列方程解应用题的各种类型
列方程解应用题的四种方法
列方程解应用题的四种方法列方程(组)解应用题就是将已知量与未知量的关系列成等式,通过解方程(组)求出未知量的过程. 其目的是考查学生分析问题和解决问题的能力. 如何解决这类问题,其方法很多,现结合实例给出几种解法,以供参考.一、直译法设元后,把元看作未知数,根据题设条件,把数学语言直译为代数式,即可列出方程组. 例1(2007年南京市)某农场去年种植了10亩地的南瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量增长率的2倍,今年南瓜的总产量为60 000kg ,求南瓜亩产量的增长率. 分析:若设南瓜亩产量的增长率为x ,则南瓜种植面积的增长率为2x .由此可知今年南瓜的亩产量为2000(1)x +kg ,共种植了10(12)x +亩南瓜,根据总产量是60 000kg 即可列出方程.解:设南瓜亩产量的增长率为x .根据题意列方程,得10(12)2000(1)60000x x ++= .解得10.550%x ==,22x =-(不合题意,舍去). 答:南瓜亩产量的增长率为50%.二、列表法设出未知数后,视元为未知数,然后综合已知条件,把握数量关系,分别填入表格中,则等量关系不难得出,进而列出方程组.例2(2007年沈阳市)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天? 分析:解工程问题的关键是抓住工作总量、工作效率、工作时间三者间的关系,工作总量通常看作单位1. 根据题意,将关键数据分别填入表格即可列出方程.解:设甲队单独完成此项工程需要x 天,则乙队单独完成此项工程需要45x 天. 由题意得1012145x x +=.解得25x =. 经检验,25x =是原方程的解. 当25x =时,4205x =. 答:甲、乙两个施工队单独完成此项工程分别需25天和20天.三、参数法对复杂的应用题,可设参数,则往往起到桥梁的作用.例3 (2007年滨州市)某人在电车路轨旁与路轨平行的路上骑车行走,他留意到每隔6分钟有一部电车从他后面驶向前面,每隔2分钟有一部电车从对面驶向后面.假设电车和此人行驶的速度都不变(分别为12u u ,表示),请你根据图1,求电车每隔几分钟(用t 表示)从车站开出一部?分析:本题给人数量少,条件不足,好象无从下手的感觉,因此可把需要的量以辅助未知数(参数)的形式表示出来.解决本题的关键是正确求出两部电车的间隔距离,如图1(甲)所示,则从行人身后(人车同向)发来的两辆电车间的距离为:6×(电车行进的速度-行人骑车的速度);如图1(乙)所示,则从行人前方(人车异向)发来的两辆电车间的距离为:2×(电车行进的速度+行人骑车的速度).解:设电车的速度为1u ,行人的速度为2u ,电车每隔t 分钟从车站开出一部.根据题意得1211216()2()u u u t u u u t -=⎧⎨+=⎩,解得122u u =. 再把122u u =代入所列方程组的任意一个方程中,均可解得3t =(分钟).答:电车每隔3分钟从车站开出一部.四、线示法运用图线,把已知和未知条件间的数量关系,用线性图表示出来,再把数量关系写在直线图上,则等量关系可一目了然.例4(2007年梅州市)梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km 的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h ,人步行的速度是5km/h (上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你能过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.分析:(1)可把单独用一辆小汽车来回接送学生所需要的时间与42分钟做比较即可;(2)若确定去县城的最短时间,可充分考虑“汽车”和“人”这两个运动因素. 显然当汽车到达时,人也同时到达这一情况可使运送学生的总时间最短. 最短时间可利用速度比求得.解:(1)不能在限定时间内使考生到达考场.图1理由如下:如果单独用一辆小汽车来回接送,那么小汽车需要跑3趟,所需要的时间为1533(h)45604⨯==(分钟),由于45分钟42>分钟,所以不能在限定时间内到达考场. (2)方案不惟一,具有开放性. 最短时间的方案设计如下:先让4人乘车,另4人步行,如果恰当的选取第一批学生下车的位置,然后让他们步行到车站,同时第二批4人也步行;小汽车返回后接第二批步行的4人追赶第一批步行的人,使这8人同时到达火车站. 在这个过程中,8个人始终在步行或乘车,没有因为等车而浪费时间,因而应该最节约时间. 其运动过程如图2所示.设先步行的4人的行走路程AB 为km x ,后步行的4人的行走路程CD 为km z ,中间的汽车行走路程BC 为km y . 则汽车在路线A C B →→上所用时间与先步行的4人在路线A B →上所用的时间相等;汽车在路线C B D →→上所用时间与后步行的4人在路线C D →上所用的时间相等. 根据在相等的时间内,路程之比等于速度之比,可以得到::(2)5:60:(2)5:60x x y z z y +=⎧⎨+=⎩ 整理得212212x y x z y z+=⎧⎨+=⎩ 解得2,112.11x y z y ⎧=⎪⎪⎨⎪=⎪⎩ 又因为15x y z ++=,所以可得:2x =,11y =,2z =. 由题知所用最短时间为汽车行走的路程与汽车的速度之比,即3376060x y z ++=(时)37=(分钟). 因为3742<,所以他们能在截止进考场的时刻前到达考场. 图2。
初一一元一次方程解应用题全部类型
1、和、差、倍、分问题;这类问题主要应搞清各量之间的关系,注意关键词语。
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多少、和、差、不足、剩余……”来体现。
例1、某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?分析:相等关系是:今年捐款=去年捐款×2+1000。
解:设去年为灾区捐款x元,由题意得,2x+1000=250002x=24000∴ x=12000答:去年该单位为灾区捐款12000元。
例2、旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?分析:等量关系为:油箱中剩余汽油+1=用去的汽油。
解:设油箱里原有汽油x公斤,由题意得,x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%去分母整理得,9x+20=5x+6x∴ 2x=20∴ x=10答:油箱里原有汽油10公斤。
2、等积变形问题:“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。
例3、现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?分析:等量关系为:机轴的体积和=钢坯的体积。
解:设可足够锻造x根机轴,由题意得,π()2×3x=π()2×30解这个方程得x=x=×10×==40答:可足够锻造直径为0.4米,长为3米的圆柱形机轴40根。
3、劳力调配问题:这类问题要搞清人数的变化,常见题型有(1)既有调入又有调出。
(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。
例4、有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的,应从乙队调多少人到甲队?分析:此问题中对乙队来说有调出,对甲队来说有调入。
列方程解应用题的常见题型(参考)
列一元一次方程解应用题的常见题型1、和、差、倍、分问题1.某校初中一年级328名师生乘车外出春游,已有2辆校车可乘坐64人,还需租用44座的客车多少辆?2.一年级三个班为希望小学捐赠图书。
(1)班捐了152册,(2)班捐书数是三个班级的平均数,(3)班捐书数是年级总数的40%,三个班共捐了多少册?3.学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,杉树的棵数比总数的1/3少14棵,两类树各种了多少棵?2、等积形变问题某工厂锻造直径为60毫米,高20毫米的圆柱形瓶内装水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。
3、工作(工程)问题1.师徒两人检修一条长180米的自来水管道,师傅每小时检修15米,徒弟每小时检修10米,现两人合作,多少时间可以完成整条管道的检修?2.学校校办厂需制作一块广告牌,请来两名工人。
已知师傅单独完成需4天,徒弟单独完成需6天。
(1)两人合作需几天完成?(2)现由徒弟先做1天,再两人合作,共需几天完成?完成后共得到报酬450元,如果按各人完成的工作量计算报酬,那么该如何分配?3.有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果其中有40m2墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面.每名师傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的墙面面积;(2)张老板现有36个这样的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成?(3)已知每名师傅,徒弟每天的工资分别是85元,65元,张老板要求在3天内完成,问如何在这8个人中雇用人员,才合算呢?4、比例问题甲、乙、丙三个粮仓共存粮80吨,已知甲、乙两仓存粮数之比是1:2,乙、丙两仓存粮数之比是1:2.5,求甲、乙、丙三个粮仓各存粮多少吨?5、劳动力分配问题1.在甲处劳动者有31人,在乙处劳动者有21人,现另调23人去支援甲、乙两处,使在甲处劳动的人数是在乙处劳动人数的2倍.问应往甲、乙两处各调多少人?2.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?3.有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍.”乙回答说:“最好还是把你的羊给我一只,我们的羊数就一样了.”两个牧童各有多少只羊?4、红光服装厂要生产某种学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?6、行程问题1.一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?2.一次路程为60千米的远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发,这辆汽车开到目的地后,再回头接步行这部分人,若步行者的速度为5千米/时,比汽车提前一小时出发,汽车的速度为60千米/时,问步行者出发后经过多少时间与回头接他们的汽车相遇?3.学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问(1)小刚在冲刺阶段花了多少时间?(2)小刚在离终点多远时开始冲刺?4.某学生乘船由甲地顺流而下到乙地,然后又逆流而上到丙地,共有用3小时。
小学数学六年级列方程解应用题的类型
列方程解应用题的类型(一)直接设未知数例1.甲的存款是乙的4倍,如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍,问甲乙原来各有存款多少元?解析:这是一道较复杂的和差倍问题.但用方程思维来解,就好理解了.解:设乙原来有存款x元,(直接设未知数,求两个量以上的,一般设最小的那个),那么甲原来的存款数就是4x元(用未知数表示另外的量)根据题中“现在,乙的存款是甲的3倍”这一数量关系式,我们可以列出方程(x+110)=(4x-110)×3(二)间接设未知数例2.盒子里装有白球的个数是红球的3倍.每次取出3个红球和4个白球,取了若干次以后,红球正好取完,白球还有20个,盒子里原来共有多少个球?解析:如果直接设未知数,设原来共有X个球,你就无法用未知数表示出白球和红球的数量,自然也不能用方程列出两种球的数量关系式.所以直接设对这类型题不合适.从题意中我们发现,如果知道取了多少次,这道题就简单多了解:设共取了x次,题目中”盒子里白球的个数是红球的3倍”说出了两者的数量关系式,我们可以列出方程4x+20=3x×3(三).方程在其他题目中的运用例3.计算(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)解析: 如果直接去括号计算,三个数乘以三个数的乘法分配律,还没学.但仔细观察下,发现,算式中有好多数是相同的.我们可以把这些相同的数当成一个数,这样算式就简化了解:设0.12+0.23=x,设1+0.12+0.23=y原式=y×(x+0.34)-(y+0.34)×x=x×y+0.34×y-x×y-0.34×x (式子中的”×”号可不写)=0.34y-0.34x=0.34(y-x)=0.34(提醒:原来,设未知数的目的在于简化计算过程,到最后,含有未知数的全部抵消掉了 )例4. 有一个三位数:十位上的数字是0,其余两位上的数字之和是12。
常见列方程解应用题的几种类型:.doc
顺逆流问 顺流速度=静水速度+水流速度
题
逆流速度=静水速度-水流速度
甲走的路程+乙走的 路程=两地距离 同地不同时出发:前 者走的路程=追者走 的路程 同时不同地出发:前 者走的路程+两地距 离=追者所走的路程 顺流的距离=逆流的 距离 从调配后的数量关系 中找相等关系,要抓 住“相等”“几倍”“几 分之几”“多”“少” 等关键词语
100%
售价=进价×(1+利润率)
设一个两位数的十位上的数字、 抓住数字家或新数、原数之
个位上的数字分别为 a,b,则这 间的关系
个两位数可表示为 10a+b
利息=本金×利率×期数
本 息 和= 本金 + 利息 =本 金
+ 本 金× 利率 × 期数 × (1 -
利息税率)
甲∶乙∶丙=a∶b∶c
全 部 数量 =各 种 成分 的数 量
之和(设一份为 x)
日历中每一行上相邻两数,右边 日历中的数 a 的取值范围是 1
的数比左边的数大 1;日历中每 ≤a≤31,且都是正整数
一列上相邻 的两数, 下边的数比
上边的数大 7
类型 (5)工程问题 (6)利润率问题
(7)数字问题 (8)储蓄问题 (9)按比例分配问题 (10)日历中的问题
基本数量关系 工作总量=工作效率×工作时间 商品利润=商品售价-商品进价
商品利润 商 品 利 润 率 = 商品进价 ×
等量关系 各部分工作量之和=1 抓 住 价格 升降 对 利润 率的 影 响来考虑
常见列方程解应用题的几种类型:
类型
基本数量关系
(1)和、差、倍、分问题
①较大量=较小量+多余量
②总量=倍数×倍量
(2)等积变形问题
V长方体=abh,V正方体=a3
列方程组解应用题的常见题型
列方程组解应用题的常见题型.1和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量 2产品配套问题:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么ba 乙产品数甲产品数= (2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:cb a 丙产品数乙产品数甲产品数===原量×(1+减少率)=减少后的量7浓度问题:溶液×浓度=溶质8经济类问题:利息=本金×利率×期数本息和=本金+利息=本金+本金×利率×期数利润=售价-进价利润=进价×利润率打x 折: 原价×0.1x9盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量10数字问题:当n 为整数时,奇数可表示为2n +1(或2n -1),偶数可表示为2n . 有关两位数的基本等量关系式为:两位数=十位数字×10+个位数字.有关三位数的基本等量关系式为:三位数=百位数字×100+十位数字×10+个位数字.被减数=减数+差 减数=被减数—差 差=被减数—减数 加数=和—另一个加数因数=积÷另一个因数被除数=除数×商+余数12年龄问题:一个人的年龄变化(增大、减小)了,其他人也一样增大或减小,并且增大(或减小)的岁数是相同的(相同的时间内)。
.13、等积类问题:“等积变形”是以形状改变而体积不变为前提。
常用等量关系为: ①形状面积变了,周长没变。
②变形前后的质量(或体积)不变.14.优化方案问题:在解决问题时,常常需合理安排。
需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案。
四.解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.第六章 数据的分析1.平均数:(1)算术平均数:一组数据中,有n 个数据n x x x ,,, 21,则它们的算术平均数为n x x x x n +++= 21. (2)加权平均数:若在一组数字中,出现次,出现次,…,出现次,那么叫做、、…、的加权平均数。
列方程解应用题的常见十大类题型
怎样找等量关系?10种类型方程解应用题根据常见的数量关系/计算公式找等量关系。
每份数×份数=总数工作效率×工作时间=工作总量单价×数量=总价速度×时间=路程单产量×数量=总产量速度和x相遇时间=路程和长方形的周长=(长+宽)×2长方形面积=长×宽正方形周长=边长×4正方形面积=边长×边长问什么就设什么。
(一)比多比少问题Χ+a=b↓多几个(或少几个)李阿姨买了36元的苹果,比买梨子多花了14元,请问李阿姨买了多少元的梨子?解:设李阿姨买了Χ元的梨子Χ+14=36Χ=36-14Χ=22答:............李阿姨买苹果和梨子一共花了58元,苹果比梨子多花了14元,请问李阿姨各买了多少元的苹果和梨子?解:设李阿姨买了Χ元的梨子,则买了Χ+14元的苹果。
Χ+Χ+14=582Χ+14=582Χ=58-142Χ=44Χ=22答:...........(二)几倍问题存在倍数关系,一般设较小的数为Χa.Χ=b↓↓↓倍数小数大数秋游时,学校租了一大一小的两辆车,大车可以载63人,是小车可载人数的3倍。
小车能载多少人?解:设小车能载Χ人。
3Χ=63Χ=63÷3个数各是是多少,我们通常称为和倍问题。
几倍量+1倍量=总数和aΧ+x=c↓↓↓倍数一倍量(标准量)总数和两个数的和是369,第二个数是第一个数的2倍,请问这两个数分别是多少?解:设第一个数是Χ,则第二个数是2Χ。
Χ+2Χ=369个数各是是多少,我们通常称为差倍问题。
几倍量-1倍量=两数之差aΧ-x=c↓↓↓倍数一倍量(标准量)相差的量妈妈今年的年龄是小乐年龄的3倍,妈妈比小乐大26岁,请问妈妈和小乐今年各是多少岁?解:设小乐今年Χ少岁,则妈妈今年3Χ岁。
(妈妈的年龄-乐乐的年龄=26岁)3Χ-Χ=26(五)倍多倍少问题存在倍数关系,一般设较小的数为ΧaΧ+b=c↓↓↓倍数多几个(或少几个)大数冬冬和佳佳收集邮票,冬冬收集了96枚邮票,比佳佳收集的3倍还多2枚,佳佳收集了多少枚邮票?解:设佳佳收集了Χ枚邮票?3Χ+2=96(六)行程问题基本行程问题:速度×时间=路程相遇问题:速度和×相遇时间=路程和甲乙两地相距471千米,客车和货车同时分别从两地同时出发,经过3小时相遇,已知客车每小时行52千米,货车每小时行多少千米?解:设货车每小时行Χ千米?3(Χ+52)=471(七)套装:桌椅、服装、甲乙的单价和×套数=总价学校阅览室新购进了40套桌椅,共用去8000元,已知每把椅子75元,每张桌子多少钱?解:设每张桌子Χ钱?(Χ+75)×=8000(八)购物问题1.甲的总价+乙的总价=总共用的钱2.付出的钱-用掉的钱=找回的钱用掉的钱+找回的钱=找回的钱张阿姨买了苹果和梨各2千克,共花费了10.4元,梨每千克2.8元,请问苹果每千克多少钱?解:设苹果每千克Χ元钱。
常见列方程解应用题类型及其教案分享。
常见列方程解应用题类型及其教案分享。
一、线性方程组线性方程组是解应用题中的一种重要类型。
通常,这种题目会要求我们根据给定的条件列出方程组,并通过解方程组来求解问题。
例如:有两堆麦子,第一堆麦子重x千克,第二堆麦子重y千克,已知两堆麦子的总重量为15千克,且第一堆麦子的质量是第二堆的两倍。
求第一堆麦子的质量和第二堆麦子的质量分别是多少?针对这种类型的题目,我们可以先设出未知数,然后根据题目中的条件列出方程,再通过解方程组来求解问题。
通过这种方法,不仅可以更好地理解线性方程组,而且还能锻炼我们的逻辑思维和解题能力。
二、二元一次方程二元一次方程也是解应用题中的一种重要类型。
通常,这种题目给出两个未知数,要我们求解这两个未知数的值。
例如:小明和小华买了若干个水果,其中小明买了3个苹果和5个橘子,花费28元;小华买了2个苹果和3个橘子,花费16元。
问苹果和橘子的单价各是多少元?针对这种类型的题目,我们可以先设出未知数,然后根据题目中的条件列出方程,再通过解方程来求解问题。
通过这种方法,不仅可以更好地理解二元一次方程,而且还能锻炼我们的逻辑思维和解题能力。
三、一元一次方程一元一次方程也是解应用题中的一种基础类型。
通常,这种题目给出一个未知数,要我们求解这个未知数的值。
例如:从售价为x元的商品上打7折,再轻微讲价4元,最终售价为18元,求商品原价是多少元?针对这种类型的题目,我们可以先设出未知数,然后根据题目中的条件列出方程,再通过解方程来求解问题。
通过这种方法,不仅可以更好地理解一元一次方程,而且还能锻炼我们的逻辑思维和解题能力。
四、教案分享上述三种类型的解应用题都需要我们具备一定的解题方法和解题思路。
因此,我们可以通过一些教学方案来帮助学生更好地掌握这些知识点。
以下是我个人总结的教案分享:一、线性方程组教学目标:1、能够正确地列出线性方程组。
2、掌握解线性方程组的方法。
3、能够独立地解决与线性方程组相关的问题。
七上数学列方程解应用题公式
七上数学列方程解应用题公式
七年级上册数学列方程解应用题公式主要包括以下几种:
1. 追及问题:甲、乙两物体在同一直线上运动,如果甲、乙做匀速直线运动,那么追及问题的等量关系为:甲的路程+乙的路程=甲与乙的初始距离。
2. 相遇问题:甲、乙两物体在某地相向而行,经过一段时间它们相遇了。
相遇问题的等量关系是:甲的路程+乙的路程=两地的距离。
3. 航行问题:航行问题可以分为顺水航行和逆水航行两种情况。
在顺水航行中,船的速度等于船在静水中的速度加上水流的速度;在逆水航行中,船的速度等于船在静水中的速度减去水流的速度。
4. 劳力调配问题:这类问题一般涉及三个等量关系,设工作总量为“1”,
若完成某项工作的人数增加,则工作时间减少;若完成某项工作的人数减少,则工作时间增加。
5. 比例问题:若甲、乙两数的比是 k,那么我们可以得到以下等量关系:甲/乙=k,或者甲=k×乙。
6. 工程问题:在工程问题中,工作量、工作时间和工作效率之间的关系非常重要。
一般来说,工作量=工作时间×工作效率。
这些是七年级上册数学列方程解应用题的主要公式和等量关系。
需要注意的是,这些公式和等量关系都是根据实际问题的情况而定的,具体问题需要具体分析。
在解题过程中,还需要注意单位的统一和换算。
列方程解应用题的几种常见类型及解题技巧
列方程解应用题的几种常见类型及解题技巧(1)和差倍分问题:①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。
(2)行程问题:基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,路程=速度×时间。
①相遇问题:快行距+慢行距=原距;②追及问题:快行距-慢行距=原距;③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,逆水(风)速度=静水(风)速度-水流(风)速度例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?两车同时开出,相背而行多少小时后两车相距600公里?两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
) 例:一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?(3)劳力分配问题:抓住劳力调配后,从甲处人数与乙处人数之间的关系来考虑。
这类问题要搞清人数的变化。
例.某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?(4)工程问题:三个基本量:工作量、工作时间、工作效率;其基本关系为:工作量=工作效率×工作时间;相关关系:各部分工作量之和为1。
例:一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?(5)利润问题:基本关系:①商品利润=商品售价-商品进价;②商品利润率=商品利润/商品进价×100%;③商品销售额=商品销售价×商品销售量;④商品的销售利润=(销售价-成本价)×销售量。
简易方程应用题分类(全)
【解方程应用题类型分类】●购物问题1、食堂买了8千克黄瓜,付出15元,找回1.4元,每千克黄瓜是多少钱?思路1:付出的钱-用掉的钱=找回的钱思路2:用掉的钱+找回的钱=付出的钱2、王老师带500元去买足球。
买了12个足球后,还剩140元,每个足球多少元?3、奶奶买4袋牛奶和2个面包,付给售货员20元,找回5.2元,每个面包5.4元,每袋牛奶多少元?4、明明家买了一套桌椅,6张椅子配一张桌子,一共用了1120元。
如果一张餐桌730元,那么一把椅子多少元?5、大瓜去买大米和面粉,每千克大米2.6元,每千克面粉2.3元,他买了20千克面粉和若干大米,共付款61.6元,买大米多少千克?●“谁是谁的几倍多(少)几”(形如ax±b=c的方程)问题:1. 乙两个书架.已知甲书架有540本书,比乙书架的3倍少30本.乙书架有多少本书?思路:设什么?关键字:乙书架的3倍乙书架的3倍 -30本 = 甲书架2、一只鲸的体重比一只大象的体重的37.5倍多12吨.已知鲸的体重是162吨,大象的体. 专业资料可编辑 .重是多少吨?3、某饲养场养鸡352只,比鸭的只数的4倍还多32只。
养鸭多少只?形如ax±bx=c的方程问题:1、育新小学共有108人参加学校科技小组,其中男生人数是女生人数的1.4倍。
参加科技小组的男、女生各有多少人?设什么?关键字:女生人数的1.4倍思路:女生人数 + 男生人数 = 总人数2、强强和丽丽共有奶糖40粒,强强比丽丽少6粒,强强有奶糖多少粒?设什么?关键字:比丽丽少6粒思路:丽丽的糖 + 强强的糖 = 总共的糖3、一支钢笔比一支圆珠笔贵6.8元。
钢笔的价钱是圆珠笔价钱的4.4倍。
钢笔和圆珠笔的价钱各是多少元?4、体育比赛中参加跳绳的人数是踢毽子人数的3倍,已知踢毽子的人数比跳绳的人数少20人,跳绳、踢毽子各有多少人?(两种不同的设法)5、食堂买来一些黄瓜和西红柿,黄瓜的质量是西红柿的1.2倍,黄瓜比西红柿多6.4千克。
最新四年级下册列方程解应用题类型
列方程解应用题类型(一)1.小红买一本书,付出10元,找出2.5元,这本书多少钱?2.妈妈去超市买商品,付出100元,找出38元,买商品花了多少钱?3.小红书,付出50元,找出2元,平均每本书多少元?4.小明买5枝笔,付出16元,找出1元,平均每枝多少钱?5.妈妈买8斤鸡蛋,付出35元,找出3元,平均每斤鸡蛋多少元?6.妈妈买10袋牛奶,付出20元,找出5元,每袋多少元?列方程解应用题类型(二)1.商店原有大米500千克,卖出一些,还剩40千克,卖出多少千克?2.商店原有一些大米,卖出6袋,每袋5千克,还剩40千克,商店原有多少千克大米?3.小红做了4种颜色的花,每种10朵,用去一些后还剩90朵,用去了多少朵?4.服装厂有600米布,做了10套衣服,还剩30米布,平均每套衣服用多少布?5.学校有一些篮球,借给了4个班,每个班20个,还剩5个,学校原有篮球多少个?6.学校有70个篮球,借给了3个班,还剩10个篮球,平均每班借去多少个?列方程解应用题类型(三)1.二钢有学生120人,三年级比二年级的二倍少20人,三年级多少人?2.书法班有20人,作文班人次比书法班的3倍多2人,作文班多少人?3.科技书60本,文艺书比科技书的2倍少13本,文艺书多少本?4.合唱队46人,比舞蹈队的2倍多6人,舞蹈队多少人?5.合唱队40人,舞蹈比合唱队的2倍多4人,舞蹈队有多少人?6.饲养小组养兔25只,养鸡只数是养兔的2倍少6只,养鸡多少只?7.方格本16本,数学本比方格本的3倍少4本,数学本有多少本?8.园林里松树是柏树棵数的2倍多30棵,柏树有120棵,松树有多少棵?9.红花45朵,黄花比红花的4倍少20朵,黄花多少朵?10.今年养鸡140只,比去年的3倍多20只,去年养鸡多少只?列方程解应用题类型(四)1.两地相距500千米,两辆车从两地同时出发,行5小时后两车相遇,甲车速度是60千米/时,乙车速度是多少?2.一列快车从丹东出发,平均每小时行79千米,同时一列慢车从锦州出发,平均每时50千米,2小时后相遇,丹东到锦州铁路长多少千米?3.客车从丹东出发,车速是80千米/时,同时一列货车从沈阳出发,车速是60千米/时,1.5时后两车相遇,丹东到沈阳相距多少千米?4.丹东到沈阳公路长240千米,一辆轿车从丹东出发,车速是90千米/时,1.5小时后相遇,另一辆客车同时从沈阳出发,客车平均速度是多少千米/时?5.两个工程队挖一条长240米长的隧道,两队各从一端相向施工,甲每天开凿15米,10天打通,乙方每天凿多少米?6.服装厂加工600件衣服,分两组加工,甲组平均每天加工77件,三天后完成任务,乙组平均每天加工多少件?7.甲车以80千米/时的速度开出,2时后乙车出发,3时后,乙车赶上甲车,乙方的车速是多少?8.甲乙同时出发,甲车以80千米的速度出发,3时后,乙方落下甲车108千米,乙方平均速度是多少?9.甲乙两人同时加工一零件,甲平均每时加工48个,2时后,甲比乙多加工12个,乙每时加工多少个?10.甲乙两人加工一批零件,甲每时加工48个,甲先加工2时后,乙开始加工,4时后,乙和甲加工的零件同样多,乙平均每时加工多少个?列方程解应用题类型(五)1.一个正方形,周长是48平方分米,边长是多少?2.一个长方形,周长是48平方米,长是20米,宽多少米?3.一个长方形的周长是40平方米,长是20米,宽是多少?4.爷爷用50米的篱笆围成一个院子,院子的长是18米,宽是多少米?5.妈妈要围一个院子,一面靠墙,院子的长是8米,宽4米,需要用多长的篱笆?6.已知长方形的宽比长短6米,周长是64米,长方形的长和宽各是多少米?7.一个长方形宽是2米,长是宽的3倍,长方形的周长是多少?8.长方形的周长是48米,长是宽的2倍,长方形的宽是多少?列方程解应用题类型(六)1.修一条路,计算每天修2千米,需要30天完成,结果提前5天完成,实际每天修多少米?2.一袋苹果每天吃3个,需要18天吃完,结果提前2天吃完,平均每天吃多少个?3.食堂运来一批大米,计划每天吃40千克,需要20天吃完,结果提前3天吃完,平均每天吃多少千克?4.修一条路,每天修2千米,需要30天完成,实际每天修3千米,实际需要多少天完成?。
列方程解决问题归类总结
8、甲、乙两地相距 1000米,小华从甲地、小明从
乙地同时相向而行,小华每分钟走 80米,小明每分 钟走45米。两人几分相遇?
9、两地间的路程是 210千米,甲、乙两辆汽车同时 从两地相向开出, 3.5小时相遇,甲车每小时行 28 千米。乙车每小时行多少千米?
列方程解决问题常见类型
列方程解应用题的一般步骤:
(1)设要求的数为未知数 x (2)根据题意 列等量关系式 (3)利用等量关系式列方程 (4)解方程 (5)检验后答
列方程解决问题的关键
看清图中相等关系 找关键句 找等量关系
1、看图写出数量关系式,并列出方程。
每小时χ km
客车速度:
动车速度:
每小时 200km
甲队开凿长度+乙队开凿长度=总价钱
写数量关系,列方程
2、阿姨买4块肥皂、2条毛巾共用去2.8 元,已知肥皂每块0.26元,毛巾每条 多少元?
3、商店运来500千克水果,其中有8筐 苹果,剩下的是梨,梨有300千克。每 筐苹果重多少千克?
写数量关系,列方程
4、商店运来8筐苹果和10筐梨,一共重820千 克。每筐苹果重45千克,每筐梨重多少千克?
少 25km
等量关系式:客车的速度× 3-少的千米数 =动车的速度
方程: 3x-25=200
(2)
等量关系式: 苹果的个数+梨的个数=总个数 方程: χ+2χ=93
根据下面的条件,列出数量之间的相等关系。
① 男生人数和女生人数一共27 人
根据下面的条件,找出数量间相等的关系。
②篮球比足球多5个
桃树棵数 +杏树棵数=320棵 解:设杏树有 X棵。
列一元一次方程解应用题的几种常见题型1
列一元一次方程解应用题的几种常见题型及其特点列方程解应用题的一般步骤是:(1)“设”:用字母(例如x)表示问题的;(2)“找”:看清题意,分析题中及其关系,找出用来列方程的;(3)“列”:用字母的代数式表示相关的量,根据列出方程;(4)“解”:解方程;(5)“验”:检查求得的值是否正确和符合实际情形,并写出答案;(6)“答”:答出题目中所问的问题。
一、和、差、倍、分问题此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。
类似于:甲乙两数之和56,甲比乙多3(乙是甲的1/3),求甲乙各多少?这样的问题就是和倍问题。
问题的特点是,已知两个量之间存在和倍差关系,可以求这两个量的多少。
基本方法是:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。
例题1、一个机床厂今年第一季度生产机床180台,比去年同期的二倍多36台,去年一季度产量多少台?等量关系:2、某通信公司今年员工人均收入比去年提高20%,且今年人均收入比去年的1.5倍少了1200元,求去年人均收入?等量关系:3. 某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来的费用不变,这样每人可以少摊3元,则原来每人需要付费多少元?等量关系:练习:1. 七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加书画社的有多少人?2. 本市中学生足球赛中,某队共参加了8场比赛,保持不败的记录,积18分.记分规则是:胜一场得3分,平一场得1分,负一场得0分。
你知道这个胜了几场?又平了几场吗?二、等积变形问题此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
长方体的体积= 正方体的体积=圆柱体的体积= 球体的体积=1. 将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14)等量关系:2. 要锻造一个直径为8cm,高为4cm的圆柱形毛坯,至少应截取直径为4cm的圆钢多少cm。
五年级上册列方程应用题6大类型
五年级上册数学列方程解应用题归类试题类型一(简单的一步方程)1、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
六一班收集了60个,六二班比六一班多收集15个,六二班收集了几个?2、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
六二班收集了60个,六二班比六一班多收集15个,六一班收集了几个?3、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
六二班收集了60个,六二班收集的是六一班的2倍,六一班收集了几个?4、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
其中六二班收集了60个,六二班共有4个小组,平均每个小组收集多少个?(用除法) 类型二(几倍多多少/少多少):1、食堂运来150千克大米,比运来的面粉的3倍少30千克。
食堂运来面粉多少千克?2、吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?3、农场一共收获了1200棵大白菜,每22棵装一筐,装完后还剩12棵,共装了几框?类型三(买东西和卖东西):1、小明有面值2角和5角的共9元,其中2角的有10张,5角的有多少张?2、我买了两套丛书,单价分别是:<<科学家>>2.5元/本,<<发明家>>3元/本,两套丛书共花了28元。
其中《科学家》这本书买了4本,《发明家》买了多少本?3、王奶奶拿了孙子们帮她收集的易拉罐和饮料瓶去废品收购站卖,共得到7元,易拉罐和饮料瓶每个都是0.15元,已知易拉罐有20个,那么饮料瓶有几个?类型四(和倍问题 / 差倍问题):1、粮店运来大米和面粉480包,大米的包数是面粉的3倍,运来大米和面粉各多少包?2、小强妈妈的年龄是小强的4倍,小强比妈妈小27岁,他们两人的年龄各是多少?3、甲车每小时比乙车多行驶10千米,甲车的速度是乙车的1.2倍,求乙车的速度是多少?类型五(相遇问题、追及问题、鸡兔同笼)1、甲乙两辆车同时从A、B两地相向而行,甲车每小时走5km,乙车每小时走6km,已知A、B两地相距110千米,问甲车和乙车几小时后相遇?2、小明和小东比赛骑自行车,他们约好同时从学校出发,看谁先到达终点的邮局,谁就赢。
列方程组解应用题的常见题型总结
列方程组解应用题的常见题型总结列方程组解应用题的常见题型总结列方程组解应用题的常见题型总结(1)和差倍分问题:解这类问题的基本等量关系式是:较大量=较小量+多余量,总量=倍数×1倍量.例;第一个容器有49L水,第二个容器有56L水,如果将第二个容器的水倒满第一个容器,那么第二个容器剩下的水是这个容器容量的二分之一;如果将第一个容器的水倒满第二个容器,那么第一个容器剩下的水是这个容器容量的三分之一,求这两个容器的容量.(2)产品配套问题:解这类问题的基本等量关系式是:加工总量成比例.例:某车间有28名工人参加生产某种特制的螺丝和螺母,已知平均每人每天只能生产螺丝12个或螺母18个,一个螺丝装配两个螺母,问应怎样安排生产螺丝和螺母的工人,才能使每天的产品正好配套?(3)速度问题:解这类问题的'基本关系式是:路程=速度×时间.路程差=速度差×时间。
路程和=速度和一般又分为相遇问题、追及问题及环形道路问题例:某人从甲地骑车出发,先以12km/h的速度下山坡,后以9km/h的速度过公路到达乙地,共用55min;返回时,按原路先以8km/h的速度过公路,后以4km/h的速度上山坡回到甲地,共用1h30min,问甲地到乙地共多少千米?例:一列快车长70m,一列慢车长80m,若两车同向而行,快车从追上慢车开始到离开慢车,需要1min;若两车相向而行,快车从与慢车相遇到离开慢车,只需要12s,问快车和慢车的速度各是多少?例:甲、乙两人在200m的环形跑道上练习竞走,乙的速度比甲快,当他们都从某地同时背向行走时,每隔30s种相遇一次;同向行走时,每隔4分钟相遇一次,求甲、乙两人的竞走速度.(4)航速问题:此类问题分水中航行和风中航行两类,基本关系式为:顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度-水(风)速例:甲轮从A码头顺流而下,乙轮从B码头逆流而上,两轮同时相向而行,相遇于中点,而乙轮顺流航行的速度是甲轮逆水航行的速度的2倍,已知水流速度是4km/h,求两轮在静水中的速度.(5)工程问题:解这类问题的基本关系式是:工作量=工作效率×工作时间.一般分为两类,一类是一般的工程问题,一类是工作总量为1的工程问题.例:一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件?例:.一项工程,甲队单独做要12天完成,乙队单独做要15天完成,丙队单独做要20天完成.按原定计划,这项工程要求在7天内完成,现在甲、乙两队先合做若干天,以后为加快速度,丙队也同时加入这项工作,这样比原定时间提前一天完成任务.问甲、乙两队合做了多少天?丙队加入后又做了多少天?(6)增长率问题:解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量,原量×(1-减少率)=减少后的量.例:某中学校办工厂今年总收入比总支出多30000元,计划明年总收入比总支出多69600元,已知计划明年总收入比今年增加20%,总支出比今年减少8%,求今年的总收入和总支出.(7)盈亏问题:解这类问题关键是从盈(过剩)、亏(不足)两个角度来把握事物的总量.例:为了迎接新学期开学,某服装厂赶制一批校服,要求必须在规定时间内完成,在生产过程中,如果每天生产50套,这将还差100套不能如期完成任务;如果每天生产56套,就可以超额完成80套,问原计划生产校服的套数及原计划规定多少天完成?(8)数字问题:解这类问题,首先要正确掌握自然数、奇数、偶数等有关数的概念、特征及其表示.如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等.有关两位数的基本等量关系式为:两位数=十位数字×10+个位数字.例:一个两位数的个位数字比十位数字大5,如果把个位数字与十位数字对换,所得的新两位数与原两位数相加的和为143,求这个两位数.(9)几何问题:解这类问题的基本关系是有关几何图形的性质、周长、面积等计算公式.例:有两个长方形,第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.(10)年龄问题:解这类问题的关键是抓住两人年龄的增长数相等,两人的年龄差是永远不会变的.例:师傅对徒弟说:“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的老人了”.问这位师傅与徒弟现在的年龄各是多少岁?1一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛? 2 有甲乙两种债券年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?3. 种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列方程解应用题的各种类型一、和、差、倍、分问题此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。
例题:红光服装厂要生产某种学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套解:设应用X米布料生产上衣,则生产裤子的布料为米。
等量关系上衣数=裤子数列方程。
x/3×2=(600-x)/3×3x=360二、等积变形问题此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
例题:平行四边形ABCD周长为75厘米,以BC为底时高为14厘米(图略);以CD为底时高是16厘米。
求:平行四边形ABCD的面积。
解:设BC边长为x厘米,CD边长为y厘米。
则平行四边形ABCD的面积= 14x = 16y。
所以x/y = 8/7平行四边形ABCD的周长= 2x + 2y = 75厘米,所以x = 20厘米,y = 17.5厘米。
所以平行四边形ABCD的面积= 14x = 280平方厘米。
三、调配问题从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。
例题:甲乙两书架上有书若干本,如果从乙架上取100本放到甲架上,那么甲架上的书比乙架上所剩余的书多5倍。
如果从甲架上取50本书放到乙架上,两架的书就一样多,问原来每个书架上各有书多少本?分析:我们根据从甲架上取50本书放到乙架上,两架的书就一样多可以知道甲比乙多50×2=100本.解:设乙有x本,则甲有x+100本,那么6×(x-100)=x+100+1006x-600=x+2005x=800x=160本乙有160本,甲有160+100=260本答原来甲、乙书架上各有书260本、160本。
四、行程问题要掌握行程中的基本关系:路程=速度×时间。
行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点1、相遇问题(相向而行)相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。
例题:甲乙两人都以不变的速度在环形路上跑步,如果同时同地出发。
相向而行,每隔2分钟相遇一次;如果同向而行,每隔6分钟相遇一次。
已知甲比乙跑得快,甲乙每分各跑多少圈?解:设甲每分跑x圈,乙每分跑y圈,则2x+2y=1 ①{6X-6Y=1 ②解得x=1/3{y=1/62、追及问题(同向而行)追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系例题:甲乙两人相距100米,甲在前每秒跑3米,乙在后每秒跑5米。
两人同时出发,同向而行,几秒后乙能追上甲?分析:在这个直线型追及问题中,两人速度不同,跑的路程也不同,后面的人要追上前面的人,就要比前面的人多跑100米,而两人跑步所用的时间是相同的。
所以有等量关系:乙走的路程-甲走的路程=100 解:设x秒后乙能追上甲根据题意得5x-3x=100x=50答:50秒后乙能追上甲。
3、环形跑道上的相遇和追及问题环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
例题:一条环形跑道长400米,甲练习骑自行车,平均每分钟骑550米,乙练习跑步,平均每分钟跑250米,两人同时同地出发。
1.若两人背向而行,则他们经过多长时间首次相遇?2..若两人同向而行,则他们经过多长时间首次相遇?1、分析:背向而行,在环形跑道上要走一圈才能相遇。
解:设经过x分钟,甲乙两人相遇,根据题意,得:550x+250x=400解得,x=1/2答:经过1/2分钟甲乙相遇。
2、分析:同向而行相当于快者追慢者,在环形跑道上要多走一圈才能又相遇。
解:设经过x分钟,甲乙两人相遇,根据题意,得:550x-250x=400解得,x=4/3答:经过4/3分钟甲乙相遇。
4、航行问题航行问题:相对运动速度关系是:顺水速度=静水中速度+水流速度;逆水速度=静水中速度-水流速度。
例题:一艘船航行于沿河的两港之间,河水流速是每小时7千米,船速是11千米,往返一次用2.2小时,求两港距离多少?解法一:设船顺水从一港到另一港的时间为x小时,那么逆水行驶的时间为(2.2-x),由于两港间的距离已定,所以得出方程式:(11+7)x=(2.2-x)(11-7)解得x=0.4两港间里的距离为(11+7)×0.4=7.2(千米)答两港间的距离为7.2千米。
解法二:设两港间的距离为x千米,船顺水行驶的时间为x/(11+7),逆水行驶的时间为x/(11-7),船往返两港的时间为x/(11+7)+x/(11-7)=2.2解得x=7.2 (千米)答两港间的距离为7.2千米。
其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。
例题:一项工程,甲单独做63天,由乙单独做28天完成,甲先做42天,乙做还要几天?七、利润率问题其数量关系是:商品的利润=商品售价-商品的进价;商品利润率=商品利润/商品进价×100%,注意打几折销售就是按原价的百分之几出售。
例题:某商品标价是2200元,按此标价的八折出售,利润率为10%。
求此商品的进价。
解:设此商品进价为x元,根据题意,得2200×80﹪-x=10﹪×xx =1600(元)答:此商品的进价为1600元。
八、银行储蓄问题其数量关系是:利息=本金×利率×存期;本息=本金+利息,利息税=利息×利息税率。
注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。
例题:小明存入1000元钱,一期取出200元,剩下的800元和应得的利息继续按一年期存入银行,若年利率保持不变,这样到期后可得本金和利息共892.5元,求这种存款的年利率是多少?解:设这种存款的年利率是x则(1000x+800)(1+x)=892.5x=0.05即5%。
答这种存款的年利率是5%。
九、数字问题要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。
列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和。
例题:一个六位数,首位是1,若将这个1移到个位,那么新的六位数是原数的三倍,求原数。
解:设原数的后五位数的数值为X,则10X+1=3×(1×100000+X)解出X=42857所以,原数位142857答原数位142857。
十、年龄问题年龄问题其基本数量关系:大小两个年龄差不会变。
这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。
例题:父亲今年38岁,母亲今年36岁,儿子今年11岁,多少年后,父母亲的年龄之和是儿子的年龄的4倍?解:设x年后,父母亲的年龄之和是儿子的年龄的4倍。
则38+x+36+x=4×(11+x)解方程得x=15答15年后,父母亲的年龄之和是儿子的年龄的4倍。
把若干物体平均分给一定数量的对象,并不是每次都能正好分完。
如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏。
凡是研究盈和亏这一类算法的应用题就叫盈亏问题。
例题:某种商品每件的进价为250元,按标价的九折销售时,利润率为15.2%,这种商品每件标价是多少?分析:售价-进价=利润解:设标价为x元,则有0.9x-250=250×15.2%解得x=320十二、鸡兔同笼"鸡兔同笼"是一类有名的中国古算题。
最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解。
例题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。
问笼中各有几只鸡和兔?解法一:设兔有x只,则鸡有(35-x)只。
4x+2(35-x)=944x+70-2x=942x=24x=24÷2x=1235-12=23答:兔子有12只,小鸡有23只。
解发二:设鸡有x只,兔有y只。
x+y=352x+4y=94(x+y=35×2=2x+2y=70(2x+2y=70)-(2x+4y=94)(2y=24)y=12把y=12代入(x+y=35)x+12=35x=35-12x=23。
答:兔子有12只,小鸡有23只。