平面的位置关系,如直线与平面的交点个数、直线在平面上的投影等。

四、概率与统计1. 随机事件与概率:介绍随机事件的定义、基本性质,以及概率的定义、计算方法和应用。

2. 统计与统计图表:介绍统计的基本概念、统计图表的制作和分析方法。

五、数列与数学归纳法1. 数列的概念与性质:介绍数列的定义、等差数列与等比数列的性质,以及数列的通项公式的求法。

2. 递推数列与数学归纳法:介绍递推数列的概念、性质,以及数学归纳法的基本思想和应用。

六、复数与二次函数1. 复数的概念与运算:介绍复数的定义、复数的加减乘除运算法则,以及复数的共轭和模的性质。

2. 复数与二次函数的关系:介绍复数与二次函数的根的关系,以及如何利用复数求解二次函数的根。

七、导数与微分1. 导数的概念与性质:介绍导数的定义、导数的计算方法,以及导数在几何和物理问题中的应用。

高一数学知识点讲解大全集

高一数学知识点讲解大全集

高一数学知识点讲解大全集导言:数学作为一门理科学科,对于高中生来说是必修科目之一。

高一是数学知识转变与拓展的重要阶段,学生在这个阶段需要全面掌握并深入理解数学的基础知识。

本篇文章将为大家详细讲解高一数学的各个知识点,帮助大家更好地掌握并应用数学知识。

1.函数与方程1.1 函数的概念函数是数学中重要的概念,用来描述两个集合之间的对应关系。

在高一数学中,我们主要学习一次函数、二次函数及其图像、性质等。

通过函数的学习,我们可以更好地理解各种变化规律,并应用到实际问题中。

1.2 方程的解与方程组方程表示两个式子相等,在高一数学中,我们需要学习解一元一次方程、一次方程组以及二次方程等。

解方程是数学中常见的求解问题的方法,也是解决实际问题的基础。

2.三角函数2.1 三角函数的定义三角函数是研究角与边的关系的重要工具,包括正弦函数、余弦函数、正切函数等。

通过学习三角函数,我们可以更好地理解角的概念,并应用到几何、物理等领域中。

2.2 三角函数的性质与图像三角函数具有一些特定的性质,如周期性、奇偶性等。

通过学习三角函数的性质和图像,我们可以更好地理解函数的变化规律,解决与三角函数相关的问题。

3.平面向量3.1 向量的概念与性质向量是数学中用来表示有大小和方向的量的工具,通过学习向量的概念和性质,我们可以更好地理解向量的运算规则,并应用到几何等领域中。

3.2 平面向量的加法与减法平面向量的加法和减法是指将两个向量的相应分量相加或相减,通过学习平面向量的加法和减法,我们可以更好地理解向量之间的关系,并应用到几何等相关问题的求解中。

4.数列与数学归纳法4.1 数列的概念与性质数列是由一系列数字按照一定规律排列而成的,通过学习数列的概念与性质,我们可以更好地理解数列的变化规律,并应用到实际问题中。

4.2 等差数列与等比数列等差数列和等比数列是数学中常见的数列类型,通过学习等差数列和等比数列的性质和变化规律,我们可以更好地应用到实际问题中,并解决相关的数学计算问题。

高一上册数学知识点全面总结及详细解析2024版

高一上册数学知识点全面总结及详细解析2024版

高一上册数学知识点全面总结及详细解析2024版引言高一上册数学是高中数学学习的基础阶段,涵盖了代数、几何、函数等多个方面的知识点。

本文将对这些知识点进行详细总结,帮助学生更好地掌握和应用这些知识。

第一章:集合与函数1. 集合的概念集合的定义与表示方法:集合是指某些确定的、不同的对象的全体。

常用大写字母表示集合,小写字母表示集合中的元素。

集合的表示方法有列举法和描述法。

集合的基本运算(并集、交集、补集):并集是指两个集合中所有元素的集合,交集是指两个集合中共有元素的集合,补集是指全集中不属于某集合的元素的集合。

子集与全集:如果集合A的所有元素都是集合B的元素,则A是B的子集。

全集是指包含所有讨论对象的集合。

2. 函数的概念函数的定义与表示方法:函数是指两个集合之间的一种对应关系,其中每个元素在第一个集合中都有唯一的元素与之对应。

常用符号f(x)表示函数。

函数的性质(单调性、奇偶性、周期性):单调性指函数在某区间内是否保持递增或递减,奇偶性指函数是否关于原点对称或关于y轴对称,周期性指函数是否存在一个周期使得函数值重复出现。

反函数与复合函数:反函数是指将原函数的自变量与因变量互换得到的新函数,复合函数是指两个函数的组合。

第二章:基本初等函数1. 一次函数一次函数的定义与图像:一次函数是指形如y=ax+b的函数,其图像是一条直线。

一次函数的性质与应用:一次函数的斜率a决定了直线的倾斜程度,截距b 决定了直线与y轴的交点。

一次函数广泛应用于实际问题的建模与求解。

2. 二次函数二次函数的定义与图像:二次函数是指形如y=ax^2+bx+c的函数,其图像是一条抛物线。

二次函数的性质(顶点、对称轴、开口方向):二次函数的顶点是抛物线的最高或最低点,对称轴是通过顶点的垂直线,开口方向由系数a的正负决定。

二次函数的应用:二次函数在物理、经济等领域有广泛应用,如抛物运动、利润最大化等问题。

3. 指数函数与对数函数指数函数的定义与性质:指数函数是指形如y=a^x的函数,其图像呈指数增长或衰减。

(完整版)高一数学必修一知识点汇总

(完整版)高一数学必修一知识点汇总

高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。

⊆/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSx x∉∈且韦恩图示A B图1A B图2SA二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.值域: 先考虑其定义域(1)观察法(2)配方法(3)代换法3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A 到集合B的一个映射。

高一数学知识点梳理整合最新五篇

高一数学知识点梳理整合最新五篇

高一数学知识点梳理整合最新五篇高一数学在整个高中数学中占有非常重要的地位,既是高一又是整个高中阶段的重难点,所以要保持良好的学习心态和正确的学习方法。

高一数学知识点总结11、集合的概念集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。

理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。

对象――即集合中的元素。

集合是由它的元素确定的。

整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。

确定的――集合元素的确定性――元素与集合的“从属”关系。

不同的――集合元素的互异性。

2、有限集、无限集、空集的意义有限集和无限集是针对非空集合来说的。

我们理解起来并不困难。

我们把不含有任何元素的集合叫做空集,记做Φ。

理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。

几个常用数集N、N_、N+、Z、Q、R要记牢。

3、集合的表示方法(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素较多但呈现一定的规律的有限集,如{1,2,3, (100)③呈现一定规律的无限集,如{1,2,3,…,n,…}●注意a与{a}的区别●注意用列举法表示集合时,集合元素的“无序性”。

(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。

但关键点也是难点。

学习时多加练习就可以了。

另外,弄清“代表元素”也是非常重要的。

如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三个不同的集合。

4、集合之间的关系●注意区分“从属”关系与“包含”关系“从属”关系是元素与集合之间的关系。

“包含”关系是集合与集合之间的关系。

掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号,会用Venn图描述集合之间的关系是基本要求。

高一数学知识点全解

高一数学知识点全解

高一数学知识点全解必修一第一章,集合与函数概念 一,集合1.集合的有关概念:1) 集合的含义:一般的指定的某些对象的全体称为集合(也称为集),集合中的每个对象是集合的一个元素。

2) 集合元素的三个特性:① 元素的确定性 ,如:世界上最高的山② 元素的互异性, 如:由HAPPY 的字母组成的集合{H,A,P,Y ,} ③ 元素的无序性, 如:{A,B,C}和{A,C,B}表示同一个集合 3) 集合的表示方法:① 列举法,将集合中的元素一一列举出来。

如:{我们班的全体学生},{太平洋,大西洋,印度洋,北冰洋}② 描述法,将集合中元素的公共属性描述出来,写在大括号内。

如:{x 23|>-∈x R },{(x,y)|2x+3y=0,x R y R ∈∈,}③ Venn 图,例题:(集合的意义与表示方法)1.一直集合A={33,,222)1(++++a a a a } 若1A ∈,求实数a 的值2.试用列举法和描述法分别表示下列集合① 方程022=-x 所有实根组成的集合 ② 由大于10小于20的整数组成的集合*思考:能否用例举法表示不等式?37<-X作业:基础篇1,基础篇下列集合中,表示方程组的解集的是( )(A ) (B )(C )(D )2,若集合只有一个元素,则实数的值加强篇1,集合A 的元素由0232=+-x kx 的解组成,其中,R k ∈若A 中的元素之多有一个,求k 的 值 2,若,求实数的值。

二,集合间的基本关系 1,“包含”关系--子集注意:A BA AB B A B A B A B ⊄⊆,记作不包含,或者集合不包含于集合反之:集合是同一集合与)的一部分:(是)有两种可能(212“相等”关系:A=B (5》5,且5《5)实例:设 }1,1{},01|{2-==-=B x x A “两个集合表示的元素相通则集合相等”即:① 任何一个集合是它本身的子集② 真子集:如果A B A B ≠⊆,且那就是说集合A 是集合B 的真子集,记作A B(或者B A )③ 如果A B ⊆,C B ⊆,那么C A ⊆ ④ 如果B A A B B A =⊆⊆那么同时 3,不含任何元素的集合叫空集,记作* 有N 个元素的集合,含有个真子集子集,122-N N例题(集合间的基本关系) 1,设,,若,则实数的取值范围是( )(A ) (B ) (C ) (D )2,若集合、、,满足,,则与之间的关系为( )(A ) (B )(C ) (D )作业:基础篇1、图中阴影部分表示的集合是 ( ) A. B C A U I B. B A C U I C. )(B A C UI D. )(B A C UY2、已知集合A={x x ≤2,R x ∈},B={x x ≥a},且B A ⊆,则实数a 的取值范围是( ) (A )a ≥-2 (B )a ≤-2 (C )a ≥2 (D )a ≤23、设全集{}+∈≤=N x x x U ,8|,若{}8,1)(=B C A U I ,{}6,2)(=B A C U I , {}7,4)()(=B C A C U U I ,则 ( )(A ){}{}6,2,8,1==B A (B ){}{}6,5,3,2,8,5,3,1==B A (C ){}{}6,5,3,2,8,1==B A (D ){}{}6,5,2,8,3,1==B A 4、设P=}|),{(},|{22x y y x Q x y x ===,则P 、Q 的关系是 ( ) (A )P ⊆Q(B )P ⊇Q(C )P=Q (D )P ⋂Q=∅加强篇 1,已知集合,,且,求实数的取值范围。

高一数学知识点总结大全(非常全面)

高一数学知识点总结大全(非常全面)

高一数学知识点总结大全(非常全面)高一数学知识点汇总1函数的有关概念注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要根据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)假如函数是由一些根本函数通过四那么运算结合而成的.那么,它的定义域是使各局部都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.u 一样函数的判断方法:①表达式一样(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1) 平移变换2) 伸缩变换3) 对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射高一数学知识点汇总2集合(1)含n个元素的集合的子集数为2n,真子集数为2n-1;非空真子集的数为2n-2;(2)注意:讨论的时候不要遗忘了的情况。

(3)第二局部函数与导数1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析^p 法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、间隔、绝对值的意义等);⑧利用函数有界性;⑨导数法。

高一数学必修一复习知识点总结(最新6篇)

高一数学必修一复习知识点总结(最新6篇)

高一数学必修一复习知识点总结(最新6篇)高一必修一数学复习知识点梳理篇一直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直。

直线a叫做平面的垂线,平面叫做直线a的垂面。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

③直线和平面平行——没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

高一必修一数学复习知识点梳理篇二定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q 是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。

当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x0,则a可以是任意实数;排除了为0这种可能,即对于x排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

高一数学全一册知识点归纳

高一数学全一册知识点归纳

高一数学全一册知识点归纳随着高中教育的深入,高一学生不可避免地要面对数学课程的学习。

数学是一门理论性强、抽象性大的学科,需要学生掌握一定的基础知识和理论方法。

为了辅助高一学生更好地掌握数学知识,本文将对高一数学全一册的知识点进行归纳总结。

一、函数与导数在高一数学的学习中,函数与导数是一个重要的知识点。

函数是数学中的基础概念,导数则是函数理论的重要工具。

函数与导数的理解和应用是高一学生进一步学习数学的基础。

1. 函数的概念与性质函数是一种特殊的关系,它将自变量和因变量联系起来。

函数具有定义域、值域、单调性、奇偶性等性质。

在学习函数的过程中,需要注意函数的基本性质以及不同类型函数的性质。

2. 导数的定义与计算导数是函数变化率的一种度量,用于描述函数在某一点处的切线斜率。

导数的定义是极限的一种应用,通过极限的思想计算导数是高一数学中的重要内容。

掌握导数的计算方法,包括基本函数求导法则和链式法则等,对于后续的数学学习非常重要。

二、平面向量与立体几何平面向量和立体几何是高一数学中的另一个重要知识点。

它们能够帮助高一学生更好地理解和应用图形,以及解决与图形相关的问题。

1. 平面向量的定义和性质平面向量是具有大小和方向的量。

学习平面向量需要理解向量的加减、数量积和向量积等运算,以及相应的性质和定理。

熟练掌握平面向量的运算和性质,对于解决几何问题、解析几何问题具有重要意义。

2. 立体几何的基本概念立体几何是研究空间图形的形状、位置和相互关系的数学学科。

在学习立体几何时,需要熟悉几何图形的基本概念,如点、线、面、体等,以及它们之间的关系和性质。

了解立体几何的基本概念和方法,有助于高一学生在解决实际问题时运用几何思维。

三、概率与统计概率与统计是高一数学中的一门实用性较强的学科。

它能够帮助学生从随机现象中找到一些规律,并用统计方法进行数据的处理和分析。

1. 概率的基本概念与计算概率是描述随机事件发生可能性的数值,是数学中的一种度量。

(完整版)高一数学知识点汇总讲解大全

(完整版)高一数学知识点汇总讲解大全

高中数学知识点汇总(高一)高中数学知识点汇总(高一) (1)一、集合和命题 (2)二、不等式 (4)三、函数的基本性质 (6)四、幂函数、指数函数和对数函数 (12)(一)幂函数 (12)(二)指数& 指数函数 (13)(三)反函数的概念及其性质 (14)(四)对数& 对数函数 (15)五、三角比 (17)六、三角函数 (24)一、集合和命题一、集合:(1)集合的元素的性质:确定性、互异性和无序性;(2)元素与集合的关系:① a A a 属于集合 A ;② a A a 不属于集合 A .(3)常用的数集:N 自然数集;N *正整数集;Z 整数集;Q 有理数集;R 实数集;空集;C 复数集;Z 正整数集Q;Z 负整数集Q 正有理数集R;负有理数集R正实数集.负实数集(4)集合的表示方法:有限集集合无限集列举法;描述法例如:①列举法:{ z, h, a, n, g }(5)集合之间的关系:;②描述法:{ x x 1} .①A B 集合A 是集合B 的子集;特别地, A A ;A BA C .B CA B② A B 或A B集合 A 与集合 B 相等;③ A B 集合A 是集合B 的真子集.例:N Z Q R C ;N Z Q R C .④空集是任何集合的子集,是任何非空集合的真子集.(6)集合的运算:①交集:A B { x x A且x B} 集合A 与集合B 的交集;②并集:A B { x x A或x B} 集合A 与集合B 的并集;③补集:设U 为全集,集合 A 是U 的子集,则由U 中所有不属于 A 的元素组成的集合,叫做集合 A 在全集U 中的补集,记作CUA .④得摩根定律:CU( A I B )C U A U C U B ;C U ( A U B) C U A I C U B(7)集合的子集个数:若集合 A 有 n(n N *) 个元素,那么该集合有 2n个子集; 2n1个真子集; 2n1个非空子集;2n2 个非空真子集.二、四种命题的形式:(1)命题:能判断真假的语句.(2)四种命题:如果用 和 分别表示原命题的条件和结论,用 和 分别表示 和 的否定,那么四种命题形式就是:逆否命题关系同真同假关系 原命题逆否命题逆命题否命题(3)充分条件,必要条件,充要条件:①若,那么 叫做 的充分条件, 叫做 的必要条件;②若且,即,那么 既是 的充分条件,又是的必要条件,也就是说, 是 的充分必要条件,简称充要条件.③欲证明条件是结论 的充分必要条件,可分两步来证:第一步:证明充分性:条件 结论 ; 第二步:证明必要性:结论条件 .(4)子集与推出关系:设 A 、 B 是非空集合, A{ x x 具有性质} , B{ y y 具有性质 } ,则 A B 与等价.结论:小范围 大范围;例如:小明是上海人小明是中国人.小范围是大范围的充分非必要条件; 大范围是小范围的必要非充分条件.命题原命题逆命题否命题逆否命题表示形式 若 ,则若 ,则 ; 若 ,则 ; 若 ,则 . 逆命题关系 原命题 逆命题逆否命题 否命题 否命题关系 原命题 否命题 逆否命题 逆命题1 2 0 0 1 2 二、不等式一、不等式的性质:1、a b,b ca c ; 2、ab ac b c ;不等式的性质3、a b,c 0ac bc ;4、a b, c d a c b d ;5、a b 0, c d 0ac bd ;6、 a b 01 1 ;ab7、a b 0二、一元一次不等式:anb n(n N *) ;8、a b 0 nanb (n N *,n 1) .一元一次不等式 ax b a 0a 0解集xb xb aaa 0b 0b 0R三、一元二次不等式:ax 2bx c0(a 0)△ b24ac 0△ b24 a c 0△ b 24ac 0的根的判别式y ax2bx c(a 0)ax 2bx c 0(a 0){ x 1 , x 2} ,x 1 x 2{ x 0 }ax 2bx c 0(a 0) ( , x ) U (x , ) ( , x ) (x , )Rax 2bx c 0(a 0) ( x 1 , x 2 )ax 2bx c 0(a 0)( , x ] U [ x , )RR2axbx c 0(a 0)[ x 1 , x 2 ]{ x 0 }四、含有绝对值不等式的性质:(1) a ba b a b ;(2) a 1 a 2 a n a 1 a 2 a n .五、分式不等式:(1) ax b 0 cx d(ax b)(cx d) 0 ;( 2) ax b 0cx d(ax b )(cx d ) 0 .六、含绝对值的不等式:x aa 0a 0x aa 0 a 0 x aa 0 a 0 a 0 x aa 0 a 0 a 0a x ax a 或xaRa x ax 0x a 或xaR七、指数不等式:(1) af ( x )a( x)(a 1) f ( x)( x) ; ( 2) af ( x)a( x )(0a 1) f ( x)( x) .八、对数不等式:(x) 0 (1) log a f (x)log a ( x)(a 1)f (x);( x)(2) log af (x) log a ( x)(0 a 1)f (x) f (x)0 . ( x)九、不等式的证明:(1)常用的基本不等式:① a2b 22ab( a 、b R ,当且仅当 a b 时取“ ”号) ;②a b 2ab (a 、 b Ra2b2,当且仅当 aa b b 时取“ ”号) ;2 补充公式: 2ab.21 1 a b③ a3b3c3 3abc (a 、b 、c R ,当且仅当 a b c 时取“ ”号 ) ;④ a b c3 3abc (a 、b 、c R ,当且仅当 a b c 时取“ ”号 ) ; ⑤a 1 a 2n a nna 1 a 2a n (n 为大于 1 的自然数, a 1 , a 2 , , a nR ,当且仅当a 1a 2a n 时取“ ”号) ;(2)证明不等式的常用方法:①比较法; ②分析法;③综合法.0 三、函数的基本性质一、函数的概念:(1)若自变量对应法则x 因变量y ,则y 就是x 的函数,记作y f (x), x D ;x 的取值范围 D 函数的定义域;y 的取值范围函数的值域.求定义域一般需要注意:①y1,f ( x)f ( x) 0 ;②y n f (x) , f ( x) 0 ;③y ( f ( x)) , f ( x) 0 ;④y logaf ( x) ,f ( x) 0 ;⑤y log f ( x ) N , f ( x) 0 且f ( x) 1 .(2)判断是否函数图像的方法:任取平行于y 轴的直线,与图像最多只有一个公共点;(3)判断两个函数是否同一个函数的方法:①定义域是否相同;②对应法则是否相同.二、函数的基本性质:(1)奇偶性:函数y f (x), x D“定义域D 关于0 对称”成立①“定义域 D 关于0 对称”;前提条件 f ( x) f ( x) f ( x) f ( x)②“ f(x) f ( x) ”;③“f (x) f ( x) ”成立成立①不成立或者①成立②、③都不成立奇偶性偶函数奇函数奇偶函数图像性质关于y 轴对称关于O(0,0) 对称非奇非偶函数注意:定义域包括0 的奇函数必过原点(2)单调性和最值:O(0,0) .前提条件y f ( x), x D ,I D ,任取x1, x2区间I单调增函数x1 x2或x1 x2f (x1 ) f (x2 ) f ( x1 ) f ( x2 )单调减函数x1 x2或x1 x2f (x1 ) f ( x2 ) f ( x1 ) f (x2 )最小值yminf ( x0 ) 任取x D ,存在x0 D , f (x) f (x0 )最大值ymax f ( x) 任取x D ,存在x0 D , f (x) f ( x) f注意:①复合函数的单调性:函数外函数 yf (x)内函数复合函数 y g (x)yf [g (x)]②如果函数 yf ( x) 在某个区间 I 上是增(减)函数,那么函数 y f (x) 在区间 I 上是单调函数,区间 I 叫做函数 yf ( x) 的单调区间 .(3)零点:若 yf ( x), x D , c D 且 f ( c) 0 ,则 x c 叫做函数 y f (x) 的零点.y零点定理 :f ( x ), x [a,b]存在x 0(a,b);特别地, 当yf ( x), x [ a, b] 是单调函数 ,f (a) f (b) 0 f (x 0 ) 0且 f (a ) f (b) 0 ,则该函数在区间 [a ,b] 上有且仅有 一个零点, 即存在 唯一 x 0 (a,b) ,使得 f (x 0 ) 0 .(4)平移的规律:“左加右减,下加上减” .函数 向左平移 k 向右平移 k向上平移 h向下平移 h备注yf ( x) y f (x k ) y f ( x k)y hf ( x)y hf ( x)k, h 0(5)对称性:①轴对称的两个函数:函数yf ( x)对称轴x 轴 y 轴y xyxx m y n函数yf ( x)yf ( x)xf ( y)xf ( y)yf (2 m x)2n yf (x)②中心对称的两个函数:函数 对称中心函数yf ( x) ( m, n)2n yf ( 2m x)③轴对称的函数:函数y f (x)对称轴y 轴x m条件f (x)f ( x)f ( x)f (2 m x)单调性ZZ Z]]Z ]] Z]]Z注意: f (a x)f (b x) f (x) 关于 xa b 对称;2f (a x)f (a x)f (x) 关于 x a 对称;f (x)f ( x)f (x) 关于 x 0 对称,即 f (x) 是偶函数.④中心对称的函数:函数对称中心yf (x)(m, n)条件f ( x) 2n f (2 m x)注意: f (a x) f (b x) cf (x) 关于点 ( a b , c) 对称;2 2 f (a x) f (b x) 0a bf (x) 关于点 ( ,0) 2 对称;f (a x)f (a x) 2bf ( x) 关于点 (a, b) 对称;f (x) f ( x) 0f (x) 关于点 (0,0) 对称,即 f (x) 是奇函数.(6)凹凸性:设函数 yf ( x), x D ,如果对任意 x , xD ,且 xx ,都有 f x 1 x 2 f ( x 1 ) f ( x 2 ),则称121222函数 yf ( x) 在 D 上是凹函数;例如: y x 2 .进一步,如果对任意x , x ,L xD ,都有 fx 1x 2 L x n f ( x 1 ) f ( x 2 ) L f (x n ) ,则称函1 2 nnn数 yf ( x) 在 D 上是凹函数;该不等式也称琴生不等式或詹森不等式;设函数 yf ( x), x D ,如果对任意 x , xD ,且 xx ,都有 f x 1 x 2 f ( x 1 ) f ( x 2 ),则称121222函数 yf ( x) 在 D 上是凸函数.例如: y lg x .进一步,如果对任意x , x ,L xD ,都有 fx 1x 2 L x n f ( x 1 ) f ( x 2 ) L f (x n ) ,则称函1 2 nnn数 y f ( x) 在 D 上是凸函数;该不等式也称琴生不等式或詹森不等式.(7)翻折:函数翻折后翻折过程y f ( x ) 将y f ( x) 在y 轴右边的图像不变,并将其翻折到y 轴左边,并覆盖.y f ( x) 将y f ( x) 在x 轴上边的图像不变,并将其翻折到x 轴下边,并覆盖.y f (x) y f ( x ) 第一步:将y f ( x) 在y 轴右边的图像不变,并将其翻折到左边,并覆盖;第二步:将x 轴上边的图像不变,并将其翻折到x 轴下边,并覆盖.y f (x) (8)周期性:将y f ( x) 在x 轴上边的图像保持不变,并将x 轴下边的图像翻折到x 轴上边,不覆盖.若y f ( x), x R ,T 0,任取x R ,恒有 f ( x T ) f ( x) ,则称T 为这个函数的周期.注意:若T 是y f ( x) 的周期,那么kT (k Z ,k 0) 也是这个函数的周期;周期函数的周期有无穷多个,但不一定有最小正周期.① f ( x a) f ( x b) ,a b f ( x) 是周期函数,且其中一个周期T a b ;(阴影部分下略)② f (x) f ( x p) ,p 0 T 2 p ;③ f (x a) f ( x b ),a b T 2 a b ;④ f (x) 1 或f (x p )f ( x)1,p 0f ( x p )T 2 p ;⑤ f (x) 1 f ( x p)或f ( x) f (x p) 1,p 0T 2 p ;11 ⑥ f (x) f ( x p )f ( x p )或f ( x)f (x p) 1f (x p) 1,p 0T 4 p ;1 f ( x p) f (x p) 1⑦ f (x) 关于直线x a ,x b ,a b 都对称T 2 a b ;⑧ f (x) 关于两点( a, c) ,(b, c) ,a b 都成中心对称T 2 a b ;⑨ f (x) 关于点(a, c) ,a 0 成中心对称,且关于直线x b ,a b 对称T 4 a b ;⑩若 f ( x) f (x a ) f ( x 2a) L f (x na ) m(m 为常数,n N *),则f ( x) 是以(n 1)a 为周期的周期函数;若 f ( x) f (x a) f ( x 2a )L f ( x na ) m (m 为常数,n 为正偶数),则 f ( x) 是以2( n 1)a 为周期的周期函数.三、V 函数:定义形如y a x m h(a 0) 的函数,称作V 函数.分类y a x m h, a 0 y a x m h, a 0 图像定义域R值域[ h, ) ( , h]对称轴x m开口向上向下顶点( m, h)在( , m] 上单调递减;在( , m] 上单调递增;单调性在[ m, ) 上单调递增.在[ m, ) 上单调递减.注意当m 0时,该函数为偶函数四、分式函数: 定义 形如 y xa (a x0) 的函数,称作 分式函数 .分类y x a ,ax0 (耐克函数 )y x a, a 0x图像定义域(,0) U (0, )值域(, 2 a ] U [2 a,)R渐近线x 0, y x单调性在 ( , a ] , [ a , ) 上单调递增;在( ,0) , (0,) 上单调递增;在[a ,0) , (0, a ] 上单调递减.五、曼哈顿距离:在平面上, M ( x 1, y 1 ) , N ( x 2 , y 2 ) ,则称 dx 1 x 2y 1 y 2 为 MN 的曼哈顿距离.六、某类带有绝对值的函数:1、对于函数 yx m ,在 x m 时取最小值;2、对于函数 y x mx n , m n ,在 x [ m , n] 时取最小值;3、对于函数 y x mx n x p , m n p ,在 x n 时取最小值;4、对于函数 y x mx n x px q , m n p q ,在 x [ n, p ] 时取最小值;x 2n , x 1x 2 L x 2n ,在 x [ x n , x n 1 ] 时取最小值;x 2n 1 ,x 1 x 2 Lx 2 n 1 ,在 x x n 时取最小值.思考:对于函数 y x 1 2 x 3 x 2 ,在 x时取最小值.5、推广到 y x x 1x x 2 L x y x x 1x x 2Lx四、幂函数、指数函数和对数函数(一)幂函数(1)幂函数的定义:形如y x a (a R) 的函数称作幂函数,定义域因 a 而异.(2)当a 0,1 时,幂函数y x a (a R) 在区间[ 0, ) 上的图像分三类,如图所示.(3)作幂函数y x a ( a0,1) 的草图,可分两步:①根据a 的大小,作出该函数在区间[ 0, ) 上的图像;②根据该函数的定义域及其奇偶性,补全该函数在( ,0] 上的图像.(4)判断幂函数y x a (a R) 的a 的大小比较:方法一:y x a ( a R) 与直线x m(m 1) 的交点越靠上, a 越大;方法二:y x a ( a R) 与直线x m(0 m 1) 的交点越靠下, a 越大(5)关于形如y ax b(ccx d0) 的变形幂函数的作图:①作渐近线(用虚线):x d、ya;c c②选取特殊点:任取该函数图像上一点,建议取(0, b ) ;d③画出大致图像:结合渐近线和特殊点,判断图像的方位(右上左下、左上右下).x x xx xxy(二)指数 & 指数函数1、指数运算法则:①a a yax y;② (a )a ;③ (a b)xxa xa b ;④ ( )a xx ,其中( a, b 0, x 、y R) .2、指数函数图像及其性质:/yxa (a 1)bbxy a (0a 1)图像定义域R值域(0,)奇偶性 非奇非偶函数渐近线x 轴单调性在( ,) 上单调递增;在(,) 上单调递减;①指数函数 ya x的函数值恒大于零;②指数函数 y性质a 的图像经过点 (0,1) ;③当 x 0 时, y 1;③当 x 0时, 0 y 1;当 x 0 时, 0y 1 .当 x 0时, y 1 .3、判断指数函数 y a 中参数 a 的大小:方法一: y a 与直线x m(m 0) 的交点越靠上, a 越大;方法二: y a x与直线 x m(m 0) 的交点越靠下, a 越大.yx11 1(三)反函数的概念及其性质1、反函数的概念:对于函数y f (x) ,设它的定义域为 D ,值域为 A ,如果对于 A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应,且满足y f ( x) ,这样得到的x 关于y 的函数叫做y f ( x) 的反函数,记作x f ( y) .在习惯上,自变量常用x 表示,而函数用y 表示,所以把它改写为y f ( x)( x A) .2、求反函数的步骤:(“解”“换”“求”)①将y f ( x) 看作方程,解出x f ( y) ;②将x 、y 互换,得到y f 1( x) ;③标出反函数的定义域(原函数的值域).3、反函数的条件:定义域与值域中的元素一一对应.4、反函数的性质:①原函数y f ( x) 过点(m, n) ,则反函数y f 1 ( x) 过点(n, m) ;②原函数y f ( x) 与反函数y f (x) 关于y x 对称,且单调性相同;③奇函数的反函数必为奇函数.5、原函数与反函数的关系:/ 函数y f (x) y f 1 ( x)定义域 D A值域 A D(四)对数 & 对数函数1、指数与对数的关系:ab NabNlog a Nb指数幂 底数对数真数2、对数的运算法则:① log a 1 0 , log a a 1 , a loga NN ;②常用对数 lg Nlog 10 N ,自然对数 ln Nlog e N ;③ log a (MN ) log a Mlog a M N ,log a Nlog a M log a N , log a Mn log a M ;④ log Nlog aN,log b1 m, log nbm log b , log c bloglog bb ,a Nlog abN.blog a blog b aana3、对数函数图像及其性质:/y log a x(a 1) y log a x(0 a 1)图像定义域(0, )值域 R 奇偶性非奇非偶函数渐近线y 轴单调性在(0, ) 上单调递增;在(0, ) 上单调递减;①对数函数 y log a x 的图像在 y 轴的右方;②对数函数 y 性质log a x 的图像经过点 (1,0) ;③当 x 1时, y 0 ;③当 x 1时, y 0 ;当 0 x 1 时, y 0 .当 0 x 1 时, y 0 .a a a cn4、判断对数函数y logx, x 0 中参数a 的大小:a方法一:y logx, x 0 与直线y m( m 0) 的交点越靠右,a 越大;a方法二:y logx, x 0 与直线y m(m 0) 的交点越靠左,a 越大.a五、三角比1、角的定义:(1)终边相同的角:①与2k , k Z 表示终边相同的角度;②终边相同的角不一定相等,但相等的角终边一定相同;③与k , k Z 表示终边共线的角(同向或反向).(2)特殊位置的角的集合的表示:位置角的集合在x 轴正半轴上{ 2k, k Z}在x 轴负半轴上{ 2k, k Z}在x 轴上{k , k Z} 在y 轴正半轴上{ 2k , k Z }2在y 轴负半轴上{ 2k 3,k Z } 2在y 轴上{k , k Z }2在坐标轴上{k , k Z }2在第一象限内{ 2k 2 k, k Z }2在第二象限内{ 2k22k , k Z }在第三象限内{ 2k 2k 32, k Z }在第四象限内{ 2k 322k 2 ,k Z }(3)弧度制与角度制互化:180①rad 180 ;②1rad ;③1180rad .(4)扇形有关公式:①l;r②弧长公式:l r ;③扇形面积公式:S 1 lr 1r 2(想象三角形面积公式).2 2 (5)集合中常见角的合并:x 2k x 2kx 2k x 2k x 2kx kxk2x k2224x kxk, k Z4x 2k x 2k 5 44xk3 2 4x 2k4x k4 4(6)三角比公式及其在各象限的正负情况:以角的顶点为坐标原点,始边为x 轴的正半轴建立直角坐标系,在的终边上任取一个异于原点的点P( x, y) ,点P 到原点的距离记为r ,则( 7)特殊角的三角比:角度制弧度制0 sin1 2270360 3 222 3 1 0 1 022cos13 2 2 1 0 1 0 122tan3 13无 0 无 03( 8)一些重要的结论: (注意,如果没有特别指明, k 的取值范围是 k Z )①角 和角 的终边:角 和角 的终边关于 x 轴对称关于 y 轴对称关于原点对称sin sin cos cos tantansin sin cos cos tantansin sin cos cos tantan② 的终边与的终边的关系. 2的终边在第一象限 (2k,2 k ) 2(k , k) ; 2 4 的终边在第二象限 (2 k ,2 k 2 ) (k 2, k ) ; 4 2 的终边在第三象限 (2k ,2 k 3 )( k, k 3) ; 2 22 4的终边在第四象限 (2k3 ,2 k2 )(k 3 , k ) .③ sin 与 cos 的大小关系: 32, 2 k 24 0 ); 4 4,2 k50 ); 4 4 ,2k 5 0 ). 44 304560901806432sin cos (2 k sin cos (2 k sin cos{2 k) 的终边在直线 y x 右边( x y )} 的终边在直线的终边在直线 y y x 左边(x 上( x xy y④sin 与cos 的大小关系:, k ) 4 4x y的终边在x y0 x y 0或;0 x y 0, k 3)x y的终边在0 x y 0或;4 4 x y 0 x y 0, k 3} ,k Z 的终边在y x .4 42、三角比公式:(1)诱导公式:(诱导公式口诀:奇变偶不变,符号看象限)第一组诱导公式:第二组诱导公式:第三组诱导公式:(周期性)(奇偶性)(中心对称性)sin( 2k) sin sin( ) sin sin( ) sincos(2 k) cos cos( ) cos cos( ) costan(2k ) tan tan( ) tan tan( ) tancot( 2k) cot cot( ) cot cot( ) cot第四组诱导公式:(轴对称)第五组诱导公式:(互余性)第六组诱导公式:sin( ) sin sin(2) cos sin(2) coscos( tan( cot( ) cos) tan) cotcos(2tan(2cot(2) sin) cot) tancos( )2tan( )2cot( )2sincottan(2)同角三角比的关系:倒数关系:商数关系:平方关系:sin csc 1 tan sin (cos 0) sin 2cos 2 1cos tan sec 1cot 1 cotcoscossin(sin 0)21 tan21 cot2sec2csc(3)两角和差的正弦公式:sin( ) sin cos cos sin ;两角和差的余弦公式:两角和差的正切公式:cos(tan() cos cos)tan tansin.sin ;1 tan tansin cos (k sin cos (k sin cos { k( 4)二倍角的正弦公式: sin 22 sin cos ;二倍角的余弦公式:二倍角的正切公式: cos 2tan 2cos 22 tansin2;1 2 sin22 cos21 ;1 tan 2降次公式:万能置换公式:1 cos 2sin 2sin221 cos22 2 1 cos 2cos 21 cos2 2sin 22 tan 1 tan 21 tan2 cos2 2;1 sinsincos cos 2 1 tan 2 tan21 cos2 1 cos22 221 sin sin cos2 2tan 22 tan 1 tan 2sin1 cos半角公式: tan ;2 1 cos( 5)辅助角公式:①版本一:sinsinb a 2b 2a sinb cos②版本二: a2b2sin( ) ,其中 0 2 ,cos. a a2b2a sinbcosa2b 2sin() ,其中 a, b 0,0, tan b .2a3、正余弦函数的五点法作图:以 y sin( x) 为例,令 x依次为 0, , , 3, 2 2 2,求出对应的 x 与 y 值,描点 ( x, y) 作图.4、正弦定理和余弦定理:( 1)正弦定理: a sin A b sin B csin C2R(R 为外接圆半径 ) ;其中常见的结论有: ① a 2Rsin A , b 2Rsin B , c 2Rsin C ;② sin A a , sin B2Rb , sin Cc ; 2R 2R ③ sin A : sin B : sin C a : b : c ;aRsin B sin C④S △ ABC 2R 2sin A sin B sin C ; S △ ABCbR sin A sin C ; S △ ABC abc .4 R cRsin A sin B( 2)余弦定理:版本一:a2b 2c 2 b2 a 2c2 c2a2b22bc cosA 2accosB 2abcosC;版本二:cos AcosB cosCb2c2a22bca 2c 2b ;2ac b2a 2 c 2 2ab( 3)任意三角形射影定理(第一余弦定理) :5、与三角形有关的三角比:( 1)三角形的面积:a b c os C c cos B b c cos A a cos C . ca cos Bb cos A① S △ ABC② S △ ABC 1dh ; 2 1 absin C 1 bcsin A1ac sin B ;2 2 2③ S △ ABCl l al b l c , l 为 △ABC 的周长. 2 2 2 2( 2)在 △ABC 中,① a b A B sin A sin B cos A cosB cot A cot B ;②若 △ ABC 是锐角三角形,则 sin A cosB ;sin( A B ) sin C cos( A B ) cos C tan( A B ) tan C ③ sin( B C ) sin A ; cos(B C ) cos A ; tan( B C )tan A ;sin( A C ) sin Bcos( A C )cos Btan( A C )tan Bsin A cos B C tan A cot B C22 2 2 ④ sinBcos A C ; tan B cot A C; 2 2 2 2 sinC cos A B tan C cot A B22 2 2sin Acos Bsin Bcos A sin C cos A⑤ 2 2 ;sin A cos C2 2 ; sin B cos C 2 2 ; sin C cos B 2 2 2 2 2 2sin A sin B cos A cos B2 2 2 2 sin A sin C cos A cosC sin A sin B sinCcos A cos B cos C;2 2 2 2 2 2 2 2 2 2sin B sin C cos B cos C2 2 2 22( ] sin A sin B sin C 4cos A cos B cosC2 2 2⑥ cos A cosB cosC 1 4sin A sin B sin C;2 2 2 sin A sin B sin C 4sin A sin B cosC2 2 2sin 2A sin 2B sin 2C 4sin Asin B sin C ; cos2A cos2B cos2C4cos A cosB cosC 1sin A ⑦cos A sin B cosBsin C cosC(0,3 3 ] 2 ; 3(1, 2sin Asin B sin C sin Asin B sin C cos A cosB cosC (0,3 3] 8 cosA cosB cosC . 1 1, 8其中,第一组可以利用琴生不等式来证明;第二组可以结合第一组及基本不等式证明.( 3)在 △ABC 中,角 A 、 B 、 C 成等差数列 B.3( 4) △ABC 的内切圆半径为 r6、仰角、俯角、方位角:略2S .a b c7、和差化积与积化和差公式(理科) :( 1)积化和差公式: sin coscos sincos cossin sin1[sin( ) sin( )] 2 1[sin( ) sin( )] 2 ; 1[cos( ) cos( )] 2 1[cos( ) cos()]2( 2)和差化积公式: sin sin 2sinsinsin 2coscoscos 2coscoscos2sincos 22 sin2 2.cos 2 2 sin22]六、三角函数1、正弦函数、余弦函数和正切函数的性质、图像:y sin xy cosxy tan x定 义 RR域{ x x k, k Z}2值 [ 1,1]域 奇 [ 1,1]R偶 奇函数偶函数奇函数性 周期 性 最小正周期 T 2最小正周期 T 2 最小正周期 T[2 k 单 ,2 k 2 ] Z ; 2 [2 k, 2k ] Z ;(k, k ) Z 调 [2 k,2 k 3] ] . [2 k , 2 k] ] .22性22( k Z )( k Z )( k Z )当 x 2k最时, y min 1 ; 2当 x 2k时, y min1 ;无值 当 x 2k时, y 2max1;当 x 2k 时, y max 1 ;图像例 1:求函数 y 5sin(2 x) 的周期、单调区间和最值. (当 x 的系数为负数时,单调性相反) 3解析:周期 T22,由函数 y sin x 的递增区间 [2 k , 2 k 22] ,可得2k2x2k ,即 k5 x k , 232 1212 5 于是,函数 y 5sin(2 x) 7 的递增区间为 [ k 3, k ] . 12 12 7同理可得函数 y 5sin(2 x) 7 递减区间为 [ k 3, k ] . 1212当 2x 2k3,即 x k 2 时,函数 y 12 5sin(2 x ) 取最大值 5; 3当2x 2k ,即3 2 x k5时,函数y125sin(2 x ) 取最大值 5 .3例2:求函数y 5sin(2x ) 7, x3 [0, ] 的单调区间和最值.2解析:由x [0, ] ,可得2x2[ ,4] .3 3 3然后画出 2 x的终边图,然后就可以得出3当2x [ , ] ,即x3 3 24 [0, ] 时,函数y125sin(2 x ) 7 单调递增;3当2x [ , ] ,即x3 2 3 [ , ] 时,函数y12 25sin(2 x ) 7 单调递减.3同时,当2x ,即x3 2时,函数y125sin(2 x ) 7 取最大值12;3当2 x4,即3 3x 时,函数y25sin(2 x ) 7 取最小值735 3;2注意:当x 的系数为负数时,单调性的分析正好相反.2、函数y A s in( x ) h &y A cos( x ) h &y A tan( x ) h ,其中A0, 0 :(1)复合三角函数的基本性质:三角函数y A s in( x ) h y A c os( x ) h y A tan( x ) h其中A0, 0 其中A0, 0 其中A0, 0 振幅 A 无基准线y h定义域( , ) { x x k , k Z }2 值域[ A h, A h] ( , )最小正周期T2T1 1频率 f fT 2 T 相位x初相2( 2)函数 y A s in( x) h 与函数 y sin x 的图像的关系如下:①相位变换: 当0 时, ysin x向左平移个单位y sin( x ) ;当0 时, y ②周期变换: sin x向右平移 个单位y sin( x) ;当1时, ysin( x所有各点的横坐标缩短到原来的)1倍(纵坐标不变)y sin( x) ;当 01时, y ③振幅变换:sin( x所有各点的横坐标伸长到原来的)1倍(纵坐标不变)y sin( x) ;当 A 1时, y sin( x) 所有各点的纵坐标伸长到原来的A 倍(横坐标不变)y A sin( x ) ;当 0 A 1时, y sin( x)所有各点的纵坐标缩短到原来的A 倍(横坐标不变)y A s in( x) ;④最值变换:当 h 0时,当 h 0 时, y A s in( xy A s in( x所有各点向上平行移动所有各点向下平行移动 h 个单位h 个单位y A sin( xy A sin( x) h ;) h ;注意:函数 y A cos( x) h 和函数 y A tan( x) h 的变换情况同上.3、三角函数的值域:(1)) y a sin x b 型:设 t sin x ,化为一次函数 y at b 在闭区间 [ 1,1] 上求最值.(2)) ya sinx b cos x c , a ,b 0 型:引入辅助角 , tanb,化为 ya ab sin(x) c .(3)) ya sin2x b sin x c 型:设 t sin x [ 1,1],化为二次函数 y at 2 bt c 求解.(4)) ya sinxcos x b(sin x cos x) c 型:a (t21)设t sin x cos x [ 2, 2] ,则t 21 2sin x cos x ,化为二次函数 ybt c 在闭2区间 t [ 2, 2] 上求最值.2) )22 2(5)) y a tan x b cot x 型:设 t(6)) y tan x ,化为a sin x b 型:c sin x dy atb ,用“ Nike 函数”或“差函数”求解.t方法一:常数分离、分层求解;方法二:利用有界性,化为 1 sin x 1 求解.(7)) y a sin x b 型: c cosx d化为 a sin x yc cos x b dy ,合并 ay c sin( x) b dy ,利用有界性,sin(x)b dy [ 1,1]求解.a2y 2c2(8)) a sinx cos x b sin 2 x c cos 2x ,( a 0,b, c 不全为 0)型:利用降次公式,可得 asin x cosx b sin 2x ccos 2xasin 2 x c b cos2x b c,然后利用辅 助角公式即可. 4、三角函数的对称性: 2 2 2对称中心 对称轴方程y sin x(k ,0) , k Z xk , k Z2y cos x ( k,0) , k Z 2x k , k Zytan xy cot xk( ,0) k Z / 2 ( k,0) k Z /2备注:① y sin x 和 y cosx 的对称中心在其函数图像上;② y tan x 和 y cot x 的对称中心不一定在其函数图像上. (有可能在渐近线上)例 3:求函数 y 5sin(2 x) 7 的对称轴方程和对称中心.3解析:由函数 ysin x 的对称轴方程 x k, k Z 2,可得 2x k3 , k Z2解得 xk , k Z .122k 所以,函数 y 5sin(2 x) 7 的对称轴方程为 3 x , k Z . 122由函数 y sin x 的中心对称点 (k ,0) , k Z ,可得 2x3k , k Z解得 xk , k Z .62所以,函数 y 5sin(2 x) 7 的对称中心为 ( 3 k ,7) , k Z .6 25、反正弦、反余弦、反正切函数的性质和图像:y arcsin x y arccosx y arctanx 定义域[ 1,1] [ 1,1] ( , )值域[ , ]2 2 [ 0, ] ( , )2 2奇偶性奇函数非奇非偶函数奇函数单调性在[ 1,1]上是增函数在[ 1,1]上是减函数在( , ) 上是增函数对称中心点(0,0) 点(0, )2点(0,0) 图像重要结论:(1)先反三角函数后三角函数:①a [ 1,1] sin(arcsin a) cos(arccosa ) a ;②a R tan(arctan a ) a .(2)先三角函数后反三角函数:①[ , ]2 2arcsin(sin ) ;②[0, ] arccos(cos ) ;③( , )2 2arctan(tan ) .(3)反三角函数对称中心特征方程式:①a [ 1,1] arcsin( a)arcsin a ;②a [ 1,1] arccos( a) arccos a;③a ( , ) arctan( a )arctan a.6、解三角方程公式:sin x a, a 1 x k ( 1)k arcsina, k Zcos x a, a 1 x 2k arccosa, k Z.tan x a, a R x k arctana, k Z。

高中数学必修一最全知识点汇总

高中数学必修一最全知识点汇总

高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。

常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。

集合与元素之间的关系可以表示为a∈M或a∉M。

集合的表示法有自然语言法、列举法、描述法和图示法。

集合可以分为有限集、无限集和空集(∅)。

1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。

子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。

已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。

1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。

交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。

补集的性质为A∪A的补集=全集,A∩A的补集=空集。

2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。

一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。

1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。

2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。

3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。

(超详)高中数学知识点归纳汇总(高一至高三全套)

(超详)高中数学知识点归纳汇总(高一至高三全套)

做集合 A 到 B 的一个函数,记作 f : A B .
②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法
①设 a, b 是两个实数,且 a b ,满足 a x b 的实数 x 的集合叫做闭区间,记做[a, b] ;满足 a x b
第4页
③ f (x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1.
⑤ y tan x 中, x k (k Z ) . 2
⑥零(负)指数幂的底数不能为零.
⑦若 f (x) 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的
(1)利用定义
函数的
某个区间上的任意两个 自 变 量 的 值 x1 、 x2, 当 x.1.<.x.2 . 时 , 都 有 f.(.x.1.).<.f.(.x.2.)., 那 么 就 说 f(x)在这个区间 上是增. 函.数..
y y=f(X)
f(x1)
o
x1
f(x2)
x2
x
(2)利用已知函数 的单调性 (3)利用函数图象 (在某个区间图 象上升为增) (4)利用复合函数
判别式
b2 4ac
二次函数
y ax2 bx c(a 0)
的图象
0
0
0
O
一元二次方程 ax2 bx c 0(a 0)
的根
x1,2 b
b2 4ac 2a
(其中 x1 x2 )
x1
x2
b 2a
无实根
ax2 bx c 0(a 0) 的解集

高一数学上册全部讲解知识点

高一数学上册全部讲解知识点

高一数学上册全部讲解知识点一、知识概述《集合》①基本定义:集合就像是把一些有共同特征的东西放在一起的一个“大筐”。

比如你们班的同学就可以组成一个集合,这些同学就是这个集合里的元素。

②重要程度:在高一数学中算是入门基础的东西,是理解函数等很多知识的基石。

③前置知识:基本的数的概念,像自然数、整数啥的要有个大概了解。

④应用价值:在生活中安排活动分组时就像划分集合,比如打篮球分组把人分成两组,这两组就是两个集合。

《函数的概念》①基本定义:函数就像一个机器,给它一个输入(自变量),然后就会有确定的输出(因变量)。

例如,一个卖水果的,你输入要的苹果数量(自变量),根据苹果的单价,就会得到要付的钱(因变量)。

②重要程度:函数贯穿整个高中数学,是非常重要的内容。

③前置知识:集合的知识要掌握,因为函数是建立在两个非空数集之间的对应关系。

④应用价值:在经济领域计算成本与利润关系等,通过改变生产量(自变量)得出利润(因变量)的值。

《函数的定义域与值域》①基本定义:定义域就是自变量能取的那些值的范围,值域就是函数值(因变量的值)的范围。

好比做蛋糕,面粉(自变量)的量有个可用的范围(定义域),最后做出蛋糕的大小(函数值)也有个范围(值域)。

②重要程度:这对于准确理解函数很重要。

③前置知识:函数概念要清楚。

④应用价值:在现实中规划产量(定义域)时要考虑最终产出(值域),避免资源浪费或者产量不足。

二、知识体系①知识图谱:集合是基础,函数的定义域、值域等都是函数这个大内容下的细分部分。

②关联知识:集合与函数是层层递进的关系,后续的函数性质等都和定义域值域等相关知识有关。

③重难点分析:- 集合那里难点在于集合元素的性质理解准确。

比如互异性,说实话有时候很容易忽略。

- 函数概念重点在于理解对应关系,难点在于一些复杂的函数关系的理解。

- 定义域值域难点在于准确求出根据不同情况的取值范围。

④考点分析:- 集合在考试中会考查元素的从属关系,集合间的运算(交、并、补)等。

高一数学知识点归纳总结

高一数学知识点归纳总结

高一数学知识点归纳总结高一数学知识点归纳总结(一)一、函数1.函数的定义:对于每一个自变量,函数都给出唯一的因变量值。

2.函数的表示:y=f(x),x为自变量,y为因变量,f(x)为函数。

3.函数的性质:定义域、值域、单调性、奇偶性、周期性、对称性。

4.常见数学函数:指数函数、对数函数、三角函数、反三角函数、幂函数、根式函数。

5.函数的图像:函数的图像是函数在平面直角坐标系上的表示,反映了函数自变量和因变量之间的函数关系。

6.函数的运算:加减、乘除、复合运算。

7.函数的极限:当自变量接近某一特定值时,函数趋于一个确定的极限。

8.导数与微分:导数是函数变化率的极限值,微分是函数的一个微小变化量。

9.应用:求函数的最值、拐点、渐近线、曲率等,还可以用于物理、经济、工程学等领域中的问题求解。

二、集合与命题1.集合的概念:由若干个元素构成的整体。

2.基本集合运算:并集、交集、差集、补集。

3.集合的性质:子集、相等、空集、全集、互斥、互补。

4.命题:是可以用真假判断的陈述句,并且只有真假两种可能。

5.命题的逻辑运算:否定、合取、析取、蕴含。

6.命题的等价关系与充分必要条件。

7.谓词与量词:谓词是具有“真假”性质的函数,量词包括全称量词和存在量词,它们用于指定谓词中的变量范围。

三、平面与立体几何1.欧氏几何:以欧氏公理为基础的几何学,研究点、线、面的性质以及它们之间的关系。

2.平面几何:研究平面上点、线、面及其相互关系的几何学。

3.直线和圆的性质:如平行线公理、垂线定理、相交线夹角定理、圆的周长、面积等。

4.三角形和四边形的性质:如勾股定理、海伦公式、三角形周长公式、正方形、矩形、平行四边形、菱形的周长、面积等。

5.立体几何:研究空间中点、线、面、体及其相互关系的几何学。

6.球的性质:如球的体积、表面积等。

7.多面体的性质:如正四面体、正六面体、正八面体等体积、表面积等。

四、数列与数学归纳法1.数列的概念:按一定顺序排列的一列数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学知识点汇总(高一)高中数学知识点汇总(高一) (1)一、集合和命题 (2)二、不等式 (4)三、函数的基本性质 (6)四、幂函数、指数函数和对数函数 (14)(一)幂函数 (14)(二)指数&指数函数 (15)(三)反函数的概念及其性质 (16)(四)对数&对数函数 (18)五、三角比 (21)六、三角函数 (29)一、集合和命题一、集合:(1)集合的元素的性质: 确定性、互异性和无序性; (2)元素与集合的关系: ①a A ∈↔a 属于集合A ; ②a A ∉↔a 不属于集合A . (3)常用的数集:N ↔自然数集;↔*N 正整数集;Z ↔整数集; Q ↔有理数集;R ↔实数集;Φ↔空集;C ↔复数集;⎪⎩⎪⎨⎧↔↔-+负整数集正整数集Z Z ;⎪⎩⎪⎨⎧↔↔-+负有理数集正有理数集Q Q ;⎪⎩⎪⎨⎧↔↔-+负实数集正实数集R R .(4)集合的表示方法:集合⎩⎨⎧↔↔描述法无限集列举法有限集;例如:①列举法:{,,,,}z h a n g ;②描述法:{1}x x >. (5)集合之间的关系:①B A ⊆↔集合A 是集合B 的子集;特别地,A A ⊆;A BA CBC ⊆⎧⇒⊆⎨⊆⎩.②B A =或A BA B ⊆⎧⎨⊇⎩↔集合A 与集合B 相等; ③A B ⊂≠↔集合A 是集合B 的真子集.例:N Z Q R ⊆⊆⊆C ⊆;N Z Q R C ⊂⊂⊂⊂≠≠≠≠. ④空集是任何集合的子集,是任何非空集合的真子集. (6)集合的运算:①交集:}{B x A x x B A ∈∈=且 ↔集合A 与集合B 的交集; ②并集:}{B x A x x B A ∈∈=或 ↔集合A 与集合B 的并集;③补集:设U 为全集,集合A 是U 的子集,则由U 中所有不属于A 的元素组成的集合,叫做集合A 在全集U 中的补集,记作A C U .④得摩根定律:()U U U C A B C A C B =;()U U U C A B C A C B =(7)集合的子集个数:若集合A 有*()n n N ∈个元素,那么该集合有2n 个子集;21n -个真子集;21n -个非空子集;22n -个非空真子集. 二、四种命题的形式:(1)命题:能判断真假的语句.(2)四种命题:如果用α和β分别表示原命题的条件和结论,用α和β分别表示α和β的否定,那么四种命题形式就是:(3)充分条件,必要条件,充要条件:①若βα⇒,那么α叫做β的充分条件,β叫做α的必要条件;②若βα⇒且αβ⇒,即βα⇔,那么α既是β的充分条件,又是β的必要条件,也就是说,α是β的充分必要条件,简称充要条件.③欲证明条件α是结论β的充分必要条件,可分两步来证:第一步:证明充分性:条件⇒α结论β; 第二步:证明必要性:结论⇒β条件α. (4)子集与推出关系:设A 、B 是非空集合,}{α具有性质x x A =,}{β具有性质y y B =, 则B A ⊆与βα⇒等价.结论:小范围⇒大范围;例如:小明是上海人⇒小明是中国人. 小范围是大范围的充分非必要条件; 大范围是小范围的必要非充分条件.二、不等式一、不等式的性质:二、一元一次不等式:解集ab x >ab x <Φ R三、一元二次不等式:)0(02>=++a c bx ax的根的判别式042>-=ac b △ 042=-=ac b △ 042<-=ac b △)0(2>++=a c bx ax y)0(02>=++a c bx ax },{21x x ,21x x < }{0x Φ )0(02>>++a c bx ax 12(,)(,)x x -∞+∞),(),(00+∞-∞x xR)0(02><++a c bx ax ),(21x x Φ Φ )0(02>≥++a c bx ax 12(,][,)x x -∞+∞RR)0(02>≤++a c bx ax],[21x x }{0xΦ四、含有绝对值不等式的性质:(1)b a b a b a -≥±≥+; (2)n n a a a a a a +++≥+++ 2121. 五、分式不等式: (1)0))((0>++⇔>++d cx b ax d cx b ax ; (2)0))((0<++⇔<++d cx b ax dcx bax . 六、含绝对值的不等式:a x < a x > a x ≤ a x ≥0>a 0≤a 0≥a 0<a 0>a0=a 0<a 0>a 0=a 0<aa x a <<- Φ a x a x -<>或 R a x a ≤≤-0=x Φ a x a x -≤≥或 R七、指数不等式:(1))()()1()()(x x f a a a x x f ϕϕ>⇔>>; (2))()()10()()(x x f a a a x x f ϕϕ<⇔<<>. 八、对数不等式:(1)⎩⎨⎧>>⇔>>)()(0)()1)((log )(log x x f x a x x f a a ϕϕϕ;(2)⎩⎨⎧<>⇔<<>)()(0)()10)((log )(log x x f x f a x x f a a ϕϕ.九、不等式的证明:(1)常用的基本不等式:①R b a ab b a ∈≥+、(222,当且仅当b a =时取“=”号); ②+∈≥+R b a ab ba 、(2,当且仅当b a =时取“=”号);211a b+. ③+∈≥++R c b a abc c b a 、、(3333,当且仅当c b a ==时取“=”号);④+∈≥++R c b a abc c b a 、、(33,当且仅当c b a ==时取“=”号); ⑤n a a a na a a nn n (2121 ≥+++为大于1的自然数,+∈R a a a n ,,,21 ,当且仅当n a a a === 21时取“=”号); (2)证明不等式的常用方法:①比较法; ②分析法; ③综合法.三、函数的基本性质一、函数的概念:(1)若自变量−−−→−fx 对应法则因变量y ,则y 就是x 的函数,记作D x x f y ∈=),(; x 的取值范围D ↔函数的定义域;y 的取值范围↔函数的值域. 求定义域一般需要注意: ①1()y f x =,()0f x ≠;②y ()0f x ≥; ③0(())y f x =,()0f x ≠; ④log ()a y f x =,()0f x >; ⑤()log f x y N =,()0f x >且()1f x ≠.(2)判断是否函数图像的方法:任取平行于y 轴的直线,与图像最多只有一个公共点; (3)判断两个函数是否同一个函数的方法:①定义域是否相同;②对应法则是否相同. 二、函数的基本性质: (1)奇偶性:注意:定义域包括0的奇函数必过原点(0,0)O . (2)单调性和最值:注意:①复合函数的单调性:②如果函数)(x f y =在某个区间I 上是增(减)函数,那么函数)(x f y =在区间I 上是单调函数,区间I 叫做函数)(x f y =的单调区间.(3)零点:若D x x f y ∈=),(,D c ∈且0)(=c f ,则c x =叫做函数)(x f y =的零点.零点定理:⎩⎨⎧<⋅∈=0)()(],[),(b f a f b a x x f y ⇒00(,)()0x a b f x ∈⎧⎨=⎩存在;特别地,当(),[,]y f x x a b =∈是单调函数, 且()()0f a f b ⋅<,则该函数在区间[,]a b 上有且仅有一个零点,即存在唯一0(,)x a b ∈,使得0()0f x =.(4)平移的规律:“左加右减,下加上减”.(5)对称性:①轴对称的两个函数:②中心对称的两个函数:③轴对称的函数:注意:()()f a x f b x +=-⇒()f x 关于2x =对称; ()()f a x f a x +=-⇒()f x 关于x a =对称;()()f x f x =-⇒()f x 关于0x =对称,即()f x 是偶函数. ④中心对称的函数:注意:()()f a x f b x c ++-=⇒()f x 关于点(,)22b c+对称; ()()0f a x f b x ++-=⇒()f x 关于点(,0)2a b+对称;()()2f a x f a x b ++-=⇒()f x 关于点(,)a b 对称;()()0f x f x +-=⇒()f x 关于点(0,0)对称,即()f x 是奇函数. (6)凹凸性:设函数(),y f x x D =∈,如果对任意12,x x D ∈,且12x x ≠,都有1212()()22x x f x f x f ++⎛⎫< ⎪⎝⎭,则称函数()y f x =在D 上是凹函数;例如:2y x =. 进一步,如果对任意12,,n x x x D ∈,都有1212()()()n n x x x f x f x f x f n n +++++⎛⎫<⎪⎝⎭,则称函数()y f x =在D 上是凹函数;该不等式也称琴生不等式或詹森不等式;设函数(),y f x x D =∈,如果对任意12,x x D ∈,且12x x ≠,都有1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭,则称函数()y f x =在D 上是凸函数.例如:lg y x =. 进一步,如果对任意12,,n x x x D ∈,都有1212()()()n n x x x f x f x f x f n n +++++⎛⎫>⎪⎝⎭,则称函数()y f x =在D 上是凸函数;该不等式也称琴生不等式或詹森不等式.(7)翻折:(8)周期性:若R x x f y ∈=),(,0≠∃T ,x R ∈任取,恒有)()(x f T x f =+,则称T 为这个函数的周期. 注意:若T 是)(x f y =的周期,那么)0,(≠∈k Z k kT 也是这个函数的周期; 周期函数的周期有无穷多个,但不一定有最小正周期.①()()f x a f x b +=+,a b ≠⇒()f x 是周期函数,且其中一个周期T a b =-; (阴影部分下略)②()()f x f x p =-+,0p ≠⇒2T p =; ③()()f x a f x b +=-+,a b ≠⇒2T a b =-; ④1()()f x f x p =+或1()()f x f x p =-+,0p ≠⇒2T p =;⑤1()()1()f x p f x f x p -+=++或()1()()1f x p f x f x p ++=+-,0p ≠⇒2T p =;⑥1()()1()f x p f x f x p ++=-+或()1()()1f x p f x f x p +-=++,0p ≠⇒4T p =;⑦()f x 关于直线x a =,x b =,a b ≠都对称⇒2T a b =-; ⑧()f x 关于两点(,)a c ,(,)b c ,a b ≠都成中心对称⇒2T a b =-;⑨()f x 关于点(,)a c ,0a ≠成中心对称,且关于直线x b =,a b ≠对称⇒4T a b =-; ⑩若()()(2)()f x f x a f x a f x na m +++++++=(m 为常数,*n N ∈),则()f x 是以(1)n a +为周期的周期函数;若()()(2)()f x f x a f x a f x na m -+++-++=(m 为常数,n 为正偶数),则()f x 是以2(1)n a +为周期的周期函数.三、V 函数:定义 形如(0)y a x m h a =++≠的函数,称作V 函数.分类,0y a x m h a =++> ,0y a x m h a =++<图像定义域 R值域 [,)h +∞(,]h -∞对称轴x m =-四、分式函数: 定义 形如(0)ay x a x=+≠的函数,称作分式函数.分类,0a y x a x =+>(耐克函数) ,0a y x a x=+<图像定义域 (,0)(0,)-∞+∞值域 (,2][2,)a a -∞-+∞R渐近线0x =,y x =单调性在(,]a -∞-,[,)a +∞上单调递增; 在[,0)a -,(0,]a 上单调递减.在(,0)-∞,(0,)+∞上单调递增;五、曼哈顿距离:在平面上,11(,)M x y ,22(,)N x y ,则称1212d x x y y =-+-为MN 的曼哈顿距离. 六、某类带有绝对值的函数:1、对于函数y x m =-,在x m =时取最小值;2、对于函数y x m x n =-+-,m n <,在[,]x m n ∈时取最小值;3、对于函数y x m x n x p =-+-+-,m n p <<,在x n =时取最小值;4、对于函数y x m x n x p x q =-+-+-+-,m n p q <<<,在[,]x n p ∈时取最小值;5、推广到122n y x x x x x x =-+-++-,122n x x x <<<,在1[,]n n x x x +∈时取最小值; 1221n y x x x x x x +=-+-++-,1221n x x x +<<<,在n x x ∈时取最小值.思考:对于函数1232y x x x =-+++,在x _________时取最小值.四、幂函数、指数函数和对数函数(一)幂函数(1)幂函数的定义:形如)(R a x y a ∈=的函数称作幂函数,定义域因a 而异.(2)当1,0≠a 时,幂函数)(R a x y a ∈=在区间),0[+∞上的图像分三类,如图所示.(3)作幂函数)1,0(≠=a x y a 的草图,可分两步:①根据a 的大小,作出该函数在区间),0[+∞上的图像;②根据该函数的定义域及其奇偶性,补全该函数在]0,(-∞上的图像. (4)判断幂函数)(R a x y a ∈=的a 的大小比较:方法一:)(R a x y a ∈=与直线(1)x m m =>的交点越靠上,a 越大; 方法二:)(R a x y a ∈=与直线(01)x m m =<<的交点越靠下,a 越大(5)关于形如()ax by c cx d+=≠+0的变形幂函数的作图: ①作渐近线(用虚线):d x c =-、ay c =;②选取特殊点:任取该函数图像上一点,建议取(0,)bd;③画出大致图像:结合渐近线和特殊点,判断图像的方位(右上左下、左上右下).(二)指数&指数函数1、指数运算法则: ①yx yxaa a +=⋅;②xyyxa a =)(;③xxxb a b a ⋅=⋅)(;④()xx x a a b b=,其中),0,(R y x b a ∈>、.2、指数函数图像及其性质:/)1(>=a a y x)10(<<=a a y x图像定义域 R值域 ),0(+∞奇偶性 非奇非偶函数渐近线 x 轴单调性在(,)-∞+∞上单调递增;在(,)-∞+∞上单调递减;性质①指数函数x a y =的函数值恒大于零; ②指数函数x a y =的图像经过点)1,0(;3、判断指数函数x y a =中参数a 的大小:方法一:x y a =与直线(0)x m m =>的交点越靠上,a 越大; 方法二:x y a =与直线(0)x m m =<的交点越靠下,a 越大.(三)反函数的概念及其性质1、反函数的概念:对于函数()y f x =,设它的定义域为D ,值域为A ,如果对于A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应,且满足()y f x =,这样得到的x 关于y 的函数叫做()y f x =的反函数,记作1()x f y -=.在习惯上,自变量常用x 表示,而函数用y 表示,所以把它改写为1()()y f x x A -=∈.2、求反函数的步骤:(“解”→“换”→“求”) ①将()y f x =看作方程,解出()x f y =; ②将x 、y 互换,得到1()y f x -=; ③标出反函数的定义域(原函数的值域).3、反函数的条件:定义域与值域中的元素一一对应. 4、反函数的性质:①原函数)(x f y =过点),(n m ,则反函数)(1x f y -=过点),(m n ;②原函数)(x f y =与反函数)(1x fy -=关于x y =对称,且单调性相同;③奇函数的反函数必为奇函数.5、原函数与反函数的关系:(四)对数&对数函数1、指数与对数的关系:ab N N a b =底数指数幂 b N a =log对数真数2、对数的运算法则:①01log =a ,1log =a a ,N a N a =log ;②常用对数N N 10log lg =,自然对数N N e log ln =; ③N M MN a a a log log )(log +=,N M NMa a a log log log -=,M n M a n a log log =; ④bN N a a b log log log =,a b b a log 1log =,b n mb a m a n log log =,b b ac a c log log =,log log N N b a a b =.3、对数函数图像及其性质:/)1(log >=a x y a)10(log <<=a x y a图像定义域 ),0(+∞值域 R 奇偶性 非奇非偶函数渐近线 y 轴单调性在),0(+∞上单调递增;在),0(+∞上单调递减;性质①对数函数x y a log =的图像在y 轴的右方; ②对数函数x y a log =的图像经过点)0,1(;4、判断对数函数log ,0a y x x =>中参数a 的大小:方法一:log ,0a y x x =>与直线(0)y m m =>的交点越靠右,a 越大; 方法二:log ,0a y x x =>与直线(0)y m m =<的交点越靠左,a 越大.五、三角比1、角的定义:(1)终边相同的角:πα+∈表示终边相同的角度;①α与2,k k Z②终边相同的角不一定相等,但相等的角终边一定相同;πα+∈表示终边共线的角(同向或反向).③α与,k k Z(2)特殊位置的角的集合的表示:(3)弧度制与角度制互化: ①180rad π=︒; ②1801rad π=︒; ③1180rad π︒=.(4)扇形有关公式: ①rl =α; ②弧长公式:r l α=;③扇形面积公式:21122S lr r α==(想象三角形面积公式).(5)集合中常见角的合并:22222222,244542424324424x k x k x k k x x k x k x k k x k Z x k x k x k k x x k x k x k ππππππππππππππππππππππππππ⎫⎫=⎫⎫=⎪⎪⎬⎪=+⎭⎪⎪⎪⎪⎪⎪⎫=⎬⎬⎪=+⎪⎪⎪⎪⎪=+⎬⎪⎪⎪⎪=-⎪⎪⎪⎪⎭⎭⎭⎪⎪⎫⎫⎫=∈⎬=+⎪⎪⎪⎪⎪⎪=+⎪⎬⎪⎪⎪⎪⎪=+⎪⎪⎪⎭⎪⎪⎪=+⎬⎬⎪⎫⎪⎪⎪=+⎪⎪⎪⎪⎪=-⎬⎪⎪⎪⎪⎪⎪=-⎪⎪⎪⎭⎪⎭⎭⎭(6)三角比公式及其在各象限的正负情况:以角α的顶点为坐标原点,始边为x 轴的正半轴建立直角坐标系,在α的终边上任取一个异 于原点的点(,)P x y ,点P 到原点的距离记为r ,则(7)特殊角的三角比:α角度制︒0︒30︒45︒60︒90︒180︒270︒360弧度制06π4π3π2ππ23ππ2αsin0212223 1 0 1-0αcos 12322210 1-0 1αtan033 1 3无0 无0(8)一些重要的结论:(注意,如果没有特别指明,k的取值范围是k Z∈)①角α和角β的终边:②α的终边与2的终边的关系. α的终边在第一象限⇔(2,2)2k k παππ∈+⇔(,)24k k απππ∈+;α的终边在第二象限⇔(2,2)2k k παπππ∈++⇔(,)242k k αππππ∈++;α的终边在第三象限⇔3(2,2)2k k παπππ∈++⇔3(,)224k k αππππ∈++;α的终边在第四象限⇔3(2,22)2k k παπππ∈++⇔3(,)24k k αππππ∈++. ③sin θ与cos θ的大小关系:sin cos θθ<⇔3(2,2)44k k ππθππ∈-+⇔θ的终边在直线y x =右边(0x y ->); sin cos θθ>⇔5(2,2)44k k ππθππ∈++⇔θ的终边在直线y x =左边(0x y -<);sin cos θθ=⇔5{22}44k k ππθππ∈++,⇔θ的终边在直线y x =上(0x y -=). ④sin θ与cos θ的大小关系:sin cos θθ<⇔(,)44k k ππθππ∈-+⇔θ的终边在00x y x y +>⎧⎨->⎩或00x y x y +<⎧⎨-<⎩;sin cos θθ>⇔3(,)44k k ππθππ∈++⇔θ的终边在00x y x y +>⎧⎨-<⎩或00x y x y +>⎧⎨-<⎩; sin cos θθ=⇔3{}44k k ππθππ∈++,,k Z ∈⇔θ的终边在y x =±.2、三角比公式:(1)诱导公式:(诱导公式口诀:奇变偶不变,符号看象限) 第一组诱导公式: 第二组诱导公式: 第三组诱导公式:(周期性) (奇偶性) (中心对称性)⎪⎪⎩⎪⎪⎨⎧=+=+=+=+ααπααπααπααπcot )2cot(tan )2tan(cos )2cos(sin )2sin(k k k k⎪⎪⎩⎪⎪⎨⎧-=--=-=--=-ααααααααcot )cot(tan )tan(cos )cos(sin )sin( ⎪⎪⎩⎪⎪⎨⎧=+=+-=+-=+ααπααπααπααπcot )cot(tan )tan(cos )cos(sin )sin( 第四组诱导公式: 第五组诱导公式: 第六组诱导公式: (轴对称) (互余性)⎪⎪⎩⎪⎪⎨⎧-=--=--=-=-ααπααπααπααπcot )cot(tan )tan(cos )cos(sin )sin( ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-=-ααπααπααπααπtan )2cot(cot )2tan(sin )2cos(cos )2sin(⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=+-=+-=+=+ααπααπααπααπtan )2cot(cot )2tan(sin )2cos(cos )2sin( (2)同角三角比的关系:倒数关系: 商数关系: 平方关系:⎪⎩⎪⎨⎧=⋅=⋅=⋅1cot tan 1sec cos 1csc sin αααααα⎪⎪⎩⎪⎪⎨⎧≠=≠=)0(sin sin cos cot )0(cos cos sin tan αααααααα ⎪⎩⎪⎨⎧=+=+=+αααααα222222csc cot 1sec tan 11cos sin (3)两角和差的正弦公式:βαβαβαsin cos cos sin )sin(±=±; 两角和差的余弦公式:βαβαβαsin sin cos cos )cos( =±; 两角和差的正切公式:βαβαβαtan tan 1tan tan )tan( ±=±.(4)二倍角的正弦公式:αααcos sin 22sin =;二倍角的余弦公式:1cos 2sin 21sin cos 2cos 2222-=-=-=ααααα; 二倍角的正切公式:ααα2tan 1tan 22tan -=; 降次公式: 万能置换公式:22222221cos 2sin 21cos 2sin 21cos 2cos 21cos 2cos 21sin sin cos 221cos 2tan 1cos 21sin sin cos22ααααααααααααααααα⎧-=⎪-⎧⎪=⎪⎪+=⎪⎪+⎪⎪=⇒⎨⎨⎛⎫⎪⎪-=- ⎪-⎪⎪⎝⎭=⎪⎪+⎩⎛⎫⎪+=+ ⎪⎪⎝⎭⎩; ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-=+=ααααααααα2222tan 1tan 22tan tan 1tan 12cos tan 1tan 22sin 半角公式:αααααsin cos 1cos 1sin 2tan -=+=; (5)辅助角公式: ①版本一:)sin(cos sin 22ϕααα++=+b a b a ,其中⎪⎪⎩⎪⎪⎨⎧+=+=<≤2222cos sin ,20b a a b a b ϕϕπϕ.②版本二:sin cos )a b θθθϕ±±,其中,0,0,tan 2ba b aπϕϕ><<=. 3、正余弦函数的五点法作图:以sin()y x ωϕ=+为例,令x ωϕ+依次为30,,,,222ππππ,求出对应的x 与y 值,描点(,)x y 作图.4、正弦定理和余弦定理: (1)正弦定理:R R CcB b A a (2sin sin sin ===为外接圆半径); 其中常见的结论有:①A R a sin 2=,B R b sin 2=,C R c sin 2=; ②R a A 2sin =,R b B 2sin =,Rc C 2sin =; ③c b a C B A ::sin :sin :sin =; ④22sin sin sin ABC S R A B C =△;sin sin sin sin sin sin ABCaR B CS bR A C cR A B⎧⎪=⎨⎪⎩△;4ABC abc S R =△.(2)余弦定理:版本一:⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222;版本二:⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-+=-+=ab c a b C ac b c a B bc a c b A 2cos 2cos 2cos 222222222;(3)任意三角形射影定理(第一余弦定理):cos cos cos cos cos cos a b C c Bb c A a C c a B b A =+⎧⎪=+⎨⎪=+⎩.5、与三角形有关的三角比: (1)三角形的面积:①12ABC S dh =△;②111sin sin sin 222ABC S ab C bc A ac B ===△;③ABC S =△l 为ABC △的周长. (2)在ABC △中,①sin sin cos cos cot cot a b A B A B A B A B >⇔>⇔>⇔<⇔<; ②若ABC △是锐角三角形,则sin cos A B >;③sin()sin sin()sin sin()sin A B C B C A A C B +=⎧⎪+=⎨⎪+=⎩;cos()cos cos()cos cos()cos A B C B C A A C B +=-⎧⎪+=-⎨⎪+=-⎩;tan()tan tan()tan tan()tan A B CB C A A C B +=-⎧⎪+=-⎨⎪+=-⎩;④sin cos 22sin cos 22sin cos 22A B C BA C CA B +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩;tan cot 22tan cot 22tan cot 22A B C B A C C A B +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩;⑤sin cos 22sin cos 22A B A C ⎧<⎪⎪⎨⎪<⎪⎩;sin cos 22sin cos 22B A B C ⎧<⎪⎪⎨⎪<⎪⎩;sin cos22sin cos 22C AC B ⎧<⎪⎪⎨⎪<⎪⎩;⇒sin sin cos cos 2222sin sin cos cos 2222sin sin cos cos 2222AB A B AC A C BC B C ⎧<⎪⎪⎪<⎨⎪⎪<⎪⎩⇒sin sin sin cos cos cos 222222A B C A B C <;⑥sin sin sin 4cos cos cos 222cos cos cos 14sin sin sin 222sin sin sin 4sin sin cos 222A B C A B C A B C A B C A B C A B C ⎧++=⎪⎪⎪++=+⎨⎪⎪+-=⎪⎩;sin 2sin 2sin 24sin sin sin cos 2cos 2cos 24cos cos cos 1A B C A B CA B C A B C ++=⎧⎨++=--⎩;⑦sin sin sin (0,]23cos cos cos (1,]2A B C A B C ⎧++∈⎪⎪⎨⎪++∈⎪⎩;sin sin sin sin sin sin cos cos cos 1cos cos cos (1,]8A B C A B C A B C A B C ⎧∈⎪⎪⎪>⎨⎪⎪∈-⎪⎩. 其中,第一组可以利用琴生不等式来证明;第二组可以结合第一组及基本不等式证明. (3)在ABC △中,角A 、B 、C 成等差数列⇔3B π=.(4)ABC △的内切圆半径为2Sr a b c=++.6、仰角、俯角、方位角: 略7、和差化积与积化和差公式(理科):(1)积化和差公式: 1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ⎧=++-⎪⎪⎪=+--⎪⎨⎪=-++⎪⎪⎪=--+⎩;(2)和差化积公式:sin sin2sin cos22sin sin2cos sin22cos cos2cos cos22cos cos2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-⎧+=⎪⎪+-⎪-=⎪⎨-+⎪+=⎪⎪-+⎪-=-⎩.六、三角函数1、正弦函数、余弦函数和正切函数的性质、图像:性 单调性 [2,2]22k k ππππ-+; 3[2,2]22k k ππππ++.(Z k ∈)[2,2]k k πππ-;[2,2]k k πππ+.(Z k ∈)(,)22k k ππππ-+(Z k ∈)最值当22ππ-=k x 时,1min -=y ; 当22ππ+=k x 时,1max =y ;当ππ+=k x 2时,1min -=y ; 当πk x 2=时,1max =y ;无图像例1:求函数5sin(2)3y x π=+的周期、单调区间和最值.(当x 的系数为负数时,单调性相反)解析:周期22T ππ==,由函数x y sin =的递增区间[2,2]22k k ππππ-+,可得 222232k x k πππππ-≤+≤+,即51212k x k ππππ-≤≤+, 于是,函数5sin(2)73y x π=++的递增区间为5[,]1212k k ππππ-+.同理可得函数5sin(2)73y x π=++递减区间为7[,]1212k k ππππ++.当2232x k πππ+=+,即12x k ππ=+时,函数5sin(2)3y x π=+取最大值5;当2232x k πππ+=-,即512x k ππ=-时,函数5sin(2)3y x π=+取最大值5-.例2:求函数5sin(2)7,[0,]32y x x ππ=++∈的单调区间和最值.解析:由[0,]2x π∈,可得42[,]333x πππ+∈.然后画出23x π+的终边图,然后就可以得出当2[,]332x πππ+∈,即[0,]12x π∈时,函数5sin(2)73y x π=++单调递增; 当42[,]323x πππ+∈,即[,]122x ππ∈时,函数5sin(2)73y x π=++单调递减.同时,当232x ππ+=,即12x π=时,函数5sin(2)73y x π=++取最大值12;当4233x ππ+=,即2x π=时,函数5sin(2)73y x π=++取最小值7;注意:当x 的系数为负数时,单调性的分析正好相反.2、函数sin()y A x h ωϕ=++&cos()y A x h ωϕ=++&tan()y A x h ωϕ=++,其中0,0A ϕ>≠: (1)复合三角函数的基本性质:(2)函数sin()y A x h ωϕ=++与函数sin y x =的图像的关系如下: ①相位变换:当0ϕ>时,sin sin()y x y x ϕϕ=−−−−−−→=+向左平移个单位; 当0ϕ<时,sin sin()y x y x ϕϕ=−−−−−−→=+向右平移个单位; ②周期变换:当1ω>时,1sin()sin()y x y x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的横坐标缩短到原来的倍(纵坐标不变); 当01ω<<时,1sin()sin()y x y x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的横坐标伸长到原来的倍(纵坐标不变); ③振幅变换:当1A >时,sin()sin()A y x y A x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的纵坐标伸长到原来的倍(横坐标不变); 当01A <<时,sin()sin()A y x y A x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的纵坐标缩短到原来的倍(横坐标不变); ④最值变换:当0h >时,sin()sin()h y A x y A x h ωϕωϕ=+−−−−−−−−−→=++所有各点向上平行移动个单位; 当0h <时,sin()sin()h y A x y A x h ωϕωϕ=+−−−−−−−−−→=++所有各点向下平行移动个单位; 注意:函数cos()y A x h ωϕ=++和函数tan()y A x h ωϕ=++的变换情况同上.3、三角函数的值域: (1)sin y a x b =+型:设sin t x =,化为一次函数y at b =+在闭区间[1,1]-上求最值. (2)sin cos y a x b x c =±+,,0a b >型:引入辅助角,tan baϕϕ=,化为)y x c ϕ=±+. (3)2sin sin y a x b x c =++型:设sin [1,1]t x =∈-,化为二次函数2y at bt c =++求解. (4)sin cos (sin cos )y a x x b x x c =+±+型:设sin cos [t x x =±∈,则212sin cos t x x =±,化为二次函数2(1)2a t y bt c -=±++在闭 区间[t ∈上求最值.(5)tan cot y a x b x =+型:设tan t x =,化为by at t=+,用“Nike 函数”或“差函数”求解.(6)sin sin a x by c x d+=+型:方法一:常数分离、分层求解;方法二:利用有界性,化为1sin 1x -≤≤求解. (7)sin cos a x by c x d+=+型:化为sin cos a x yc x b dy -=-)x b dy ϕ+=-,利用有界性,sin()[1,1]x ϕ+=-求解.(8)22sin cos sin cos a x x b x c x ++,(0,,a b c ≠不全为0)型:利用降次公式,可得22sin cos sin cos sin 2cos 2222a c b b c a x x b x c x x x -+++=++,然后利用辅 助角公式即可. 4、三角函数的对称性:备注:①x y sin =和x y cos =的对称中心在其函数图像上;②x y tan =和x y cot =的对称中心不一定在其函数图像上.(有可能在渐近线上) 例3:求函数5sin(2)73y x π=++的对称轴方程和对称中心.解析:由函数sin y x =的对称轴方程2ππ+=k x ,Z k ∈,可得232x k πππ+=+,Z k ∈解得122k x ππ=+,Z k ∈.所以,函数5sin(2)73y x π=++的对称轴方程为122k x ππ=+,Z k ∈.由函数sin y x =的中心对称点)0,(πk ,Z k ∈,可得23x k ππ+=,Z k ∈解得62k x ππ=-+,Z k ∈. 所以,函数5sin(2)73y x π=++的对称中心为(,7)62k ππ-+,Z k ∈.5、反正弦、反余弦、反正切函数的性质和图像:x y arcsin = x y arccos =x y arctan =定义域 ]1,1[-]1,1[-),(+∞-∞值域 ]2,2[ππ-],0[π )2,2(ππ-奇偶性 奇函数 非奇非偶函数 奇函数单调性 在[1,1]-上是增函数在[1,1]-上是减函数在),(+∞-∞上是增函数对称中心点(0,0)点(0,)2π点(0,0)图像重要结论:(1)先反三角函数后三角函数:①[1,1]sin(arcsin )cos(arccos )a a a a ∈-⇒==; ②tan(arctan )a R a a ∈⇒=. (2)先三角函数后反三角函数: ①[,]22ππθ∈-⇒arcsin(sin )θθ=; ②[0,]θπ∈⇒arccos(cos )θθ=; ③(,)22ππθ∈-⇒arctan(tan )θθ=. (3)反三角函数对称中心特征方程式:①[1,1]a ∈-⇒arcsin()arcsin a a -=-; ②[1,1]a ∈-⇒arccos()arccos a a π-=-; ③(,)a ∈-∞+∞⇒arctan()arctan a a -=-. 6、解三角方程公式:sin ,1(1)arcsin ,cos ,12arccos ,tan ,arctan ,k x a a x k a k Z x a a x k a k Z x a a R x k a k Z πππ⎧=≤=+-∈⎪=≤=±∈⎨⎪=∈=+∈⎩.。

相关文档
最新文档