2017年广东省揭阳市高考数学一模试卷

合集下载

2017年2月广东省揭阳市高考数学模拟考试(附答案)

2017年2月广东省揭阳市高考数学模拟考试(附答案)

2017年2月广东省揭阳市高考模拟考试9.已知()()()1f x x a x b =---,并且,m n 是方程()0f x =的两根,则实数,,,a b m n 的大小可能是( ) A .m a n b <<< B .m a b n <<< C .a m b n <<< D .a m n b <<<10.直线l 过抛物线()220y px p =>的焦点F ,且交抛物线于,P Q 两点,由P ,Q 分别向准线引垂线PR 、11.一个组合体的三视图如图,则其体积为______________.是椭圆的两个焦点,满足120MF MF =的点()011a a x =+++2013a ++=16.已知O 是ABC ∆的外心,2,3AB AC ==,若AO xAB y AC =+且21x y +=,则cos BAC ∠=______________.17.设,,a b c ∈R ,()()()()()()222,12f x x a x bx c g x ax cx bx =+++=+++,记集合(){}0,S x f x x ==∈R ,(){}0,T x g x x ==∈R ,若S ,T 分别为集合,S T 的元素个数,则下列4个结论中有可能正确的序号是_____________.①1S =且0T = ②1S =且1T = ③2S =且2T = ④2S =且3T =三、解答题:本大题共5个小题,共72分.解答应写出文字说明、证明或演算过程. 18.(本小题满分14分)ABC △中内角,,A B C 所对的边分别是,,a b c ,且sin 2sin C B =. (1)若60A =︒,求ab; (2)求函数()2πcos 22cos 3f B B B ⎛⎫=++ ⎪⎝⎭的值域.19.(本小题满分14分)等差数列{}n a 中,122311a a +=,32624a a a =+-,其前n 项和为n S . (1)求数列{}n a 的通项公式; (2)设数列{}n b 满足111n n b S +=-,其前n 项和为n T ,求证:()*34n T n <∈N . 20.(本小题满分14分)如图,ABC ∆中,90,2,1,B AB BC D E ∠=︒==、两点分别在线段AB AC 、上,满足(),0,1AD AEAB ACλλ==∈.现将ABC ∆沿DE 折成直二面角A DE B --.(1)求证:当12λ=时,ADC ABE ⊥面面; (2)当()0,1λ∈时,直线AD 与平面ABE 所成角能否等于π6?若能,求出λ的值;若不能,请说明理由. 21.(本小题满分15分)已知函数()(]21,0,e f x ax nx x =-∈,其中e 是自然对数的底数,a ∈R .(1)当1a =时,求函数()f x 的单调区间与极值;ABCD EABCDE(2)对于任意的(]0,e x ∈,()3f x ≥恒成立,求实数a 的取值范围.22.(本小题满分15分)如图,已知圆()221:14C x y +-=和抛物线22:1C y x =-,过坐标原点O 的直线与2C 相交于点A B 、,定点M 坐标为()0,1-,直线,MA MB 分别与1C 相交于点D E 、. (1)求证:MA MB ⊥;(2)记,MAB MDE △△的面积分别为12S S 、,若12S S λ=,求λ的取值范围.DOyxMABE2017年2月广东省揭阳市高考模拟考试数 学·答案一、选择题:1~5.BADBB 6~10.CACBC 二、填空题 (11)20π(12)0⎛ ⎝⎭(13)30 (14)4025 (15)1 (16)34(17)①②③ 三、解答题18.解:(1)sin 2sin C B =即2c b =, (2分)又ABC △中,222cos 2b c a A bc +-=,得2221524b a b -= (5分)解得:ab(7分)(2)115sin sin 0,,0,,2266B C B ⎛⎫⎛⎫⎛⎫=∈∴∈ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭πππ (9分)()23cos 22cos cos22121326f B B B B B B ⎛⎫⎛⎫=++=+=++ ⎪ ⎪⎝⎭⎝⎭ππ(12分)所以值域为551,,3122⎛⎫⎛⎫+ ⎪⎪⎝⎭⎝⎭(14分) 19.解:(1)()1211123235311a a a a d a d +=++=+=,32624a a a =+-,即()1112254a d a d a d +=+++-,得2d =,11a =, (5分)()()1111221n a a n d n n =+-=+-⨯=-. (7分)(2)()()2111111222n S na n n d n n n n =+-=⨯+-⨯= (9分)()()22111111111222211n n b S n n n n n n n +⎛⎫=====- ⎪-+++⎝⎭+-, (11分) 11111111111...2132435112n T n n n n ⎛⎫=-+-+-++-+- ⎪-++⎝⎭()*111113212124n n n ⎛⎫=+--<∈ ⎪++⎝⎭N (14分) 20.(1)解:,AD AEDE BC DE AD DE BD AB ACλ==⇒⇒⊥⊥∥,ADB ∴∠为二面角A DE B --平面角,2ADB ∠=π. (2分) ,,AD BCD BE BCD AD BE ∴⊥⊂∴⊥面又面 (4分) 又当12λ=时,21,,1,,22BD BC BD DE BC BDE DBC DE BD ====∴∆∆即,EBD DCB BE DC ∴∠=∠∴⊥ (6分) ,,BE ADC BE ABE ABE ADC ∴⊥⊂∴⊥面又面面面 (7分)(2)连结BE ,过点D 作DH BE ⊥于H ,连结AH 过点D 作DO AH ⊥于O .,AD BE BE DH BE ADH ⊥⊥∴⊥面 ,DO ADH BE DO ⊂∴⊥面, ,DO AH DO ⊥∴⊥又面ABE所以DAO ∠为AD 与平面ABE 所成角 (10分)Rt ADH △中,tan DHDAO DA ∠=,Rt BDE △中, ()()()222121,21BD DE DH λλλλλλ-=-=∴=+-,又2AD λ=,若π6DAO ∠=,则()()2213321λλλ-=+-,解得12λ=(14分) 21.解(1)解:当1a =时,()21212x f x x x x -'=-= (2分)则当20,2x ⎛⎫∈ ⎪ ⎪⎝⎭时()f x 单调递减;当2,e 2x ⎛⎫∈ ⎪ ⎪⎝⎭时()f x 单调递增. (4分) 当22x =时,()211ln 2222f x f ⎛⎫==+ ⎪ ⎪⎝⎭极小值 (6分) (2)问题即()min3f x ≥,()(]21212,0,e ax f x ax x x x-'=-=∈1)当()()(]00,0,e a f x f x '≤<时,在递减;()()min e f x f =ABCDEHO()224e e 13ef a a =-≥⇒≥,所以a 无解. (9分) 2)当0a >时,()2210ax f x x-'==得x =21e,2ea ≤即,则()()(]0,0,e f x f x '≤在递减,()()min e f x f = ()224e e 13ef a a =-≥⇒≥,所以a 无解. (12分)若21e,2e a <>即时,当x ⎛∈ ⎝时()f x 单调递减;当x ⎫∈⎪⎪⎭时()f x 单调递增.()min 11ln 222f x f a ==+,511e ln 23,222a a +≥≥解得5e 2a ∴≥ (15分)22.解(1)设直线()()1122:,,,,AB y kx A x y B x y =则22101y kxx kx y x =⎧⇒--=⎨=-⎩ (2分) ()()()()211221212,1,1110MA MB x y x y k x x k x x =++=++++=MA MB ∴⊥ (7分)(2)设直线1212:1;:1,1MA y k x MB y k x k k =-=-=-()1121122110,,1111x k y k x x A k k y y k y x ==-⎧⎧=⎧⎪∴-⎨⎨⎨=-=-=-⎪⎩⎩⎩解得或,同理可得 ()222,1B k k -11212S MA MB k == (10分) ()1221111222221112141120421,,11212211412k x y k x k x k k D y k k k x y y k ⎧=⎪=-⎧+=⎛⎫⎧-⎪⎪∴⎨⎨⎨ ⎪=-++-+-=⎩⎝⎭⎪⎪⎩=⎪+⎩解得或 同理可得2222222421,1212k k E k k ⎛⎫- ⎪++⎝⎭21212S MD ME ∴== (13分)()()222121211215212129161616k k k k S S λ⎛⎫++ ⎪++⎝⎭===≥ (15分)。

2017高考广东揭阳一模理数试卷

2017高考广东揭阳一模理数试卷

绝密★启用前揭阳市2017年高中毕业班高考第一次模拟考试数学(理科)本试卷共4页,满分150分.考试用时120分钟.注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4.考试结束,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合}2,1,0,1{-=A ,集合={|23,}B y y x x A =-∈,则A B =I(A ){1,0,1}- (B ){1,1}- (C ){1,1,2}- (D ){0,1,2}(2)已知复数1234,z i z t i =+=-,且21z z ⋅是实数,则实数t =(A )43 (B )34 (C )43- (D )34- (3)若(cos 20,sin 20)a =o o r ,(cos10,sin190)b =o or , 则a b ⋅=r r(A )12(B)2 (C )cos10o(D)2(4)已知命题:p 存在向量,,a b r r 使得||||a b a b ⋅=⋅r r r r,命题:q的向量a r 、b r 、c r ,若a b a c ⋅=⋅r r r r 则b c =r r. (A )命题p q ∨是假命题 (B )命题p q ∧是真命题(C )命题()p q ∨⌝是假命题 (D )命题()p q ∧⌝是真命题 (5)秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法. 如图1所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为4,2,则输出v 的值为 (A )66 (B )33 (C )16 (D )8图2(6)如果实数x y 、满足条件⎪⎩⎪⎨⎧≤++≥+≥+-010101y x y y x , 那么2x y -的最大值为 (A )2 (B )1 (C )2- (D )3-(7)在同一坐标系中,曲线xy )31(=与抛物线2y x =的交点横坐标所在区间为(A ))31,0((B ))21,31((C ))32,21( (D ))1,32((8)在421)(1)x ⋅-的展开式中,x 项的系数为(A )-4 (B )-2 (C )2(D )4(9)某工件的三视图如图2所示,现将该工件通过切割, 加工成一个体积尽可能大的正方体新工件,并使新工件的 一个面落在原工件的一个面内,则新工件的体积为 (A )18 (B )1 (C ) 2 (D )43π(10)已知正数,a b 满足4a b +=,则曲线()ln xf x x b=+在点(,())a f a 处的切线的倾斜角的 取值范围为 (A ),4π⎡⎫+∞⎪⎢⎣⎭ (B )5,412ππ⎡⎫⎪⎢⎣⎭ (C ),42ππ⎡⎫⎪⎢⎣⎭ (D ),43ππ⎡⎫⎪⎢⎣⎭(11)已知双曲线22142x y -=右焦点为F ,P为双曲线左支上一点,点A ,则△APF 周长的最小值为(A)4(1+ (B)4 (C) (D(12)已知函数()=|sin |([,])f x x x ππ∈-,()g x x x sin 2-=(],[ππ-∈x ),设方程(())0f f x =,(())0f g x =,(())0g g x =的实根的个数为分别为m 、n 、t ,则m n t ++= (A )9 (B)13 (C)17 (D) 21第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(23)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.俯视图ACBA 1C 1B 1DE图31105(日泄流量)x1210901206030频率组距图4(13)已知函数3()1f x ax bx =++,若()8f a =,则()f a -=_________.(14)连续掷两次骰子,以先后得到的点数m , n 作为点P 的坐标(,)m n ,那么点P 在圆2217x y +=内部(不包括边界)的概率是 .(15)已知△ABC 的顶点都在球O 的球面上,AB=6,BC=8,AC=10,三棱锥O-ABC 的体积为403,则该球的表面积等于 .(16)在△ABC 中,6B π∠=,1AC =,点D 在边AB 上,且DA=DC ,BD=1,则DCA ∠= .三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)设等差数列{}n a 的前n 项和为n S ,且244S S =,2123n n a a +=-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 满足11222332n n nn a b a b a b ++++=-L ,求{}n b 的前n 项和n T . (18)(本小题满分12分)如图3,在直三棱柱ABC —A 1B 1C 1中,AB=BC=BB 1,11AB A B E =I ,D 为AC 上的点,B 1C ∥平面A 1BD ;(Ⅰ)求证:BD ⊥平面11ACC A ;(Ⅱ)若1AB =,且1AC AD =⋅,求二面角11B D A B -- 的余弦值.(19)(本小题满分12分)某地政府拟在该地一水库上建造一座水电站,用泄流水 量发电.图4是根据该水库历年的日泄流量的水文资料画成的日泄流量X (单位:万立方米)的频率分布直方图(不完 整),已知)120,0[∈X ,历年中日泄流量在区间[30,60) 的年平均天数为156,一年按364天计. (Ⅰ)请把频率分布直方图补充完整;(Ⅱ)该水电站希望安装的发电机尽可能运行,但每30万立方米的日泄流量才够运行一台发电机,如60≤X <90时才够运行两台发电机,若运行一台发电机,每天可获利润为4000元,若不运行,则该台发电机每天亏损500元,以各段的频率作为相应段的概率,以水电站日利润的期望值为决策依据,问:为使水电站日利润的期望值最大,该水电站应安装多少台发电机?(20)(本小题满分12分)如图5,已知椭圆)0(12222>>=+b a by a x 顶点为B 、C ,右焦点为F ,|AF |=3,且ABC ∆的周长为(I )求椭圆的离心率;(II )过点M (4, 0)的直线l 与椭圆相交于不同两点P 、点N 在线段PQ 上.设||||||||QN MQ PN MP ==λ,试判断点是否在一条定直线上,并求实数λ的取值范围. (21)(本小题满分12分)已知函数()(2)=-+x f x x e ax .(a R ∈) (I )试确定函数()f x 的零点个数;(II )设12,x x 是函数()f x 的两个零点,当122+≤x x 时,求a 的取值范围. 请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一个题目计分. (22)(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的参数方程为12cos 12sin x y θθ=-+⎧⎨=+⎩(θ为参数).以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.(Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l :αθ=)),,0[(R ∈∈ρπα与曲线C 相交于A 、B 两点,设线段AB 的中点为M ,求||OM 的最大值.(23)(本小题满分10分)选修4-5:不等式选讲设函数)1()(-=x a x f .(Ⅰ)当1a =时,解不等式|()||()|3f x f x x +-≥; (Ⅱ)设1||≤a ,当1||≤x 时,求证:45|)(|2≤+x x f .揭阳市2017年高中毕业班高考第一次模拟考试数学(理科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.一、选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDBDABBDBCAB(92,高为2,要使加工成的正方体新工件体积最大,则该正方体为圆锥的内接正方体,设棱长为2x 22222x x-=,解得12x =,故2x =1,故新工件的体积为1.(10)设曲线在点(,())a f a 处的切线的倾斜角为α, 则122211)('tan =+≥≥+==ba ab b a a f α,故42ππα≤<.(11)易得点6,0)F ,△APF 的周长l =||||||AF AP PF ++||2|'|||AF a PF AP =+++,要△APF 的周长最小,只需|||'|AP PF +最小,如图,当A 、P 、F 三点共线时取到,故l 2||24(12)AF a =+=+.(12)由条件可在函数()f x 的值域为[0,1],方程()0f x =的根为0,π-,π,所以方程(())0f f x =的根为方程()0f x =或π-=)(x f 或()f x π=的根,显然方程()0f x =有3个实根,π-=)(x f 与()f x π=均无实根,所以方程(())0f f x =的实根个数为3,即3m =;因x x x g sin 2)(-=是奇函数,先考虑],0[π∈x 的图象,因x x g cos 21)('-=,由0)('>x g 得],3(ππ∈x ,可知)(x g 在],3(ππ上递增,在]3,0(π上递减,又0)0(=g ,ππ=)(g ,由图象DCBA 关于原点对称得)(x g 的示意图如右,极小值为33)3(-≈-=ππg 极大值为7.0)3(≈-πg . 方程(())0f g x =的实根为方程()0g x =或π-=)(x g 或π=)(x g 的根,显然方程()0g x =有3个根, 方程π-=)(x g 与π=)(x g 各有1个根,从而方程(())0f g x = 实根的个数为5,即n =5;记方程()0g x =除0外的另外两个实根分别为00,x x -,可知10>x ,方程(())0g g x =的实根为方程()0g x =或0)(x x g =或0)(x x g -=的根,显然方程()0g x =有3个根,方程0)(x x g =与0)(x x g -=各有1个根,从而方程(())0g g x =根的个数为5,即t =5,故m n t ++=13. 二、填空题:(15)依题意知△ABC 为直角三角形,其所在圆面的半径为152AC =,设三棱锥O-ABC 的高为h ,则由116832h ⨯⨯⨯=得h =,设球O 的半径为R ,则由2225h R +=得10R =,故该球的表面积为400π.(16)解法1:设A ACD θ∠=∠=,02πθ<<,则2ADC πθ∠=-,又1AC =,由正弦定理得:1.sin 2sin 2cos AC CD CD θθθ=⇒=在△BDC 中由正弦定理得:112cos 5sin sin sin sin(2)66CD BD B BCD θππθ=⇒=∠∠- 55cos sin(2)sin()sin(2)626πππθθθθ⇒=-⇒-=-,由02πθ<<550,222666πππππθθ⇒<-<-<-<,得5226ππθθ-=-或5226ππθθπ-+-=3πθ⇒=或9π. [注:该题若考生漏掉一解扣2分]EDB 1C 1A 1BCA【或5cos sin(2)cos cos(2)63ππθθθθ=-⇒=-23πθθ⇒-=±3πθ⇒=或9π】 解法2:过点C 作CE AB ⊥于E ,A ACD θ∠=∠=,则2CDB θ∠=,在Rt △AEC 中,sin CE θ=,则在Rt △CED 中,θθθ2tan sin 2tan -=-=CE DE ,在Rt △CEB 中,tan 6CEBE θπ==,由BD=1得sin 1tan 2θθθ=sin cos 2sin 2sin 2θθθθθ⇒+=cos 222cos θθθ⇒+=cos cos(2)3πθθ⇒=-23πθθ⇒-=±3πθ⇒=或9π.】三、解答题:(17)解:(Ⅰ)设{}n a 的公差为d ,则有1111464(2)(21)2()3a d a d a n d a nd +=+⎧⎨+-=⋅+-⎩,解得11,2a d ==--------------------------------------------------------------------------------------4分1(1)21n a a n d n ∴=+-=-------------------------------------------------------------------------6分(Ⅱ)由11222332n n nn a b a b a b ++++=-L L L L L ① 当1n =时,1112a b =,所以112b =-----------------------------------------------------------------7分当2n ≥时,11221112132n n n n a b a b a b ---++++=-L L L L L ②-----------------------------8分①式减去②式得212n n nn a b -=, 求得12n n b =,易知1n =也成立,所以数列{}n b 为等比数列,-------------------------------------------------------------------------10分其前n 项和1211[1()]1221()1212n n n n T b b b -=+++==--L ------------------------------------12分 (18)解:(Ⅰ)连结ED ,-------------------------------------------1分∵平面AB 1C ∩平面A 1BD=ED ,B 1C ∥平面A 1BD , ∴B 1C ∥ED ,-------------------------------------------------------2分 ∵E 为AB 1中点,∴D 为AC 中点,∵AB=BC , ∴BD ⊥AC ①,--------------------------------3分 法一:由A 1A ⊥平面ABC ,⊂BD 平面ABC ,得A 1A ⊥BD ②, 由①②及A 1A 、AC 是平面11ACC A 内的两条相交直线, 得BD ⊥平面11ACC A .-------------------------------------------5分1701105x1210频率【法二:由A 1A ⊥平面ABC ,A 1A ⊂平面11ACC A∴平面11ACC A ⊥平面ABC ,又平面11ACC A I 平面ABC=AC ,得BD ⊥平面11ACC A .】 (Ⅱ)由1AB =得BC=BB 1=1,由(Ⅰ)知AC DA 21=,又1=⋅DA AC 得22AC =,----------------------------------------6分 ∵2222BC AB AC +==,∴BC AB ⊥,-----------------7如图以B 为原点,建立空间直角坐标系xyz B -如图示,则)1,0,1(1A ,)1,0,0(1B ,)0,21,21(D ,得)0,0,1(11=A B ,111(,,1)22B D =-u u u u r ,设),,(z y x m =ρ是平面A 1B 1D 的一个法向量,则⎪⎩⎪⎨⎧⊥⊥B m A B m 111ρρ,得⎪⎩⎪⎨⎧=-+=⋅==⋅021210111z y x D B m x A B m ρρ,令z =1,得)1,2,0(=m ρ,----------9分 设(,,)n a b c =r 为平面A 1BD 的一个法向量,则⎪⎩⎪⎨⎧⊥⊥1BA n n ρρ,得⎪⎩⎪⎨⎧=+=⋅=+=⋅00221c a BA n b a BD n ρρ, 令1c =得(1,1,1)n =-r, ---------------------------------------------------------------------------10分 依题意知二面角11B D A B --为锐二面角,设其大小为θ,则 |||||||,cos |cos m n m n m n ρρρρρρ⋅⋅=><=θ515353=⋅=, 即二面角11B D A B --的余弦值为515.----------------------------------------------------12分其它解法请参照给分.(19)解:(Ⅰ)在区间[30,60)的频率为73364156=------------------------------------------------1分 31==73070⨯频率组距,----------------2分设在区间[0,30)上,a =频率组距, 则130)21011051701(=⨯+++a , 解得2101=a ,-------------------------------------------------3分 补充频率分布直方图如右;-----------------------------------------------------------------------6分(Ⅱ)记水电站日利润为Y 元.由(Ⅰ)知:不能运行发电机的概率为71,恰好运行一台发电机的概率为73,恰好运行二台发电机的概率为72,恰好运行三台发电机的概率为71,①若安装1台发电机,则Y 的值为-500,4000,其分布列为E (Y )=72350076400071500=⨯+⨯-;----------------------------------8分 ②若安装2台发电机,则Y 的值为-1000,3500,8000,其分布列为E (Y )=3335001000350080007777-⨯+⨯+⨯=;-----------------------------10分 ③若安装3台发电机,则Y 的值为-1500,3000,7500,12000,其分布列为E (Y )=7345007112000775007300071500=⨯+⨯+⨯+⨯-;∵345003350023500777>>∴要使水电站日利润的期望值最大,该水电站应安装3台发电机.--------------12分 (20)解:(I )由2222||a c b AF =+=,得3=a ,--------------------------1分ABC ∆的周长为14)(2=+a AC ,即722=++a a b ,得72=b ,所以2=c ,椭圆的离心率为32=e ;---------------------------------------------4分 (II )显然直线l 的斜率存在,设l 的方程为)4(-=x k y ,设P (x 1,y 1),Q (x 2,y 2),N (x 0,y 0), 由||||||||QN MQ PN MP =,得022101y y y y y y -=-,化简得)(221021y y y y y +=①,-----6分由22(4),1.97=-⎧⎪⎨+=⎪⎩yk x x y 消去x ,得04956)79(222=+++k ky y k ,得7956221+-=+k ky y ,79492221+=k k y y ,----------------------------------------------------8分 代入①式得k y 470-=,由)4(00-=x k y 得490=x ,49471414||||1010011-+-=--+-=--==x x x x x x x PN MP λ,---------------------------------------10分因为3491≤<x ,得434901≤-<x ,所以34371=+-≥λ,因此,N 在一条直线49=x 上,实数),34[∞+∈λ.------------------------------------------12分【法二:显然直线l 的斜率存在,设l 的方程为)4(-=x k y ,不妨设0>k ,设P (x 1,y 1),Q (x 2,y 2),N (x 0,y 0),12y y <, 由||||||||QN MQ PN MP ==λ,得022101y y y y y y -=-=λ,化简得)(221021y y y y y +=①,6分由)(101y y y -=λ,)(022y y y -=λ,得)(1221y y y y -=+λ②,由22(4),1.97=-⎧⎪⎨+=⎪⎩y k x x y 消去x ,得04956)79(222=+++k ky y k ,可知=∆=⋅+-22249)79(4)56(k k k 0)1(364922>-⋅k k ,得7956221+-=+k k y y ,79492221+=k k y y ,)79(25622,1+∆±-=k k y ,----------------------8分 代入①式得k y 470-=,由)4(00-=x k y 得490=x ,---------------------------------------9分 由②式得79562+-k k792+∆-⋅=k λ,得341341425622≥-=-=kk k k λ,因此,N 在一条直线49=x 上,实数),34[∞+∈λ.--------------------------------------12分】 【法三:设P (x 1,y 1),Q (x 2,y 2),N (x 0,y 0),21x x <,由||||||||QN MQ PN MP ==λ, 得,,MP PN MQ QN λλ==-u u u r u u u r u u u u r u u u r-----------------------------------------------------------------------5分所以01010202411411x x y y x x y y λλλλλλλλ+⎧=⎪+⎪⎪=⎪+⎨-⎪=⎪-⎪-⎪=-⎩将()11,A x y ,()22,B x y 代入椭圆方程得------------------7分 2200222002222002004()()(4)()111(1)97974(4)()()()(1)1197197x y x y x y x y λλλλλλλλλλλλλλ+⎧⎪⎧++++=+=+⎪⎪⎪⎪⇒⎨⎨----⎪⎪+=-⎪⎪--⎩+=⎪⎩-----------------9分 上面两式相减化简得490=x 0110101744||4119||4x x MP PN x x x x x λ--∴===-+=-+---, 因为3491≤<x ,得434901≤-<x ,所以34371=+-≥λ, 因此,N 在一条直线49=x 上,实数),34[∞+∈λ.----------------------------------12分】 (21)解法1:(I )函数()f x 的零点即方程()0=f x 的根,由(2)0-+=x x e ax 得(2)=-x ax x e ,令()(2)=-xg x x e ,则'()(2)(1)=-+-=-x x x g x e x e x e ,--------------------2分由'()0g x >得1x <,∴函数()g x 在(,1)-∞单调递增,由'()0g x <得1x >,∴函数()g x 在(1,)+∞上单调递减,----3分∴当1=x 时,函数()g x 有最大值,max ()(1)==g x g e ,又当1x <时,()g x >0,当→-∞x 时()0→g x ;当2<x 时()g x >0,(2)0=g ,当2>x 时()0<g x ,----------------------------------------4分 ∴当0≥a 时,ax y =与()g x 只有一个公共点,从而函数()f x 有一个零点;---------- 5分 当0<a 时,ax y =与()g x 有两个公共点,从而函数()f x 有两个零点.-----------------6分(II )设12<x x 由(I )知0<a 且120,2<>x x ,由1111()(2)0=-+=x f x x e ax ,得111(2)-=-x x e a x (10<x ) 由2222()(2)0=-+=x f x x e ax ,得222(2)-=-x x e a x (22>x )-----------------------8分 ∴2a 111)2(x e x x -=222)2(x e x x -⋅21212121]4)(2[x x e x x x x x x +++-=, -------------------------9分 ∵221≤+x x ∴0)(2421≥+-x x ,2210e e x x ≤<+,(两者仅当221=+x x 时取等号) ∴212121)(24x x x x x x ≥++-,又021<x x , ∴1]4)(2[212121≤++-x x x x x x ,----------------------------------------------------------------------11分 ∴22211e ea x x ≤⋅≤+,由0<a 得0<≤-a e .--------------------------------------------------------------------------------12分【解法2:(I )∵02)0(≠-=f ,0=∴x 不是函数的零点; 当0≠x 时,由0)2()(=+-=ax e x x f x 得x e x a x)2(--=,------------------------------1分 设x e x x g x )2()(--=,则0)22()('22<+--=xe x x x g x,----------------------------------2分 所以)(x g 在)0,(-∞和),0(∞+上单调递减,-----------------------------------------------------3分 当0>x 且0→x 时,+∞→)(x g ;当+∞→x 时,-∞→)(x g ;当0<x 且0→x 时,-∞→)(x g ;当-∞→x 时,0)(→x g ;当0<x 时,由0)(<x g ,有)0,()(-∞∈x g ,当0>x 时,有0)2(=g ,),()(∞+-∞∈x g ,所以当0≥a 时,曲线a y =与)(x g 只一个公共点,函数)(x f 有一个零点; -----------5分 当0<a 时,曲线a y =与()g x 有两个公共点,函数)(x f 有两个零点; -----------------6分 (II )不妨设21x x <,由(I )得0<a ,且01<x ,22>x ,由0)(1=x f ,0)(2=x f ,得)(1x g a =,)(2x g a =,∴)()(212x g x g a ⋅=111)2(x e x x -=222)2(x e x x -⋅21212121]4)(2[x x e x x x x x x +++-=,-----8分 ∵221≤+x x ∴0)(2421≥+-x x ,2210e e x x ≤<+,(两者仅当221=+x x 时取等号) ∴212121)(24x x x x x x ≥++-,又021<x x ,----------------------------------------------------10分 ∴1]4)(2[212121≤++-x x x x x x ,------------------------------------------------------------------------11分 ∴22211e e a x x ≤⋅≤+,由0<a 得0<≤-a e .------------------------------------------------12分】选做题:(22)解:(I )曲线C 的普通方程为222(1)(1)2x y ++-=,-------------------------------------2分由⎩⎨⎧==θρθρsin cos y x ,得22cos 2sin 20ρρθρθ+--=;---------------------------------------5分 (II )解法1:联立αθ=和22cos 2sin 20ρρθρθ+--=, 得22(cos sin )20ρραα+--=,-----------------------------------------------------------------6分 设),(1αρA 、),(2αρB ,则)4sin(22)cos (sin 221παααρρ-=-=+,---------8分 由|2|||21ρρ+=OM , 得2|)4sin(|2||≤-=παOM ,--------------------------------9分 当34πα=时,|OM |取最大值2.----------------------------------------------------------------10分 【解法2:由(I )知曲线C 是以点P (1,1)-为圆心,以2为半径的圆,在直角坐标系中,直线l的方程为x y ⋅=αtan ,则||PM =,-----------------------------------------------------6分 ∵2222||||||2OM OP PM =-=-22tan 11tan αα=-+,---------------------------------8分 当(,)2παπ∈时,tan 0α<,21tan 2|tan |αα+≥,222|tan |||121tan OM αα=+≤+,当且仅当tan 1α=-,即34πα=时取等号,∴||OM ≤即||OM 的最大值为2.------------------------------------------------------------10分】(23)解:(I )当1a =时,不等式|()||()|3f x f x x +-≥即|1||1|3x x x -++≥当1x ≤-时,得113x x x ---≥0x ⇒≤,∴1x ≤------------------------------------------1分当11x -<<时,得113x x x -++≥23x ⇒≤,∴213x -<≤------------------------------2分 当1x ≥时,得113x x x -++≥0x ⇒≤,与1x ≥矛盾,--------------------------------------3分 综上得原不等式的解集为2{|1}{|1}3x x x x ≤--<≤U =2{|}3x x ≤-------------------------5分 (II )|)1(||)(|22x x a x x f +-=+|||)1(|2x x a +-≤-----------------------------------------------6分∵1||≤a ,1||≤x∴2|()|f x x +||)1(||2x x a +-≤||12x x +-≤--------------------------------------------------7分4545)21|(|1||||22≤+--=++-=x x x ,------------------------------------------------------9分 当21||=x 时取“=”,得证. ------------------------------------------------------------------------10分。

广东省揭阳市高三数学一模试卷(文科) Word版含解析

广东省揭阳市高三数学一模试卷(文科) Word版含解析

2017年广东省揭阳市高考数学一模试卷(文科)一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣1,0,1,2},集合B={y|y=2x﹣3,x∈A},则A∩B中元素的个数为()A.1 B.2 C.3 D.42.已知点A(0,1),B(3,2),向量,则向量=()A.(10,7)B.(10,5)C.(﹣4,﹣3)D.(﹣4,﹣1)3.若直线mx+2y+m=0与直线3mx+(m﹣1)y+7=0平行,则m的值为()A.7 B.0或7 C.0 D.44.已知命题p:∃x,y∈R,sin(x+y)=sinx+siny,命题,则下列判断正确的是()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题5.曲线与的交点横坐标所在区间为()A.B.C.D.6.阅读图的程序框图,运行相应的程序,当输入x的值为﹣36时,输出x的值为()A.0 B.1 C.3 D.157.如果实数x、y满足条件,那么2x﹣y的最大值为()A.2 B.1 C.﹣2 D.﹣38.清代著名数学家梅彀成在他的《增删算法统宗》中有这样一歌谣:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”其译文为:“远远望见7层高的古塔,每层塔点着的灯数,下层比上层成倍地增加,一共有381盏,请问塔尖几盏灯?”则按此塔各层灯盏的设置规律,从上往下数第4层的灯盏数应为()A.3 B.12 C.24 D.369.连续掷两次骰子,以先后得到的点数m,n为点P的坐标(m,n),那么点P 在圆x2+y2=17内部(不包括边界)的概率是()A.B.C.D.10.某工件的三视图如图所示,现将该工件通过切割,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则新工件的棱长为()A.B.1 C.2 D.11.已知抛物线y=ax2+2x﹣a﹣1(a∈R),恒过第三象限上一定点A,且点A在直线3mx+ny+1=0(m>0,n>0)上,则的最小值为()A.4 B.12 C.24 D.3612.已知函数f(x)=|sinx|(x∈[﹣π,π]),g(x)为[﹣4,4]上的奇函数,且,设方程f (f (x ))=0,f (g (x ))=0,g (g (x ))=0的实根的个数分别为m 、n 、t ,则m +n +t=( )A .9B .13C .17D .21二、填空题:本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.13.已知函数f (x )=ax 3+bx +1,若f (a )=8,则f (﹣a )= .14.已知数列{a n }对任意的n ∈N *都有a n +1=a n ﹣2a n +1a n ,若,则a 8= . 15.已知△ABC 的顶点都在球O 的球面上,AB=6,BC=8,AC=10,三棱锥O ﹣ABC的体积为40,则该球的表面积等于 .16.已知双曲线右焦点为F ,P 为双曲线左支上一点,点,则△APF 周长的最小值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知:复数z 1=2sinAsinC +(a +c )i ,z 2=1+2cosAcosC +4i ,且z 1=z 2,其中A 、B 、C 为△ABC 的内角,a 、b 、c 为角A 、B 、C 所对的边.(Ⅰ)求角B 的大小;(Ⅱ) 若,求△ABC 的面积.18.如图,在直三棱柱ABC ﹣A 1B 1C 1中,AB=BC=BB 1,AB 1∩A 1B=E ,D 为AC 上的点,B 1C ∥平面A 1BD ;(Ⅰ)求证:BD ⊥平面A 1ACC 1;(Ⅱ)若AB=1,且AC•AD=1,求三棱锥A ﹣BCB 1的体积.19.某地政府拟在该地一水库上建造一座水电站,用泄流水量发电.图是根据该水库历年的日泄流量的水文资料画成的日泄流量X(单位:万立方米)的频率分布直方图(不完整),已知X∈[0,120),历年中日泄流量在区间[30,60)的年平均天数为156,一年按364天计.(Ⅰ)请把频率分布直方图补充完整;(Ⅱ)已知一台小型发电机,需30万立方米以上的日泄流量才能运行,运行一天可获利润为4000元,若不运行,则每天亏损500元;一台中型发电机,需60万立方米以上的日泄流量才能运行,运行一天可获利10000元,若不运行,则每天亏损800元;根据历年日泄流量的水文资料,水电站决定安装一台发电机,为使一年的日均利润值最大,应安装哪种发电机?20.已知椭圆的离心率为,点M,N是椭圆C上的点,且直线OM与ON的斜率之积为﹣(Ⅰ)求椭圆C的方程;(Ⅱ)设动点P(x0,y0)满足=+2,是否存在常数λ,使得P是椭圆上的点.21.已知函数.(a∈R)(Ⅰ)若函数在区间上单调递减,求实数a的取值范围;(Ⅱ)试讨论函数f(x)在区间(0,+∞)内极值点的个数.[选修4-4:坐标系与参数方程]22.已知曲线C的参数方程为(θ为参数).以原点O为极点,x 轴的非负半轴为极轴建立极坐标方程.(1)求曲线C的极坐标方程;(2)若直线l:θ=α(α∈[0,π),ρ∈R)与曲线C相交于A,B两点,设线段AB的中点为M,求|OM|的最大值.[选修4-5:不等式选讲]23.设函数f(x)=a(x﹣1).(Ⅰ)当a=1时,解不等式|f(x)|+|f(﹣x)|≥3x;(Ⅱ)设|a|≤1,当|x|≤1时,求证:.2017年广东省揭阳市高考数学一模试卷(文科)参考答案与试题解析一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣1,0,1,2},集合B={y|y=2x﹣3,x∈A},则A∩B中元素的个数为()A.1 B.2 C.3 D.4【考点】交集及其运算.【分析】有题目给出的已知条件,用列举法表示出集合B,取交集运算后答案可求.【解答】解:由A={﹣1,0,1,2},集合B={y|y=2x﹣3,x∈A}={﹣5,﹣3,﹣1,1}所以A∩B={﹣1,1}.所以A∩B中元素的个数为2.故选B.2.已知点A(0,1),B(3,2),向量,则向量=()A.(10,7)B.(10,5)C.(﹣4,﹣3)D.(﹣4,﹣1)【考点】平面向量的坐标运算.【分析】根据题意,由点A、B的坐标,计算可得向量的坐标,又由=+,代入坐标计算可得答案.【解答】解:根据题意,点A(0,1),B(3,2),则向量=(3,1),又由,则向量=+=(﹣4,﹣3);故选:C.3.若直线mx+2y+m=0与直线3mx+(m﹣1)y+7=0平行,则m的值为()A.7 B.0或7 C.0 D.4【考点】直线的一般式方程与直线的平行关系.【分析】由m(m﹣1)=3m×2,求出m值,再进行检验即可.【解答】解:∵直线mx+2y+m=0与直线3mx+(m﹣1)y+7=0平行,∴m(m﹣1)=3m×2,∴m=0或7,经检验都符合题意.故选:B.4.已知命题p:∃x,y∈R,sin(x+y)=sinx+siny,命题,则下列判断正确的是()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题【考点】复合命题的真假.【分析】分别判断出p,q的真假,从而判断出复合命题的真假即可.【解答】解:令x=0,y=,显然满足sin(x+y)=sinx+siny,故命题p是真命题;x∈[0,π],cosx=±,故命题q是假命题,故命题p∧(¬q)是真命题,故选:D.5.曲线与的交点横坐标所在区间为()A.B.C.D.【考点】函数的图象.【分析】方法一:分别画出与的图象,由图象,结合各选项即可判断.方法二:构造函数,利用函数零点存在定理,即可判断【解答】解:方法一:分别画出与的图象,如图所示,由图象可得交点横坐标所在区间为(,),方法二:设f (x )=()x ﹣x,∵f ()=()﹣<0,f ()=()﹣()>0,∴f ()f ()<0,根据函数零点存在定理可得点函数零点所在区间为(,),即交点横坐标所在区间为(,),故选:B6.阅读图的程序框图,运行相应的程序,当输入x 的值为﹣36时,输出x 的值为( )A.0 B.1 C.3 D.15【考点】程序框图.【分析】根据题意,按照程序框图的顺序进行执行,当|x|≤1时跳出循环,输出结果.【解答】解:当输入x=﹣36时,|x|>1,执行循环,x=6﹣2=4;|x|=4>1,执行循环,x=2﹣2=0,|x|=0<1,退出循环,输出的结果为x=1﹣1=0.故选:A7.如果实数x、y满足条件,那么2x﹣y的最大值为()A.2 B.1 C.﹣2 D.﹣3【考点】简单线性规划的应用.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x﹣y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:先根据约束条件画出可行域,当直线2x﹣y=t过点A(0,﹣1)时,t最大是1,故选B.8.清代著名数学家梅彀成在他的《增删算法统宗》中有这样一歌谣:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”其译文为:“远远望见7层高的古塔,每层塔点着的灯数,下层比上层成倍地增加,一共有381盏,请问塔尖几盏灯?”则按此塔各层灯盏的设置规律,从上往下数第4层的灯盏数应为()A.3 B.12 C.24 D.36【考点】等比数列的通项公式.【分析】由题意知第七层至第一层的灯的盏数构成一个以a1为首项,以2为公比的等比数列,由等比数列的求和公式可得a1,即可求出a4.【解答】解:依题意知,此塔各层的灯盏数构成公比q=2的等比数列,且前7项和S7=381,由,解得a1=3,故.故选:C.9.连续掷两次骰子,以先后得到的点数m,n为点P的坐标(m,n),那么点P 在圆x2+y2=17内部(不包括边界)的概率是()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】基本事件总数N=6×6=36,再利用列举法求出点P在圆x2+y2=17内部(不包括边界)包含的基本事件个数,由此能求出点P在圆x2+y2=17内部(不包括边界)的概率.【解答】解:连续掷两次骰子,以先后得到的点数m,n为点P的坐标(m,n),基本事件总数N=6×6=36,点P在圆x2+y2=17内部(不包括边界)包含的基本事件有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共8个,∴点P在圆x2+y2=17内部(不包括边界)的概率是p==.故选:D.10.某工件的三视图如图所示,现将该工件通过切割,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则新工件的棱长为()A.B.1 C.2 D.【考点】由三视图求面积、体积.【分析】依题意知该工件为圆锥,底面半径为,高为2,要使加工成的正方体新工件体积最大,则该正方体为圆锥的内接正方体.【解答】解:依题意知该工件为圆锥,底面半径为,高为2,要使加工成的正方体新工件体积最大,则该正方体为圆锥的内接正方体,设棱长为2x,则有,解得,故2x=1,即新工件棱长为1.故选B.11.已知抛物线y=ax2+2x﹣a﹣1(a∈R),恒过第三象限上一定点A,且点A在直线3mx+ny+1=0(m>0,n>0)上,则的最小值为()A.4 B.12 C.24 D.36【考点】基本不等式;二次函数的性质.【分析】抛物线y=ax2+2x﹣a﹣1(a∈R),恒过第三象限上一定点A,得到A(﹣1,﹣3),再把点A代入直线方程得到m+n=,再把“1”整体代入所求的式子,利用基本不等式求出最小值.【解答】解:抛物线y=ax2+2x﹣a﹣1(a∈R),恒过第三象限上一定点A,∴A(﹣1,﹣3),∴,又===12,当且仅当m=n时等号成立.故选:B12.已知函数f(x)=|sinx|(x∈[﹣π,π]),g(x)为[﹣4,4]上的奇函数,且,设方程f(f(x))=0,f(g(x))=0,g(g(x))=0的实根的个数分别为m、n、t,则m+n+t=()A.9 B.13 C.17 D.21【考点】正弦函数的图象.【分析】根据x∈[﹣π,π]时函数f(x)=|sinx|的值域为[0,1],由函数g(x)的图象与性质得出其值域为[﹣4,4],由方程f(x)=0的根得出方程f(f(x))=0根的个数m;求出方程f(g(x))=0的实根个数n;由方程g(x)=0的实根情况得出方程g(g(x))=0的实根个数t;从而求出m+n+t的值.【解答】解:因x∈[﹣π,π],所以函数f(x)=|sinx|的值域为[0,1],函数g(x)=的图象如图示,由图象知,其值域为[﹣4,4],注意到方程f(x)=0的根为0,﹣π,π,所以方程f(f(x))=0的根为方程f(x)=0或f(x)=﹣π,f(x)=π的根,显然方程f(x)=0有3个实根,因﹣π,π∉[0,1],所以f(x)=﹣π,与f(x)=π均无实根;所以方程f(f(x))=0的实根的个数为3,即m=3;方程f(g(x))=0的实根为方程g(x)=0或g(x)=﹣π,g(x)=π的根,方程g(x)=﹣π,g(x)=π各有3个根,同时方程g(x)=0也有3个根,从而方程f(g(x))=0根的个数为9,即n=9;方程g(x)=0有三个实根﹣3、0、3,方程g(g(x))=0的实根为方程g(x)=﹣3或g(x)=0或g(x)=3的根,方程g(x)=﹣3或g(x)=3各有3个根,同时方程g(x)=0也有3个根,从而方程g(g(x))=0根的个数为9,即t=9;综上,m+n+t=3+9+9=21.故选:D.二、填空题:本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.13.已知函数f(x)=ax3+bx+1,若f(a)=8,则f(﹣a)=﹣6.【考点】函数奇偶性的性质.【分析】本题利用函数的奇偶性,得到函数解析式f (﹣x )与f (x )的关系,从面通过f (﹣a )的值求出f (a )的值,得到本题结论. 【解答】解:∵函数f (x )=ax 3+bx +1,∴f (﹣x )=a (﹣x )3+b (﹣x )+1=﹣ax 3﹣bx +1, ∴f (﹣x )+f (x )=2, ∴f (﹣a )+f (a )=2. ∵f (a )=8, ∴f (a )=﹣6. 故答案为﹣6.14.已知数列{a n }对任意的n ∈N *都有a n +1=a n ﹣2a n +1a n ,若,则a 8= .【考点】数列递推式.【分析】由a n +1=a n ﹣2a n +1a n 得,利用等差数列的通项公式即可得出.【解答】解:由a n +1=a n ﹣2a n +1a n 得,故数列是,公差d=2的等差数列,,.故答案为:.15.已知△ABC 的顶点都在球O 的球面上,AB=6,BC=8,AC=10,三棱锥O ﹣ABC的体积为40,则该球的表面积等于 400π . 【考点】球的体积和表面积.【分析】求出△ABC 所在圆面的半径为,则由得三棱锥的高h=5,设球O 的半径为R ,则由h 2+52=R 2,得R=10,【解答】解:依题意知△ABC 为直角三角形,其所在圆面的半径为,设三棱锥O ﹣ABC 的高为h ,则由得h=5,设球O的半径为R,则由h2+52=R2,得R=10,故该球的表面积为400π.故答案为400π.16.已知双曲线右焦点为F,P为双曲线左支上一点,点,则△APF周长的最小值为4(1+).【考点】双曲线的简单性质.【分析】△APF的周长l=|AF|+|AP|+|PF|=|AF|+2a+|PF'|+|AP|,要△APF的周长最小,只需|AP|+|PF'|最小,如图,当A、P、F三点共线时取到,即可得出结论.【解答】解:由题意,点,△APF的周长l=|AF|+|AP|+|PF|=|AF|+2a+|PF'|+|AP|,要△APF的周长最小,只需|AP|+|PF'|最小,如图,当A、P、F三点共线时取到,故l=.故答案为:4(1+).三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知:复数z1=2sinAsinC+(a+c)i,z2=1+2cosAcosC+4i,且z1=z2,其中A、B、C为△ABC的内角,a、b、c为角A、B、C所对的边.(Ⅰ)求角B的大小;(Ⅱ)若,求△ABC的面积.【考点】三角形中的几何计算.【分析】(Ⅰ)根据复数相等得到2sinAsinC=1+2cosAcosC,根据两角和余弦公式和诱导公式,即可求出B的大小;(Ⅱ)由余弦定理可以及a+c=4,可得ac,再根据三角形的面积公式计算即可.【解答】解:(Ⅰ)∵z1=z2∴2sinAsinC=1+2cosAcosC﹣﹣﹣﹣①,a+c=4﹣﹣﹣﹣②,由①得2(cosAcosC﹣sinAsinC)=﹣1即,∴,∵0<B<π∴;(Ⅱ)∵,由余弦定理得b2=a2+c2﹣2accosB⇒a2+c2﹣ac=8,﹣﹣④,由②得a2+c2+2ac=16﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣⑤由④⑤得,∴=.18.如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=BB1,AB1∩A1B=E,D为AC上的点,B1C∥平面A1BD;(Ⅰ)求证:BD⊥平面A1ACC1;(Ⅱ)若AB=1,且AC•AD=1,求三棱锥A﹣BCB1的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【分析】(Ⅰ)连结ED,证明:BD⊥AC,A1A⊥BD,即可证明BD⊥平面A1ACC1;(Ⅱ)若AB=1,且AC•AD=1,利用体积公式求三棱锥A﹣BCB1的体积.【解答】(Ⅰ)证明:连结ED∵平面AB1C∩平面A1BD=ED,B1C∥平面A1BD,∴B1C∥ED,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵E为AB1中点,∴D为AC中点,∵AB=BC,∴BD⊥AC①,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由A1A⊥平面ABC,BD⊂平面ABC,得A1A⊥BD②,由①②及A1A、AC是平面A1ACC1内的两条相交直线,得BD⊥平面A1ACC1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)解:由AB=1得BC=BB1=1,由(Ⅰ)知,又AC•DA=1得AC2=2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵AC2=2=AB2+BC2,∴AB⊥BC,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣19.某地政府拟在该地一水库上建造一座水电站,用泄流水量发电.图是根据该水库历年的日泄流量的水文资料画成的日泄流量X(单位:万立方米)的频率分布直方图(不完整),已知X∈[0,120),历年中日泄流量在区间[30,60)的年平均天数为156,一年按364天计.(Ⅰ)请把频率分布直方图补充完整;(Ⅱ)已知一台小型发电机,需30万立方米以上的日泄流量才能运行,运行一天可获利润为4000元,若不运行,则每天亏损500元;一台中型发电机,需60万立方米以上的日泄流量才能运行,运行一天可获利10000元,若不运行,则每天亏损800元;根据历年日泄流量的水文资料,水电站决定安装一台发电机,为使一年的日均利润值最大,应安装哪种发电机?【考点】频率分布直方图.【分析】(Ⅰ)根据频率,组距的关系求出a的,再画图即可,(Ⅱ)根据不同泄流量,分别安装运行一台小型发电机或一台小型发电机的利润,比较即可.【解答】解:(Ⅰ)在区间[30,60)的频率为,,设在区间[0,30)上,,则,解得,补充频率分布直方图如右;(Ⅱ)当日泄流量X≥30(万立方米)时,小型发电机可以运行,则一年中一台小型发电机可运行的天数为:(天);当日泄流量X≥60(万立方米)时,中型发电机可以运行,则一年中一台中型发电机可运行的天数为:(天);①若运行一台小型发电机,则一年的日均利润值为:(或)(元)②若运行一台中型发电机,则一年的日均利润值为:(或)(元)因为,故为使水电站一年的日均利润值最大,应安装中型发电机.20.已知椭圆的离心率为,点M,N是椭圆C上的点,且直线OM与ON的斜率之积为﹣(Ⅰ)求椭圆C的方程;(Ⅱ)设动点P(x0,y0)满足=+2,是否存在常数λ,使得P是椭圆上的点.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由椭圆的离心率为,求出a=2,由此能求出椭圆的标准方程.(Ⅱ)设M(x1,y1),N(x2,y2),则由=,得x0=x1+2x2,y0=y1+2y2,由点M,N在椭圆=1上,由直线OM与ON的斜率之积为﹣,由此能求出存在常数λ=5,使得P点在椭圆上.【解答】解:(Ⅰ)∵椭圆的离心率为,∴e=,解得,又b2=2,解得a=2,故椭圆的标准方程为=1.(Ⅱ)设M(x1,y1),N(x2,y2),则由=,得x0=x1+2x2,y0=y1+2y2,又点M,N在椭圆=1上,∴,,设k OM,k ON分别为直线OM,ON的斜率,由题意知:k OM•k ON==﹣,∴x1x2+2y1y2=0,∴=,因此,存在常数λ=5,使得P点在椭圆上.21.已知函数.(a∈R)(Ⅰ)若函数在区间上单调递减,求实数a的取值范围;(Ⅱ)试讨论函数f(x)在区间(0,+∞)内极值点的个数.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(Ⅰ)由题意可知f′(x)=﹣+≤0,a≥,则构造辅助函数,求导,根据函数函数的单调性即可求得最大值,即可求得实数a的取值范围;(Ⅱ)方法1:构造辅助函数,g(x)=,求导g′(x)=,根据函数的单调性即可求得g(x)最小值,根据函数的单调性及极值的判断求得函数的f (x)的极值点的个数;方法2:分类讨论,根据当a≤1时,根据函数的单调性f(x)在区间(0,+∞)递增,f(x)无极值,当a>1时,构造辅助函数,求导,根据函数的单调性与极值的关系,即可求得f(x)的极值个数.【解答】解:(Ⅰ)由题意可知:对∀x∈,f′(x)=﹣+≤0,即a≥,对∀x∈恒成立,令g(x)=,求导g′(x)=,当0<x<1时,g′(x)<0,当x>1,g′(x)>0,∴函数g(x)在[,1]上单调递减,在(1,e]上单调递增,∴g()=,g(e)=e e﹣1,由e e﹣1>,∴在区间上g(x)max=e e﹣1,∴a≥e e﹣1,(Ⅱ)解法1:由f′(x)=﹣+==,g(x)=,g′(x)=,当0<x<1时,g′(x)<0,当x>1时,g′(x)>0,∴函数g(x)在(0,1)单调递减,在(1,+∞)单调递增,g(x)min=g(1)=e,当a≤e时,g(x)≥a恒成立,f′(x)≥0,函数f(x)在区间(0,+∞)单调递增,f(x)无极值点,当a>e时,g(x)min≥g(1)=e<a,故存在x1∈(0,1)和x2∈(1,+∞),使得g(x1)=g(x2)=a,当0<x<x1,f′(x)>0,当x1<x<x2时,f′(x)<0,当x>x2,f′(x)>0,∴函数f(x)在(x1,x2)单调递减,在(0,x1)和(x2,+∞),∴x1为函数f(x)的极大值点,x2为函数f(x)的极小值点,综上可知;a≤e时,函数f(x)无极值点,当a>e时,函数f(x)有两个极值点.方法2:f′(x)=,设h(x)=e x﹣ax(x>0),则h(x)=e x﹣a,由x>0,e x>1,(1)当a≤1时,h′(x)>0,h(x)递增,h(x)>h(0)=1,则f′(x)>0,f(x)递增,f(x)在区间(0,+∞)内无极值;(2)当a>1时,由h′(x)=e x﹣a>0,则x>lna,可知h(x)在(0,lna)内递减,在(lna,+∞)单调递增,∴h(x)max=h(lna)=a(1﹣lna),①当1<a≤e时,h(x)>h(x)min≥0,则f′(x)>0,f(x)单调递增,f(x)在区间(0,+∞)内无极值;②当a>e时,h(x)min<0,又h(0)>0,x很大时,h(x)>0,∴存在x1∈(0,lna),x2∈(lna,+∞),使得h(x1)=0,h(x2)=0,即f′(x1)=0,f′(x2)=0,可知在x1,x1两边f′(x)符号相反,∴函数f(x)有两个极值点x1,x2,综上可知;a≤e时,函数f(x)无极值点,当a>e时,函数f(x)有两个极值点.[选修4-4:坐标系与参数方程]22.已知曲线C的参数方程为(θ为参数).以原点O为极点,x 轴的非负半轴为极轴建立极坐标方程.(1)求曲线C的极坐标方程;(2)若直线l:θ=α(α∈[0,π),ρ∈R)与曲线C相交于A,B两点,设线段AB的中点为M,求|OM|的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)利用平方关系可得曲线C的普通方程,把x=ρcosθ,y=ρsinθ,代入即可得出.(II)联立θ=α和ρ2+2ρcosθ﹣2ρsinθ﹣2=0,得ρ2+2ρ(cosα﹣sinα)﹣2=0,设A(ρ1,α),B(ρ2,α),可得ρ1+ρ2=2(cosα﹣sinα)=2,即可得出.【解答】解:(I)曲线C的普通方程为(x+1)2+(y﹣1)2=4,由x=ρcosθ,y=ρsinθ,得ρ2+2ρcosθ﹣2ρsinθ﹣2=0.(II)联立θ=α和ρ2+2ρcosθ﹣2ρsinθ﹣2=0,得ρ2+2ρ(cosα﹣sinα)﹣2=0,设A(ρ1,α),B(ρ2,α),则ρ1+ρ2=2(cosα﹣sinα)=2,由|OM|=,得|OM|=,当α=时,|OM|取最大值.[选修4-5:不等式选讲]23.设函数f(x)=a(x﹣1).(Ⅰ)当a=1时,解不等式|f(x)|+|f(﹣x)|≥3x;(Ⅱ)设|a|≤1,当|x|≤1时,求证:.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(Ⅰ)当a=1时,不等式|f(x)|+|f(﹣x)|≥3x即|x﹣1|+|x+1|≥3x,分类讨论,即可解不等式|f(x)|+|f(﹣x)|≥3x;(Ⅱ)设|a|≤1,当|x|≤1时,|f(x2)+x|≤|a|(1﹣x2)+|x|≤1﹣x2+|x|,即可证明:.【解答】解:(I)当a=1时,不等式|f(x)|+|f(﹣x)|≥3x即|x﹣1|+|x+1|≥3x当x≤﹣1时,得1﹣x﹣x﹣1≥3x⇒x≤0,∴x≤﹣1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当﹣1<x<1时,得1﹣x+x+1≥3x,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当x≥1时,得x﹣1+x+1≥3x⇒x≤0,与x≥1矛盾,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综上得原不等式的解集为=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(II)证明:|f(x2)+x|=|a(x2﹣1)+x|≤|a(x2﹣1)|+|x|﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵|a|≤1,|x|≤1∴|f(x2)+x|≤|a|(1﹣x2)+|x|≤1﹣x2+|x|﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当时取“=”,得证.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2017年4月13日。

【广东省揭阳市】2017届普通高中高考高三3月模拟考试数学试卷(一)

【广东省揭阳市】2017届普通高中高考高三3月模拟考试数学试卷(一)

广东省揭阳市2017届普通高中高考高三3月模拟考试数学试卷(一)第Ⅰ卷(60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i 是虚数单位,则11i i -+=( ) A .1i + B . i - C .1i - D .i 2.设全集为U ,则如图所示的阴影部分所表示的集合为( )A .U AB I ðB .U B A I ðC .()U A B I ðD .()U A B U ð3.已知函数2()ln()1f x a x =+-,(a 为常数)是奇函数,则实数a 的值是( ) A .1B .-3C .3D .-14.如图是某几何体的三视图,则该几何体的体积为( )A .1B .13C .12D .325.高等比数列{}n a 的前n 项和为n S ,若33932S a ==,则{}n a 的值为( ) A .12- B .12C .12-D .1 6.已知变量x ,y 满足约束条件211y x y x y ⎧⎪+⎨⎪-⎩≤≥≤,是3z x y =+的最大值为( )A .1-B .3C .11D .12 7.算法如图,若输入210,117m n ==,则输出的n 为( ) A .2B .3C .7D .11 8.函数sin(())x f x A ωϕ=+(其中π0,2A ϕ><)的图像如图所示,为了得到()cos2g x x =的图像,则只需将()f x 的图像( )A .向右平移π6个单位长度B .向右平移π12个单位长度 C .向左平移π6个单位长度 D .向左平移π12个单位长度 9.如图,OA 是双曲线实半轴,OB 是虚半轴,F 是焦点,且30BAO ∠=︒,1(633)2ABF S =-△,则双曲线的标准方程是( ) A .22139x y -= B .22193x y -= C .22133x y -= D .22133x y -= 10.已知点G 是ABC △的重心, 120A ∠=︒,2AB AC =-u u u r u u u r g ,则AG u u u u r 的最小值是( ) A .33 B .22 C .23 D .3411.已知正方形123APP P 的边长为2,点B ,C 是边12P P 、23P P 的中点,AB ,BC ,CA 拆成一个三棱锥P -ABC (使1P ,2P ,3P 重合于点P )则三棱锥P -ABC 的外接球表面积为( )A .9πB .8πC .6πD .4π12.已知212(0)(0)()e x a x x x f x x -⎧--⎪=⎨⎪⎩<≥,且函数()1y f x =-恰有3个不同的零点,则实数a 的取值范围是( ) A .(1,]∞-+ B .(2,0]- C .(2,]-+∞ D .(0,1]第Ⅱ卷(90分)本卷包括必考题和选考题两部分。

【广东省揭阳市】2017届普通高中高考高三3月模拟考试数学试卷(七)

【广东省揭阳市】2017届普通高中高考高三3月模拟考试数学试卷(七)

A B =R ,C .1 是虛数单位,则点C .(2,1),1](2,)+∞ ,0](1,)+∞ 36k S -=,则 )
9.如图,正方体1111ABCD A B C D -中,E F 、是AB 的三等分点,G H 、是CD 的三等分点,M N 、分别是BC EH 、的中点,则四棱锥1A FMGN -的侧视图为( )
A B
C D 23()||5CA CB AB AB +=
,则
15.点(,)A x y 在单位圆上从013(,)22
A 出发,沿逆时针方向做匀速圆周运动,每12秒运动一周.则经过时间t 后,y 关于t 的函数解析式为______.
表示其中空气质量达到一级的天数,求ζ的分布列; 天计算)中大约有多少天的上,且
本小题满分12分)
,F 与直线与F 及y 轴都相切.任作直线l ,交曲线、B 别向
F 各引一条切线,切点分别为P 、
本小题满分10分):几何证明选讲
是O的直径,和O切于点
AB AD
=,
4
本题满分10分)选修:坐标系与参数方程
1
=绕原点逆时针旋
80。

广东揭阳市普通高中2017届高考高三数学3月模拟考试试

广东揭阳市普通高中2017届高考高三数学3月模拟考试试

揭阳市普通高中2017届高考高三数学3月模拟考试试题(八)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合}{11A x x x =<->或,}{2log 0B x x =>,则B A = ( ) (A)}{1x x >(B)}{0x x >(C)}{1x x <- (D)}{11x x x <->或(2)已知{}n a 为等差数列,若1598a a a π++=,则28cos()a a +的值为 ( )(A) 23-(B)12 (C)-21(D)23(3)若椭圆22221(0)x y a b a b +=>>的离心率为,则双曲线12222=-bx a y 的渐近线方程为( )(A)12y x =±(B)2y x =± (C)4y x =± (D)14y x =± (4) 执行如图所示的程序框图,则输出S =(A )2 (B )6 (C )15 (D )31(5)已知各项均为正数的等比数列{}n a 中,13a ,321a ,22a 成等差数列,则=++1081311a a aa ( )(A)-1或3 (B) 27(C) 3 (D) 1或27(6)设m 、n 是不同的直线,α、β、γ是不同的平面,有以下四个命题: (1)//////αββγαγ⎫⇒⎬⎭ (2)//m m αββα⊥⎫⇒⊥⎬⎭(3)//m m ααββ⊥⎫⇒⊥⎬⎭(4)////m n m n αα⎫⇒⎬⊂⎭,其中假命题是(A)(1)(2) (B)(2)(4) (C)(1)(3) (D)(2)(3)(7) 如下图,已知()32()0,f x ax bx cx d a =+++≠记2412b ac ∆=-则当0>∆且0<a 时,)(x f 的大致图像是 ( )(8) 函数()sin()f x A x ωϕ=+(其中0,0,||2A πωϕ>><)的图象如图所示,为了得到x x g 2sin )(=的图像,则只要将()f x 的图像 ( ) (A)向右平移6π个单位长度 (B)向右平移12π个单位长度(C)向左平移6π个单位长度 (D)向左平移12π个单位长度(9) 某四棱锥的三视图如图所示,该四棱锥的体积是 (A) (B)(C)3 (D(10) 在约束条件21010x x y m x y ⎧⎪-+⎨⎪+-⎩≤≥≥下,若目标函数2z x y =-+的最大值不超过4,则实数m 的取值范围( )(A))3,3(- (B) ]3,0[ (C) ]0,3[- (D) ]3,3[- (11) 已知抛物线错误!未找到引用源。

【广东省揭阳市】2017届普通高中高考高三3月模拟考试数学试卷-答案

【广东省揭阳市】2017届普通高中高考高三3月模拟考试数学试卷-答案
24.(10分)
解:(Ⅰ) 等价于 ,
解得: 。
故不等式 的解集为 。…………5分
(Ⅱ)因为: (当 时等号成立)
所以: …………8分
由题意得: ,解得 ,∴ 的取值范围 。…………10分
,故 …………2分
又平面 ,平面PAC 平面ABC=AC,
BC 平面PBC, 平面 ----4分
(Ⅱ)无论M点在PA在何处,MC 平面PAC, ,所以△MBC总为直角三角形。----6分
,当 的面积最小时,只需MC最短。
----8分
又△PAC是等边三角形,所以M在PA中点时,MC最短,此时点M到平面PBC的距离是点A到平面PBC的距离的一半。----10分
又 ∴ 。…………4分
(Ⅱ)∵ 为⊙ 的切线, 是过点 的割线
∴ 。
又∵ …………7分
由(Ⅰ)知, ,∵ 是⊙ 的直径,
∴ ,
∴AC= …………10分
23.(10分)
解:(1)由
曲线 的直角坐标方程为 …………4分
(2)将直线 的参数方程代入 ,得
设A、B两点对应的参数分别为 则 …………7分
当 时,|AB|的最小值为2.…………10分
∴ 。…………6分
令 ,
∵ ,且 ,
由 。
∴ 在区间 内单调递减,在区间 内单调递增,…………8分
故 在区间 内恰有两个相异实根 ……10分
即 解得: 。
综上所述, 的取值范围是 。…………12分
21.(12分)解:(ຫໍສະໝຸດ )所以椭圆方程为 …………4分
(Ⅱ)由已知直线AB的斜率存在,设AB的方程为:
由 得
解法二:依题意“预备生”与“非预备生”的人数比为3:2,所以采用分层抽样的方法抽取的3名“预备生”记为a.b.c,2名“非预备生”为m、n。则基本事件是 , , , , , , , , , 共10个。其中2名都是“非预备生”的基本事件有1个,故所求的概率为 。…………12分

2017届广东省揭阳市高三数学(文)一模试题答案

2017届广东省揭阳市高三数学(文)一模试题答案

2017 届广东省揭阳市高三数学(文)一模试题答案一、选择题:共12 小题,每题 5 分,共 60 分.在每个小题给出的四个选项中,只有一项为哪一项切合题目要求的.1.已知会合 A={ ﹣1,0,1,2} ,会合 B={ y| y=2x﹣3,x∈A} ,则 A∩ B 中元素的个数为()A.1B.2C.3D.4【解答】解:由 A={ ﹣1,0,1,2} ,会合 B={ y| y=2x﹣3,x∈A} ={ ﹣5,﹣3,﹣1,1}所以 A∩B={ ﹣1,1} .所以 A∩B 中元素的个数为2.应选 B.2.已知点 A( 0, 1),B(3,2),向量,则向量=()A.(10, 7)B.(10,5)C.(﹣ 4,﹣ 3)D.(﹣ 4,﹣ 1)【解答】解:依据题意,点A(0,1),B(3,2),则向量=(3,1),又由,则向量= +=(﹣ 4,﹣ 3);应选: C.3.若直线 mx+2y+m=0 与直线 3mx+(m﹣1)y+7=0 平行,则 m 的值为()A.7B.0 或 7 C.0D.4【解答】解:∵直线 mx+2y+m=0 与直线 3mx+( m﹣1)y+7=0 平行,∴ m(m﹣1)=3m×2,∴ m=0 或 7,经查验都切合题意.应选: B.4 .已知命题 p : ? x , y ∈ R , sin ( x+y ) =sinx+siny ,命题,则以下判断正确的选项是()A.命题 p∨q 是假命题 B.命题 p∧q 是真命题C.命题 p∨(¬ q)是假命题D.命题 p∧(¬ q)是真命题【解答】解:令 x=0,y=,明显知足sin(x+y)=sinx+siny,故命题 p 是真命题;x∈[ 0,π] ,cosx=±,故命题 q 是假命题,故命题 p∧(¬ q)是真命题,应选: D.5.曲线与的交点横坐标所在区间为()A.B.C.D.【解答】解:方法一:分别画出与的图象,如下图,由图象可得交点横坐标所在区间为(,),方法二:设 f (x) =()x﹣x,∵ f() =()﹣<0,f()=()﹣()>0,∴f() f()< 0,依据函数零点存在定理可得点函数零点所在区间为(,),即交点横坐标所在区间为(,),应选: B6.阅读图的程序框图,运转相应的程序,当输入x 的值为﹣ 36 时,输出 x 的值为()A.0B.1C.3D.15【解答】解:当输入 x=﹣36 时,| x| >1,履行循环, x=6﹣2=4;| x| =4> 1,履行循环, x=2﹣ 2=0,| x| =0< 1,退出循环,输出的结果为 x=1﹣ 1=0.应选: A7.假如实数 x、 y 知足条件,那么2x﹣y的最大值为()A.2B.1C.﹣ 2 D.﹣ 3【解答】解:先依据拘束条件画出可行域,当直线 2x﹣y=t 过点 A(0,﹣ 1)时,t 最大是 1,应选 B.8.清朝有名数学家梅彀成在他的《增删算法统宗》中有这样一歌谣:“眺望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”其译文为:“远远看见 7 层高的古塔,每层塔点着的灯数,基层比上层成倍地增添,一共有381盏,请问塔尖几盏灯?”则按此塔各层灯盏的设置规律,从上往下数第 4 层的灯盏数应为()A.3B.12 C.24D.36【解答】解:依题意知,此塔各层的灯盏数组成公比q=2 的等比数列,且前7项和 S7=381,由,解得 a1,=3故.应选: C.9.连续掷两次骰子,以先后获得的点数m,n 为点 P 的坐标( m,n),那么点 P在圆 x2+y2=17 内部(不包含界限)的概率是()A.B.C.D.【解答】解:连续掷两次骰子,以先后获得的点数m,n 为点 P 的坐标( m,n),基本领件总数 N=6×6=36,点 P 在圆 x2+y2=17 内部(不包含界限)包含的基本领件有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共 8个,∴点 P 在圆 x2+y2=17 内部(不包含界限)的概率是p= =.应选: D.10.某工件的三视图如下图,现将该工件经过切割,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则新工件的棱长为()A.B.1C.2D.【解答】解:依题意知该工件为圆锥,底面半径为,高为2,要使加工成的正方体新工件体积最大,则该正方体为圆锥的内接正方体,设棱长为 2x,则有,解得,故2x=1,即新工件棱长为1.应选 B..已知抛物线2+2x﹣a﹣1(a∈ R),恒过第三象限上必定点A,且点 A 在11y=ax直线 3mx+ny+1=0(m> 0, n> 0)上,则的最小值为()A.4B.12 C.24D.36【解答】解:抛物线 y=ax2+2x﹣a﹣1(a∈R),恒过第三象限上必定点A,∴A(﹣ 1,﹣ 3),∴,又===12,当且仅当 m=n 时等号成立.应选: B12.已知函数 f(x)=| sinx| (x∈[ ﹣π,π] ),g(x)为[ ﹣4,4] 上的奇函数,且,设方程f( f( x)) =0, f( g( x)) =0, g( g( x))=0的实根的个数分别为m、 n、 t,则 m n t=()+ +A.9B.13 C.17D.21【解答】解:因 x∈ [ ﹣π,π] ,所以函数 f( x)=| sinx| 的值域为 [ 0,1] ,函数 g(x)=的图象如图示,由图象知,其值域为 [ ﹣4,4] ,注意到方程 f (x) =0 的根为 0,﹣π,π,所以方程 f( f(x))=0 的根为方程 f (x)=0 或 f (x)=﹣π,f( x)=π的根,明显方程 f( x)=0 有 3 个实根,因﹣π,π?[ 0,1] ,所以 f(x)=﹣π,与 f( x)=π均无实根;所以方程 f( f(x))=0 的实根的个数为3,即 m=3;方程 f (g(x))=0 的实根为方程 g(x)=0 或 g(x)=﹣π,g(x)=π的根,方程 g(x)=﹣π,g(x)=π各有 3 个根,同时方程 g(x)=0 也有 3 个根,进而方程 f( g( x))=0 根的个数为 9,即 n=9;方程 g(x)=0 有三个实根﹣3、 0、3,方程 g(g(x)) =0 的实根为方程 g(x)=﹣3 或 g(x) =0 或 g(x) =3 的根,方程 g(x)=﹣3 或 g( x)=3 各有 3 个根,同时方程 g( x)=0 也有 3 个根,综上, m+n+t=3+9+9=21.应选: D.二、填空题:本大题共 4 小题,每题 5 分,共 20 分,请把正确的答案填写在答题卡相应的横线上.13.已知函数 f (x)=ax3+bx+1,若 f (a)=8,则 f (﹣ a)=﹣6.【解答】解:∵函数 f (x)=ax3+bx+1,∴f(﹣ x) =a(﹣ x)3+b(﹣ x) +1=﹣ax3﹣ bx+1,∴f(﹣ x) +f(x) =2,∴f(﹣ a) +f(a)=2.∵f(a)=8,∴f(a)=﹣6.故答案为﹣ 6.n *都有 an+1 n n+1 n8.14.已知数列 { a } 对随意的 n∈ N=a﹣2a a ,若,则 a =【解答】解:由 a n+1n﹣n+1 n 得,=a2a a故数列是,公差 d=2 的等差数列,,.故答案为:.15.已知△ ABC的极点都在球 O 的球面上, AB=6,BC=8,AC=10,三棱锥 O﹣ABC的体积为 40,则该球的表面积等于400π .【解答】解:依题意知△ ABC为直角三角形,其所在圆面的半径为,设三棱锥 O﹣ABC的高为 h,则由得h=5,设球 O 的半径为 R,则由 h2+52=R2,得 R=10,故该球的表面积为400π.故答案为 400π.16.已知双曲线右焦点为F,P为双曲线左支上一点,点,则△ APF周长的最小值为4(1+).【解答】解:由题意,点,△APF的周长l= AF AP PF= AF2a PF'AP APF的周长最小,只要|AP PF'| |+||+||| |++||+|| ,要△|+||最小,如图,当 A、P、F 三点共线时取到,故 l=.故答案为: 4(1+).三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知:复数 z1=2sinAsinC+(a+c)i,z2=1+2cosAcosC+4i,且 z1=z2,此中 A、B、C 为△ ABC的内角, a、 b、 c 为角 A、 B、 C 所对的边.(Ⅰ)求角 B 的大小;(Ⅱ)若,求△ ABC的面积.【解答】解:(Ⅰ)∵ z1=z2∴2sinAsinC=1+2cosAcosC﹣﹣﹣﹣①, a+c=4﹣﹣﹣﹣②,由①得 2( cosAcosC﹣ sinAsinC) =﹣1即,∴,∵ 0< B<π∴;(Ⅱ)∵,由余弦定理得b2 2c2﹣ 2accosB a2 c2﹣ac=8,﹣﹣④,=a +?+由②得 a2+c2+2ac=16﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣⑤由④⑤得,∴=.18.如图,在直三棱柱ABC﹣A1B1C1中, AB=BC=BB1,AB1∩A1B=E,D 为 AC 上的点, B1C∥平面 A1BD;(Ⅰ)求证: BD⊥平面 A1ACC1;(Ⅱ)若 AB=1,且 AC?AD=1,求三棱锥 A﹣ BCB1的体积.【解答】(Ⅰ)证明:连接 ED∵平面 AB1C∩平面 A1BD=ED, B1C∥平面 A1BD,∴B1C∥ ED,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵E 为 AB1中点,∴ D 为 AC中点,∵AB=BC,∴ BD⊥AC①,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由 A1A⊥平面 ABC, BD? 平面 ABC,得 A1A⊥ BD②,由①②及 A1A、AC是平面 A1ACC1内的两条订交直线,得 BD⊥平面 A1ACC1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)解:由 AB=1 得 BC=BB1=1,由(Ⅰ)知,又AC?DA=1得AC2=2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣222∵ AC=2=AB +BC,∴ AB⊥BC,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣19.某地政府拟在该地一水库上建筑一座水电站,用泄流水量发电.图是依据该水库历年的日泄流量的水文资料画成的日泄流量X(单位:万立方米)的频次分布直方图(不完好),已知 X∈ [ 0,120),历年中日泄流量在区间 [ 30,60)的年均匀天数为 156,一年按 364 天计.(Ⅰ)请把频次散布直方图增补完好;(Ⅱ)已知一台小型发电机,需30 万立方米以上的日泄流量才能运转,运转一天可获收益为 4000 元,若不运转,则每日损失500 元;一台中型发电机,需60万立方米以上的日泄流量才能运转,运转一天可赢利10000 元,若不运转,则每天损失 800 元;依据历年日泄流量的水文资料,水电站决定安装一台发电机,为使一年的日均收益值最大,应安装哪一种发电机?【解答】解:(Ⅰ)在区间 [ 30, 60)的频次为,,设在区间 [ 0,30)上,,则,解得,增补频次散布直方图如右;(Ⅱ)当天泄流量 X≥30(万立方米)时,小型发电机能够运转,则一年中一台小型发电机可运行的天数为:(天);当天泄流量 X≥60(万立方米)时,中型发电机能够运转,则一年中一台中型发电机可运转的天数为:(天);①若运转一台小型发电机,则一年的日均收益值为:(或)(元)②若运转一台中型发电机,则一年的日均收益值为:(或)(元)由于,故为使水电站一年的日均收益值最大,应安装中型发电机.20.已知椭圆的离心率为,点M,N是椭圆C上的点,且直线 OM 与 ON 的斜率之积为﹣(Ⅰ)求椭圆 C 的方程;(Ⅱ)设动点 P(x0,y0)知足= +2,能否存在常数λ,使得P是椭圆上的点.【解答】解:(Ⅰ)∵椭圆的离心率为,∴ e=,解得,又 b2=2,解得 a=2,故椭圆的标准方程为=1.(Ⅱ)设 M (x ,y1),(,),则由=,1N x2y2得 x0=x1+2x2,y0=y1+2y2,又点 M,N 在椭圆=1 上,∴,,设 k OM,k ON分别为直线 OM,ON 的斜率,由题意知:k OM?k ON==﹣,∴ x1x2+2y1y2=0,∴=,所以,存在常数λ=5,使得P点在椭圆上.21.已知函数.(a∈R)(Ⅰ)若函数在区间上单一递减,务实数 a 的取值范围;(Ⅱ)试议论函数 f (x)在区间( 0,∞)内极值点的个数.+【解答】解:(Ⅰ)由题意可知:对 ? x∈,f ′(x)=﹣ +≤0,即 a≥,对 ? x∈恒成立,令 g(x) = ,求导 g′( x) =,当 0<x< 1 时, g′( x)< 0,当 x>1,g′(x)> 0,∴函数 g(x)在 [,1]上单一递减,在(1,e]上单一递加,∴ g()=,g(e)=e e﹣1,由 e e﹣1>,∴在区间上 g(x)max=e e﹣1,∴a≥ e e﹣1,(Ⅱ)解法 1:由 f ′( x) =﹣+ ==,g(x)=,g′(x)=,当 0<x< 1 时, g′( x)< 0,当 x>1 时, g′(x)> 0,∴函数 g(x)在( 0,1)单一递减,在( 1,+∞)单一递加,g(x)min=g(1)=e,当 a≤e 时, g(x)≥ a 恒成立, f (′ x)≥ 0,函数 f (x)在区间( 0,+∞)单一递加, f( x)无极值点,当 a>e 时, g(x)min≥g(1)=e<a,故存在 x1∈( 0,1)和 x2∈( 1,+∞),使得 g(x1) =g(x2)=a,当 0<x< x1,f (′x)> 0,当 x1<x<x2时, f ′(x)< 0,当 x> x2,f ′(x)> 0,∴函数 f(x)在( x1,x2)单一递减,在( 0, x1)和( x2,+∞),∴ x1为函数 f (x)的极大值点, x2为函数 f( x)的极小值点,综上可知; a≤ e 时,函数 f(x)无极值点,当 a>e 时,函数 f(x)有两个极值点.方法 2:f ′(x)=,设h(x)=e x﹣ax(x>0),则h(x)=e x﹣a,由x>0,e x> 1,(1)当 a≤1 时, h′(x)> 0,h(x)递加, h(x)> h(0)=1,则 f ′(x)> 0,f (x)递加, f(x)在区间( 0,+∞)内无极值;(2)当 a>1 时,由 h′( x) =e x﹣ a> 0,则 x>lna,可知 h(x)在( 0, lna)内递减,在( lna,+∞)单一递加,∴h( x)max=h( lna) =a(1﹣lna),①当 1<a≤e 时, h( x)> h(x)min≥0,则 f ′(x)> 0,f (x)单一递加, f(x)在区间( 0,+∞)内无极值;②当a>e 时, h(x)min<0,又 h(0)> 0,x 很大时, h(x)> 0,∴存在 x1∈( 0,lna), x2∈( lna,+∞),使得 h(x1)=0,h(x2)=0,即 f ′(x1)=0,f ′(x2)=0,可知在 x1,x1两边 f (′x)符号相反,∴函数 f(x)有两个极值点 x1, x2,综上可知; a≤ e 时,函数 f(x)无极值点,当 a>e 时,函数 f(x)有两个极值点.[ 选修 4-4:坐标系与参数方程 ]22.已知曲线 C 的参数方程为(θ为参数).以原点O为极点,x 轴的非负半轴为极轴成立极坐标方程.(1)求曲线 C 的极坐标方程;(2)若直线 l:θ=α(α∈[ 0,π),ρ∈R)与曲线 C 订交于 A, B 两点,设线段AB 的中点为 M,求 | OM| 的最大值.【解答】解:( I)曲线 C 的一般方程为( x+1)2+(y﹣ 1)2=4,由 x=ρcos,θy=ρsin,θ得ρ2+2ρcosθ﹣ 2ρsin﹣θ2=0.( II)联立θ=α和ρ2+2ρcosθ﹣2ρsin﹣θ2=0,得ρ2+2ρ(cosα﹣sin α)﹣ 2=0,设 A(ρ1,α),(ρ2,α),B则ρ,1+ρ2=2(cosα﹣sinα)=2由| OM| =,得| OM| =,当α=时,| OM| 取最大值.[ 选修 4-5:不等式选讲 ]23.设函数 f (x)=a(x﹣1).(Ⅰ)当 a=1 时,解不等式 | f(x)|+| f(﹣ x)| ≥3x;(Ⅱ)设 | a| ≤ 1,当 | x| ≤1 时,求证:.【解答】解:( I)当 a=1 时,不等式 | f(x)|+| f (﹣ x)| ≥3x 即| x﹣ 1|+| x+1|≥3x当 x≤﹣ 1 时,得 1﹣ x﹣ x﹣1≥3x? x≤ 0,∴ x≤﹣ 1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当﹣ 1<x< 1 时,得 1﹣x+x+1≥3x,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当 x≥1 时,得 x﹣1+x+1≥3x? x≤ 0,与 x≥1 矛盾,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综上得原不等式的解集为=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(II)证明: | f (x2)+x| =| a(x2﹣ 1) +x| ≤ | a( x2﹣ 1)|+| x| ﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵| a| ≤1, | x| ≤1∴ | f(x2)+x| ≤| a| (1﹣x2)+| x| ≤1﹣x2+| x| ﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当时取“=,”得证.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣。

【广东省揭阳市】2017届普通高中高考高三3月模拟考试数学试卷-答案

【广东省揭阳市】2017届普通高中高考高三3月模拟考试数学试卷-答案
所求的概率为 P 9 。…………12 分 10
解法二:依题意“预备生”与“非预备生”的人数比为 3:2,所以采用分层抽样的方法抽取的 3 名“预备 生”记为 a.b.c,2 名“非预备生”为 m、n。则基本事件是 (a,b) ,(a,c) ,(a,m) ,(a,n) ,(b,c) ,(b, m) , (b, n) , (c, m) , (c, n) , (m,n) 共 10 个。其中 2 名都是“非预备生”的基本事件有 1 个,故所求的概率为
解:(Ⅰ)∵ PA 为⊙ O 的切线,∴ PAB ACP ,
又 P P ∴ △PAB ∽△PCA, AB PA 。…………4 分 AC PC
(Ⅱ)∵ PA 为⊙ O 的切线, PBC 是过点 O 的割线
∴ PA2 PB PC 。
又∵ PA 10, PB 5,PC 20, BC 15 …………7 分
3
3
-5-/5
a2 b2 c2 2 所以椭圆方程为 x2 y2 1 …………4 分
2 (Ⅱ)由已知直线 AB 的斜率存在,设 AB 的方程为: y k(x 2)
y k(x 2)


x2
2

y2
1
得 (1 2k2 )x2 8k2x 8k2 2 0
8k 2 2 4k 2 1 2k2 1 2k2
0 ,解,得 k
5 ,满足 k ( 5
2, 2
2 ) …………8 分 2
(2)若
A或B
为直角顶点,不妨设以
A
为直角顶点,
kOA


1 k
,则
A
满足:

y y

【广东省揭阳市】2017届普通高中高考高三3月模拟考试数学试卷(一)-答案

【广东省揭阳市】2017届普通高中高考高三3月模拟考试数学试卷(一)-答案

广东省揭阳市2017届普通高中高考高三3月模拟考试数学试卷(七)答 案一、 选择题:共12小题,每小题5分,共60分. 1~5.DCAAD6~10.ABBCB11~12.DB二、填空题:共4小题,每小题5分,共20分.13.68 14.1615.ππsin()63y t =+16.2222a b b a -三、解答题:共6小题,共70分.17.(Ⅰ)设{}n a 的公比为q ,{}n b 的公差为d ,依题意242(22)26d qd q +=⨯⎧⎨+=⎩g .解得212d q =⎧⎪⎨=⎪⎩,或538d q =-⎧⎪⎨=-⎪⎩(舍) 21()2n na -∴=,2nb n =;(6分) (Ⅱ)由(Ⅰ)得2221()2n n b n a a -==,因为222210.001()0.001210002n n n b a --⇔⇔<<>,所以2210n -≥,即6n ≥,∴最小的n 值为6.(12分)18.(Ⅰ)依据条件,ζ服从超几何分布:其中15N =,5M =,3n =,ζ的可能值为0,1,2,3,其分布列为:3510315()(0,1,2,3)k kC C P k k C ζ-===g . (6分)(Ⅱ)依题意可知,一年中每天空气质量达到一级的概率为51153P ==, 一年中空气质量达到一级的天数为η,则1~(360,)3B η,13601203E η∴=⨯=(天)所以一年中平均有120天的空气质量达到一级.(12分)19.设正方形ABCD 的中心为O ,N 为AB 的中点,R 为BC 的中点,分别以ON ,OR ,OV 所在直线为x 轴,y 轴,z 轴,如图建立空间直角坐标系,在Rt VOB △中,可得=30OV ,则(0,030)V ,,(3,3,0)A -,(3,3,0)B ,(3,3,0)C -,(3,3,0)D --,3(,3,0)M ,33303330(,,)(,,)P Q --,. 于是33330(,,)222AP =-u u u r ,(0,23,0)AB =u u u r 23(,23,0)AM =-u u u u r 33330(,,)CQ =-u u u r .(Ⅰ)3333033330(,,)(,,)0AP CQ =--=u u u r u u u r Q g g , CQ AP ∴⊥u u u r u u u r,即CQ AP ⊥;(6分)(Ⅱ)设平面BAP 的法向量为1(,,)n a b c =u u r ,由1100n AP n AB ⎧=⎪⎨=⎪⎩u u r u u u rg u u r u u u rg 得31000a b c b ⎧--=⎪⎨=⎪⎩ 故1(10,0,1)n =u u r ,同理可得平面APM 的法向量为2(3,1,0)n =u u r,设二面角B AP M --的平面角为θ,则1212311cos ||||n n n n θ==u u r u u r g u u r u u r .(12分)20.(Ⅰ)F e 的半径为2214+3=,F e 的方程为22(1)1x y -+=,由题意动圆M 与F e 及y 轴都相切,分以下情况:(1)动圆M 与F e 及y 轴都相切,但切点不是原点的情况:作MH y ⊥轴于H ,则||1||MF MH -=,即||||1MF MH =+,则||||MF MN =(N 是过M 作直线1x =-的垂线的垂足),则点M 的轨迹是以F 为焦点,1x =-为准线的抛物线. ∴点M 的轨迹C 的方程为24(0)y x x =≠;(2)动圆M 与F e 及y 轴都相切且仅切于原点的情况: 此时点M 的轨迹C 的方程为0(0,1)y x =≠;(6分) (Ⅱ)对于(Ⅰ)中(1)的情况:当l 不与x 轴垂直时,直线l 的方程为(1)y k x =-,由2(1)4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=,设11(,)A x y ,22(,)B x y ,则212224x k x k++=,121x x = 121212121212221111sin sin 111111x x x x AF BF x x x x x x x x αβ++++∴+=+=+===++++++++, 当l 与x 轴垂直时,也可得sin sin 1αβ+=,对于(Ⅰ)中(2)的情况不符合题意(即作直线l ,交C 于一个点或无数个点,而非两个交点). 综上,有sin sin 1αβ+=.12分 21.(Ⅰ)1()1f x ax'=-Q , ∴曲线()y f x =在点(1,(1))f 处的切线斜率为1(1)1k f a'==-, 依题意110a -=,故1a =,()ln f x x x ∴=-,1()1f x x'=-,当01x <<时,()0f x '>,函数()f x 单调递增;当1x >时,()0f x '<,函数()f x 单调递减;所以函数()f x 的单调增区间为(0,1),减区间为(1,)+∞;(6分)(Ⅱ)若0a <,因为此时对一切(0,1)x ∈,都有ln 0x a >,10x -<,所以ln 1xx a->,与题 意矛盾,又0a ≠,故0a >,由1()1f x ax '=-,令()0f x '=,得1x a=.当10x a <<时,()0f x '>,函数()f x 单调递增;当1x a>时,()0f x '<,函数()f x 单调递减;所以()f x 在1x a=处取得最大值111ln a a a -,故对R a +∀∈,()1f x -≤恒成立,当且仅当对R a +∀∈,111ln 1a a a --≤恒成立. 令1t a=,()ln g t t t t =-,0t >. 则()ln g t t '=,当01t <<时,()0g t '<,函数()g t 单调递减;当1t >时,()0g t '>,函数()g t 单调递增;所以()g t 在1t =处取得最小值1-,因此,当且仅当11a =,即1a =时,111ln 1a a a--≤成立. 故a 的取值集合为{1}.(12分)22.(Ⅰ)连接BC ,AB Q 是O e 的直径,90ACB ∴∠=︒.90B CAB ∴∠+∠=︒AD CE ⊥Q ,90ACD DAC ∴∠+∠=︒, AC Q 是弦,且直线CE 和O e 切于点C , ACD B ∴∠=∠DAC CAB ∴∠=∠,即AC 平分BAD ∠;5分(Ⅱ)由(Ⅰ)知ABC ACD △∽△,AC ADAB AC∴=,由此得2AC AB AD =g . 4AB AD =Q ,22442AC AD AD AD AC AD ∴==⇒=g ,于是60DAC ∠=︒,故BAD ∠的大小为120︒.(10分)23.(Ⅰ)设曲线C 上任一点为(,)x y ,则(,2)x y 在圆224x y +=上,于是22(2)4x y +=即2214x y +=.直线3280x y --=的极坐标方程为3cos 2sin 80ρθρθ--=,将其记作0l , 设直线l 上任一点为(,)ρθ,则点(,90)ρθ-︒在0l 上,于是3cos(90)2sin(90)80ρθρθ-︒--︒-=,即:3sin 2cos 80ρθρθ+-= 故直线l 的方程为2380x y +-=.(5分) (Ⅱ)设曲线C 上任一点为(2cos ,sin )M ϕϕ, 它到直线l的距离为d ==其中0ϕ满足:04cos 5ϕ=,03sin 5ϕ=. ∴当0πϕϕ-=时,max d =(10分)24.(Ⅰ)()|1||x 2||(x 1)(x 2)|1f x x =-+---=≥.(5分)(Ⅱ)222==Q,∴2|1||2|2x x -+-≥,即1122x x x ⎧⎨-+-⎩<≥,或12122x x x ⎧⎨-+-⎩≤<≥,或2122x x x ⎧⎨-+-⎩≥≥,解得12x ≤,或52x ≥故的取值范围是15(,][,)22-∞+∞U .10分x广东省揭阳市2017届普通高中高考高三3月模拟考试数学试卷(七)解 析一、选择题:共12小题,每小题5分,共60分.1.【解析】或,由,得. 2.【解析】,其共轭复数为,即,所以. 3.【解析】;反之,不能推出.4.【解析】的定义域为记,则 ,故是奇函数. 5.【解析】函数的零点就是方程的根,作出的图象,观察它与直线的交点,得知当时,或时有交点,即函数有零点.6.【解析】由,,解得,再由:,解得.7.【解析】,所以,即,所以, 由过点,即,, 解得,函数为,由, 解得 ,故函数单调递增区间为.8.【解析】依题意,有,故.9.【解析】(略).10.【解析】双曲线的渐近线为,抛物线的准线为,设,当直线 过点时,.11.【解析】易知直线的方程为,直线的方程为11x x >⇔>1x <-A B =R U 1m >122+=-ii i2+i 2+=+a bi i 2,1==a b 0a >⇒20a a +≥20a a +≥⇒0,1a a ≥≤-或0a >()()f x g x -()1,1-()F x =()()f x g x -21log 1xx+=-()F x -=21log 1x x -+121log 1x x -+⎛⎫= ⎪-⎝⎭21log 1xx+=--()F x =-()()f x g x -()()g x f x x m =+-()f x x m +=(),0(),0x x x h x f x x e x x ≤⎧=+=⎨+>⎩y m =0m ≤1m >()()g x f x x m =+-11a =35a =2d =221k k k k S S a a +++-=+12(21)4436a k d k =++=+=8k =5,4A B AB y y =-=3A B x x -=32T =26T πω==3πω=()2sin 3f x x πϕ⎛⎫=+⎪⎝⎭()2,2-22sin 23πϕ⎛⎫+=- ⎪⎝⎭0ϕπ≤≤56πϕ=()52sin 36f x x ππ⎛⎫=+⎪⎝⎭5222362k x k ππππππ-≤+≤+6461k x k -≤≤-[]()64,61k k k --∈Z 21122221+=++++=-L n n S 121127+-=n 6=n 12y x =±2x =z x y =+()0,0O min 0=z 22B A 0bx ay ab +-=12B F,联立可得,又,∴,, ∵为钝角∴,即, 化简得,,故,即,或,而,所以. 12.【解析】设中, 分别是所对的边,由得即,∴∴,即, ∴. 二、填空题:共4小题,每小题5分,共20分. 13.【解析】设遮住部分的数据为,,由过得 ∴,故.14.【解析】平面∥平面,∴到平面的距离等于平面与平面间的距离,等于,而,∴三棱锥的体积为. 0bx cy bc --=()2,b a c ac P a c a c -⎛⎫⎪++⎝⎭()()21,0,0,A a B b -122,ac ab PB a c a c --⎛⎫= ⎪++⎝⎭u u u r ()()2,a a c b a c PA a c a c ---⎛⎫= ⎪++⎝⎭u u u u r 12B PA ∠210PA PB ⋅<u u u u r u u u r ()()()()2222220a c a c ab a c a c a c ---+<++2b ac <22a c ac -<210c ca a⎛⎫+-> ⎪⎝⎭210e e +->e>e <01e <<112-<<e ABC ∆,,a b c ,,A B C ∠∠∠()235CA CB AB AB +⋅=u u u r u u u r u u u r u u u r 235CA AB CB AB AB ⋅+⋅=u u u r u u u r u u u r u u u r u u u r ()23cos cos 5bc A ac B c π-+=3cos cos 5a Bb Ac -=2222223225a cb bc a a b c ac bc +-+-⋅-⋅=22235a b c -=22222222222222223tan sin cos 2543tan sin cos 52a c b c c A A B a a c bac b c a B B A b b c a c c bc+-++-=⋅=⋅===+-+--+m 10+20+30+40+50305=x =ˆ0.67+54.9y=x ()x,y 0.6730+54.9=75⨯y =62++75+81+89=755m 68=m 11A BC 1ACD P 1ACD 11A BC 1ACD 1133B D=1111sin 6022ACD S AD CD ∆=⋅︒=1P ACD-113236⨯=15.【解析】,点每秒旋转,所以秒旋转,, ,则.16.【解析】设直线的方程为,则直线的方程为, 则点满足故, ∴,同理,故∵(当且仅当时,取等号) ∴,又,故的最小值为. 三、解答题:共6小题,共70分. 17.略. 18.略. 19.略. 20.略. 21.略. 22.略. 23.略. 24.略.03xOA π∠=A 2126ππ=t 6t π06A OA t π∠=63xOA t ππ∠=+sin y xOA =∠sin 63t ππ⎛⎫=+⎪⎝⎭OA y kx =OB 1y x k=-()11,A x y 22221y kx x y ab =⎧⎪⎨-=⎪⎩222222211222222,a b a b k x y b a k b a k ==--()222222112221k a b OA x y b a k +=+=-()22222221k a b OBk b a +=-()()2222222222222211k a b k a bOA OBb a kk b a++⋅=⋅--()()44222222221a b k a b a bk=-++⋅+()22222111412k kk k=≤+++1k =±()44222224a b OA OB ba⋅≥-0b a >>12AOBS OA OB ∆=⋅2222a b b a -。

2017年5月广东省揭阳市高考数学模拟考试(附答案)

2017年5月广东省揭阳市高考数学模拟考试(附答案)

2017年5月广东省揭阳市高考模拟考试数 学一、选择题(本大题10小题,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设i 为虚数单位,则复数43ii+的虚部为( ) A .-4B .4i -C .4D .4i2.设集合{}{}21,,1,A x y x x R B y y x x R ==+∈==+∈,则A B =( )A .()(){}0,1,1,2B .{}1x x ≥C .(){}1,2D .R3.设向量()1,0a =,()1,1b =,则下列结论中正确的是( )A .a b =B .2a b =C .a b -与a 垂直D .a ∥b4.下列函数中,既是偶函数又在()0,+∞单调递增的函数是( ) A .1y x=-B .()2lg 4y x =-C .||e x y =D .cos y x =5.对于函数()3sin cos f x x x =+,下列命题中正确的是 ( ) A .(),2x f x ∀∈=R B .(),2x f x ∃∈=RC .(),2x f x ∀∈>RD .(),2x f x ∃∈>R6.执行如图所示的程序框图,输出的S 值为( ) A .1 B .1- C .2-D .07.设函数()34,02f x x x a a =-+<<.若()f x 的三个零点为123,,x x x ,且123x x x <<,则( ) A .11x >-B .20x <C .20x >D .32x >8.如图,函数()y f x =的图象为折线ABC ,设()()g x f f x =⎡⎤⎣⎦,则函数()y g x =的图象为 A .B .C .D .9.已知点(),x y 满足1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,目标函数2z ax y =+仅在点()1,0处取得最小值,则a 的范围为( )A .()1,2-B .()4,2-C .()2,1-D .()2,4-10.已知()y f x =是定义在R 上的奇函数,且当0x <时不等式()()'0f x xf x +<成立,若()0.30.333a f =,()ππlog 3log 3b f =,则 , , a b c 大小关系是( )A .a b c >>B .c b a >>C .a c b >>D .c a b >>二、填空题:(本大题共5小题,每小题5分,共25分,把答案填在答题卡对应题号后的横线上)ABCOxy 11 -1-1 (第8题图)O xy11 -1-1 O xy11-1-1 O xy11-1-1O xy 11-1-111.函数1ln x y x+=的定义域为_____________. 12.已知单位向量1e ,2e 的夹角为60°,则122e e -=_____________.13.某几何体的三视图如图所示,则这个几何体的体积是_________________.14.设()f x =()()0e 0ln x x x x ≤⎧⎨>⎩,则12f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦_____________. 15.观察下列等式:332123+=,33321236++=,33332123410+++=,…,根据上述规律,第五个等式.....为_____________. 三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)已知函数()22cos 3sin 2xf x x =-. (Ⅰ)求函数()f x 的最小正周期和值域;(Ⅱ)若α为第二象限角,且π133f α⎛⎫-= ⎪⎝⎭,求cos21tan αα-的值.17.(本小题满分12分)已知函数()1 3.f t t t =+-- (I )求()2f t >的解集;(II )设()20,25a g x ax x >=-+, 若对任意实数,x t ,均有()()g x f t ≥恒成立,求a 的取值范围。

广东省揭阳一中2017届高三数学上学期第一次阶段考试试题理 (1)

广东省揭阳一中2017届高三数学上学期第一次阶段考试试题理 (1)

2016-2017学年度(95届)揭阳一中阶段一考试理科数学试卷一、选择题(本大题共12小题, 每小题5分,共60分) 1、已知复数ibiz -+=14(R b ∈)的实部为1-,则复数z b -在复平面上对应的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2、已知条件p :|4|6x -≤ ;条件q :22(1)0(0)x m m --≤> ,若p 是q 的充分不必要条件, 则m 的取值范围是( )A.),19[+∞B.),19(+∞C.),9[+∞D.),9(+∞ 3、 要得到函数)32cos()(π+=x x f 的图象,只需将函数)32sin()(π+=x x g 的图象( )A.向左平移2π个单位长度 B.向右平移2π个单位长度 C.向左平移4π个单位长度 D.向右平移4π个单位长度4、等差数列{}n a 中的4a ,2016a 是函数146)(23-+-=x x x x f 的极值点,则=101041log a ( )A.21 B.2 C.2- D.21- 5、函数2ln xy x=的图象大致为( )6、已知双曲线22221x y a b-=(0>a ,0>b )的左、右焦点分别为1F 、2F ,以21F F 为直径的圆与双曲线渐近线的一个交点为)4,3(,则此双曲线的方程为( )A.221169x y -= B. 22134x y -= C. 221916x y -= D. 22143x y -= 7、若⎰=2121dx x S ,⎰=2121dx xS ,⎰=213dx e S x ,则1S ,2S ,3S 的大小关系为( )A .321S S S <<B .312S S S <<C .231S S S <<D .213S S S <<8、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体, 该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积 为π2016+,则=r ( )A.1B.2C.4D.8 9、若n xx )319(-(*N n ∈)的展开式的第3项的二项式系数为36,则其展开式中的常数项为( )A .252B .252-C .84D .84- 10、已知()y f x =是可导函数,如图,直线2y kx =+是 曲线()y f x =在3x =处的切线,令()()g x xf x =,'()g x 是()g x 的导函数,则'(3)=g ( )A.-1B. 0C.2D.411、设)('x f 为定义在R 上的可导函数)(x f 的导函数,满足)()('x f x f <,且)2(+x f 为偶函数,1)4(=f ,则不等式x e x f <)(的解集为( )A.),2(+∞-B.),0(+∞C.),1(+∞D.),4(+∞ 12、已知函数)6(sin 2)(2πω+=x x f (0>ω)在区间]32,6[ππ内单调递增,则ω的最大值为( ) A.21 B.53 C.43 D.41 二、填空题(本大题共4小题,每小题5分,共20分)13、若tan 2tan 18πα=,则4cos()9sin()18παπα--的值为 .14、如果实数x 、y 满足关系⎪⎩⎪⎨⎧≥+-≤-≤-+044004y x y x y x ,则22(2)x y -+的最小值是 .15、已知向量AB ,AC 的夹角为︒1205=2=,AC AB AP λ+=,若BC AP ⊥,则=λ .16、若函数ax e x x f x--=4)(2在R 上存在单调递增区间,则实数a 的取值范围为 .三、解答题(本大题共6小题,共70分,解答题应写出适当的文字说明、证明过程和演算步骤) 17、(本小题满分10分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11a b =,22=b ,d q =,且1d >,10010=S .(1)求数列{}n a ,{}n b 的通项公式; (2)记nn na cb =,求数列{}nc 的前n 项和n T .18、(本小题满分10分)已知函数1)(-+-=x a x x f ,R a ∈. (1)当3=a 时,解不等式4)(≤x f ;(2)当)1,2(-∈x 时,12)(-->a x x f ,求a 的取值范围.19、(本小题满分12分)已知()f x a b =⋅,其中(2cos ,)a x x =,(cos ,1)b x =,x R ∈. (1)求()x f 的单调递减区间;(2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,()1f A =-,a =(3,sin )m B =与(2,sin )n C =共线,求边长b 和c 的值.20、(本小题满分12分)设函数)ln 2()(2x xk x e x f x +-=(k 为常数,e 为自然对数的底数).(1)当0=k 时,求函数)(x f 的单调区间;(2)若函数)(x f 在)2,0(內存在两个极值点,求k 的取值范围.21、(本小题满分12分)已知直线1y x =-+与椭圆12222=+by a x ()0a b >>相交于A 、B 两点.(1)若椭圆的离心率为33,焦距为2,求椭圆的方程; (2)若向量OA 与向量OB 互相垂直(其中O 为坐标原点),当椭圆的离心率]22,21[∈e 时,求椭 圆长轴长的最大值.2016-2017学年度(95届)揭阳一中阶段一考试理科数学试卷参考答案 一、选择题 B C C D D C B B C B B A 二、填空题 13、 3 14、215、310 16、)2ln 22,(---∞三、解答题17、(1)由题意有,111045100,2,a d a d +=⎧⎨=⎩ 即112920,2,a d a d +=⎧⎨=⎩,解得2=d 或92=d (舍去),得11a =,故121,2.n n n a n b -=-⎧⎪⎨=⎪⎩(*N n ∈) ………5分 (2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=, ………6分于是2341357921122222n n n T --=++++++, ① 2345113579212222222n nn T -=++++++. ② ①-②可得221111212323222222n n n n n n T --+=++++-=-,故n T 12362n n -+=-.(*N n ∈) ………10分18、解:(1)当3a =时,42,1()2,1x 324,3x x f x x x -<⎧⎪=≤≤⎨⎪->⎩,当1x <时,由()4f x ≤得424x -≤,解得01;x ≤< 当13x ≤≤时,()4f x ≤恒成立; 当3x >时,由()4f x ≤得244x -≤,解得34x <≤.所以不等式()4f x ≤的解集为{}04x x ≤≤. ………5分 (2)因为(x)1121f x a x x a x x a =-+-≥-+-=--, ………6分 当()()10x x a --≥时,()21f x x a =--;当()()10x x a --<时,()21f x x a >--.…8分 记不等式()()10x x a --<的解集为,A 则()2,1A -⊆,故2a ≤-,所以a 的取值范围是(],2-∞-. ………10分19、(1)由题意知()⎪⎭⎫⎝⎛++=-+=-=32cos 212sin 32cos 12sin 3cos 22πx x x x x x f . ………2分x y cos = 在[]()Z k k k ∈+πππ2,2上单调递减,∴令ππππ+≤+≤k x k 2322,得36ππππ+≤≤-k x k()x f ∴的单调递减区间()Z k k k ∈⎥⎦⎤⎢⎣⎡+-3,6ππππ ………5分(2)()132cos 21-=⎪⎭⎫⎝⎛++=πA A f ,132cos -=⎪⎭⎫ ⎝⎛+∴πA ,又37323πππ<+<A , ,32ππ=+∴A 即3π=A ………7分7a =,由余弦定理得()73cos 22222=-+=-+=bc c b A bc c b a . ① ………8分因为向量(3,sin )m B =与(2,sin )n C =共线,所以2sin 3sin B C =,由正弦定理得23b c =. ②………10分 由 ①②解得 3,2b c ==. ………12分 20、解:函数)(x f y =的定义域为),0(+∞,3232422))(2()2(2)12(2)('x kx e x x x k x e xe x x k x xe e x x f x x x x --=---=+---= (2)分(1)由0=k 可得3)2()('xe x xf x-=, 所以当)2,0(∈x 时,0)('<x f ,函数)(x f y =单调递减;),2(+∞∈x 时,0)('>x f ,函数)(x f y =单调递增.所以)(x f y =的单调递减区间为)2,0(,单调递增区间为),2(+∞. ………6分(2)解法一:)(x f 在)2,0(内存在两个极值点,0))(2()('3=--=∴x kx e x x f x 有两个实数根, 故0=-kx e x即x e k x =在)2,0(有两个实数根.设x e x h x =)(,)2,0(∈x ,则2)1()('x e x x h x-=,令0)('=x h ,解得1=x ;令0)('>x h ,解得21<<x ;令0)('<x h ,解得10<<x .∴函数)(x h 在)1,0(上单调递减,在)2,1(上单调递增.∴当1=x 时,函数)(x h 取得极小值即最小值,e h =)1(. ………10分而2)2(2e h =,当+→0x 时+∞→)(x h ,22e k e <<∴. ………12分解法二: 当0≤k 时,函数)(x f 在)2,0(内单调递减,故)(x f 在)2,0(内不存在极值点; 当0>k 时,设函数kx e x g x -=)(,),0(+∞∈x .此时k x x e e k e x g ln )('-=-=.当10≤<k 时,当)2,0(∈x 时,0)('>-=k e x g x ,)(x g y =单调递增,故)(x f 在)2,0( 内不存在两个极值点.当1>k 时,得)ln ,0(k x ∈时,0)('<x g ,函数)(x g y =单调递减;),(ln +∞∈k x 时,0)('>x g ,函数)(x g y =单调递增.所以函数)(x g y =的最小值为)ln 1()(ln k k k g -=.函数)(x f 在)2,0(内存在两个极值点,当且仅当⎪⎪⎩⎪⎪⎨⎧<<><>2ln 00)2(0)(ln 0)0(k g k g g ,解得22e k e <<. ………12分21、解:(1)33=e ,即33=a c ,又22=c ,∴3=a ,则222=-=c a b , ∴椭圆的方程为12322=+y x ………4分(2)设),(),,(2211y x B y x A ,0=⋅∴⊥OB OA OB OA ,即02121=+y y x xy 得:0)1(2)(222222=-+-+b a x a x b a 由0)1)((4)2(222222>-+--=∆b b a a a ,整理得:122>+b a (*)又222212b a a x x +=+,222221)1(b a b a x x +-=1)()1)(1(21212121++-=+-+-=∴x x x x x x y y由02121=+y y x x ,得:01)(22121=++-x x x x012)1(22222222=++-+-∴ba ab a b a ,整理得:022222=-+b a b a ………9分 222222b a c a a e =-=-代入上式得:221112e a -+=,)111(2122e a -+=∴43121,2141,222122≤-≤∴≤≤∴≤≤e e e2367,311137,21134222≤≤∴≤-+≤∴≤-≤∴a ee ,条件适合122>+b a 由此得:6242,642≤≤∴≤≤a a ,故长轴长的最大值为6. ………12分的单调增区间是(其最小值为。

【广东省揭阳市】2017届普通高中高考高三3月模拟考试数学试卷

【广东省揭阳市】2017届普通高中高考高三3月模拟考试数学试卷

广东省揭阳市2017届普通高中高考高三3月模拟考试数学试卷(二)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合{1,2,3,4,5}U =,{1,2}A B U =⊆,,则满足{1,2}A B =的集合B 有( )(A )1个(B )3个 (C )4个 (D )8个(2)若复数(1i)(2i)a ++是纯虚数,则实数a 等于( )(A )12(B )2 (C )12- (D )-2(3)已知{}n a 为等差数列,其前n 项和为{}n S ,若36a =,312S =, 则公差d 等于( ) (A )1(B )53(C )2 (D )3(4)执行如图所示的程序框图,则输出的的值为( ) (A )4(B )5 (C )6 (D )7(5)定义在R 上的函数()f x 既是奇函数又是周期函数,若()f x 的最小正周期是π,且当π(0]2x ∈,时, .()cos f x x =.,则5π()3f 的值为( ) (A )12-(B )12 (C) (D(6)已知一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在一个球面上,则球的表面积是( ) (A )49π9(B )7π3(C )28π3(D )28π9(7)下列叙述中,正确的个数是( )①命题p :“2R 20x x ∃∈-,≥”的否定形式为p ⌝:“2R 20x x ∀∈-,<”;②O 是△ABC 所在平面上一点,若OA OB OB OC OC OA ==,则O 是△ABC 的垂心; ③“M N >”是“22()()33M N >”的充分不必要条件;④命题“若2340x x --=,则4x =”的逆否命题为“若4x ≠,则2340x x --≠”. (A )1(B )2 (C )3 (D )4(8)有以下四种变换方式:k 开始是否输出k 结束s <100?k =k + 1s =s +2s k =0 s =0 (第4题)2222 正视图 侧视图俯视图(第6题)①向左平行移动π4个单位长度,再将每个点的横坐标缩短为原来的12;②向右平行移动π8个单位长度,再将每个点的横坐标缩短为原来的12;③每个点的横坐标缩短为原来的12,再向右平行移动π8个单位长度;④每个点的横坐标缩短为原来的12,再向左平行移动π8个单位长度.其中能将函数3πcos()2y x =+的图象变为函数πsin(2)4y x =+的图象是( )(A )①和④ (B )①和③ (C )②和④ (D )②和③(9)用数字0,1,2,3组成数字可以重复的四位数,其中有且只有一个数字出现两次的四位数的个数为( ) (A )144(B )120 (C )108 (D )72(10)已知函数2 0 ()()ln 0kx x f x k x x +⎧=∈⎨⎩R ,≤,>,若函数|()|y f x k =+有三个零点,则实数k 的取值范围是( ) (A )2k ≤(B )10k -<< (C )21k --≤<(D )2k -≤(11)已知抛物线22y px =的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|||AK AF =,则△AFK 的面积为( ) (A )4(B )8 (C )16 (D )32(12)已知32()69f x x x x abc =-+-,a b c <<,且()()()0f a f b f c ===.现给出如下结论: ①(0)(1)0f f >; ②(0)(1)0f f <; ③(0)(3)0f f >; ④(0)(3)0f f <; ⑤4abc <; ⑥4abc >. 其中正确结论的序号是( ) (A )①③⑤(B )①④⑥ (C )②③⑤ (D )②④⑥第Ⅱ卷本卷包括必考题和选考题两部分。

广东省揭阳市2017届高三精编模拟数学理试题含答案

广东省揭阳市2017届高三精编模拟数学理试题含答案

-π2-3π23π2π2y xO揭阳市2017年数学科精编模拟题数学(理科)本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合(){}10A x x x =+≤,集合{}0B x x =>,则=AB(A){}1x x ≥- (B ){}1x x >- (C ){}0x x ≥ (D ) {}0x x >(2)已知复数(1)(2)i i z i-++=-,则z 在复平面内对应的点在(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(3)若实数,a b 满足0,0a b >>,则“a b >”是“ln ln a a b b +>+”的(A )充分不必要条件 (B)必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件(4)函数()f x 的部分图象如图示,则()f x 的解析式可以是(A )3()()()22f x x x x ππ=-- (B )()cos f x x x =(C)()sin f x x x =+ (D )cos ()xf x x=(5)右图是求样本x 1,x 2,…,x 10平均数x 的程序框图,图中空白框中应填入的内容为(A )S =S +nx (B )S =S +nx n (C )S =S + n (D )S =S +10nx(6)若等差数列{}na 的公差为2,且5a 是2a 与6a 的等比中项,则该数列的前n 项和nS 取最小值时,n 的值等于(A)7 (B)6 (C )5 (D )4(7(A((C ) (D)3 (8)已知1d a x x =⎰,12d b x x =⎰,c x=⎰,则a ,b ,c 的大小关系是(A )a b c << (B)a c b << (C )b a c << (D )c a b <<(9)已知函数)122sin()(π+=x x f ,()f x '是()f x 的导函数,则函数2()()y f x f x '=+的一个单调递减区间是(A)]127,12[ππ(B )5[,]1212ππ- (C )]32,3[ππ- (D)5[,]66ππ-(10)已知直线l :0x y a -+=,点()1,0A -,()1,0B . 若直线l 上存在点P 满足AP BP ⋅=,则实数a 的取值范围为(A)[ (B)[1,1]- (C )[ (D [2,2]-(11)甲、乙、丙、丁、戊五人排成一排,则甲和乙都排在丙的同一侧的概率为(A)110 (B)13 (C )12 (D )23(12)已知0a <,函数22,(0)2().(0)xx xx f x ax x e ⎧+<⎪⎪=⎨⎪≥⎪⎩,若对[1,3],x ∀∈恒有1[()]3f f x ≤≤,则实数a 的取值范围为俯视图左视图(A)23[,2]4e e --(B )3[,2]3e e -- (C )233[,]49e e -- (D )332[,]39e e --第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.(13)若非零向量,a b 满足()0⋅+=a a b ,2||||=a b ,则向量,a b 夹角的大小为 。

广东省揭阳市2017-2018学年高考数学一模试卷(文科) Word版含解析

广东省揭阳市2017-2018学年高考数学一模试卷(文科) Word版含解析

广东省揭阳市2017-2018学年高考数学一模试卷(文科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={4,5,6,8},B={3,5,7,8},则A∪B中元素的个数为( )A.5 B.6 C.7 D.8考点:并集及其运算.专题:集合.分析:根据并集的运算计算即可.解答:解:∵A={4,5,6,8},B={3,5,7,8},∴A∪B={3,4,5,6,7,8},故则A∪B中元素的个数为6个,故选:B点评:本题考查了集合的运算,属于基础题.2.已知复数z=(﹣8﹣7i)(﹣3i),则z在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、几何意义即可得出.解答:解:复数z=(﹣8﹣7i)(﹣3i)=24i﹣21,则z在复平面内对应的点(﹣21,24)位于第二象限.故选;B.点评:本题考查了复数的运算法则、几何意义,属于基础题.3.“a>b”是“a2>b2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分条件和必要条件的定义进行判断即可.解答:解:若a=1,b=﹣1,满足a>b,但a2>b2不成立,若a=﹣1,b=0,满足a2>b2,但a>b不成立,故“a>b”是“a2>b2”的既不充分也不必要条件,故选:D点评:本题主要考查充分条件和必要条件的判断,比较基础.4.双曲线﹣=1(a>0)的离心率为( )A.B.C.2 D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求得双曲线的b=2a,由双曲线的a,b,c的关系和离心率公式计算即可得到.解答:解:双曲线﹣=1(a>0)的b=2a,c==a,即有e==.故选A.点评:本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,属于基础题.5.已知=(sinα,cosα),=(﹣2,1),若⊥,则tanα的值为( )A.﹣2 B.2 C.D.考点:数量积判断两个平面向量的垂直关系.专题:平面向量及应用.分析:由向量垂直的性质得=﹣2sinα+cosα=0,从而cosα=2sinα,由此能求出tanα==.解答:解:∵=(sinα,cosα),=(﹣2,1),⊥,∴=﹣2sinα+cosα=0,∴cosα=2sinα,∴tanα==.故选:C.点评:本题考查角的正切值的求法,是基础题,解题时要注意向量垂直的性质的合理运用.6.已知函数y=log a x(a>0,a≠1)的图象经过点(2,),则其反函数的解析式为( ) A.y=4x B.y=log4x C.y=2x D.y=()x考点:反函数.专题:函数的性质及应用.分析:由对数函数的图象过定点求出a的值,然后化指数式为对数式,再把x,y互换求得原函数的反函数.解答:解:∵y=log a x(a>0,a≠1)的图象经过点(2,),∴,解得a=4.∴y=log4x,则x=4y,把x,y互换得到函数y=log4x的反函数为y=4x.故选:A.点评:本题考查了对数函数的运算性质,考查了函数的反函数的求法,是基础题.7.某单位200名职工的年龄分布情况如图示,该单位为了解职工每天的睡眠情况,按年龄用分层抽样方法从中抽取40名职工进行调查.则应从40﹣50岁的职工中抽取的人数为( )A.8 B.12 C.20 D.30考点:分层抽样方法.专题:概率与统计.分析:根据分层抽样的定义建立比例关系即可得到结论.解答:解:由图表关系知,若抽取40名职工,则应从40﹣50岁的职工中抽取的人数为40×30%=12,故选:B点评:本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.比较基础.8.不等式组表示的平面区域的面积为( )A.14 B.5 C.3 D.7考点:简单线性规划.专题:不等式的解法及应用.分析:先画出满足条件的平面区域,再求出交点的坐标,根据三角形的面积公式求出即可.解答:解:画出满足条件表示的平面区域,如图示:∴平面区域的面积是×4×=7,故选:D.点评:本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.9.设l、m是两条不同的直线,α,β是两个不同的平面,则下列为真的是( )A.若m∥l,m∥α,则l∥αB.若m⊥α,l⊥m,则l∥αC.若α∥β,l⊥α,m∥β,则l⊥m D.若m⊂α,m∥β,l⊂β,l∥α,则α∥β考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:利用空间直线的位置关系以及线面平行、面面平行的判定定理对选项分别分析解答.解答:解:对于A,若m∥l,m∥α,则l可能在α内,故A错误;对于B,若m⊥α,l⊥m,则l可能在α内,故B错误;对于C,若α∥β,l⊥α,得到l⊥β,结合m∥β,得到l⊥m;故C正确;对于D,若m⊂α,m∥β,l⊂β,l∥α,则α与β可能相交;故D错误;故选C.点评:本题考查了空间直线的位置关系以及线面平行、面面平行的判定定理,关键是熟练掌握定理.10.对任意的a、b∈R,定义:min{a,b}=;max{a,b}=.则下列各式中恒成立的个数为( )①min{a,b}+max{a,b}=a+b②min{a,b}﹣max{a,b}=a﹣b③(min{a,b})•(max{a,b})=a•b④(min{a,b})÷(max{a,b})=a÷b.A.1 B.2 C.3 D.4考点:进行简单的合情推理.专题:推理和证明.分析:本题根据函数的定义,分类研究a,b的大小,可得到取小函数与取大函数min{a,b},max{a,b}的值,从而得到本题结论.解答:解:∵对任意的a、b∈R,定义:min{a,b}=;max{a,b}=,∴min{a,b}取a,b中的最小值,max{a,b}取a,b的最大值.∴min{a,b},max{a,b}分别取出a,b中的一个最大值与一个最小值,∴min{a,b}+max{a,b}=a+b,(min{a,b})•(max{a,b})=a•b,故①③成立;若a≤b,则有:min{a,b}﹣max{a,b}=a﹣b,若a>b,则min{a,b}﹣max{a,b}=b﹣a≠a﹣b,故③不一定成立;若a≤b,且b≠0,则有:(min{a,b})÷(max{a,b})=a÷b,若a>b,且a≠0,(min{a,b})÷(max{a,b})=b÷a≠a÷b.故④不一定成立.故选B.点评:本题考查了新定义函数的理解和分类讨论的数学思想,本题难度不大,属于基础题.二、填空题:本大题共3小题,考生作答4小题,每小题5分,满分15分.(一)必做题(11-13题)11.不等式x2﹣3x﹣10<0的解集为{x|﹣2<x<5}.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:把不等式x2﹣3x﹣10<0化为(x﹣5)(x+2)<0,求出解集即可.解答:解:不等式x2﹣3x﹣10<0可化为(x﹣5)(x+2)<0,解得﹣2<x<5;∴该不等式的解集为{x|﹣2<x<5}.故答案为:{x|﹣2<x<5}.点评:本题考查了一元二次不等式的解法与应用问题,是基础题目.12.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,若a=3,∠B=2∠A,cosA=,则b=2.考点:正弦定理.专题:解三角形.分析:由条件利用同角三角函数的基本关系,二倍角公式求得sinA和sinB的值,再利用正弦定理求得b的值.解答:解:△ABC中,由cosA=,∠B=2∠A,可得sinA=,sinB=sin2A=2sinAcosA=2××=.再由正弦定理可得=,即=,求得b=2,故答案为:.点评:本题主要考查正弦定理、同角三角函数的基本关系,二倍角公式,属于基础题.13.已知函数f(x)=x3对应的曲线在点(a k,f(a k))(k∈N*)处的切线与x轴的交点为(a k+1,0),若a1=1,则=3.考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用;等差数列与等比数列.分析:求出函数的导数,可得切线的斜率,由点斜式方程可得切线方程,再令y=0,结合等比数列的定义可得,数列{a n}是首项a1=1,公比的等比数列,再由等比数列的求和公式计算即可得到所求值.解答:解:由f'(x)=3x2得曲线的切线的斜率,故切线方程为,令y=0得,故数列{a n}是首项a1=1,公比的等比数列,又=,所以.故答案为:3.点评:本题考查导数的运用:求切线的方程,主要考查导数的几何意义,同时考查等比数列的定义和求和公式,运用点斜式方程求得切线方程是解题的关键.(二)选做题(14、15题,考生只能从中选做一题)【坐标系与参数方程选做题】14.在极坐标系中,直线ρsin(θ+)=2被圆ρ=4截得的弦长为4.考点:简单曲线的极坐标方程.专题:常规题型;转化思想.分析:先利用三角函数的和角公式展开直线的极坐标方程的左式,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得直角坐标方程,最后利用直角坐标中直线与圆的关系求出截得的弦长即可.解答:解:∵ρsin(θ+)=2,∴ρsinθ+ρcosθ=2,化成直角坐标方程为:x+y﹣2=0,圆ρ=4化成直角坐标方程为x2+y2=16,圆心到直线的距离为:∴截得的弦长为:2×=.故答案为:.点评:本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.【几何证明选讲选做题】15.如图,BE、CF分别为钝角△ABC的两条高,已知AE=1,AB=3,CF=4,则BC边的长为.考点:相似三角形的性质.专题:选作题;立体几何.分析:先求出BE,再利用△BEA∽△CFA,求出AC,可得EC,利用勾股定理求出BC.解答:解:依题意,AE=1,AB=3,得,因△BEA∽△CFA得,所以AF=2,AC=6,所以EC=7,所以.故答案为:.点评:本题考查相似三角形的性质,考查学生的计算能力,正确运用相似三角形的性质是关键.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.已知函数f(x)=2sin(ωx+)(ω>0,x∈R)的最小正周期为π.(1)求ω的值;(2)若f(α)=,α∈(0,),求cos2α的值.考点:正弦函数的图象.专题:三角函数的求值;三角函数的图像与性质.分析:(1)直接利用正弦型函数的周期关系式求出结论.(2)利用(1)所确定的函数关系式进一步对关系式中的角进行恒等变换,利用三角函数的诱导公式求出结果.解答:解:(1)函数f(x)=2sin(ωx+)(ω>0,x∈R)的最小正周期为π,由得ω=2;(2)由:得∵,∴,∴∴==∴.点评:本题考查的知识要点:利用正弦型函数周期的关系式确定函数的解析式,函数关系式中角的恒等变换的应用.17.如图是某市今年1月份前30天空气质量指数(AQI)的趋势图.(1)根据该图数据在答题卷中完成频率分布表,并在图4中补全这些数据的频率分布直方图;分组频数频率[20,40)[40,60)[60,80)[80,100)[100,120)[120,140)[140,160)[160,180)[180.200]合计30 1(2)当空气质量指数(AQI)小于100时,表示空气质量优良.某人随机选择当月(按30天计)某一天到达该市,根据以上信息,能否认为此人到达当天空气质量优良的可能性超过60%?(图中纵坐标1/300即,以此类推)考点:频率分布直方图.专题:应用题;概率与统计.分析:(1)根据图中数据,列出频率分布表,画出频率分布直方图即可;(2)由频率分布表,得出该市本月前30天中空气质量优良的天数,计算任意1天空气质量优良的概率即可.解答:解:(1)根据图中数据,列出频率分布表如下;分组频数频率[20,40) 2[40,60) 5[60,80)7[80,100) 5[100,120) 2[120,140) 5[140,160) 1[160,180) 1[180.200] 2合计30 1根据频率分布表,画出频率分布直方图,如下;(2)由频率分布表知,该市本月前30天中空气质量优良的天数为2+5+7+5=19,﹣﹣﹣∴此人到达当天空气质量优良的概率:;﹣﹣﹣∴可以认为此人到达当天空气质量优良的可能性超过60%.﹣﹣﹣点评:本题考查了列频率分布表与画频率分布直方图的应用问题,也考查了利用频率估计概率的应用问题,是基础题目.18.如图5,已知△BCD中,∠BCD=90°,BC=CD=1,AB=,AB⊥平面BCD,E、F分别是AC、AD的中点.(1)求证:平面BEF⊥平面ABC;(2)设平面BEF∩平面BCD=l,求证CD∥l;(3)求四棱锥B﹣CDFE的体积V.考点:棱柱、棱锥、棱台的体积;平面与平面垂直的判定.专题:空间位置关系与距离.分析:(1)利用线面垂直的判定与性质定理可证:CD⊥平面ABC,再利用三角形的中位线定理可得:EF∥CD.再利用线面垂直的判定、面面垂直的判定即可证明;(2)由CD∥EF,利用线面平行的判定定理可得:CD∥平面BEF,再利用线面平行的性质定理即可证明;(3)解法1:由(1)知EF∥CD,利用三角形相似的性质可得:,得到,求出V B﹣ACD即可得出.解法2:取BD中点G,连接FC和FG,则FG∥AB,利用线面垂直的性质可得:FG⊥平面BCD,由(1)知EF⊥平面ABC,利用V=V F﹣EBC+V F﹣BCD即可得出;解答:(1)证明:∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD,又BC⊥CD,AB∩BC=B,∴CD⊥平面ABC,又E、F分别是AC、AD的中点,∴EF∥CD.∴EF⊥平面ABC又EF⊂平面BEF,∴平面BEF⊥平面ABC.(2)证明:∵CD∥EF,CD⊄平面BEF,EF⊂平面BEF,∴CD∥平面BEF,又CD⊂平面BCD,且平面BEF∩平面BCD=l,∴CD∥l.(2)解法1:由(1)知EF∥CD,∴△AEF~△ACD.∴,∴,∴=.解法2:取BD中点G,连接FC和FG,则FG∥AB,∵AB⊥平面BCD,∴FG⊥平面BCD,由(1)知EF⊥平面ABC,∴V=V F﹣EBC+V F﹣BCD==.点评:本题考查了线面面面垂直与平行的判定与性质定理、三角形的中位线定理、三角形相似的性质三棱锥的体积计算公式,考查了推理能力与计算能力,考查了空间想象能力,属于中档题.19.已知S n为数列{a n}的前n项和,S n=na n﹣3n(n﹣1)(n∈N*),且a2=12.(1)求a1的值;(2)求数列{a n}的通项公式;(3)求证:++…+.考点:数列的求和.专题:等差数列与等比数列.分析:(1)在数列递推式中,取n=2,结合已知a2=12求得数列首项;(2)在数列递推式中,取n=﹣1得另一递推式,作差后可得数列{a n}为等差数列,由等差数列的通项公式得答案;(3)求出等差数列的前n项和,取倒数后利用裂项相消法求出++…+得答案.解答:(1)解:由S n=na n﹣3n(n﹣1),得a1+a2=2a2﹣3×2×(2﹣1),即a1=a2﹣6,∵a2=12,∴a1=12﹣6=6;(2)解:由S n=na n﹣3n(n﹣1),得S n﹣1=(n﹣1)a n﹣1﹣3(n﹣1)(n﹣2)(n≥2),两式作差得:a n=na n﹣(n﹣1)a n﹣1﹣6n+6,即a n﹣a n﹣1=6(n≥2).∴数列{a n}是以6为首项,以6为公差的等差数列,∴a n=6+6(n﹣1)=6n;(3)证明:,则,∴++…+==.点评:本题考查了数列递推式,考查了等差关系的确定,训练了裂项相消法求数列的和,是中档题.20.已知抛物线C:x2=2py(p>0)的焦点为F,点P是直线y=x与抛物线C在第一象限的交点,且|PF|=5.(1)求抛物线C的方程;(2)设直线l:y=kx+m与抛物线C有唯一公共点M,且直线l与抛物线的准线交于点Q,试探究,在坐标平面内是否存在点N,使得以MQ为直径的圆恒过点N?若存在,求出点N 的坐标,若不存在,说明理由.考点:抛物线的简单性质.专题:常规题型;圆锥曲线的定义、性质与方程.分析:(1)设点P(m,m)(m>0),根据抛物线的定义和点P在抛物线C上构建关于m,p的方程,解方程组即可求出抛物线的方程;(2)假设存在点N,使得以MQ为直径的圆恒过点N,由直线l:y=kx+m与抛物线C有唯一公共点M知,直线l与抛物线C相切,利用导数求出直线l的方程,进而求出Q点坐标,根据直径所对的圆周角为直角,利用求出N点坐标.解答:解:(1)解法1:∵点P是直线y=x与抛物线C在第一象限的交点,∴设点P(m,m)(m>0),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵抛物线C的准线为,由|PF|=5结合抛物线的定义得﹣﹣﹣﹣﹣﹣﹣①﹣﹣﹣﹣﹣又点P在抛物线C上,∴m2=2pm(m>0)⇒m=2p.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②﹣﹣﹣﹣﹣由①②联立解得p=2,∴所求抛物线C的方程式为x2=4y.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣[解法2:∵点P是直线y=x与抛物线C在第一象限的交点,∴设点P(m,m)(m>0),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵抛物线C的焦点为,由|PF|=5得,即,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣又点P在抛物线C上,∴m2=2pm(m>0)⇒m=2p.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由①②联立解得p=2,∴所求抛物线C的方程式为x2=4y.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣](2)解法1:由抛物线C关于y轴对称可知,若存在点N,使得以MQ为直径的圆恒过点N,则点N必在y轴上,设N(0,n),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣又设点,由直线l:y=kx+m与抛物线C有唯一公共点M知,直线l与抛物线C相切,由得,∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴直线l的方程为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令y=﹣1得,∴Q点的坐标为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵点N在以MQ为直径的圆上,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣要使方程(*)对x0恒成立,必须有解得n=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴在坐标平面内存在点N,使得以MQ为直径的圆恒过点N,其坐标为(0,1).﹣﹣﹣﹣﹣﹣﹣﹣[解法2:设点M(x0,y0),由l:y=kx+m与抛物线C有唯一公共点M知,直线l与抛物线相切,由得,∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴直线l的方程为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令y=﹣1得,∴Q点的坐标为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴以MQ为直径的圆方程为:﹣﹣﹣﹣﹣﹣﹣﹣③﹣﹣﹣﹣分别令x0=2和x0=﹣2,由点M在抛物线C上得y0=1,将x0,y0的值分别代入③得:(y﹣1)(y+1)+(x﹣2)x=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣④(y﹣1)(y+1)+(x+2)x=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣⑤④⑤联立解得或,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴在坐标平面内若存在点N,使得以MQ为直径的圆恒过点N,则点N必为(0,1)或(0,﹣1),将(0,1)的坐标代入③式得,左边==2(1﹣y0)+2(y0﹣1)=0=右边,将(0,﹣1)的坐标代入③式得,左边=不恒等于0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴在坐标平面内是存在点N,使得以MQ为直径的圆恒过点N,点N坐标为为(0,1).﹣﹣点评:本题考查了抛物线的定义及直线与抛物线的位置关系,这类题目考查比较灵活,解决问题时注意几何关系向代数关系(即坐标关系)的转化.21.已知函数f(x)=ax,g(x)=lnx,其中a∈R.(1)若函数F(x)=f(x)﹣g(x),当a=1时,求函数F(x)的极值;(2)若函数G(x)=f(sin(x﹣1))﹣g(x)在区间(0,1)上为减函数,求a的取值范围;(3)证明:<ln(n+1).考点:利用导数研究函数的单调性;利用导数研究函数的极值.专题:导数的综合应用.分析:(1)利用导数研究函数的单调性极值即可得出;(2)解法1:由函数G(x)=f(sin(x﹣1))﹣g(x)=asin(x﹣1)﹣lnx在区间(0,1)上为减函数,可得在(0,1)上恒成立在(0,1)上恒成立,设,利用导数研究其单调性极值与最值即可得出;解法2:由函数G(x)=f(sin(x﹣1))﹣g(x)=asin(x﹣1)﹣lnx在区间(0,1)上为减函数,可得对∀x∈(0,1),(*)恒成立,由x∈(0,1),可得cos(x﹣1)>0,对a分类讨论:当a≤0时,(*)式显然成立;当a>0时,(*)式⇔在(0,1)上恒成立,设h(x)=xcos(x﹣1),利用其单调性即可得出.解答:解:(1)∵当a=1时,函数F(x)=x﹣lnx,(x>0)∴,令F'(x)=0得x=1,当x∈(0,1)时F'(x)<0,当x∈(1,+∞)时,F'(x)>0,即函数F(x)在(0,1)单调递减,在(1,+∞)单调递增,∴函数F(x)在x=1处有极小值,∴F(x)极小=1﹣ln1=1.(2)解法1:∵函数G(x)=f(sin(x﹣1))﹣g(x)=asin(x﹣1)﹣lnx在区间(0,1)上为减函数∴在(0,1)上恒成立在(0,1)上恒成立,设,则,当x∈(0,1)时,sin(x﹣1)<0,cos(x﹣1)>0∴H'(x)<0在(0,1)上恒成立,即函数H(x)在(0,1)上单调递减,∴当x∈(0,1)时,H(x)>H(1)=1,∴a≤1.解法2:∵函数G(x)=f(sin(x﹣1))﹣g(x)=asin(x﹣1)﹣lnx在区间(0,1)上为减函数∴对∀x∈(0,1),(*)恒成立,∵x∈(0,1),∴cos(x﹣1)>0,当a≤0时,(*)式显然成立;当a>0时,(*)式⇔在(0,1)上恒成立,设h(x)=xcos(x﹣1),易知h(x)在(0,1)上单调递增,∴h(x)<h(1)=1,∴⇒0<a≤1,综上得a∈(﹣∞,1].(3)由(2)知,当a=1时,G(x)=sin(x﹣1)﹣lnx>G(1)=0,⇒sin(x﹣1)>lnx,(**)∵对∀k∈N*有,在(**)式中令得,∴=,即.点评:本题考查了利用导数研究函数的单调性极值与最值、利用函数的单调性证明不等式,考查了恒成立问题的等价转化方法,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年广东省揭阳市高考数学一模试卷(理科)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集为R,集合M={﹣1,0,1,3},N={x|x2﹣x﹣2≥0},则M∩∁R N=()A.{﹣1,0,1,3} B.{0,1,3}C.{﹣1,0,1}D.{0,1}2.设i是虚数单位,若(2a+i)(1﹣2i)是纯虚数,则实数a=()A.1 B.﹣1 C.4 D.﹣43.已知一组数据a、b、9、10、11的平均数为10,方差为2,则|a﹣b|=()A.2 B.4 C.8 D.124.ABCD﹣A1B1C1D1是棱长为2的正方体,AC1、BD1相交于O,在正方体内(含正方体表面)随机取一点M,OM≤1的概率p=()A.B.C.D.5.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的表面积为()A.2 B.4+2C.4+4D.6+46.等差数列中{a n},a1=2,公差为d,则“d=4”是“a1,a2,a5成等比数列”的()A.充要条件B.充分非必要条件C.必要非充分条件 D.非充分非必要条件7.F是抛物线y2=4x的焦点,P、Q是抛物线上两点,|PF|=2,|QF|=5,则|PQ|=()A.3 B.4 C.3或D.3或48.若的(x2+a)(x﹣)10展开式中x6的系数为﹣30,则常数a=()A.﹣4 B.﹣3 C.2 D.39.四面体ABCD中∠BAC=∠BAD=∠CAD=60°,AB=2,AC=3,AD=4,则四面体ABCD的体积V=()A.2 B.2 C.4 D.410.到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()A.直线B.椭圆C.抛物线D.双曲线11.函数f(x)=sinωxcosωx+cos2ωx(ω>0)(ω>0)在区间[,]的值域是[﹣,],则常数ω所有可能的值的个数是()A.0 B.1 C.2 D.412.已知函数f(x)的图象与函数y=x3﹣3x2+2的图象关于点(,0)对称,过点(1,t)仅能作曲线y=f(x)的一条切线,则实数t的取值范围是()A.(﹣3,﹣2)B.[﹣3,﹣2]C.(﹣∞,﹣3)∪(﹣2,+∞)D.(﹣∞,﹣3)∪[﹣2,+∞)二、填空题已知=(1,﹣2),+=(0,2),则||=.14.已知函数f(x)是周期为2的奇函数,当x∈[0,1)时,f(x)=lg(x+1),f()+lg18=.15.某组合体的三视图如图所示,则该几何体的体积为.16.已知△ABC中,角A、、C成等差数列,且△ABC的面积为,则AC边的最小值是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{a n}的前n项和为S n,且满足2S n=n﹣n2(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=(k∈N*),求数列{b n}的前2n项和T2n.18.某公司做了用户对其产品満意度的问卷调查,随机抽取了20名用户的评分,得到图所示茎叶图,对不低于75的评分,认为用户对产品满意,否则,认为不满意(1)根据以上资料完成下面的2×2列联表,若据此数据算得K2=3.7781,则在犯错的概率不超过5%的前提下,你是否认为“満意”与“否”与性别有有关?附:不满意满意合计男 4 7女合计P(K2≥k)0.100 0.050 0.010k 2.706 3.841 6.635(2)以此“满意”的频率作为概率,求在3人中恰有2人满意的概率;(3)从以上男性用户中抽取2人,女性用户中抽取1人,其中满意的人数为ξ,求ξ的分布列与数学期望.19.如图,已知四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD中,∠A=90°,AB∥CD,AB=1,AD=CD=2.(Ⅰ)若二面角P﹣CD﹣B为45°,求证:平面BPC⊥平面DPC;(Ⅱ)在(Ⅰ)的条件下,求点A到平面PBC的距离.20.已知p,m>0,抛物线E:x2=2py上一点M(m,2)到抛物线焦点F的距离为.(Ⅰ)求p和m的值;(Ⅱ)如图所示,过F作抛物线E的两条弦AC和BD(点A、B在第一象限),若k AB+4k CD=0,求证:直线AB经过一个定点.21.设函数f(x)=(x﹣a)2lnx,a∈R.(I)若x=e是y=f(x)的极值点,求实数a的值;(Ⅱ)若函数y=f(x)﹣4e2只有一个零点,求实数a的取值范围.选修4-4:坐标系与参数方程22.已知参数方程为(t为参数)的直线l经过椭圆的左焦点F1,且交y 轴正半轴于点C,与椭圆交于两点A、B(点A位于点C上方).(I)求点C对应的参数t C(用θ表示);(Ⅱ)若|F1B|=|AC|,求直线l的倾斜角θ的值.选修4-5:不等式选讲23.设a∈R,f(x)=|x﹣a|+(1﹣a)x.(I)解关于a的不等式f(2)<0;(Ⅱ)如果f(x)≥0恒成立,求实数a的取值范围.2017年广东省揭阳市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集为R,集合M={﹣1,0,1,3},N={x|x2﹣x﹣2≥0},则M∩∁R N=()A.{﹣1,0,1,3} B.{0,1,3}C.{﹣1,0,1}D.{0,1}【考点】交、并、补集的混合运算.【分析】先求出N,从而得到C R N,由此能求出M∩∁R N.【解答】解:∵全集为R,集合M={﹣1,0,1,3},N={x|x2﹣x﹣2≥0}={x|x≤﹣1或x≥2},∴C R N={x|﹣1<x<2},∴M∩∁R N={0,1}.故选:D.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意补集、交集定义的合理运用.2.设i是虚数单位,若(2a+i)(1﹣2i)是纯虚数,则实数a=()A.1 B.﹣1 C.4 D.﹣4【考点】复数代数形式的乘除运算.【分析】利用复数代数形式的乘法运算化简,再由实部为0且虚部不为0求解.【解答】解:∵(2a+i)(1﹣2i)=2a+2+(1﹣4a)i是纯虚数,∴,解得a=﹣1.故选:B.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.已知一组数据a、b、9、10、11的平均数为10,方差为2,则|a﹣b|=()A.2 B.4 C.8 D.12【考点】极差、方差与标准差;众数、中位数、平均数.【分析】根据题意,可得a+b=20,①以及(a﹣10)2+(b﹣10)2=8,②;解可得a、b的值,计算可得|a﹣b|的值,即可得答案.【解答】解:一组数据a、b、9、10、11的平均数为10,方差为2,则有a+b+9+10+11=50,即a+b=20,①[(a﹣10)2+(b﹣10)2+(9﹣10)2+(10﹣10)2+(11﹣10)2]=2,即(a﹣10)2+(b﹣10)2=8,②联立①、②可得:或,则|a﹣b|=4;故选:B.【点评】本题考查数据方差、平均数的计算,关键是求出a、b的值.4.ABCD﹣A1B1C1D1是棱长为2的正方体,AC1、BD1相交于O,在正方体内(含正方体表面)随机取一点M,OM≤1的概率p=()A.B.C.D.【考点】几何概型.【分析】由题意可得概率为体积之比,分别求正方体的体积和球的体积可得.【解答】解:由题意可知总的基本事件为正方体内的点,可用其体积23=8,满足OM≤1的基本事件为O为球心1为半径的球内部在正方体中的部分,其体积为V=π×13=π,故概率P==.故选:A.【点评】本题考查几何概型,涉及正方体和球的体积公式,属基础题.5.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的表面积为()A.2 B.4+2C.4+4D.6+4【考点】由三视图求面积、体积.【分析】根据题意和三视图知几何体是一个放倒的直三棱柱,由三视图求出几何元素的长度,由面积公式求出几何体的表面积.【解答】解:根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角边分别是、斜边是2,且侧棱与底面垂直,侧棱长是2,∴几何体的表面积S==6+4,故选:D.【点评】本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.6.等差数列中{a n},a1=2,公差为d,则“d=4”是“a1,a2,a5成等比数列”的()A.充要条件B.充分非必要条件C.必要非充分条件 D.非充分非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由a1,a2,a5成等比数列,可得:=a1•a5,(2+d)2=2×(2+4d),解得d,即可判断出结论.【解答】解:由a1,a2,a5成等比数列,可得:=a1•a5,∴(2+d)2=2×(2+4d),解得d=0或4.∴“d=4”是“a1,a2,a5成等比数列”的充分不必要条件.故选:B.【点评】本题考查了等差数列与等比数列的通项公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.7.F是抛物线y2=4x的焦点,P、Q是抛物线上两点,|PF|=2,|QF|=5,则|PQ|=()A.3 B.4 C.3或D.3或4【考点】抛物线的简单性质.【分析】根据抛物线的性质将|PF|,|QF|转化为到准线的距离,求出P,Q的坐标,得出答案.【解答】解:抛物线的准线方程为x=﹣1,∴|PF|=x1+1=2,|QF|=x2+1=5.∴x1=1,x2=4.∴P(1,±2),Q(4,±4),∴|PQ|==或=3故选:C.【点评】本题考查了抛物线的性质,属于基础题.8.若的(x2+a)(x﹣)10展开式中x6的系数为﹣30,则常数a=()A.﹣4 B.﹣3 C.2 D.3【考点】二项式系数的性质.【分析】根据题意求出(x﹣)10展开式中含x4项、x6项的系数,得出(x2+a)(x﹣)10的展开式中x6的系数,列出方程求出a的值.【解答】解:(x﹣)10展开式的通项公式为:=•x10﹣r•=(﹣1)r••x10﹣2r;T r+1令10﹣2r=4,解得r=3,所以x4项的系数为﹣=﹣120;令10﹣2r=6,解得r=2,所以x6项的系数为=45;所以(x2+a)(x﹣)10的展开式中x6的系数为:﹣120+45a=﹣30,解得a=2.故选:C.【点评】本题考查了利用二项展开式的通项公式求二项展开式的特定项问题问题,是基础题.9.四面体ABCD中∠BAC=∠BAD=∠CAD=60°,AB=2,AC=3,AD=4,则四面体ABCD的体积V=()A.2 B.2 C.4 D.4【考点】棱柱、棱锥、棱台的体积.【分析】由题意画出图形,通过分割补形,求出B到底面ACD的距离,代入体积公式求解.【解答】解:如图,在AC上取E,使AE=2,在AD上取F,使AF=2,连接BE、BF、EF,则四面体B﹣AEF为正四面体,过B作BO⊥平面AEF,垂足为O,连接AO并延长,交EF于G,则AG=,AO=,∴BO=.=.∴.故选:A.【点评】本题考查棱柱、棱锥、棱台的体积,考查空间想象能力和逻辑思维能力,是中档题.10.到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()A.直线B.椭圆C.抛物线D.双曲线【考点】抛物线的定义;双曲线的标准方程.【分析】先做出两条异面直线的公垂线,以其中一条直线为x轴,公垂线与x轴交点为原点,公垂线所在直线为z轴,过x且垂直于公垂线的平面为xoy平面,建立空间直角坐标系,则两条异面直线的方程可得,设空间内任意点设它的坐标是(x,y,z)根据它到两条异面直线的距离相等,求得z的表达式,把z=0和z=a代入即可求得x和y的关系,根据其方程判断轨迹.【解答】解:先做出两条异面直线的公垂线,以其中一条直线为x轴,公垂线与x轴交点为原点,公垂线所在直线为z轴,过x且垂直于公垂线的平面为xoy平面,建立空间直角坐标系,则两条异面直线的方程就分别是y=0,z=0 和x=0,z=a(a是两异面直线公垂线长度,是个常数)空间内任意点设它的坐标是(x,y,z)那么由已知,它到两条异面直线的距离相等,即=两边平方,化简可得z=(y2﹣x2+a2)过一条直线且平行于另一条直线的平面是z=0和z=a分别代入所得式子z=0时代入可以得到y2﹣x2=﹣a2,图形是个双曲线z=a时代入可以得到y2﹣x2=a2,图形也是个双曲线故选D【点评】本题主要考查了双曲线的方程.考查了学生分析归纳和推理的能力.11.函数f(x)=sinωxcosωx+cos2ωx(ω>0)(ω>0)在区间[,]的值域是[﹣,],则常数ω所有可能的值的个数是()A.0 B.1 C.2 D.4【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】利用二倍角和辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,将内层函数看作整体,求出其范围,根据值域是[﹣,],建立关系,讨论常数ω所有可能的值.【解答】解:函数f(x)=sinωxcosωx+cos2ωx,化简可得:f(x)==sin(2ωx+),∵x∈[,],f(x)∈[,],∴﹣1≤sin(2ωx+)≤0,则,而T=,那么:,即.sin(2ωx+)=0的结果必然是或.当时,解得ω=满足题意.当x=时,解得ω=满足题意.∴常数ω所有可能的值的个数为2.故选C:【点评】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.12.已知函数f(x)的图象与函数y=x3﹣3x2+2的图象关于点(,0)对称,过点(1,t)仅能作曲线y=f(x)的一条切线,则实数t的取值范围是()A.(﹣3,﹣2)B.[﹣3,﹣2]C.(﹣∞,﹣3)∪(﹣2,+∞)D.(﹣∞,﹣3)∪[﹣2,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】由对称性可得(x,y)为y=f(x)图象上的点,其对称点为(1﹣x,﹣y),且在函数y=x3﹣3x2+2的图象上,代入可得f(x)的解析式,设出切点(m,n),求出f (x)的导数,可得切线的斜率和方程,代入点(1,t),化简整理可得t+3=3m2﹣2m3,由g(m)=3m2﹣2m3,求出导数和单调区间、极值,由题意可得t+3=3m2﹣2m3只有一解,则t+3>1或t+3<0,解不等式即可得到所求范围.【解答】解:函数f(x)的图象与函数y=x3﹣3x2+2的图象关于点(,0)对称,设(x,y)为y=f(x)图象上的点,其对称点为(1﹣x,﹣y),且在函数y=x3﹣3x2+2的图象上,可得﹣y=(1﹣x)3﹣3(1﹣x)2+2,即为y=f(x)=(x﹣1)3+3(1﹣x)2﹣2,设切点为(m,n),则n=(m﹣1)3+3(1﹣m)2﹣2,f(x)的导数为f′(x)=3(x﹣1)2+6(x﹣1)=3(x2﹣1),可得切线的方程为y﹣n=3(m2﹣1)(x﹣m),代入点(1,t),可得t﹣n=3(m2﹣1)(1﹣m),化简可得t+3=3m2﹣2m3,由g(m)=3m2﹣2m3,g′(m)=6m﹣6m2=6m(1﹣m),当0<m<1时,g′(m)>0,g(m)递增;当m<0或m>1时,g′(m)<0,g(m)递减.则g(m)在m=0处取得极小值0,在m=1处取得极大值1,由过点(1,t)仅能作曲线y=f(x)的一条切线,可得t+3=3m2﹣2m3只有一解,则t+3>1或t+3<0,解得t>﹣2或t<﹣3.故选:C.【点评】本题主要考查导数的运用:求切线的方程和单调区间、极值,考查转化思想的运用,以及化简整理能力,属于中档题.二、填空题已知=(1,﹣2),+=(0,2),则||=.【考点】向量的模.【专题】平面向量及应用.【分析】首先利用向量的减法运算得到向量的坐标,然后求模.【解答】解:因为=(1,﹣2),+=(0,2),所以=(﹣1,4),所以;故答案为:【点评】本题考查了向量加减法的坐标运算以及有向量坐标求模;属于基础题.14.已知函数f(x)是周期为2的奇函数,当x∈[0,1)时,f(x)=lg(x+1),f()+lg18= 1.【考点】函数的值.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】由题意化简f()+lg18=f(﹣)+lg18=﹣lg(+1)+lg18=lg10.【解答】解:∵f(x)是周期为2的奇函数,∴f()+lg18=f(404﹣)+lg18=f(﹣)+lg18=﹣f()+lg18=﹣lg(+1)+lg18=lg(18×)=lg10=1,故答案为:1.【点评】本题考查了函数的性质的应用及对数运算的应用.15.某组合体的三视图如图所示,则该几何体的体积为32+8π.【考点】由三视图求面积、体积.【专题】整体思想;数形结合法;立体几何.【分析】由三视图可知,该几何体是上面长与宽均为4,高为2长方体下接半径为2的半圆柱的组合体,于是可求其体积.【解答】解:依题意知,该几何体是上面长与宽均为4,高为2长方体下接半径为2的半圆柱的组合体,故其体积为:V=.故答案为:32+8π.【点评】本题考查由三视图求面积、体积,分析出该几何体是上面长与宽均为4,高为2长方体下接半径为2的半圆柱的组合体是关键,考查识图与运算能力,属于中档题.16.已知△ABC中,角A、、C成等差数列,且△ABC的面积为,则AC边的最小值是2.【考点】余弦定理;正弦定理.【专题】计算题;转化思想;等差数列与等比数列;解三角形.【分析】由已知及等差数列的性质可得A+C=3B,结合三角形内角和定理可求B的值,利用三角形面积公式可得,利用余弦定理及基本不等式即可解得AC边的最小值.【解答】解:∵A、B、C成等差数列,∴A+C=3B,又∵A+B+C=π,∴,∴由得,∵b2=a2+c2﹣2accosB=,及a2+c2≥2ac,∴,解得:b≥2,∴b的最小值为2.故答案为:2.【点评】本题主要考查了等差数列的性质,三角形内角和定理,三角形面积公式,余弦定理,基本不等式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{a n}的前n项和为S n,且满足2S n=n﹣n2(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=(k∈N*),求数列{b n}的前2n项和T2n.【考点】数列的求和;数列递推式.【专题】转化思想;综合法;等差数列与等比数列.可得)a n=1﹣n(n≥2),再检验n=1时,是【分析】(Ⅰ)依题意,当n≥2时,由2a n=2S n﹣2S n﹣1否适合,以确定是分是合,从而可得数列{a n}的通项公式;(Ⅱ)由可得T2n=(b1+b3+…+b2n)+﹣1(b2+b4+…+b2n),分组求和即可.【解答】解:(Ⅰ)当n≥2时,﹣﹣﹣﹣﹣﹣﹣﹣即:a n=1﹣n(n≥2),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当n=1时,由得a1=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣显然当n=1时上式也适合,∴a n=1﹣n.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)∵,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴T2n=(b1+b3+…+b2n)+(b2+b4+…+b2n)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣=]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查数列的求和,着重考查数列递推式的应用,考查裂项法、公式法与分组求和法的综合应用,属于中档题.18.某公司做了用户对其产品満意度的问卷调查,随机抽取了20名用户的评分,得到图所示茎叶图,对不低于75的评分,认为用户对产品满意,否则,认为不满意(1)根据以上资料完成下面的2×2列联表,若据此数据算得K2=3.7781,则在犯错的概率不超过5%的前提下,你是否认为“満意”与“否”与性别有有关?附:不满意满意合计男 4 7女合计P(K2≥k)0.100 0.050 0.010k 2.706 3.841 6.635(2)以此“满意”的频率作为概率,求在3人中恰有2人满意的概率;(3)从以上男性用户中抽取2人,女性用户中抽取1人,其中满意的人数为ξ,求ξ的分布列与数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【专题】计算题;转化思想;综合法;概率与统计.【分析】(1)完成2×2列联表,求出K2≈3.7781<3.841,从而得到在犯错的概率不超过5%的前提下,不能认为“満意”与“否”与性别有有关.(2)由频率估计“满意”的概率为=0.3,由此能求出在3人中恰有2人满意的概率.(3)ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.【解答】解:(1)根据已知资料完成2×2列联表:不满意满意合计男 3 4 7女11 2 13合计14 6 20P(K2≥k)0.100 0.050 0.010k 2.706 3.841 6.635∵K2≈3.7781<3.841,∴在犯错的概率不超过5%的前提下,不能认为“満意”与“否”与性别有有关.(2)由频率估计“满意”的概率为=0.3,∴在3人中恰有2人满意的概率为.(3)ξ的可能取值为0,1,2,3,P(ξ=0)+=,P(ξ=1)=+=,P(ξ=3)==,P(ξ=2)=1﹣=.ξ的分布列为:ξ0 1 2 3PEξ==.【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.19.如图,已知四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD中,∠A=90°,AB∥CD,AB=1,AD=CD=2.(Ⅰ)若二面角P﹣CD﹣B为45°,求证:平面BPC⊥平面DPC;(Ⅱ)在(Ⅰ)的条件下,求点A到平面PBC的距离.【考点】平面与平面垂直的判定;点、线、面间的距离计算.【专题】数形结合;等体积法;空间位置关系与距离.【分析】(I)取PD中点M,PC中点N,连结MN,AM,BN,则可证四边形ABNM是矩形,于是BN⊥MN,利用勾股定理的逆定理可得PB=BC,故BN⊥PC,于是BN⊥平面PCD,故平面BPC⊥平面DPC.(2)求出棱锥P﹣ABC的体积,将平面PBC作底面即可求出点A到平面PBC的距离.【解答】解:(I)取PD中点M,PC中点N,连结MN,AM,BN,则MN∥CD,MN=.∵AB∥CD,AB=,∴AB∥MN,AB=MN,∴四边形ABNM是平行四边形.∵PA⊥平面ABCD,AB⊂平面ABCD,∴AB⊥PA,又AB⊥AD,PA⊂平面PAD,AD⊂平面PAD,PA∩AD=A,∴AB⊥平面PAD,∵AM⊂平面PAD,∴AB⊥AM,∴平行四边形ABNM是矩形.∴BN⊥MN.∵AB∥CD,AB⊥平面PAD,∴CD⊥平面PAD,∵PD⊂平面PAD,AD⊂平面PAD,∴CD⊥PD,CD⊥AD,∴∠PDA为二面角P﹣CD﹣B的平面角,即∠PDA=45°,∴PA=AD=2,∴PB==.取CD中点E,连结BE,则BE=AD=2,CE=CD=1,∠BEC=90°,∴BC=.∴PB=BC,∴BN⊥PC.∵PC⊂平面PCD,MN⊂平面PCD,PC∩MN=N,∴BN⊥平面PCD,∵BN⊂平面PBC,∴平面BPC⊥平面DPC.(II)连结AC,则AC=.PD=.∴PC=.BN=AM=2.∴S△PBC==.S△ABC=.设A到平面PBC的距离为h,=S△ABC×PA=.则V棱锥P﹣ABC∴h=.【点评】本题考查了线面垂直的性质,面面垂直的判定,棱锥的体积计算,属于中档题.20.已知p,m>0,抛物线E:x2=2py上一点M(m,2)到抛物线焦点F的距离为.(Ⅰ)求p和m的值;(Ⅱ)如图所示,过F作抛物线E的两条弦AC和BD(点A、B在第一象限),若k AB+4k CD=0,求证:直线AB经过一个定点.【考点】直线与抛物线的位置关系.【专题】计算题;规律型;方程思想;转化思想;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)利用抛物线的定义列出关于p的方程,求出p,得到抛物线的方程,把点M(m,2)的坐标代入,解得m.(Ⅱ)解法1:设AB、AC的方程为y=k1x+b,与抛物线方程联立,设A(x1,y1),B (x2,y2),C(x3,y3),D(x4,y4),利用韦达定理,结合k AB+4k CD=0,求解即可.解法2:设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),设AC的方程为,,与抛物线方程联立,得x2﹣2kx﹣1=0,推出x1x3=﹣1,同理,x2x4=﹣1,求出直线AB的方程为化简得直线AB恒经过点(0,﹣2).【解答】解:(Ⅰ)由点M(m,2)到抛物线焦点F的距离为,结合抛物线的定义得,,即p=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣抛物线的方程为x2=2y,把点M(m,2)的坐标代入,可解得m=2;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)解法1:显然直线AB、AC的斜率都存在,分别设AB、AC的方程为y=k1x+b,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣联立,得x2﹣2k1x﹣2b=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣联立,得x2﹣2k2x﹣1=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),则x1x2=﹣2b,x1x3=﹣1,同理,x2x4=﹣1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣故=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣注意到点A、B在第一象限,x1+x2≠0,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣故得x1x2=4,﹣2b=4,∴b=﹣2,即直线恒经过点(0,﹣2).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解法2:设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),显然直线AC的斜率都存在,设AC的方程为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣联立,得x2﹣2kx﹣1=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴x1x3=﹣1,同理,x2x4=﹣1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣故=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣注意到点A、B在第一象限,x1+x2≠0,∴,故得x1x2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣直线AB的方程为化简得即直线AB恒经过点(0,﹣2).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣.【点评】本题考查抛物线方程的求法,直线与抛物线的位置关系的综合应用,考查转化思想以及计算能力.21.设函数f(x)=(x﹣a)2lnx,a∈R.(I)若x=e是y=f(x)的极值点,求实数a的值;(Ⅱ)若函数y=f(x)﹣4e2只有一个零点,求实数a的取值范围.【考点】利用导数研究函数的极值.【专题】计算题;规律型;分类讨论;方程思想;转化思想;导数的综合应用.【分析】(Ⅰ)求出导函数,另一回事的极值为0,求解a,然后验证即可.(Ⅱ)解法1:方程f(x)=4e2只有一个根,转化为曲线f(x)与直线y=4e2只有一个公共点.设,通过①当a≤0时,②当0<a≤1时,③当a>1时,判断函数的单调性,求出极大值,转化为,即,所以,然后推出a的范围.【解答】解:(Ⅰ)函数f(x)=(x﹣a)2lnx,a∈R.,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由x=e是f(x)的极值点,得,解得a=e或a=3e,﹣﹣﹣﹣﹣﹣﹣﹣﹣经检验,符合题意,所以a=e或a=3e;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)由已知得方程f(x)=4e2只有一个根,即曲线f(x)与直线y=4e2只有一个公共点.易知f(x)∈(﹣∞,+∞),设,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①当a≤0时,易知函数f(x)在(0,+∞)上是单调递增的,满足题意;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②当0<a≤1时,易知h(x)是单调递增的,又h(a)=2lna<0,h(1)=1﹣a≥0,∴∃x0∈(a,1),h(x0)=0,当0<x<a时,>0,∴f(x)在(0,a)上单调递增,同理f(x)在(a,x0)上单调递减,在(x0,+∞)上单调递增,又极大值f(a)=0,所以曲线f(x)满足题意;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣③当a>1时,h(1)=1﹣a<0,h(a)=2lna>0,∴∃x0∈(1,a),h(x0)=0,即,得a﹣x0=2x0lnx0,可得f(x)在(0,x0)上单调递增,在(x0,a)上单调递减,在(a,+∞)上单调递增,又f(a)=0,若要曲线f(x)满足题意,只需,即,所以,由x0>1知g(x)=x2ln3x>0,且在[1,+∞)上单调递增,由g(e)=e2,得1<x0<e,因为a=x0+2x0lnx0在[1,+∞)上单调递增,所以1<a<3e;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综上知,a∈(﹣∞,3e).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查函数的导数的应用,函数的极值以及函数的单调性,构造法的应用,转化思想以及分类讨论思想的应用,难度比较大.选修4-4:坐标系与参数方程22.已知参数方程为(t为参数)的直线l经过椭圆的左焦点F1,且交y 轴正半轴于点C,与椭圆交于两点A、B(点A位于点C上方).(I)求点C对应的参数t C(用θ表示);(Ⅱ)若|F1B|=|AC|,求直线l的倾斜角θ的值.【考点】直线与圆锥曲线的关系;参数方程化成普通方程.【专题】计算题;规律型;数形结合;转化思想;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)利用椭圆方程,求出焦点坐标,利用,在直线l的参数方程中,令x=0,求解即可.(Ⅱ)解法1:把代入椭圆方程,设点A、B对应的参数为t A、t B,由|F1B|=|AC|结合参数t的几何意义得:t A+t B=t C,求解即可.解法2:设A、B两点的横坐标分别为x A、x B,将直线l的普通方程代入椭圆方程利用韦达定理,以及|F1B|=|AC|,求解即可.【解答】解:(Ⅰ)在椭圆中,∵a2=3,b2=1,∴,即,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣故,在直线l的参数方程中,令x=0,解得;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)解法1:把代入椭圆方程,并整理得:,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣设点A、B对应的参数为t A、t B,由|F1B|=|AC|结合参数t的几何意义得:t A+t B=t C,即,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解得,依题意知,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解法2:设A、B两点的横坐标分别为x A、x B,将直线l的普通方程代入椭圆方程并整理得:,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣则,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴,解得,依题意知,得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查直线与椭圆的位置关系的综合应用,参数方程的应用,考查转化思想以及计算能力.选修4-5:不等式选讲23.设a∈R,f(x)=|x﹣a|+(1﹣a)x.(I)解关于a的不等式f(2)<0;(Ⅱ)如果f(x)≥0恒成立,求实数a的取值范围.【考点】分段函数的应用;函数恒成立问题.【专题】函数思想;转化思想;综合法;函数的性质及应用.【分析】(I)解法1:通过分类讨论,将f(2)=|2﹣a|+2(1﹣a)中的绝对值符号去掉,再分段解f(2)<0,最后取并即可;解法2:由f(2)<0,得|2﹣a|+2(1﹣a)<0,即|a﹣2|<2(a﹣1),利用绝对值的几何意义,可得﹣2(a﹣1)<a﹣2<2(a﹣1),解之即可;(Ⅱ)依题意,f(x)≥0恒成立⇒,解之即可.【解答】解:(I)解法1:﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣不等式f(2)<0等价于或者,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解得a>2或,即,∴所求不等式的解集为;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解法2:由f(2)<0,得|2﹣a|+2(1﹣a)<0,即|a﹣2|<2(a﹣1),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2(a﹣1)<a﹣2<2(a﹣1),解得,解集为;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(II),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣因为f(x)≥0恒成立,故有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解得0≤a≤1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查分段函数的应用,考查等价转化思想与函数恒成立问题,突出考查运算求解能力,属于中档题.。

相关文档
最新文档