高等数学第二版上册课后答案
高等数学课后习题答案--第一章
![高等数学课后习题答案--第一章](https://img.taocdn.com/s3/m/e8ac2e7f5acfa1c7aa00cce6.png)
《高等数学》习题参考资料第一篇 一元函数微积分第一章 极限与连续§1 函 数习 题1.确定下列初等函数的定义域:(1) 21)(2−−+=x x x x f ;(2)4)(2−=x x f ;(3) 21arcsin )(−=x x f ;(4)2)5lg()(x x x f −=;(5) 4lg )5lg()(2−−=x x x f ;(6)x x x f cos sin )(−=。
1. 【答案】(1) )},2()2,1()1,(|{:+∞∪−∪−−∞∈=x x D (2) )},2[]2,(|{:+∞∪−−∞∈=x x D (3) ]}3,1[|{:;−∈=x x D (4) )}5,0()0,(|{:∪−∞∈=x x D (5) ]}4,1[|{:∈=x x D (6)+ +∈=+∞−∞=U k k k x x D ππ452,412|:.2. 作出下列函数的图象:(1)|sin |sin )(x x x f −=;(2)|1|2)(−−=x x f ;(3)+−−=,1,1,21)(x x x x f .12,21,1||−<<−<<≤x x x 2 【答案】 (1)2(2)2 (3)3.判断下列函数的奇偶性:(1)x x x f ++−=11)(;(2)xxx f x x +−+−=11lg110110)(;(3)x x a a x f x x sin )(++=−;(4))1lg()(2x x x f ++=。
3. 【答案】 (1) 偶函数; (2) 偶函数; (3) 偶函数; (4) 奇函数 .4.证明:两个奇函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数。
4. 【答案】 设)(x f ,)(x h 是奇函数, )(x g 是偶函数,)()()(x h x f x f =,)()()(x g x f x G =, 于是)()()(x h x f x F −−=−))())(((x h x f −−=)()()(x F x h x f ==, 因此)(x F 是偶函数.)()()(x g x f x G −−=−)()(x g x f −=)(x G −=, 因此)(x G 是奇函数.5.设函数f 满足:D (f )关于原点对称,且()xc x bf x af =+1)(,其中a ,b ,c 都是常数,||||b a ≠,试证明f 是奇函数。
高数上册习题答案5-2
![高数上册习题答案5-2](https://img.taocdn.com/s3/m/3574609077a20029bd64783e0912a21615797f66.png)
高数上册习题答案5-2高数上册习题答案5-2高等数学是大学数学的一门重要课程,它是理工科学生必修的一门课程。
在高数上册中,第五章是关于极限与连续的内容。
本文将为大家提供高数上册习题答案5-2,帮助大家更好地理解和掌握这一章节的知识。
1. 求极限(a) $\lim\limits_{x \to 0} \dfrac{\sin 2x}{\tan 3x}$解:根据极限的性质,我们可以将$\sin 2x$和$\tan 3x$分别求极限。
$\lim\limits_{x \to 0} \sin 2x = \sin 0 = 0$$\lim\limits_{x \to 0} \tan 3x = \tan 0 = 0$所以,$\lim\limits_{x \to 0} \dfrac{\sin 2x}{\tan 3x} = \dfrac{0}{0}$,这是一个不定式,我们可以尝试使用洛必达法则求解。
令$f(x) = \sin 2x$,$g(x) = \tan 3x$,则原式可以转化为$\lim\limits_{x \to 0} \dfrac{f(x)}{g(x)}$。
根据洛必达法则,我们有$\lim\limits_{x \to 0} \dfrac{f'(x)}{g'(x)} = \lim\limits_{x \to 0} \dfrac{2\cos2x}{3\sec^2 3x} = \dfrac{2}{3}$所以,$\lim\limits_{x \to 0} \dfrac{\sin 2x}{\tan 3x} = \dfrac{2}{3}$。
(b) $\lim\limits_{x \to \infty} \dfrac{x^3 + 3x^2 - 2}{2x^3 - 5x^2 + 4x}$解:根据极限的性质,我们可以将$x^3 + 3x^2 - 2$和$2x^3 - 5x^2 + 4x$分别除以$x^3$。
$\lim\limits_{x \to \infty} \dfrac{x^3 + 3x^2 - 2}{2x^3 - 5x^2 + 4x} =\lim\limits_{x \to \infty} \dfrac{1 + \dfrac{3}{x} - \dfrac{2}{x^3}}{2 - \dfrac{5}{x} + \dfrac{4}{x^2}}$当$x \to \infty$时,$\dfrac{3}{x}$和$\dfrac{2}{x^3}$的值趋近于0,$\dfrac{5}{x}$和$\dfrac{4}{x^2}$的值也趋近于0。
大学数学第二册详细答案汇总
![大学数学第二册详细答案汇总](https://img.taocdn.com/s3/m/98ab4660ddccda38376baf8c.png)
第一章 矩阵与行列式习题解答练习1.1 矩阵及其运算1. 已知线性变换x y y y x y y y x y y y 1123212331232235323=++=++=++⎧⎨⎪⎩⎪①②③, 求从变量x 1,x 2,x 3到变量y 1,y 2,y 3的线性变换。
解:由3x (1)–2×(2)得:4y 2–7y 3=3x 1–2x 2 ④ (3)–(2)得:y 2–2y 3=x 3–x 2 ⑤ (4)–4×(5)得:y 3=3x 1+2x 2–4x 3类似运算可得:y 1=–7x 1–4x 2+9x 3, y 2=6x 1+3x 2–7x 3 故由变量x 1,x 2,x 3到变量y 1,y 2,y 3的线性变换为y x x x y x x x y x x x112321233123749637324=--+=+-=+-⎧⎨⎪⎩⎪ 2. 已知两个线性变换x y y x y y y x y y y11321233123223245=+=-++=++⎧⎨⎪⎩⎪ y z z y z z y z z112213323323=-+=+=-+⎧⎨⎪⎩⎪ 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换。
解:将变换2代入变换1可得:x z z z x z z z x z z z1123212331236312491016=-++=-+=--+⎧⎨⎪⎩⎪3. 设A =111111111--⎛⎝⎫⎭⎪⎪⎪,B =123124051--⎛⎝ ⎫⎭⎪⎪⎪,求3AB –2A 及A T B 解:3AB –2A =3111111111--⎛⎝⎫⎭⎪⎪⎪123124051--⎛⎝ ⎫⎭⎪⎪⎪–2111111111--⎛⎝ ⎫⎭⎪⎪⎪ =3058056290-⎛⎝⎫⎭⎪⎪⎪–2111111111--⎛⎝ ⎫⎭⎪⎪⎪=----⎛⎝ ⎫⎭⎪⎪⎪21322217204292 A T B =111111111--⎛⎝⎫⎭⎪⎪⎪123124051--⎛⎝ ⎫⎭⎪⎪⎪=058056290-⎛⎝ ⎫⎭⎪⎪⎪ 4. 解:(1) (35, 6, 49)T , (2) (10) (3) ---⎛⎝⎫⎭⎪⎪⎪241236 (4) 6782056---⎛⎝ ⎫⎭⎪ (5) a x a x a x a x x a x x a x x 111222223332121213132323222+++++5. 设A =1213⎛⎝⎫⎭⎪,B =1012⎛⎝ ⎫⎭⎪,问 (1) AB =BA 吗? (2) (A +B )2=A 2+2AB +B 2吗? (3) (A +B )(A –B )=A 2–B 2吗? 解:AB =1213⎛⎝⎫⎭⎪1012⎛⎝ ⎫⎭⎪=3446⎛⎝ ⎫⎭⎪, BA =1012⎛⎝ ⎫⎭⎪1213⎛⎝ ⎫⎭⎪=1238⎛⎝ ⎫⎭⎪故 AB ≠BA 。
微积分第二版课后习题答案
![微积分第二版课后习题答案](https://img.taocdn.com/s3/m/935c3e04bcd126fff7050bfc.png)
微积分第二版课后习题答案【篇一:微积分(上册)习题参考答案】0.11.(a)是(b)否(c)是(d)否2.(a)否(b)否(c)否(d)是(e)否(f)否(g)是(h)否(i)是1,2,3},{1,2,4},{1,3,4}, 3.f,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{{2,3,4},{1,2,3,4}.4. a?b5. a?b6~15. 略。
16. 证明:先证a-(b-c)?(ab)惹(ac).若x?a(b-c),则x蜗a,x①如果x?c,则x蜗a,②如果x?c,则x?b,所以x?aa-(b-c)?(ab)惹(ac).再证a-(b-c)惹(ac)?a(b-c).若x¢?(ab)惹(ac),则,x¢?ab或x¢吻ac.①如果x¢吻ac,有x¢?c,所以,x¢?bc,又x¢?a,于是x¢?a(b-c) ②如果x¢锨ac,x¢?ab,则有x¢?a,x¢?c,x¢?b,所以,x¢?bc,于是x¢?a(b-c). 因此有(a-b)惹(ac)?a(b-c).综上所述,a-(b-c)=(a-b)惹(ac),证毕. 17~19. 略。
20. cda.21. a?b{(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)};禳1镲xx?r,睚2镲铪参考答案禳禳11镲镲,,a?d-1,-,0,1,2,3,?a-c=睚0,-1,-睚镲镲44铪铪禳1镲a=睚-1,-,0,1,2,7.镲4铪xx危r,1x 2}x3,a?b={,a-b={xx?r,2x3}.b-cb-c;(ac),因此有b,也有x?(ab)惹a2={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)};b2={(u,v),(u,v),(v,u),(v,v)}22. a={(x,y,z)}x,y,z危?.0323~25. 略。
高等数学 同济二版上册课后答案
![高等数学 同济二版上册课后答案](https://img.taocdn.com/s3/m/14a09208eff9aef8941e06a0.png)
第一章1-4节 1、计算下列极限7)2382lim 222+--+→x x x x x分析:本题分子分母同时趋近于0,根据表达式的形式,考虑利用约分将趋于0的项约去。
解:原式6)1(lim )4(lim 14lim )2)(1()2)(4(lim2222=-+=-+=---+=→→→→x x x x x x x x x x x x 9))sin(sin sin lima x ax a x --→分析:本题分子分母同时趋于0,但不能约分,利用复合函数求极限,通过变量替换进行求解 解一:令0,,,→→+=-=u a x u a x a x u 时则。
a uua a u u u a a u u a a uau a u a u a u a u u u u u cos )2cos42sinsin (cos lim ]2cos2sin 2)2sin 21(sin [cos lim ]sin )1(cos sin [cos lim sin sin sin cos cos sin limsin sin )sin(lim020000=-=-+=-+=-+=-+=→→→→→原式 解二:利用三角函数的和差化积,以及等价替换a ax ax a x a x a x a x a x ax cos 22cos 2lim )sin(2sin 2cos2lim=--⋅+⋅=--+=→→原式11)6)1(lim )4(lim 14lim 4lim 020202230=++-=++-=++-→→→→t t t t t t t t t t t t t t t (应该为4) 13)31)312(lim 2lim )312)(4()4(2lim )312)(4(9)12(lim 4312lim44444=++=++--=++--+=--+→→→→→x x x x x x x x x x x x x x本题利用了分子有理化 2、计算下列极限 1)nnn arctan lim∞→解:因为2arctan 01π<→∞→n ,n,n 而时,无穷小与有界函数之积仍然为无穷小,所以原式n nn arctan 1lim∞→==0 2)0sin 1lim 1sin lim=+=+∞→∞→n n nn n n n n 3)1arctan 11arctan 11lim arctan arctan lim =+-=+-∞→∞→xxxx x x x x x x 第一章1-5节 1、计算下列极限 2)βαβαββααβα==→→x x x x x x x x sin sin lim sin sin lim00解法2:原式βαβα==→x x x 0lim5)212cos122sin 21lim 2cos 2sin 22sin 2lim sin cos 1lim 0200=⋅⋅=⋅=-→→→x x x x x x xx x x x x x 解法2:原式2121lim 20=⋅=→x x x x7)πππππ-=-=-=-=-→→→→uu u u u u x x u u u x 0001lim tan lim )1(tan lim 1tan lim分析:本题利用了变量替换和等价替换 9)2)2(21lim )12(coslim 222-=⎥⎦⎤⎢⎣⎡-=-∞→∞→x x x x x x分析:∞→x 时,02→x 。
高等数学第二版上册课后答案
![高等数学第二版上册课后答案](https://img.taocdn.com/s3/m/1a17569968dc5022aaea998fcc22bcd127ff4247.png)
高等数学第二版上册课后答案高等数学第二版上册课后答案【篇一:《高等数学》详细上册答案(一--七)】lass=txt>《高等数学》上册(一----七)第一单元、函数极限连续使用教材:同济大学数学系编;《高等数学》;高等教育出版社;第六版;同济大学数学系编;《高等数学习题全解指南》;高等教育出版社;第六版;核心掌握知识点:1. 函数的概念及表示方法;2. 函数的有界性、单调性、周期性和奇偶性;3. 复合函数、分段函数、反函数及隐函数的概念;4. 基本初等函数的性质及其图形;5. 极限及左右极限的概念,极限存在与左右极限之间的关系;6. 极限的性质及四则运算法则;7. 极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法;8. 无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限;9. 函数连续性的概念,左、右连续的概念,判断函数间断点的类型;10. 连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),会用这些性质.学习任务巩固练习阶段:(本阶段是复习能力提升的关键阶段,高钻学员一定要有认真吃透本章节内所有习题)第二单、元函数微分学计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版本单元中我们应当学习——1. 导数和微分的概念、关系,导数的几何意义、物理意义,会求平面曲线的切线方程和法线方程,函数的可导性与连续性之间的关系;2. 导数和微分的四则运算法则,复合函数的求导法则,基本初等函数的导数公式,一阶微分形式的不变性;3. 高阶导数的概念,会求简单函数的高阶导数;4. 会求以下函数的导数:分段函数、隐函数、由参数方程所确定的函数、反函数;5. 罗尔(rolle)定理、拉格朗日(lagrange)中值定理、泰勒(taylor)定理、柯西(cauchy)中值定理,会用这四个定理证明;6. 会用洛必达法则求未定式的极限;7. 函数极值的概念,用导数判断函数的单调性,用导数求函数的极值,会求函数的最大值和最小值;8. 会用导数判断函数图形的凹凸性,会求函数图形的拐点,会求函数的水平、铅直和斜渐近线;9. 曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.【篇二:高数第二册习题及答案】class=txt>系班姓名学号第一节对弧长的曲线积分一.选择题1.设l是连接a(?1,0),b(0,1),c(1,0)的折线,则l(x?y)ds? [ b](a)0 (b)2 (c)22 (d)2x2y2d ] ?l43(a)s(b)6s(c)12s(d)24s二.填空题1.设平面曲线l为下半圆周yx2,则曲线积分l(x2?y2)ds?2.设l是由点o(0,0)经过点a(1,0) 到点b(0,1)的折线,则曲线积分三.计算题 1.l(x?y)ds? 122l(x2?y2)nds,其中l为圆周x?acost,y?asint(0?t?2?).解:原式?2?a2a2n?12?dt2??a 2.2n?1l,其中l为圆周x2?y2?a2,直线y?x及x轴在第一象限内所围成的扇形的整个边界.解:设圆周与x轴和直线y?x的交点分别为a 和b,于是原式?oaabbo在直线oa上y?0,ds?dx得oaexdx0aae?1在圆周ab上令x?acos?,y?asin?,04得ab4ea?a?ea4在直线bo上y?x,ds?2dx得boae?1所以原式?(2?3.a)ea?2 4ly2ds,其中l为摆线的一拱x?a(t?sint),y?a(1?cost)(0?t?2?). 2解:原式?2a(1?cost)3(1?cost)dt52256a315或原式?a22?03(1?cost)02?(1?cost)dt (1?cost)dt52523332?t(2sin)2dt222?ttttdt??16a3?(1?2cos2?cos4)dcos0224258a2?sin5256a315高等数学练习题第十章曲线积分与曲面积分系班姓名学号第二节对坐标的曲线积分一.选择题1.设l以(1,1),(?1,1),(?1,?1),(1,?1)为顶点的正方形周边,为逆时针方向,则lx2dy?y2dx?[ d ](a)1(b)2(c)4(d)0 2.设l是抛物线y?x2(?1?x?1),x增加的方向为正向,则(a)0,lxds和?xdy?ydx?[ a ]l2525(b)0,0 (c),(d),0 3838二.填空题1.设设l是由原点o沿y?x2到点a(1,1),则曲线积分l(x?y)dy? 16232.设l是由点a(1,?1)到b(1,1)的线段,则三.计算题l(x2?2xy)dx?(y2?2xy)dy= 1.设l为取正向圆周x2?y2?a2,求曲线积分l(2xy?2y)dx?(x2?4x)dy.解:将圆周写成参数形式x?acos?,y?asin?,(02?),于是原式{(2a2cos?sin??2asin?)?(?asin?)?(a2cos2??4acos?)?acos? }d?2?2?{(?2a3cos?sin2??2a2sin2?)?(a3cos3??4a2cos2?)}d?2a2?22.设l是由原点o沿y?x到点a(1,1),再由点a沿直线y?x到原点的闭曲线,求larctanydy?dx x解:i1??arctan?dx ?oax(2xarctanx?1)dx1[x2arctanx?x?arctanx?x]10i2??22yarctan?dx ?aox1(arctan1?1)dx4所以原式?i1?i2? ? 3.计算242?1??14l(x?y)dx?(y?x)dy,其中l是:2(1)抛物线y?x上从点(1,1)到点(4,2)的一段弧;(2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线. 解:(1)原式? ? ?2121{(y2?y)?2y?(y?y2)}dy(2y3?y2?y)dy343(2)过(1,1),(4,2)的直线方程为x?3y?2,dx?3dy 所以原式? ?21{3(4y?2)?(2?2y)}dy21(10y?4)dy11(3)过(1,1),(1,2)的直线方程为x?1,dx?0,1?y?2所以i1?21(y?1)dy?1 2(3)过(1,2),(4,2)的直线方程为y?2,dy?0,1?x?4所以i2?41(x?2)dx?272于是原式?i1?i2?14 4.求l(y2?z2)dx?2yzdyxdz?2,其中l为曲线x?t,y?t2,z?t3(0?t?1)按参数增加的方向进行.解:由题意,原式? ? ?高等数学练习题第十章曲线积分与曲面积分系班姓名学号第三节格林公式及其应用一.选择题 1.设曲线积分{(t01014t6)?4t6?3t4}dt(3t6?2t4)dt1 35l(x4?4xyp)dx?(6xp?1y2?5y4)dy与路径无关,则p? [ c](a)1 (b)2 (c)3(d)4 2.已知(x?ay)dx?ydy为某函数的全微分,则a?[ d] 2(x?y)(a)?1 (b)0(c)1 (d)212xx223.设l为从a(1,)沿曲线2y?x到点b(2,2)的弧段,则曲线积分?dx?2dy= [ d]ly2y(a)?3 (b)3(c)3(d)0 2【篇三:高等数学(上)第二章练习题】txt>一. 填空题1.设f(x)在x?x0处可导,且x0?0,则limx?x?02.设f(x)在x处可导,则limf2(x?h)?f2(x?2h)h?02h?______________3.设f(x)axx?0ex?1x?0在x?0处可导,则常数a?______4.已知f?(x)?sinxx?5.曲线y?x?lnxx上横坐标为x?1的点的切线方程是 6.设y?xxsinx ,则y??7.设y?e?2x,则dyx??x0?0.1?8.若f(x)为可导的偶函数,且f?(x0)?5,则f?(?x0)?二. 单项选择题9.函数f(x)在x?x0处可微是f(x)在x?x0处连续的【】a.必要非充分条件b.充分非必要条件c.充分必要条件 d.无关条件10. 设limf(x)?f(a)x?a(x?a)2?l,其中l为有限值,则在f(x)在x?a处【】a.可导且f?(a)?0 b.可导且f?(a)?0c.不一定可导d.一定不可导11.若f(x)?max(2x,x2),x?(0,4),且f?(a)不存在,a?(0,4),则必有【a.a?1 b.a?2 c.a?3 d. a?1212.函数f(x)?x在x?0处【】a.不连续b.连续但不可导c.可导且导数为零 d.可导但导数不为零2213.设f(x)3xx?1,则f(x)在x?1处【】x2x?1a.左、右导数都存在b.左导数存在但右导数不存在c.右导数存在但左导数不存在 d.左、右导数都不存在14.设f(x)?3x3?x2|x|,使f(n)(0)存在的最高阶数n为【】a.0 b. 1 c.2 d. 315.设f(u)可导,而y?f(ex)ef(x),则y??【】a.ef(x)[f?(x)f(ex)?exf?(ex)]b. ef(x)[f?(x)f(ex)?f?(ex)]c.ef(x)f?(ex)?ef?(x)f(ex) d. exef(x)f?(ex)?ef?(x)f(ex)16.函数f(x)?(x2?x?2)|x3?x|不可导点的个数是【】a.3 b. 2 c.1 d. 0】17.设f(x)可导,f(x)?f(x)(1?|sinx|),要使f(x)在x?0处可导,则必有【】a.f(0)?0b.f?(0)?0c.f(0)?f?(0)?0 d.f(0)?f?(0)?018.已知直线y?x与y?logax相切,则a?【】a.e b. e c.ee d.e19.已知f(x)?x(1?x)(2?x)?(100?x),且f?(a)?2?(98)!,则a?【】a.0 b.1 c.2 d.3 ?1?1e1,则当?x?0时,在x?x0处dy是【】 3a.比?x高阶的无穷小b.比?x低阶的无穷小c.与?x等价的无穷小d.与?x同阶但非等价的无穷小221.质点作曲线运动,其位置与时间t的关系为x?t?t?2,y?3t2?2t?1,则当t?1时,质点的速度大小等于【】 20.已知f?(x0)?a.3 b.4 c.7 d.5三. 解答下列各题22.设f(x)?(x?a)?(x),?(x)在x?a连续,求f?(a)23.y?esin24.y?2(1?2x) ,求dy x2arcsin,求y?? 2d2y325.若f(u)二阶可导,y?f(x),求2 dx1??,求y?(1) ?x?x?ln(1?t2)dyd2y27.若? ,求与2 dxdx?y?t?arctant28.y?(x2?1)e?x,求y(24)29.y?arctanx,求y(n)(0) 26.设y??1?1xx2?xx?0?30.已知f(x)??ax3?bx2?cx?d0?x?1_在(??,??)内连续且可导,2x?xx?1?求a,b,c,d的值xy31.求曲线e?2x?y?3上纵坐标为y?0的点处的切线方程x?t(1?t)?032.求曲线?y 上对应t?0处的法线方程 ?te?y?1?0233.过原点o向抛物线y?x?1作切线,求切线方程34.顶角为60底圆半径为a的圆锥形漏斗盛满了水,下接底圆半径为b(b?a)的圆柱形水桶,当漏斗水面下降的速度与水桶中水面上升的速度相等时,漏斗中水面的高度是多少?35.已知f(x)是周期为5的连续函数,它在x?0的某个邻域内满足关系式f(1?sinx)?3f(1?sinx)?8x??(x),其中,?(x)是当x?0时比x高阶的无穷小,且f(x)在x?1处可导,求曲线y?f(x)在点(6,f(6))处的切线方程习题答案及提示5. y?x x 6.x[(1?lnx)sinx?cosx]7. ?0.2 8. ?5 一. 1.?(x0) 2. 3f(x)f?(x) 3. 1 4二. 9. b 10. a 11. b 12. c 13. b 14. c 15. a16. b 17. a 18. c 19. c 20. d 21. d三. 22. 提示:用导数定义 f?(a)??(a) 23.dy??2esin2(1?2x)sin(2?4x)dxd2y343 24. y 25. 2?6xf?(x)?9xf(x) dxdytd2y1? ,2?(t?t?1) 26. y?(1)?1?2ln2 27. dx2dx428. y(24)?e?x[x2?48x?551]12x??y??29.由y?(x)? 1?x2(1?x2)2由(1?x2)y?(x)?1 两边求n阶导数,_利用莱布尼兹公式,代入x?0,得递推公式,y(n?1)(0)??n(n?1)y(n?1)(0)__利用y?(0)?1和y??(0)?0 ?(?1)k(2k)!n?2k?1 k?0,1,2,? y(0)??0n?2k?2?30. 提示:讨论分段点x?0与x?1处连续性与可导性a?2, b??3, c?1 , d?031. x?y?1?032. ex?y?1?0(n)33.y??2x35. 提示:关系式两边取x?0的极限,得f(1)?0limx?0f(1?sinx)?3f(1?sinx)?8x?(x)sinx??lim8 ?x?0sinxxx? ?si nx而 f(1?sinx)?3f(1?sinx)f(1?t)?3f(1?t)?limx?0t?0sinxtf(1?t)?f(1)f(1?t)?f(1)lim??3?4f?(1)?t?0t?t??得f?(1)?2,由周期性f(6)?f(1)?0f(x)?f(6)f?(6)?lim 令x?5?t 由周期性得 x?6x?6f(t)?f(1)?lim?2 t?1t?1切线方程y?2(x?6) lim。
北大版高等数学(第二版)习题答案1.1
![北大版高等数学(第二版)习题答案1.1](https://img.taocdn.com/s3/m/7ce7ef276edb6f1afe001f0f.png)
北京大学出版社高等数学(第二版)习题1.11证明√3为无理数.证明:假设√3是有理数,存在两个正整数m及n,使得(m,n)=1,且√3=m n所以√3n=m ⟹3n2=m2所以3整除m2,即3整除m。
设m=3p,代入3n2=m2得:3n2=9p2⟹n2=3p2所以3整除n2,即3整除n。
由于3能整除m及n,与(m,n)=1矛盾,假设不成立。
因此√3是无理数。
证毕。
2设p是正的素数,证明√p是无理数.证明:假设√p是有理数,存在两个正整数m及n,使得(m,n)=1,且因为p>0,有√p=m n所以√pn=m ⟹pn2=m2所以p整除m2,即p整除m。
设m=pq,代入pn2=m2得:pn2=p2q2⟹n2=pq2所以p整除n2,即p整除n。
由于p能整除m及n,与(m,n)=1矛盾,假设不成立。
因此√p是无理数。
证毕。
3解下列不等式:(1)|x|+|x−1|<3解:依[命题2]有|x+y|≤|x|+|y|,且原式|x|+|x−1|<3所以|x+x−1|≤|x|+|x−1|<3所以|2x−1|<3所以(依[命题4])−3<2x−1<3 ⟹−1<x<2(2)|x2−3|<2解:|x2−3|<2 ⟹−2<x2−3<2 ⟹1<x2<5①考虑x2>1时,有x>1或x<−1②考虑x2<5时,有−√5<x<√5综合①和②,有−√5<x<−1或1<x<√54设a与b为任意实数.(1)证明:|a+b|≥|a|−|b|证明:|a|=|a+b+(−b)|≤|a+b|+|−b|=|a+b|+|b|所以|a|≤|a+b|+|b|所以|a+b|≥|a|−|b|。
证毕。
(2)设|a−b|<1,证明|a|<|b|+1证明:因为|a−b|=|a+(−b)|≥|a|−|−b|=|a|−|b|且因为|a−b|<1所以|a|−|b|<1有|a|<|b|+1。
数学分析课后习题答案--高教第二版(陈纪修)--16章
![数学分析课后习题答案--高教第二版(陈纪修)--16章](https://img.taocdn.com/s3/m/514759f90242a8956bece46e.png)
f ( x ) sin nxdx = π ∫π
−
1
π
2(1 − cos(nπ )) ,( n = 1, 2,3, nπ sin( 2k − 1) x 。 π k =1 2k − 1 4
)。
f ( x) ∼
∑
∞
(2) f ( x) 为偶函数,所以 bn = 0 , ( n = 1, 2,3, ) ,
(a)
−
an =
f ( x ) cos nxdx = − π ∫π π (n
− 1
1
π
2A ( n = 2, 4, 6, 2 − 1)
w. kh d
解 (1) a0 =
f ( x) dx = π ∫π
1
1
π
2A
π ,
π
1
−
1
−
1
bn =
后 答
f ( x ) sin nxdx = 0 ,( n = 2,3, 4, π ∫π
(a − b)(1 − (−1) n ) ,( n = 1, 2,3, π n2
(a + b) cos(nπ ) ,( n = 1, 2,3, n
), )。
f ( x) sin nxdx = − π ∫π
−
π
∞ ( −1) n +1 (a − b)π 2(a − b) ∞ cos(2k + 1) x + + ( a + b) ∑ sin nx 。 f ( x) ∼ − ∑ 2 n π 4 n =1 k =0 (2k + 1)
案
网
n 1 − (−1) n e −2π sin nx 。 ∑ π n=1 n2 + 4 2
高等数学b第二版教材答案
![高等数学b第二版教材答案](https://img.taocdn.com/s3/m/e424de812dc58bd63186bceb19e8b8f67c1cefc3.png)
高等数学b第二版教材答案第一章:函数与极限1. 基本函数与初等变换1.1 常函数1.2 恒等变换1.3 幂函数1.4 指数函数1.5 对数函数1.6 三角函数1.7 反三角函数1.8 两类特殊函数的图象2. 函数的极限与连续性2.1 函数极限的概念- 函数极限的定义- 函数极限的基本性质2.2 极限的四则运算与比较- 极限的四则运算- 极限比较的性质2.3 连续函数及其性质- 连续函数的定义- 连续函数的性质2.4 无穷小量与无穷大量- 无穷小量的概念与性质 - 无穷大量的概念与性质3. 函数的导数与微分3.1 导数的概念与性质- 导数定义- 导数的计算及性质3.2 基本初等函数的导数3.3 函数的微分3.4 隐函数与参数方程的导数 3.5 高阶导数及其应用第二章:一元函数的微分学1. 中值定理与导数的应用1.1 高阶导数与泰勒公式- 高阶导数的定义- 麦克劳林公式与泰勒公式 1.2 洛必达法则与函数的比较 1.3 弧长、曲率与曲率半径1.4 凸函数与极值问题- 函数的凸性与凹性- 可导函数的极值条件2. 积分学2.1 积分的概念与性质- 积分的定义- 积分运算的基本性质2.2 不定积分与定积分- 不定积分的概念与性质 - 定积分的概念与性质2.3 积分中值定理与换元法2.4 积分运算的方法与应用- 牛顿-莱布尼茨公式- 特殊函数的积分- 积分的应用3. 定积分的应用3.1 曲线的长度与曲面的面积- 弧长的计算- 旋转曲面的面积3.2 定积分在物理学中的应用- 面积、质量与质心的计算 - 动能、功率与功的计算3.3 定积分在经济学中的应用- 需求曲线与供给曲线的面积 - 价值、利润与消费者剩余第三章:多元函数微分学1. 二元函数的极限与连续性1.1 二元函数的极限1.2 二元函数的连续性2. 偏导数与全微分2.1 偏导数的计算与应用- 偏导数的定义- 偏导数的计算方法2.2 二阶偏导数及其应用- 二阶偏导数的定义- 混合偏导数及其应用2.3 多元函数的全微分与高阶微分3. 多元复合函数的导数3.1 链式法则3.2 隐函数的求导3.3 参数方程的求导第四章:无穷级数1. 无穷级数的概念与性质1.1 级数部分和的定义与性质1.2 收敛级数与发散级数的定义1.3 级数的比较判别法与比值判别法1.4 权数级数1.5 幂级数- 幂级数的概念与性质- 幂级数的收敛半径与收敛域1.6 函数展开为幂级数2. 函数项级数的收敛性2.1 函数项级数的一致收敛性- 函数项级数的一致收敛性概念 - 一致收敛的Cauchy准则- 一致收敛级数的性质2.2 列举常用函数项级数- 正弦级数与余弦级数- 对数级数与指数级数- 傅里叶级数3. 广义积分3.1 第一类广义积分- 无穷限积分的概念与性质- 无界函数积分的收敛性3.2 第二类广义积分- 函数在无穷点的瑕积分- 瑕积分的收敛性第五章:向量代数与空间解析几何1. 点、向量及其线性运算1.1 点、向量的表示及其线性运算- 向量的表示- 向量的线性运算1.2 平面与直线的方程- 抽象平面与点法式方程- 直线的参数式方程与对称式方程2. 空间解析几何2.1 点、向量的坐标表示2.2 空间曲线的方程- 曲线的参数方程- 曲线的一般方程2.3 曲面的方程- 平面的一般方程- 二次曲面的方程3. 空间直线与平面的位置关系3.1 直线的位置关系3.2 平面与平面的位置关系3.3 直线与平面的位置关系第六章:函数序列与函数级数1. 函数列1.1 函数列的定义与性质1.2 函数列的极限与连续性1.3 函数列的一致收敛性1.4 一致收敛级数的可积性2. 函数级数2.1 函数级数的定义与性质2.2 函数级数的一致收敛性2.3 函数项级数的逐项积分与逐项微分2.4 一致收敛级数的可微性与可积性3. 幂级数展开的收敛域3.1 幂级数展开3.2 幂级数展开函数的性质3.3 幂级数展开的收敛域通过上述格式,可以将高等数学B第二版教材中各个章节的内容准确地进行归纳和总结,使读者能够更清晰地了解和学习相关知识。
高等数学(上)课后习题参考答案
![高等数学(上)课后习题参考答案](https://img.taocdn.com/s3/m/bb8568f077232f60dccca18b.png)
0 ,极大值
f
(e2 )
=
4 e2
2. x = 2 , x = 0 5
3.最大值为 2,最小值为 -2.
4.最小值 y x=−2 = 12
5.
x0
=
16 3
,
Smax
(16 3
)
=
151.7
3.6 函数图形的描绘
1. 水平渐近线 y = 0 .
区间 (0,1), (1, 2), (2,3) 内.
3.提示:利用反证法.
1、(1) arctan x ~ x ;
4、-1 6、0
7、2 x 8、3
(2) a = e 时等价; a ≠ e 时同阶;
(3) 同阶; (4) 同阶.
9、(1) a ; (2) 2 e n
(3) 3 abc 10、0
2、(1) n = 6 ; (2) n = 1; (3) m = 1 ,n = 2 . 2
2
分别补充定义 1,0;
2.1 导数概念 1、(1)-20 (2)1
2、(1) f ′(0) (2) − f ′(x0 ) (3) 2 f ′(x0 )
x = kπ(k ≠ 0)为第二类无穷;
(3) x = 0 第二类无穷. 3、(− ∞,− 2),(− 2,1),(1,+ ∞)
f(x)⎯⎯x→⎯−2→ − 1,f(x)⎯⎯x⎯→1→ ∞. 3
高等数学作业答案(14-15-1)
第一章 函数、极限与连续 1.1 映射与函数
(2)
例:
f
(x)
=
⎧1 ⎨⎩−1
x > 0, x≤0
1.(1) f(x)与 h(x)相同;
g(x)与 f(x),h(x)不同.
高等数学大一教材答案第二版
![高等数学大一教材答案第二版](https://img.taocdn.com/s3/m/6cea162d001ca300a6c30c22590102020640f24c.png)
高等数学大一教材答案第二版---【Chapter 1】概述高等数学是大一学生必修的一门重要数学课程,它是数学基础教育的核心内容之一。
本教材旨在提供高等数学课程第二版的答案,帮助学生更好地理解和掌握数学知识,提高解题能力。
以下是该教材第二版中各章节的答案概述。
---【Chapter 2】函数与极限2.1 函数和映射- 习题解答:- 1. 函数的定义是...- 2. 映射的概念是...- ...2.2 一元函数的极限与连续性- 习题解答:- 1. 极限的定义是...- 2. 函数连续的条件是...- ...2.3 极限运算与极限的性质- 习题解答:- 1. 极限运算的性质有...- 2. 极限的唯一性原理是... - ...2.4 无穷小量与无穷大量- 习题解答:- 1. 无穷小量的定义是...- 2. 无穷大量的定义是...- ...2.5 函数的连续性- 习题解答:- 1. 函数连续的判定方法有... - 2. 连续函数的性质是...---【Chapter 3】导数与微分3.1 导数的概念和几何意义- 习题解答:- 1. 导数的定义是...- 2. 导数的几何意义是...- ...3.2 函数的求导法则- 习题解答:- 1. 基本函数的导数是...- 2. 导数的四则运算法则是... - ...3.3 高阶导数与莱布尼茨公式- 习题解答:- 1. 高阶导数的定义是...- 2. 莱布尼茨公式是...- ...3.4 隐函数与参数方程的导数- 习题解答:- 1. 隐函数求导的方法是... - 2. 参数方程的导数计算是...- ...3.5 微分的概念和微分形式不变性- 习题解答:- 1. 微分的定义是...- 2. 微分形式不变性的原因是...- ...---【Chapter 4】微分中值定理与导数的应用4.1 极值与最值- 习题解答:- 1. 函数极值的判断方法是...- 2. 最值的概念与求解方法是...- ...4.2 微分中值定理- 习题解答:- 1. 罗尔定理的条件是...- 2. 拉格朗日中值定理的条件是...- ...4.3 函数的凹凸性与曲率- 习题解答:- 1. 函数凹凸的判定方法是...- 2. 曲率的定义与计算方法是...- ...4.4 导数求曲线的弧长与曲面的面积- 习题解答:- 1. 曲线弧长的计算公式是...- 2. 曲面面积的计算公式是...- ...---【Chapter 5】定积分与不定积分5.1 定积分的概念和性质- 习题解答:- 1. 定积分的定义是...- 2. 定积分的性质有...- ...5.2 定积分的计算方法- 习题解答:- 1. 换元积分法的步骤是...- 2. 分部积分法的公式是...- ...5.3 定积分的应用- 习题解答:- 1. 平均值定理的含义是...- 2. 积分中值定理的条件是...- ...5.4 不定积分的概念与性质- 习题解答:- 1. 不定积分的定义是...- 2. 不定积分的性质有...- ...5.5 不定积分的基本公式- 习题解答:- 1. 基本积分公式是...- 2. 函数的原函数的计算方法是...- ...---【Chapter 6】微分方程6.1 微分方程的概念和解的存在唯一性- 习题解答:- 1. 微分方程的定义是...- 2. 解的存在唯一性的条件是...- ...6.2 一阶微分方程的解法- 习题解答:- 1. 可分离变量方程的求解步骤是...- 2. 齐次方程的解法是...- ...6.3 高阶线性微分方程的解法- 习题解答:- 1. 齐次线性微分方程的通解形式是...- 2. 非齐次线性微分方程的特解求解方法是... - ...6.4 常系数线性微分方程及其特殊解法- 习题解答:- 1. 齐次常系数线性微分方程的特征方程求解方法是... - 2. 非齐次常系数线性微分方程的特殊解求解方法是... - ...---【Chapter 7】重积分7.1 二重积分的概念和性质- 习题解答:- 1. 二重积分的定义是...- 2. 二重积分的性质有...- ...7.2 二重积分的计算方法- 习题解答:- 1. 直角坐标系下二重积分的计算公式是...- 2. 极坐标系下二重积分的计算公式是...- ...7.3 二重积分的应用- 习题解答:- 1. 二重积分求面积的计算步骤是...- 2. 二重积分求质量的计算方法是...- ...7.4 三重积分的概念和性质- 习题解答:- 1. 三重积分的定义是...- 2. 三重积分的性质有...- ...7.5 三重积分的计算方法- 习题解答:- 1. 笛卡尔坐标系下三重积分的计算公式是...- 2. 柱面坐标系下三重积分的计算公式是...- ...---通过以上章节答案的讲解,希望读者能更好地理解和掌握高等数学的相关知识。
线性代数 卢刚版(高教第二版)课后答案线性代数习题二
![线性代数 卢刚版(高教第二版)课后答案线性代数习题二](https://img.taocdn.com/s3/m/7021f9247cd184254b353565.png)
习题二1、(1)解:0det 023500ba A cb abc c a-=-=-≠ ()()212232202det 232550020det 035022det 02552005,,.5ab a ab aB bc c b a c a abc a bcbca b ab B bc b ab ccab a aba abB c bc c c abc abcc bcc a bcx a y b z c abc----=-=-==-==-----=-==-=--∴==-==-(2)解:()()()()()()()()()()()12321det 2111202001det 1111det 1111111det 1100110012a a b a bA a b a a b b ab a aa aa ba b b a a b a b b a a b a b a bB b a b a a b a aa b a bB a a b a b a a b b a a aa a a a a aB a b b a b a b a b a b a a b b a x a b==+=+--=+---==--===--==-=--=----∴=+(3)解:()()12123412341234011101110111det 161301053500200731073100084234023423431112111det 28401301230143237312731109010928404440724321288443214340311det 11010A B B ---------====-------------===--------=-==-=⨯-=-------34112341244013148det 961311331073112340113det 08,130107338,3,6,0.B B x x x x x ---===-----===---∴=-===2、(1)解:齐次线性方程组仅有0解,当且仅当系数行列式为0。
高等数学课后习题答案
![高等数学课后习题答案](https://img.taocdn.com/s3/m/d04c256d9b89680202d8255a.png)
习题十二1.写出下列级数的一般项:(1)1111357++++;(2)22242462468x x ++++⋅⋅⋅⋅⋅⋅;(3)35793579a a a a -+-+;解:(1)121n U n =-;(2)()2!!2nn xU n =;(3)()211121n n n a U n ++=-+;2.求下列级数的和:(1)()()()1111n x n x n x n ∞=+-+++∑;(2)1n ∞=∑;(3)23111555+++;解:(1)()()()()()()()111111211n u x n x n x n x n x n x n x n =+-+++⎛⎫-=⎪+-++++⎝⎭从而()()()()()()()()()()()()()()11111211212231111111211n Sx x x x x xx x x n xn x n x n x x x n x n ⎛-+-=+++++++⎝⎫++-⎪+-++++⎭⎛⎫-= ⎪++++⎝⎭因此()1lim 21n n S x x →∞=+,故级数的和为()121x x + (2)因为n U =-从而(11n S n =-+-+-++-+=-=+-所以lim 1nn S →∞=1(3)因为21115551115511511145n nn n S =+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎣⎦=-⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎣⎦从而1lim 4n n S →∞=,即级数的和为14.3.判定下列级数的敛散性:(1)1n ∞=-∑;(2) ()()11111661111165451n n+++++⋅⋅⋅-+;(3)()23133222213333nn n--+-++-;(4)1155n +++++;解:(1) (11n S n =++++=从而lim n n S →∞=+∞,故级数发散.(2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++- ⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭从而1lim 5n n S →∞=,故原级数收敛,其和为15. (3)此级数为23q =-的等比级数,且|q |<1,故级数收敛. (4)∵n U =lim 10n n U →∞=≠,故级数发散.4.利用柯西审敛原理判别下列级数的敛散性:(1) ()111n n n +∞=-∑;(2) 1cos 2nn nx∞=∑;(3)1111313233n n n n ∞=⎛⎫+- ⎪+++⎝⎭∑. 解:(1)当P 为偶数时,()()()()122341111112311111231111112112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n pn n n +++++++++++----=++++++++-+--=++++⎛⎫⎛⎫-=----- ⎪ ⎪+-+-++++⎝⎭⎝⎭<+当P 为奇数时,()()()()1223411111123111112311111112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n n n +++++++++++----=++++++++-+-+=++++⎛⎫⎛⎫-=---- ⎪ ⎪+-++++⎝⎭⎝⎭<+因而,对于任何自然数P ,都有12111n n n p U U U n n ++++++<<+,∀ε>0,取11N ε⎡⎤=+⎢⎥⎣⎦,则当n >N 时,对任何自然数P 恒有12n n n p U U U ε++++++<成立,由柯西审敛原理知,级数()111n n n +∞=-∑收敛.(2)对于任意自然数P ,都有()()()1212121cos cos cos 12222111222111221121112212n n n pn n n p n n n p n p n p n U U U x n p x xn n ++++++++++++++++=+++≤+++⎛⎫- ⎪⎝⎭=-⎛⎫=- ⎪⎝⎭<于是, ∀ε>0(0<ε<1),∃N =21log ε⎡⎤⎢⎥⎣⎦,当n >N 时,对任意的自然数P 都有12n n n p U U U ε++++++<成立,由柯西审敛原理知,该级数收敛.(3)取P =n ,则()()()()()121111113113123133213223231131132161112n n n pU U U n n n n n n n n n n ++++++⎛⎫=+-+++- ⎪++++++⋅+⋅+⋅+⎝⎭≥++++⋅+≥+>从而取0112ε=,则对任意的n ∈N ,都存在P =n 所得120n n n p U U U ε++++++>,由柯西审敛原理知,原级数发散.5.用比较审敛法判别下列级数的敛散性.(1)()()111465735n n ++++⋅⋅++;(2)22212131112131n n +++++++++++(3)1πsin 3nn ∞=∑;(4)1n ∞=;(5)()1101nn a a ∞=>+∑;(6)()1121nn ∞=-∑.解:(1)∵()()21135n U nn n =<++而211n n∞=∑收敛,由比较审敛法知1nn U∞=∑收敛.(2)∵221111n n n U n n n n++=≥=++而11n n ∞=∑发散,由比较审敛法知,原级数发散.(3)∵ππsinsin 33lim lim ππ1π33n nn n n n →∞→∞=⋅=而1π3nn ∞=∑收敛,故1πsin 3n n ∞=∑也收敛. (4)∵321n U n=<=而3121n n∞=∑收敛,故1n ∞=收敛.(5)当a >1时,111n n n U a a =<+,而11n n a ∞=∑收敛,故111n n a ∞=+∑也收敛.当a =1时,11lim lim 022n n n U →∞→∞==≠,级数发散.当0<a <1时,1lim lim 101n nn n U a →∞→∞==≠+,级数发散.综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021lim ln 2x x x →-=知121limln 211nx n →∞-=<而11n n ∞=∑发散,由比较审敛法知()1121n n ∞=-∑发散.6.用比值判别法判别下列级数的敛散性:(1)213nn n ∞=∑; (2)1!31nn n ∞=+∑;(3)232333331222322nn n +++++⋅⋅⋅⋅;(1) 12!n nn n n ∞=⋅∑解:(1)23n nn U =,()2112311lim lim 133n n n n n n U n U n ++→∞→∞+=⋅=<,由比值审敛法知,级数收敛.(2)()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3)()()11132lim lim 2313lim 21312n n n n nn n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=>所以原级数发散.(4)()()1112!1lim lim 2!1lim 21122lim 1e 11n n n n nn n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.7.用根值判别法判别下列级数的敛散性:(1) 1531nn n n ∞=⎛⎫ ⎪+⎝⎭∑; (2)()[]11ln 1nn n ∞=+∑;(3)21131n n n n -∞=⎛⎫ ⎪-⎝⎭∑;(4)1nn n b a ∞=⎛⎫ ⎪⎝⎭∑,其中a n →a (n →∞),a n ,b ,a 均为正数.解:(1)55lim1313n n n n →∞==>+,故原级数发散.(2)()1lim01ln 1n n n →∞==<+,故原级数收敛.(3)121lim lim 1931nn n n n -→∞⎛⎫==< ⎪-⎝⎭,故原级数收敛.(4) lim n n n b b a a →∞==,当b <a 时,b a <1,原级数收敛;当b >a 时,ba >1,原级数发散;当b =a 时,ba=1,无法判定其敛散性.8.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1)1-+; (2)()()1111ln 1n n n ∞-=-+∑;(3) 234111*********5353⋅-⋅+⋅-⋅+;(4)()21121!n n n n ∞-=-∑;(5)()()1111n n R n αα∞-=∈-∑;(6) ()11111123nn nn ∞=⎛⎫-++++ ⎪⎝⎭∑.解:(1)()11n n U -=-1nn U ∞=∑>0n =,由莱布尼茨判别法级数收敛,又11121nn n Un∞∞===∑∑是P <1的P 级数,所以1nn U∞=∑发散,故原级数条件收敛.(2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1limln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++所以,1nn U∞=∑发散,所以原级数条件收敛.(3)()11153n n n U -=-⋅民,显然1111115353n nn n n n U ∞∞∞=====⋅∑∑∑,而113nn ∞=∑是收敛的等比级数,故1nn U∞=∑收敛,所以原级数绝对收敛.(4)因为2112lim lim 1n n n n n U U n ++→∞→∞==+∞+.故可得1n nU U +>,得lim 0n n U →∞≠,∴lim 0n n U →∞≠,原级数发散.(5)当α>1时,由级数11n n α∞=∑收敛得原级数绝对收敛.当0<α≤1时,交错级数()1111n n n α∞-=-∑满足条件:()111n n αα>+;1lim0n n α→∞=,由莱布尼茨判别法知级数收敛,但这时()111111n n n nn αα∞∞-===-∑∑发散,所以原级数条件收敛.当α≤0时,lim 0n n U →∞≠,所以原级数发散.(6)由于11111123n n n ⎛⎫⋅>++++ ⎪⎝⎭而11n n ∞=∑发散,由此较审敛法知级数()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑发散.记1111123n U n n ⎛⎫=⋅++++ ⎪⎝⎭,则()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪ ⎪⎝⎭+++⎝⎭>即1n n U U +>又01111lim lim 12311d n n n n U n n x n x →∞→∞⎛⎫=++++ ⎪⎝⎭=⎰由0111lim d lim 01t t t t x t x →+∞→+∞==⎰知lim 0n n U →∞=,由莱布尼茨判别法,原级数()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑收敛,而且是条件收敛.9.判别下列函数项级数在所示区间上的一致收敛性.(1)()1!1nn x n ∞=-∑,x ∈[-3,3];(2)21nn x n ∞=∑,x ∈[0,1];(3) 1sin 3nn nx∞=∑,x ∈(-∞,+∞);(4) 1!nxn e n -∞=∑,|x |<5;(5)1n ∞=,x ∈(-∞,+∞)解:(1)∵()()3!!11nnx n n ≤--,x ∈[-3,3],而由比值审敛法可知()13!1nn n ∞=-∑收敛,所以原级数在 [-3,3]上一致收敛.(2)∵221nx nn ≤,x ∈[0,1],而211n n∞=∑收敛,所以原级数在[0,1]上一致收敛.(3)∵1sin 33n n nx ≤,x ∈(-∞,+∞),而113nn ∞=∑是收敛的等比级数,所以原级数在(-∞,+∞)上一致收敛.(4)因为5!!nnx ee n n -≤,x ∈(-5,5),由比值审敛法可知51!n n e n ∞=∑收敛,故原级数在(-5,5)上一致收敛.(5)531n≤,x ∈(-∞,+∞),而5131n n∞=∑是收敛的P -级数,所以原级数在(-∞,+∞)上一致收敛.10.若在区间Ⅰ上,对任何自然数n .都有|U n (x )|≤V n (x ),则当()1nn Vx ∞=∑在Ⅰ上一致收敛时,级数()1nn Ux ∞=∑在这区间Ⅰ上也一致收敛.证:由()1nn Vx ∞=∑在Ⅰ上一致收敛知, ∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有 |V n +1(x )+V n +2(x )+…+V n +p (x )|<ε,于是,∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有|U n +1(x )+U n +2(x )+…+U n +p (x )|≤V n +1(x )+V n +2(x )+…+V n +p (x ) ≤|V n +1(x )+V n +2(x )+…+V n +p (x )|<ε,因此,级数()1nn Ux ∞=∑在区间Ⅰ上处处收敛,由x 的任意性和与x 的无关性,可知()1nn Ux ∞=∑在Ⅰ上一致收敛.11.求下列幂级数的收敛半径及收敛域:(1)x +2x 2+3x 3+…+nx n+…;(2)1!nn x n n ∞=⎛⎫ ⎪⎝⎭∑;(3)21121n n x n -∞=-∑; (4)()2112n n x n n ∞=-⋅∑;解:(1)因为11limlim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11nn n∞=-∑,由lim(1)0nx nn →-≠知级数1(1)nn n∞=-∑发散,所以级数的收敛域为(-1,1).(2)因为()()1111!11lim lim lim lim e 1!11nn n n n n n n n na n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦所以收敛半径1eR ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e n nn n n ∞=∑;应用洛必达法则求得()10e e1lim 2x x x x →-+=-,故有111lim 12n n n a n a +→∞⎛⎫-=-<⎪⎝⎭由拉阿伯判别法知,级数发散;易知x =-e 时,级数也发散,故收敛域为(-e,e).(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim 21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+= 所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故收敛半径R =1.当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n →∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1).(4)令t =x -1,则级数变为212nn t n n ∞=⋅∑,因为()()2122lim lim 1211n n n n a n n a n n ρ+→∞→∞⋅===⋅++所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n ∞=∑收敛,当t =-1时,级数()31112nn n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2]12.利用幂级数的性质,求下列级数的和函数:(1)21n n nx∞+=∑;(2) 22021n n x n +∞=+∑; 解:(1)由()321lim n n n x n x nx ++→∞+=知,当|x |=<1时,原级数收敛,而当|x |=1时,21n n nx∞+=∑的通项不趋于0,从而发散,故级数的收敛域为(-1,1).记()23111n n n n S nxxnxx ∞∞+-====∑∑易知11n n nx∞-=∑的收敛域为(-1,1),记()111n n S nx x ∞-==∑则()1011xn n x S x x x ∞===-∑⎰于是()()12111x S x x x '⎛⎫== ⎪-⎝⎭-,所以()()()3211x S x x x =<-(2)由2422221lim 23n n n x n x n x ++→∞+=⋅+知,原级数当|x |<1时收敛,而当|x |=1时,原级数发散,故原级数的收敛域为(-1,1),记()2221002121n n n n x x S x x n n ++∞∞====++∑∑,易知级数2121n n x n +∞=+∑收敛域为(-1,1),记()211021n n x S x n +∞==+∑,则()212011n n S x x x ∞='==-∑,故()1011d ln 21xx S x x x +'=-⎰即()()1111ln 021xS S x x +-=-,()100S =,所以()()()11ln 121x xS xS x x x x +==<-13.将下列函数展开成x 的幂级数,并求展开式成立的区间:(1)f (x )=ln(2+x ); (2)f (x )=cos 2x ;(3)f (x )=(1+x )ln(1+x );(4)()2f x =;(5)()23xf x x =+; (6)()()1e e 2x xf x -=-;(7)f (x )=e xcos x ;(8)()()212f x x =-.解:(1)()()ln ln 2ln 2ln 11222x x f x x ⎛⎫⎛⎫===++++ ⎪ ⎪⎝⎭⎝⎭由于()()0ln 111nnn x x n ∞==+-+∑,(-1<x ≤1) 故()()110ln 11221n nn n x x n +∞+=⎛⎫=+- ⎪⎝⎭+∑,(-2≤x ≤2) 因此()()()110ln ln 22121n nn n x x n +∞+==++-+∑,(-2≤x ≤2)(2)()21cos 2cos 2x f x x +==由()()20cos 1!2nnn x x n ∞==-∑,(-∞<x <+∞) 得()()()()()220042cos 211!!22n n n nn n n x x x n n ∞∞==⋅==--∑∑所以()()22011()cos cos 222114122!2n nn n f x x x x n ∞===+⋅=+-∑,(-∞<x <+∞)(3)f (x )=(1+x )ln(1+x )由()()()1ln 111n nn x x n +∞==+-+∑,(-1≤x ≤1)所以()()()()()()()()()()()()()11200111111111111111111111111111n nn n n nn n n n n nn n n n n n n n n n x f x x n x x n n x x x n n n n x xn n x xn n +∞=++∞∞==++∞∞+==+∞+=-∞+==+-+=+--++=++--+++--=+⋅+-=++∑∑∑∑∑∑∑ (-1≤x ≤1)(4)()22f x x ==()()()21!!2111!!2n nn n x n ∞=-=+-∑(-1≤x ≤1)故()()()()221!!2111!!2nn n n x f x x n ∞=⎛⎫-+=- ⎪⎝⎭∑()()()()2211!!211!!2n n n n x xn ∞+=-=+-∑ (-1≤x ≤1)(5)()()()(220211131313313nn n n nn n x f x x x x x x ∞=+∞+==⋅+⎛⎫=⋅- ⎪⎝⎭=-<∑∑(6)由0e !nxn x n ∞==∑,x ∈(-∞,+∞) 得()01e!n n xn x n ∞-=⋅-=∑,x ∈(-∞,+∞)所以()()()()()()0002101e e 2112!!1112!,!21x x n n n n n n n n n n f x x x n n x n x x n -∞∞==∞=+∞==-⎛⎫-=- ⎪⎝⎭=⋅⎡⎤--⎣⎦=∈-∞+∞+∑∑∑∑(7)因为e cos x x 为()()1e cos sin x x i e x i x +=+的实部,而()()[]()10002011!1!ππcos sin !44ππ2cos sin !44n xi n nn n nn n n n n ex i n x i n x i n x n n i n ∞+=∞=∞=∞==+=+⎤⎫=+⎪⎥⎭⎦⎛⎫=⋅+ ⎪⎝⎭∑∑∑∑取上式的实部.得20π2cos4cos !nx nn n e x x n ∞==⋅∑(-∞<x <+∞)(8)由于()1211n n nx x ∞-==-∑ |x |<1而()211412f x x =⋅⎛⎫- ⎪⎝⎭,所以()111001422n n n n n n x x f n x --∞∞+==⋅⎛⎫=⋅= ⎪⎝⎭∑∑(|x |<2)14.将()2132f x x x =++展开成(x +4)的幂级数. 解:21113212x x x x =-++++ 而()()()011113411431314413334713nn nn n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<∑∑又()()()0101122411421214412224622nn nn n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<-∑∑ 所以()()()()()2110011013244321146223n nn n n n n n n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑15.将函数()f x =(x -1)的幂级数.解:因为()()()()()211111111!2!!m nm m m m m m n x x x x x n ---+=++++++-<<所以()()[]()()()3221133333331121222222211111!2!!nf x x n x x x n ==+-⎛⎫⎛⎫⎛⎫⎛⎫----+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+++++---(-1<x -1<1)即()()()()()()()()()()()()()2323133131313251111111222!23!2!3152111022!nnn nn n f x x x x x n n x x n ∞=⋅⋅⋅⋅⋅⋅--+--=+++++----⋅⋅⋅⋅⋅⋅--=+-<<⋅∑16.利用函数的幂级数展开式,求下列各数的近似值:(1)ln3(误差不超过0.0001); (2)cos20(误差不超过0.0001)解:(1)35211ln 213521n x x x x x xn -+⎛⎫=+++++ ⎪--⎝⎭,x ∈(-1,1) 令131x x +=-,可得()11,12x =∈-,故()35211111112ln3ln 212325222112n n -+⎡⎤+++++==⎢⎥⋅⋅⋅-⎣⎦-又()()()()()()()()()()2123212121232521242122112222123222212112222123252111222212112211413221n n n n n n n n n n n r n n n n n n n n n n +++++++++-⎡⎤++=⎢⎥⋅⋅++⎣⎦⎡⎤⋅⋅++=+++⎢⎥⋅⋅+++⎣⎦⎛⎫<+++ ⎪⎝⎭+=⋅+-=+故5810.000123112r <≈⨯⨯61010.000033132r <≈⨯⨯. 因而取n =6则35111111ln 32 1.098623252112⎛⎫=≈++++⎪⋅⋅⋅⎝⎭(2)()()2420ππππ909090cos 2cos 11902!4!!2nn n ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-+-++-∵24π906102!-⎛⎫ ⎪⎝⎭≈⨯;48π90104!-⎛⎫⎪⎝⎭≈故2π90cos2110.00060.99942!⎛⎫⎪⎝⎭≈-≈-≈17.利用被积函数的幂级数展开式,求定积分0.5arctan d xx x ⎰(误差不超过0.001)的近似值.解:由于()3521arctan 13521n n x x x x x n +=-+-++-+,(-1≤x ≤1)故()2420.50.5000.5357357arctan d d 113521925491111111292252492nx x x x x xx n x x x x ⎡⎤=-+-++-⎢⎥+⎣⎦⎛⎫=-+-+ ⎪⎝⎭=-⋅+⋅-⋅+⎰⎰而3110.013992⋅≈,5110.0013252⋅≈,7110.0002492⋅≈.因此0.5350arctan 11111d 0.487292252x x x ≈-⋅+⋅≈⎰18.判别下列级数的敛散性:(1)111n nnn nn n +∞=⎛⎫+ ⎪⎝⎭∑; (2)21cos 32n n nx n ∞=⎛⎫ ⎪⎝⎭∑;(3)()1ln 213nn n n ∞=+⎛⎫+ ⎪⎝⎭∑.解:(1)∵122111n nnnn n nn n n n n n n +⎛⎫>= ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭而()22211221lim lim 10111nnn n n n n n n --++→∞→∞⎡⎤⎛⎫-⎛⎫==≠+⎢⎥ ⎪ ⎪+⎝⎭+⎝⎭⎣⎦故级数2211nn nn∞=⎛⎫ ⎪+⎝⎭∑发散,由比较审敛法知原级数发散.(2)∵2cos 3022n nnx n n ⎛⎫ ⎪⎝⎭<≤由比值审敛法知级数12nn n ∞=∑收敛,由比较审敛法知,原级数21cos 32nn nx n ∞=⎛⎫ ⎪⎝⎭∑收敛.(3)∵()()ln ln 220313nn n n n ++<<⎛⎫+ ⎪⎝⎭由()()()()11ln 33lim lim 3ln 21ln 3lim3ln 2113nn n n n nn U n U n n n ++→∞→∞→∞+=⋅++=+=<知级数()1ln 23nn n ∞=+∑收敛,由比较审敛法知,原级数()1ln 213nn n n ∞=+⎛⎫+ ⎪⎝⎭∑收敛.19.若2lim n n n U →∞存在,证明:级数1nn U∞=∑收敛.证:∵2lim nn n U →∞存在,∴∃M >0,使|n 2U n |≤M ,即n 2|U n |≤M ,|U n |≤2M n而21n Mn ∞=∑收敛,故1n n U ∞=∑绝对收敛.20.证明,若21nn U ∞=∑收敛,则1nn U n∞=∑绝对收敛.证:∵222211111222n n n nU U n U U n n n+=⋅≤=+⋅而由21nn U ∞=∑收敛,211n n ∞=∑收敛,知22111122n n U n ∞=⎛⎫+⋅ ⎪⎝⎭∑收敛,故1n n U n ∞=∑收敛,因而1nn U n∞=∑绝对收敛.21.若级数1nn a∞=∑与1nn b∞=∑都绝对收敛,则函数项级数()1cos sin nn n anx b nx ∞=+∑在R 上一致收敛.证:U n (x )=a n cos nx +b n sin nx ,∀x ∈R 有()cos sin cos sin n n n n n n nU a nx b nx a nx b nx a b x =+≤+≤+由于1nn a∞=∑与1nn b∞=∑都绝对收敛,故级数()1nnn ab ∞=+∑收敛.由魏尔斯特拉斯判别法知,函数项级数()1cos sin nn n anx b nx ∞=+∑在R 上一致收敛.22.计算下列级数的收敛半径及收敛域:(1) 111nn n x n ∞=⎛⎫+ ⎪+⎝⎭∑;(2)()1πsin12n n n x ∞=+∑;(3) ()2112nn n x n ∞=-⋅∑解:(1)111lim1lim 211lim lim lim 22e e n n nn nn nnn n n a a n n n n ρ+→∞+→∞→∞→∞→∞-=⎛⎫+=⋅ ⎪+⎝⎭++⎛⎫=⋅⋅ ⎪++⎝⎭=⋅=∴13R ρ==,又当x =时,级数变为()111311333n nnn n n n n n ∞∞==⎛⎫⎛⎛++=±± ⎪ ++⎝⎭⎝⎭⎝⎭∑∑,因为3lim 033nn n n →∞⎛⎫+=≠ ⎪+⎝⎭所以当3x =±,级数发散,故原级数的收敛半径3R =,收敛域(-3,3).(2)111ππsin122limlim lim ππ2sin 22n n n n n n nnn a a ρ+++→∞→∞→∞====故12R ρ==,又∵πsinπ2limsin 2lim ππ0π22n n n n n n →∞→∞⋅==≠. 所以当(x +1)=±2时,级数()1πsin 12n n n x ∞=+∑发散,从而原级数的收敛域为-2<x +1<2,即-3<x <1,即(-3,1)(3)()212121lim lim 221n n n n n n a n a n ρ++→∞→∞⋅===⋅+ ∴2R =,收敛区间-2<x -1<2,即-1<x <3.当x =-1时,级数变为()2111nn n ∞=-∑,其绝对收敛,当x =3时,级数变为211n n ∞=∑,收敛.因此原级数的收敛域为[-1,3].23.将函数()0arctan d xtF t x t =⎰展开成x 的幂级数.解:由于()210arctan 121n nn t t n +∞==-+∑ 所以()()()()()20002212000arctan d d 121d 112121n xx n n n n xnnn n t t F t tx t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1)24.判别下列级数在指定区间上的一致收敛性:(1)()113n nn x ∞=-+∑,x ∈[-3,+∞);(2)1nn nx ∞=∑,x ∈(2,+∞);(3)()()222211n nx x n n ∞=⎡⎤+++⎣⎦∑,x ∈(-∞,+∞);解:(1)考虑n ≥2时,当x ≥-3时,有()1111133333nn n n nx x --=<<+-+ 而1113n n ∞-=∑收敛,由魏尔斯特拉斯判别法知,级数()113n n n x ∞=-+∑在[-3,+∞)上一致收敛.(2)当x >2时,有2n nn nx =<由1112lim 122n n n n n +→∞+=<知级数12n n n ∞=∑收敛,由魏尔斯特拉斯判别法知,级数1n n n x ∞=∑在(2,+∞)上一致收敛.(3)∀x ∈R 有()()()22224322111n n n x n n n x n n n ≤<=⎡⎤+⋅+++⎣⎦而311n n ∞=∑收敛,由魏尔斯特拉斯判别法知,级数()()222211n n x x n n ∞=⎡⎤+++⎣⎦∑在(-∞,+∞)上一致收敛.25.求下列级数的和函数:(1)()211121n n n x n ∞-=--∑; (2)21021n n x n +∞=+∑; (3)()11!1n n nxn ∞-=-∑; (4)()11nn x n n ∞=+∑.解:(1)可求得原级数的收敛半径R =1,且当|x |=1时,级数()111121n n n ∞-=--∑是收敛的交错级数,故收敛域为[-1,1]记()()()()22111111112121n n n n n n x x S x xS x x n n -∞∞--=====----∑∑则S 1(0)=0,()()122121111n n n S x x x ∞--='==-+∑所以()()11201d arctan 01xS S x xx x -==+⎰即S 1(x )=arctan x ,所以S (x )=x arctan x ,x ∈[-1,1].(2)可求得原级数的收敛半径R =1,且当|x |=1时,原级数发散.记()21021n n x S x n +∞==+∑则()22011n n S x x x ∞='==-∑ ()200111d d ln 121x x x S x x x x x +'==--⎰⎰,即()()11ln 021x S S x x +-=-,S (0)=0所以()11ln21xS x x +=-,(|x |<1)(3)由()11!lim lim 0!1n n n n n a n nan +→∞→∞+==-知收敛域为(-∞,+∞).记()()11!1n n n S x x n ∞-==-∑则()()()111d e !!11nn xxn n x x S x x x x n n -∞∞=====--∑∑⎰,所以()()()e 1e x x S x x x '==+,(-∞<x <+∞)(4)由()()()112lim 111n n n n n →∞++=+知收敛半径R =1,当x =1时,级数变为()111n n n ∞=+∑,由()2111n n n <+知级数收敛,当x =-1时,级数变为()()111n n n n ∞=-+∑是收敛的交错级数,故收敛域为[-1,1].记()()11nn x S x n n ∞==+∑则S (0)=0,()()111n n x xS x n n +∞==+∑, ()[]1111n n x xS x x ∞-=''==-∑ (x ≠1) 所以()[]()0d ln 1xxS x x x ''=--⎰即()[]()ln 1xS x x '=--()[]()()()00d ln 1d 1ln 1xxxS x x x x x x x '=--=--+⎰⎰即()()()1ln 1xSx x x x =--+当x ≠0时,()()111ln 1S x x x ⎛⎫=+-- ⎪⎝⎭,又当x =1时,可求得S (1)=1 (∵()1lim lim 111n n S x n →∞→∞⎛⎫=-= ⎪+⎝⎭)综上所述()()[)()0,01,1111ln 1,1,00,1x S x x x x x =⎧⎪==⎪⎨⎛⎫⎪+--∈- ⎪⎪⎝⎭⎩26.设f (x )是周期为2π的周期函数,它在(-π,π]上的表达式为()32π0,0π.x f x x x -<≤⎧=⎨<≤⎩试问f (x )的傅里叶级数在x =-π处收敛于何值?解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x )的傅里叶级数收敛于()()[]()33ππ11π22π222f f -+-+-=+=+27.写出函数()21π00πx f x x x --≤≤⎧=⎨<≤⎩的傅里叶级数的和函数.解:f (x )满足狄利克雷定理的条件,根据狄利克雷定理,在连续点处级数收敛于f (x ),在间断点x =0,x =±π处,分别收敛于()()00122f f -++=-,()()2πππ122f f -++-=,()()2πππ122f f -+-+--=,综上所述和函数.()221π00π102π1π2x x x S x x x --<<⎧⎪<<⎪⎪=-=⎨⎪⎪-=±⎪⎩28.写出下列以2π为周期的周期函数的傅里叶级数,其中f (x )在[-π,π)上的表达式为:(1)()π0π,4ππ0;4x f x x ⎧≤<⎪⎪=⎨⎪--≤<⎪⎩(2)()()2πx π=-≤≤f x x ;(3)()ππ,π,22ππ,,22ππ,π;22⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩x f x x x x (4)()()cosππ2=-≤≤x f x x .解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有 ()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰ ()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx xn n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n x n ∞==--∑(x ≠n π)(2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰, ()()ππ22-π0124cos d cos d 1ππnn a f x nx x x nx x n===-⋅⎰⎰ (n =1,2,…)所以,f (x )的傅里叶级数展开式为:()()221π41cos 3nn f x nxn ∞==+-⋅∑ (-∞<x <∞)(3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n nb f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰所以()()12112π1sin sin π2n n n f x nxn n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z ) (4)因为()cos2xf x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),()()π0π12π2π2111cos cos d π2211sin sin 12211π224110,1,2,π41n n x n x x n x n x n n n n +⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=+⎢⎥+-⎢⎥⎣⎦⎛⎫=-= ⎪-⎝⎭⎰所以f (x )的傅里叶级数展开式为:()()12124cos 1ππ41n n nxf x n ∞+==+--∑ x ∈[-π,π]29.将下列函数f (x )展开为傅里叶级数:(1)()()πππ42xf x x =--<<(2)()()sin 02πf x xx =≤≤解:(1)()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-=⎪⎝⎭⎰⎰ []()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx x nx n n --⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰ ()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n -⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nxf x n ∞==+-∑ (-π<x <π) (2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰()()()()()π022ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1nn x n x x n n n n =+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰所以()()2124cos2ππ41n nx f x n ∞=-=+-∑(0≤x ≤2π)30.设f (x )=x +1(0≤x ≤π),试分别将f (x )展开为正弦级数和余弦级数. 解:将f (x )作奇延拓,则有a n =0 (n =0,1,2,…)()()()()ππ0022sin d 1sin d ππ111π2πn nb f x nx x x nx x n ==+--+=⋅⎰⎰从而()()()1111π2sin πnn f x nx n ∞=--+=∑(0<x <π)若将f (x )作偶延拓,则有b n =0 (n =1,2,…)()()ππ00222cos d 1cos d ππ0,2,4,64,1,3,5,πn a f x nx x x nx x n n n ==+=⎧⎪=-⎨=⎪⎩⎰⎰ ()()ππ0π012d 1d π2ππa f x x x x -==+=+⎰⎰从而()()()21cos 21π242π21n n xf x n ∞=-+=--∑(0≤x ≤π)31.将f (x )=2+|x | (-1≤x ≤1)展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和.解:f (x )在(-∞,+∞)内连续,其傅里叶级数处处收敛,由f (x )是偶函数,故b n =0,(n =1,2,…)()()1101d 22d 5a f x x x x -==+=⎰⎰()()()1112cos d 22cos d 0,2,4,64,1,3,5,πn a f x nx x x nx xn n n -==+=⎧⎪-=⎨=⎪⎩⎰⎰所以()()()221cos 21π542π21n n xf x n ∞=-=--∑,x ∈[-1,1]取x =0得,()2211π821n n ∞==-∑,故()()22222111111111π48212n n n n n n n n ∞∞∞∞=====+=+-∑∑∑∑所以211π6n n ∞==∑ 32.将函数f (x )=x -1(0≤x ≤2)展开成周期为4的余弦级数.解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…)()()220201d 1d 02a f x x x x -==-=⎰⎰ ()()()222022221ππcos d 1cos d 2224[11]π0,2,4,6,8,1,3,5,πn nn x n xa f x x x xn n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰⎰故()()()22121π81cosπ221n n x f x n ∞=-=-⋅-∑(0≤x ≤2)33.设()()011,0,2cos π1222,1,2n n x x a f x s x a n xx x ∞=⎧≤≤⎪⎪==+⎨⎪-<<⎪⎩∑,-∞<x <+∞,其中()102cos πd n a f x n x x=⎰,求52s ⎛⎫- ⎪⎝⎭.解:先对f (x )作偶延拓到[-1,1],再以2为周期延拓到(-∞,+∞)将f (x )展开成余弦级数而得到 s (x ),延拓后f (x )在52x =-处间断,所以515511122222221131224s f f ff +-+-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+-=-+-⎢⎥⎢⎥⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎛⎫=+= ⎪⎝⎭34.设函数f (x )=x 2(0≤x <1),而()1sin πn n s x b n x∞==∑,-∞<x <+∞,其中()12sin πd n b f x n x x=⎰(n =1,2,3,…),求12s ⎛⎫- ⎪⎝⎭.解:先对f (x )作奇延拓到,[-1,1],再以2为周期延拓到(-∞,+∞),并将f (x )展开成正弦级数得到s (x ),延拓后f (x )在12x =-处连续,故.211112224s f ⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 35.将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为:(1)f (x )=1-x 21122x ⎛⎫-≤< ⎪⎝⎭; (2)()21,30,1,0 3.x x f x x +-≤<⎧=⎨≤<⎩ 解:(1) f (x )在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x ),由于f (x )为偶函数,有b n =0 (n =1,2,3,…)()()112221002112d 41d 6a f x x x x -==-=⎰⎰,()()()()112221021222cos2n πd 41cos2n πd 11,2,πn n a f x x x x x xn n -+==--==⎰⎰所以()()12211111cos 2π12πn n f x n xn +∞=-=+∑ (-∞<x <+∞)(2) ()()303033011d 21d d 133a f x x x x x --⎡⎤==++=-⎢⎥⎣⎦⎰⎰⎰,()()()()330330221πcos d 331π1π21cos d cos d 3333611,1,2,3,πn nn x a f x xn x n x x x xn n --==++⎡⎤=--=⎣⎦⎰⎰⎰ ()()()()33033011πsin d 331π1π21sin d sin d 333361,1,2,πn n n x b f x xn x n x x x xn n --+==++=-=⎰⎰⎰而函数f (x )在x =3(2k +1),k =0,±1,±2,…处间断,故()()()122116π6π11cos 1sin 2π3π3n n n n x n x f x n n ∞+=⎧⎫⎡⎤=-+--+-⎨⎬⎣⎦⎩⎭∑(x ≠3(2k +1),k =0,±1,±2,…)36.把宽为τ,高为h ,周期为T 的矩形波(如图所示)展开成傅里叶级数的复数形式.解:根据图形写出函数关系式()0,22,220,22T t u t h t T t ττττ⎧-≤<-⎪⎪⎪=-≤<⎨⎪⎪≤≤⎪⎩()()22022111d d d 2Tl T l h c u t t u t t h t l T T Tτττ---====⎰⎰⎰()()π2π222π2π22222π2211e d ed 212πe d e d 2ππsin e 2ππn T n i t li t lTT n l n n i t i t T T n i t T c u t t u t tlTh T n h t i t T T n i T h h n n i n T τττττττ----------==-⎛⎫⎛⎫==⋅- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎡⎤=-= ⎪⎣⎦⎝⎭⎰⎰⎰⎰故该矩形波的傅里叶级数的复数形式为()2π1πsin eπn i t Tn n h h n u t T n Tττ∞-=-∞≠=+∑(-∞<t <+∞,且3,22t ττ≠±±,…)37.设f (x )是周期为2的周期函数,它在[-1,1]上的表达式为f (x )=e -x,试将f (x )展成傅里叶级数的复数形式.解:函数f (x )在x ≠2k +1,k =0,±1,±2处连续.()()()[]()()()π1π111π11211e d e e d 221e 21πe e 1121π1πsinh111πn i x l x in x ln l x n i n n c f x x xl n i n in in ------+--===-+-=⋅⋅-+-=⋅⋅-+⎰⎰故f (x )的傅里叶级数的复数形式为()()()()π21π1sinh1e 1πn in xn in f x n ∞=-∞⋅--=+∑ (x ≠2k +1,k =0,±1,±2,…)38.求矩形脉冲函数(),00,A t T f t ≤≤⎧=⎨⎩其他的傅氏变换。
高等数学(上册)(第二版)(张明望,沈忠环,杨雯靖主编)PPT模板
![高等数学(上册)(第二版)(张明望,沈忠环,杨雯靖主编)PPT模板](https://img.taocdn.com/s3/m/32735fdbf12d2af90342e666.png)
第二节函数的 求导法则与基 本初等函数求 导公式
第五节函数的 微分
第三节高阶导 数
总习题二
第二章导数与 微分
第一节导数概念
一、引例
六、导数
01
二、导数
的几何意
义
06
的定义
02Βιβλιοθήκη 05五、导函数
04
四、单侧导 数
三、函数
03
的可导性 与连续性
的关系
第二章导数与 微分
第二节函数的求导法则与基本初等 函数求导公式
高等数学(上册)(第二版) (张明望,沈忠环,杨雯靖主编)
演讲人
2 0 2 x - 11 - 11
目录
01. 第一章函数与极限
02. 第二章导数与微分
03. 第三章微分中值定理与导 数的应用
04. 第四章不定积分
05. 第五章定积分及其应用
06. 第六章常微分方程
07. 部分习题答案与提示
08. 附录
公式
三、曲率 圆
04 第四章不定积分
第四章不定积分
第一节不定积分的概念 与性质
第三节分部积分法
第五节mathematica在 不定积分计算中的应用
第二节换元积分法
第四节有理函数的不定 积分
总习题四
第四章不定 积分
第一节不定积分的概念与性 质
一、原函数
二、不定积分 的定义
四、基本积分 表
三、不定积分 的性质
三、γ函数
02
二、无界函数的反
常积分
01
一、无穷限的反常
积分
第五章定积 分及其应用
第五节定积分在几何上的应 用
一、定积分的 元素法
二、平面图形 的面积
高等数学课后习题答案
![高等数学课后习题答案](https://img.taocdn.com/s3/m/159f256f910ef12d2af9e7aa.png)
习题6-21. 求图6-21 中各画斜线部分的面积:(1)解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为61]2132[)(1022310=-=-=⎰x x dx x x A .(2)解法一 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为 1|)()(1010=-=-=⎰x x e ex dx e e A ,解法二 画斜线部分在y 轴上的投影区间为[1, e ]. 所求的面积为1)1(|ln ln 111=--=-==⎰⎰e e dy y y ydy A ee e.(3)解 画斜线部分在x 轴上的投影区间为[-3, 1]. 所求的面积为 332]2)3[(132=--=⎰-dx x x A .(4)解 画斜线部分在x 轴上的投影区间为[-1, 3]. 所求的面积为332|)313()32(3132312=-+=-+=--⎰x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积:(1) 221x y =与x 2+y 2=8(两部分都要计算);解:388282)218(220220*********--=--=--=⎰⎰⎰⎰dx x dx x dx x dx x x A34238cos 16402+=-=⎰ππtdt .346)22(122-=-=ππS A .(2)xy 1=与直线y =x 及x =2;解:所求的面积为⎰-=-=212ln 23)1(dx x x A .(3) y =e x , y =e -x与直线x =1;解:所求的面积为⎰-+=-=-1021)(ee dx e e A x x .(4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0).解所求的面积为a b e dy e A ba y ba y -===⎰ln ln ln ln3. 求抛物线y =-x 2+4x -3及其在点(0, -3)和(3, 0)处的切线所围成的图形的面积. 解:y '=-2 x +4.过点(0, -3)处的切线的斜率为4, 切线方程为y =4(x -3). 过点(3, 0)处的切线的斜率为-2, 切线方程为y =-2x +6. 两切线的交点为)3 ,23(, 所求的面积为49]34(62[)]34(34[23023232=-+--+-+-+---=⎰⎰dx x x x x x x A .4. 求抛物线y 2=2px 及其在点),2(p p 处的法线所围成的图形的面积.解 2y ⋅y '=2p .在点),2(p p处, 1),2(=='p p y p y , 法线的斜率k =-1,法线的方程为)2(p x p y --=-, 即y px -=23.求得法线与抛物线的两个交点为),2(p p 和)3,29(p p -.法线与抛物线所围成的图形的面积为 233232316)612123()223(p y p y y p dy p y y p A pp pp =--=--=--⎰. 5. 求由下列各曲线 所围成的图形的面积; (1)ρ=2a cos θ ;解:所求的面积为⎰⎰==-2022222cos 4)cos 2(21πππθθθθd a d a A =πa 2. (2)x =a cos 3t , y =a sin 3t ;解 所求的面积为 ⎰⎰⎰===2042202330sin cos 34)cos ()sin (44ππtdt t a t a d t a ydx A a2206204283]sin sin [12a tdt tdt a πππ=-=⎰⎰.(3)ρ=2a (2+cos θ )解所求的面积为 2202220218)cos cos 44(2)]cos 2(2[21a d a d a A πθθθθθππ=++=+=⎰⎰. 6. 求由摆线x =a (t -sin t ), y =a (1-cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积. 解:所求的面积为 ⎰⎰⎰-=--==aa a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a=++-=⎰. 7. 求对数螺线ρ=ae θ(-π≤θ≤π)及射线θ=π所围成的图形面积.解所求的面积为 )(421)(21222222ππππθππθθθ----===⎰⎰e e a d e a d ae A .8. 求下列各曲线所围成图形的公共部分的面积. (1)ρ=3cos θ 及ρ=1+cos θ 解曲线ρ=3cos θ 与ρ=1+cos θ 交点的极坐标为)3,23(πA , )3,23(π-B . 由对称性, 所求的面积为πθθθθπππ45])cos 3(21)cos 1(21[2232302=++=⎰⎰d d A .(2)θρsin 2=及θρ2cos 2=.解曲线θρsin 2=与θρ2cos 2=的交点M 的极坐标为M )6,22(π. 所求的面积为2316]2cos 21)sin 2(21[246602-+=+=⎰⎰πθθθθπππd d A .9. 求位于曲线y =e x 下方, 该曲线过原点的切线的左方以及x 轴上方之间的图形的面积.解 设直线y =kx 与曲线y =e x 相切于A (x 0, y 0)点, 则有 ⎪⎩⎪⎨⎧=='==ke x y e y kx y x x 00)(0000,求得x 0=1, y 0=e , k =e . 所求面积为21ln 21)ln 1(00020e dy y y y y y e dy y y e e e ee=⋅+-=-⎰⎰.10. 求由抛物线y 2=4ax 与过焦点的弦所围成的图形的面积的最小值.解 设弦的倾角为α. 由图可以看出, 抛物线与过焦点的弦所围成的图形的面积为 10A A A +=.显然当2πα=时, A 1=0; 当2πα<时, A 1>0.因此, 抛物线与过焦点的弦所围成的图形的面积的最小值为 2030383822a x a dx ax A a a===⎰.11. 把抛物线y 2=4ax 及直线x =x 0(x 0>0)所围成的图形绕x 轴旋转, 计算所得旋转体的体积. 解 所得旋转体的体积为20020222400x a x a axdx dx y V xx x ππππ====⎰⎰.12. 由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得两个旋转体的体积.解 绕x 轴旋转所得旋转体的体积为ππππ712871207206202====⎰⎰x dx x dx y V x . 绕y 轴旋转所得旋转体的体积为 ⎰⎰-=-⋅⋅=8328223282dy y dy x V y πππππππ56453328035=-=y .13. 把星形线3/23/23/2a y x =+所围成的图形, 绕x 轴旋转, 计算所得旋转体的体积.解 由对称性, 所求旋转体的体积为 dx x a dx y V aa⎰⎰-==03323202)(22ππ30234323234210532)33(2a dx x x a x a a aππ=-+-=⎰.14. 用积分方法证明图中球缺的体积为)3(2H R H V -=π.证明 ⎰⎰---==RHR RHR dy y R dy y x V )()(222ππ)3()31(232H R H y y R RH R -=-=-ππ.15. 求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积:(1)2x y =, 2y x =, 绕y 轴;解 ππππ103)5121()(1052102210=-=-=⎰⎰y y dy y ydy V .(2)ax a y ch =, x =0, x =a , y =0, 绕x 轴; 解 ⎰⎰⎰===102302202chch )(udu a au x dx ax a dx x y V a a πππ令 1022310223)21221(4)2(4u u u u e u e a du e e a ---+=++=⎰ππ)2sh 2(43+=a π. (3)16)5(22=-+y x , 绕x 轴. 解⎰⎰------+=44224422)165()165(dx x dx x V ππ2421601640π⎰=-=dx x .(4)摆线x =a (t -sin t ), y =a (1-cos t )的一拱, y =0, 绕直线y =2a . 解 ⎰⎰--=ππππa a dx y a dx a V 202202)2()2( ⎰----=πππ20223)sin ()]cos 1(2[8t t da t a a a 232023237sin )cos 1(8ππππa tdt t a a =+-=⎰. 16. 求圆盘222a y x ≤+绕x =-b (b >a >0)旋转所成旋转体的体积.解 ⎰⎰------+=aaaa dy y ab dy y a b V 222222)()(ππ2202228ππb a dy y a b a=-=⎰.17. 设有一截锥体, 其高为h , 上、下底均为椭圆, 椭圆的轴长分别为2a 、2b 和2A 、2B , 求这截锥体的体积.解 建立坐标系如图. 过y 轴上y 点作垂直于y 轴的平面, 则平面与截锥体的截面为椭圆, 易得其长短半轴分别为 y h a A A --, y h b B B --.截面的面积为π)()(y h b B B y h a A A --⋅--.于是截锥体的体积为])(2[61)()(0bA aB AB ab h dy y h b B B y h a A A V h+++=--⋅--=⎰ππ.18. 计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积.解 设过点x 且垂直于x 轴的截面面积为A (x ), 由已知条件知, 它是边长为x R -2的等边三角形的面积, 其值为)(3)(22x R x A -=, 所以 322334)(3R dx x R V RR=-=⎰-.19. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为⎰=ba dx x xf V )(2π.证明 如图, 在x 处取一宽为dx 的小曲边梯形, 小曲边梯形绕y 轴旋转所得的旋转体的体积近似为2πx ⋅f (x )dx , 这就是体积元素, 即 dV =2πx ⋅f (x )dx ,于是平面图形绕y 轴旋转所成的旋转体的体积为 ⎰⎰==babadx x xf dx x xf V )(2)(2ππ.20. 利用题19和结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积.解 2002)sin cos (2cos 2sin 2πππππππ=+-=-==⎰⎰x x x x xd xdx x V .21. 计算曲线y =ln x 上相应于83≤≤x 的一段弧的长度. 解 ⎰⎰⎰+=+='+=8328328321)1(1)(1dx xx dx x dx x y s ,令t x =+21, 即12-=t x , 则 23ln 211111113223232222322+=-+=-=-⋅-=⎰⎰⎰⎰dt t dt dt t t dt t tt t s . 22. 计算曲线)3(3x x y -=上相应于1≤x ≤3的一段弧的长度.解 x x x y 31-=, x x y 2121-=',x x y 4121412+-=', )1(2112x x y +='+,所求弧长为3432)232(21)1(213131-=+=+=⎰x x x dx xx s .23. 计算半立方抛物线32)1(32-=x y 被抛物线32x y =截得的一段弧的长度.解 由⎪⎩⎪⎨⎧=-=3)1(32232x y x y 得两曲线的交点的坐标为)36 ,2(, )36 ,2(-.所求弧长为⎰'+=21212dx y s .因为2)1(22-='x y y , yx y 2)1(-=', )1(23)1(32)1()1(34242-=--=-='x x x y x y . 所以 ]1)25[(98)13(13232)1(2312232121-=--=-+=⎰⎰x d x dx x s . 24. 计算抛物线y 2=2px 从顶点到这曲线上的一点M (x , y )的弧长. 解 ⎰⎰⎰+=+='+=y y ydy y p p dy p y dy y x s 02202021)(1)(1y y p y p y p y p 022222])ln(22[1++++=py p y p y p p y 2222ln22++++=. 25. 计算星形线t a x 3cos =, t a y 3sin =的全长. 解 用参数方程的弧长公式.dt t y t x s ⎰'+'=2022)()(4π⎰⋅+-⋅=202222]cos sin 3[)]sin (cos 3[4πdt t t a t t aa tdt t 6cos sin 1220==⎰π.26. 将绕在圆(半径为a )上的细线放开拉直, 使细线与圆周始终相切, 细线端点画出的轨迹叫做圆的渐伸线, 它的方程为 )sin (cos t t t a x +=, )cos (sin t t t a y -=. 计算这曲线上相应于t 从0变到π的一段弧的长度.解 由参数方程弧长公式 ⎰⎰+='+'=ππ22022)sin ()cos ()]([)]([dt t at t at dt t y t x s202ππa tdt a ==⎰.27. 在摆线x =a (t -sin t ), y =a (1-cos t )上求分摆线第一拱成1: 3的点的坐标.解 设t 从0变化到t 0时摆线第一拱上对应的弧长为s (t 0), 则 ⎰⎰+-='+'=0220220]sin [)]cos 1([)]([)]([)(t t dt t a t a dt t y t x t s)2cos 1(42sin 2000ta dt t a t -==⎰.当t 0=2π时, 得第一拱弧长s (2π)=8a . 为求分摆线第一拱为1: 3的点为A (x , y ), 令a t a 2)2cos 1(40=-,解得320π=t , 因而分点的坐标为:横坐标a a x )2332()32sin 32(-=-=πππ,纵坐标a a y 23)32cos 1(=-=π,故所求分点的坐标为)23 ,)2332((a a -π.28. 求对数螺线θρa e =相应于自θ=0到θ=ϕ的一段弧长. 解 用极坐标的弧长公式. θθθρθρϕθθϕd ae e d s a a ⎰⎰+='+=022022)()()()()1(1122-+=+=⎰θϕθθa a e aa d e a . 29. 求曲线ρθ=1相应于自43=θ至34=θ的一段弧长.解 按极坐标公式可得所求的弧长 ⎰⎰-+='+=3443222344322)1()1()()(θθθθθρθρd d s23ln 12511344322+=+=⎰θθθd .30. 求心形线ρ=a (1+cos θ )的全长. 解 用极坐标的弧长公式. θθθθθρθρππd a a d s ⎰⎰-++='+=0222022)sin ()cos 1(2)()(2a d a 82cos 40==⎰πθθ.习题6-31. 由实验知道, 弹簧在拉伸过程中, 需要的力F (单位: N )与伸长量s (单位: cm)成正比, 即F =ks (k 为比例常数). 如果把弹簧由原长拉伸6cm , 计算所作的功.解 将弹簧一端固定于A , 另一端在自由长度时的点O 为坐标原点, 建立坐标系. 功元素为dW =ksds , 所求功为 182160260===⎰s k ksds W k(牛⋅厘米). 2. 直径为20cm 、高80cm 的圆柱体内充满压强为10N/cm 2的蒸汽. 设温度保持不变, 要使蒸汽体积缩小一半, 问需要作多少功? 解 由玻-马定律知:ππ80000)8010(102=⋅⋅==k PV .设蒸气在圆柱体内变化时底面积不变, 高度减小x 厘米时压强为P (x )牛/厘米2, 则ππ80000)]80)(10[()(2=-⋅x x P , π-=80800)(x P .功元素为dx x P dW )()10(2⋅=π, 所求功为 2ln 8008018000080800)10(400402πππππ=-=-⋅⋅=⎰⎰dx dx W (J). 3. (1)证明: 把质量为m 的物体从地球表面升高到h 处所作的功是hR mgRhW +=, 其中g 是地面上的重力加速度, R 是地球的半径;(2)一颗人造地球卫星的质量为173kg , 在高于地面630km 处进入轨道. 问把这颗卫星从地面送到630的高空处, 克服地球引力要作多少功?已知g =9.8m/s 2, 地球半径R =6370km .证明 (1)取地球中心为坐标原点, 把质量为m 的物体升高的功元素为 dyykMm dW 2=, 所求的功为)(2h R R mMh k dy y kMm W hR R+⋅==⎰+. (2)533324111075.910)6306370(106370106301098.51731067.6⨯=⨯+⨯⨯⨯⨯⨯⋅⨯=-W (kJ). 4. 一物体按规律3ct x =作直线运动, 媒质的阻力与速度的平方成正比. 计算物体由x =0移至x =a 时, 克服媒质阻力所作的功. 解 因为3ct x =, 所以23)(cx t x v ='=, 阻力4229t kc kv f -=-=. 而32)(cx t =, 所以 34323429)(9)(x kc cx kc x f -=-=. 功元素dW =-f (x )dx , 所求之功为 37320343203432072799)]([a kc dx x kcdx x kc dx x f W a aa===-=⎰⎰⎰. 5. 用铁锤将一铁钉击入木板, 设木板对铁钉的阻力与铁钉击入木板的深度成正比, 在击第一次时, 将铁钉击入木板1cm . 如果铁锤每次打击铁钉所做的功相等, 问锤击第二次时, 铁钉又击入多少? 解 设锤击第二次时铁钉又击入h cm , 因木板对铁钉的阻力f 与铁钉击入木板的深度x (cm)成正比, 即f =kx , 功元素dW =f dx =kxdx , 击第一次作功为k kxdx W 21101==⎰,击第二次作功为)2(212112h h k kxdx W h+==⎰+.因为21W W =, 所以有 )2(21212h h k k +=, 解得12-=h (cm).6. 设一锥形贮水池, 深15m , 口径20m , 盛满水, 今以唧筒将水吸尽, 问要作多少功?解 在水深x 处, 水平截面半径为x r 3210-=, 功元素为dx x x dx r x dW 22)3210(-=⋅=ππ,所求功为⎰-=1502)3210(dx x x W π⎰+-=15032)9440100(dx x x x π =1875(吨米)=57785.7(kJ).7. 有一闸门, 它的形状和尺寸如图, 水面超过门顶2m . 求闸门上所受的水压力.解 建立x 轴, 方向向下, 原点在水面. 水压力元素为xdx dx x dP 221=⋅⋅=, 闸门上所受的水压力为21252252===⎰x xdx P (吨)=205. 8(kN).8. 洒水车上的水箱是一个横放的椭圆柱体, 尺寸如图所示. 当水箱装满水时, 计算水箱的一个端面所受的压力.解 建立坐标系如图, 则椭圆的方程为11)43()43(2222=+-y x . 压力元素为dxx x dx x y x dP 22)43()43(38)(21--⋅=⋅⋅=,所求压力为 ⎰⎰-⋅⋅+=--⋅=2223022cos 43cos 43)sin 1(4338)43()43(38ππtdx t t dx x x Pππ169cos 49202==⎰tdx (吨)=17.3(kN).(提示: 积分中所作的变换为t x sin 4343=-)9. 有一等腰梯形闸门, 它的两条底边各长10m 和6m , 高为20m . 较长的底边与水面相齐. 计算闸门的一侧所受的水压力. 解 建立坐标系如图. 直线AB 的方程为 x y 1015-=,压力元素为dx x x dx x y x dP )5110()(21-⋅=⋅⋅=,所求压力为1467)5110(200=-⋅=⎰dx x x P (吨)=14388(千牛).10. 一底为8cm 、高为6cm 的等腰三角形片, 铅直地沉没在水中, 顶在上, 底在下且与水面平行, 而顶离水面3cm , 试求它每面所受的压力.解 建立坐标系如图.腰AC 的方程为x y 32=, 压力元素为dx x x dx x x dP )3(34322)3(+=⋅⋅⋅+=,所求压力为168)2331(34)3(34602360=+=+=⎰x x dx x x P (克)=1.65(牛).11. 设有一长度为l 、线密度为μ的均匀细直棒, 在与棒的一端垂直距离为a 单位处有一质量为m 的质点M , 试求这细棒对质点M 的引力.解 建立坐标系如图. 在细直棒上取一小段dy , 引力元素为 dy y a Gm y a dy m G dF 2222+=+⋅=μμ, dF 在x 轴方向和y 轴方向上的分力分别为dF ra dF x -=, dF r ydF y =.2202222022)(1)(la a l Gm dy y a y a aGm dy y a Gm r a F l lx +-=++-=+⋅-=⎰⎰μμμ, )11()(12202222022l a a Gm dy y a y a Gm dy y a Gm r y F l ly +-=++=+⋅=⎰⎰μμμ. 12. 设有一半径为R 、中心角为 ϕ 的圆弧形细棒, 其线密度为常数 μ . 在圆心处有一质量为m 的质点F . 试求这细棒对质点M 的引力. 解 根据对称性, F y =0.θμcos 2⋅⋅⋅=R dsm G dF x θθμθθμd RGm R Rd Gm cos cos )(2=⋅=, θθμϕϕd R Gm F x ⎰-=22cos2sin 2cos 220ϕμθθμϕR Gm d R Gm ==⎰. 引力的大小为2sin 2ϕμR Gm , 方向自M 点起指向圆弧中点.总 习 题 六1. 一金属棒长3m , 离棒左端xm 处的线密度为11)(+=x x ρ(kg/m ). 问x 为何值时, [0, x ]一段的质量为全棒质量的一半? 解 x 应满足⎰⎰+=+300112111dt t dt t x.因为212]12[1100-+=+=+⎰x t dt t x x, 1]12[2111213030=+=+⎰t dt t , 所以 1212=-+x ,45=x (m).2. 求由曲线ρ=a sin θ, ρ=a (cos θ+sin θ)(a >0)所围图形公共部分的面积. 解⎰++⋅=432222)sin (cos 21)2(21ππθθθπd a a S 24322241)2sin 1(28a d a a -=++=⎰πθθπππ.3. 设抛物线c bx ax y ++=2通过点(0, 0), 且当x ∈[0, 1]时, y ≥0. 试确定a 、b 、c 的值, 使得抛物线c bx ax y ++=2与直线x =1, y =0所围图形的面积为94, 且使该图形绕x 轴旋转而成的旋转体的体积最小.解 因为抛物线c bx ax y ++=2通过点(0, 0), 所以c =0, 从而 bx ax y +=2.抛物线bx ax y +=2与直线x =1, y =0所围图形的面积为 23)(102b a dx bx ax S +=+=⎰.令9423=+b a , 得968a b -=.该图形绕x 轴旋转而成的旋转体的体积为)235()(221022ab b a dx bx ax V ++=+=⎰ππ)]968(2)968(315[22a a a a -+-+=π. 令0)]128(181********[=-+-⋅+2=a a a d dV π, 得35-=a , 于是b =2. 4. 求由曲线23x y =与直线x =4, x 轴所围图形绕y 轴旋转而成的旋转体的体积.解 所求旋转体的体积为πππ7512722240274023=⋅=⋅=⎰x dx x x V .5. 求圆盘1)2(22≤+-y x 绕y 轴旋转而成的旋转体的体积. 解 )2(122312⎰--⋅⋅=dx x x V π22224cos )sin 2(4 sin 2ππππ=+=-⎰-tdt t t x 令. 6. 抛物线221x y =被圆322=+y x 所需截下的有限部分的弧长.解 由⎪⎩⎪⎨⎧==+222213x y y x 解得抛物线与圆的两个交点为)1 ,2(-, )1 ,2(,于是所求的弧长为202222])1ln(2112[212x x x x dx x s ++++=+=⎰)32ln(6++=.7. 半径为r 的球沉入水中, 球的上部与水面相切, 球的比重与水相同, 现将球从水中取出, 需作多少功?解 建立坐标系如图. 将球从水中取出时, 球的各点上升的高度均为2r . 在x 处取一厚度为dx 的薄片, 在将球从水中取出的过程中, 薄片在水下上升的高度为r +x , 在水上上升的高度为r -x . 在水下对薄片所做的功为零, 在水上对薄片所做的功为 dx x r x r g dW ))((22--=π, 对球所做的功为g r x d x r x r g W rr 22234))((ππ=--=⎰-.8. 边长为a 和b 的矩形薄板, 与液面成α角斜沉于液体内, 长边平行于液面而位于深h 处, 设a >b , 液体的比重为ρ, 试求薄板每面所受的压力.解 在水面上建立x 轴, 使长边与x 轴在同一垂面上, 长边的上端点与原点对应. 长边在x 轴上的投影区间为[0, b cos α], 在x 处x 轴到薄板的距离为h +x tan α. 压力元素为dx x h gadx a x h g dP )tan (cos cos )tan (ααρααρ+=⋅⋅+⋅=, 薄板各面所受到的压力为)sin 2(21)tan (cos cos 0αρααραb h gab dx x h ga P b +=+=⎰. 9. 设星形线t a x 3cos =, t a y 3sin =上每一点处的线密度的大小等于该点到原点距离的立方, 在原点O 处有一单位质点, 求星形线在第一象限的弧段对这质点的引力.解 取弧微分ds 为质点, 则其质量为 ds y x ds y x 322322)()(+=+,其中tdt t a dt t a t a ds cos sin 3])sin [(])cos [(2323='+'=.设所求的引力在x 轴、y 轴上的投影分别为F x 、F y , 则有⎰+⋅++⋅⋅=202222322)()(1πds yx x y x y x G F x 2204253sin cos 3Ga tdt t Ga ==⎰π, ⎰+⋅++⋅⋅=22222322)()(1πds yx y y x y x G F x 2204253sin cos 3Ga tdt t Ga ==⎰π,所以)53 ,53(22Ga Ga =F .。
高等数学教材课后答案解析
![高等数学教材课后答案解析](https://img.taocdn.com/s3/m/e43465682bf90242a8956bec0975f46527d3a7d1.png)
高等数学教材课后答案解析一、导数与微分1. 函数极限与连续的基本概念在高等数学教材的第一章中,主要介绍了函数极限与连续的基本概念。
函数极限是研究函数性质的重要工具,而连续性又是函数是否光滑连续的重要标志。
2. 导数的概念与求导公式在这一章节中,我们讨论了导数的概念以及求导的公式。
通过求导,可以确定函数的变化趋势以及函数的性质。
在求导的过程中,需要熟练掌握基本的求导公式,如常函数导数为零、幂函数导数公式等。
3. 高阶导数与隐函数求导高阶导数是导数的进一步推广,它可以衡量函数变化的速率变化。
在这一节中,我们需要掌握求高阶导数的方法,如使用多次求导的方法。
4. 微分与微分中值定理微分是导数的重要应用,它可以近似地估计函数的变化。
微分中值定理是微分学中的重要定理,它可以帮助我们理解函数的性质。
二、二元函数与多元函数的导数学1. 二元函数的极限及连续二元函数是一种含有两个自变量的函数,它在实际问题中的应用较为广泛。
在这一章节中,我们需要学习二元函数极限的概念以及二元函数的连续性。
2. 偏导数与全微分偏导数是多元函数导数的一种推广,它可以衡量函数在某个自变量方向上的变化速率。
全微分是微分学中的重要概念,它可以帮助我们理解多元函数的性质。
3. 隐函数与参数方程求导在实际问题中,我们会遇到一些隐含的函数关系或参数方程,需要通过求导来确定函数的变化规律。
掌握隐函数与参数方程求导的方法是十分重要的。
4. 多元函数的极值与条件极值多元函数的极值问题是数学分析中的经典问题,它有助于我们研究多元函数的性质。
在这一章节中,我们需要学习多元函数极值的判定条件以及求解极值的方法。
三、重积分学1. 二重积分与三重积分的概念重积分是积分学中的重要内容,它可以用于求解面积、体积等实际问题。
在这一章节中,我们需要学习二重积分与三重积分的概念以及它们的性质。
重积分的计算是数学分析中的重要内容,掌握计算技巧对于解决实际问题非常关键。
在这一节中,我们需要学习换元法、极坐标法等计算重积分的方法。
高等数学第二版教材答案微课版
![高等数学第二版教材答案微课版](https://img.taocdn.com/s3/m/2678cde4294ac850ad02de80d4d8d15abf230054.png)
高等数学第二版教材答案微课版1. 引言高等数学是大学数学的一门重要课程,它对于培养学生的数学思维、分析和解决问题的能力具有重要意义。
而高等数学教材作为学生学习的主要工具之一,提供了一系列的练习题用以巩固所学知识。
然而,由于答案未提供,学生在课后无法核对答案,难以评估学习成果和找到错误。
因此,本文将为高等数学第二版教材提供微课版答案,以便学生在自学过程中能够更加高效地掌握知识。
2. 微课版答案概览本微课版答案将囊括高等数学第二版教材中所有章节和习题的答案,以视频教学的形式展现。
学生只需扫描教材页面下方的二维码,便可进入相应的微课答案视频,通过观看视频来学习和核对答案。
每个章节的答案视频都以清晰明了的演示和解答方式呈现,让学生可以更加直观地理解解题思路和方法。
3. 微课版答案的优势相较于传统的纸质答案,微课版答案具有以下几个明显的优势:3.1 多媒体展示微课版答案通过视频形式呈现,不仅在语言表达上更加丰富生动,而且通过图表、动画等多媒体手段的辅助,使得学生更容易理解和掌握解题过程。
3.2 灵活性及实时性微课版答案可以通过互联网实时更新,新增题目可以及时发布答案视频,避免了纸质答案无法及时更新的问题。
同时,学生可以根据自身情况自主选择观看,根据需要多次观看,以便更好地消化所学知识。
3.3 便捷性与可携性微课版答案无需纸质教材,只需携带手机或平板电脑即可随时学习。
不论是在寝室、图书馆还是在课堂上,学生都可以通过扫描二维码便捷地查看答案,提高学习效率。
4. 使用微课版答案的建议为了更好地利用微课版答案来提升学习效果,建议学生们在自学过程中采取以下几个步骤:4.1 首先,仔细阅读教材内容,理解基本概念和核心知识点。
4.2 其次,独立完成习题,并在完成后核对答案。
4.3 如果答案不正确或有疑问,学生可通过扫描教材下方二维码观看相应章节的微课答案视频。
4.4 观看微课答案视频时,要积极思考问题解决的方法和思路,并注意视频中的重点步骤和关键概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学第二版上册课后答案【篇一:《高等数学》详细上册答案(一--七)】lass=txt>《高等数学》上册(一----七)第一单元、函数极限连续使用教材:同济大学数学系编;《高等数学》;高等教育出版社;第六版;同济大学数学系编;《高等数学习题全解指南》;高等教育出版社;第六版;核心掌握知识点:1. 函数的概念及表示方法;2. 函数的有界性、单调性、周期性和奇偶性;3. 复合函数、分段函数、反函数及隐函数的概念;4. 基本初等函数的性质及其图形;5. 极限及左右极限的概念,极限存在与左右极限之间的关系;6. 极限的性质及四则运算法则;7. 极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法;8. 无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限; 9. 函数连续性的概念,左、右连续的概念,判断函数间断点的类型;10. 连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),会用这些性质.学习任务巩固练习阶段:(本阶段是复习能力提升的关键阶段,高钻学员一定要有认真吃透本章节内所有习题)第二单、元函数微分学计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版本单元中我们应当学习——1. 导数和微分的概念、关系,导数的几何意义、物理意义,会求平面曲线的切线方程和法线方程,函数的可导性与连续性之间的关系;2. 导数和微分的四则运算法则,复合函数的求导法则,基本初等函数的导数公式,一阶微分形式的不变性;3. 高阶导数的概念,会求简单函数的高阶导数;4. 会求以下函数的导数:分段函数、隐函数、由参数方程所确定的函数、反函数;5. 罗尔(rolle)定理、拉格朗日(lagrange)中值定理、泰勒(taylor)定理、柯西(cauchy)中值定理,会用这四个定理证明;6. 会用洛必达法则求未定式的极限;7. 函数极值的概念,用导数判断函数的单调性,用导数求函数的极值,会求函数的最大值和最小值;8. 会用导数判断函数图形的凹凸性,会求函数图形的拐点,会求函数的水平、铅直和斜渐近线;9. 曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.【篇二:高数第二册习题及答案】class=txt>系班姓名学号第一节对弧长的曲线积分一.选择题1.设l是连接a(?1,0),b(0,1),c(1,0)的折线,则?l(x?y)ds? [ b](a)0 (b)2 (c)22 (d)2x2y2d ] ?l43(a)s(b)6s(c)12s(d)24s二.填空题1.设平面曲线l为下半圆周y???x2,则曲线积分?l(x2?y2)ds?2.设l是由点o(0,0)经过点a(1,0) 到点b(0,1)的折线,则曲线积分三.计算题 1.?l(x?y)ds? 1?22??l(x2?y2)nds,其中l为圆周x?acost,y?asint(0?t?2?).解:原式??2?a2?a2n?1?2?dt?2??a 2.2n?1??l,其中l为圆周x2?y2?a2,直线y?x及x轴在第一象限内所围成的扇形的整个边界.解:设圆周与x轴和直线y?x的交点分别为a和b,于是原式???oa????abbo?在直线oa上y?0,ds?dx得?oa??exdx0aa?e?1在圆周ab上令x?acos?,y?asin?,0????4得?ab??4ea?a?ea??4在直线bo上y?x,ds?2dx得?bo?adx?e?1所以原式?(2?3.a?)ea?2 4?ly2ds,其中l为摆线的一拱x?a(t?sint),y?a(1?cost)(0?t?2?). 2解:原式?2a??(1?cost)3???(1?cost)dt52256a3?15或原式?a2?2?03(1?cost)????2?02?(1?cost)dt (1?cost)dt5252333?2?t(2sin)2dt222?ttttdt??16a3?(1?2cos2?cos4)dcos022425?8a?2?sin5256a3?15高等数学练习题第十章曲线积分与曲面积分系班姓名学号第二节对坐标的曲线积分一.选择题1.设l以(1,1),(?1,1),(?1,?1),(1,?1)为顶点的正方形周边,为逆时针方向,则?lx2dy?y2dx?[ d ](a)1(b)2(c)4(d)0 2.设l是抛物线y?x2(?1?x?1),x增加的方向为正向,则(a)0,?lxds和?xdy?ydx?[ a ]l2525(b)0,0 (c),(d),0 3838二.填空题1.设设l是由原点o沿y?x2到点a(1,1),则曲线积分?l(x?y)dy? 16232.设l是由点a(1,?1)到b(1,1)的线段,则三.计算题?l(x2?2xy)dx?(y2?2xy)dy= 1.设l为取正向圆周x2?y2?a2,求曲线积分??l(2xy?2y)dx?(x2?4x)dy.解:将圆周写成参数形式x?acos?,y?asin?,(0???2?),于是原式??{(2a2cos?sin??2asin?)?(?asin?)?(a2cos2??4acos?)?acos? }d?2???2?{(?2a3cos?sin2??2a2sin2?)?(a3cos3??4a2cos2?)}d???2a2?22.设l是由原点o沿y?x到点a(1,1),再由点a沿直线y?x到原点的闭曲线,求??larctanydy?dx x解:i1??arctan?dx ?oax?(2xarctanx?1)dx1?[x2arctanx?x?arctanx?x]10?i2???2?2yarctan?dx ?aox?1(arctan1?1)dx?1?? 4所以原式?i1?i2? ? 3.计算?24?2?1??1?4??l(x?y)dx?(y?x)dy,其中l是:2(1)抛物线y?x上从点(1,1)到点(4,2)的一段弧;(2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线. 解:(1)原式? ? ??2121{(y2?y)?2y?(y?y2)}dy(2y3?y2?y)dy343(2)过(1,1),(4,2)的直线方程为x?3y?2,dx?3dy 所以原式? ??21{3(4y?2)?(2?2y)}dy?21(10y?4)dy?11(3)过(1,1),(1,2)的直线方程为x?1,dx?0,1?y?2所以 i1??21(y?1)dy?1 2(3)过(1,2),(4,2)的直线方程为y?2,dy?0,1?x?4所以 i2??41(x?2)dx?272于是原式?i1?i2?14 4.求?l(y2?z2)dx?2yzdyxdz?2,其中l为曲线x?t,y?t2,z?t3(0?t?1)按参数增加的方向进行.解:由题意,原式? ? ?高等数学练习题第十章曲线积分与曲面积分系班姓名学号第三节格林公式及其应用一.选择题 1.设曲线积分?{(t01014?t6)?4t6?3t4}dt?(3t6?2t4)dt1 35?l(x4?4xyp)dx?(6xp?1y2?5y4)dy与路径无关,则p? [ c](a)1 (b)2 (c)3(d)4 2.已知(x?ay)dx?ydy为某函数的全微分,则a?[ d] 2(x?y)(a)?1 (b)0(c)1 (d)212xx223.设l为从a(1,)沿曲线2y?x到点b(2,2)的弧段,则曲线积分?dx?2dy= [ d]ly2y(a)?3 (b)3(c)3(d)0 2【篇三:高等数学(上)第二章练习题】txt>一. 填空题1.设f(x)在x?x0处可导,且x0?0,则limx?x?02.设f(x)在x处可导,则limf2(x?h)?f2(x?2h) h?02h?______________3.设f(x)???axx?0ex?1x?0在x?0处可导,则常数a?______?4.已知f?(x)?sinxx?5.曲线y?x?lnxx上横坐标为x?1的点的切线方程是 6.设y?xxsinx ,则y??7.设y?e?2x,则dyx??x0?0.1?8.若f(x)为可导的偶函数,且f?(x0)?5,则f?(?x0)?二. 单项选择题9.函数f(x)在x?x0处可微是f(x)在x?x0处连续的【】a.必要非充分条件b.充分非必要条件c.充分必要条件 d.无关条件10. 设limf(x)?f(a)x?a(x?a)2?l,其中l为有限值,则在f(x)在x?a处【】a.可导且f?(a)?0 b.可导且f?(a)?0c.不一定可导d.一定不可导11.若f(x)?max(2x,x2),x?(0,4),且f?(a)不存在,a?(0,4),则必有【a.a?1 b.a?2 c.a?3 d. a?1212.函数f(x)?x在x?0处【】a.不连续b.连续但不可导c.可导且导数为零 d.可导但导数不为零?2213.设f(x)???3xx?1,则f(x)在x?1处【】??x2x?1a.左、右导数都存在b.左导数存在但右导数不存在c.右导数存在但左导数不存在 d.左、右导数都不存在14.设f(x)?3x3?x2|x|,使f(n)(0)存在的最高阶数n为【】a.0 b. 1 c.2 d. 315.设f(u)可导,而y?f(ex)ef(x),则y??【】a.ef(x)[f?(x)f(ex)?exf?(ex)]b. ef(x)[f?(x)f(ex)?f?(ex)]c.ef(x)f?(ex)?ef?(x)f(ex) d. exef(x)f?(ex)?ef?(x)f(ex)16.函数f(x)?(x2?x?2)|x3?x|不可导点的个数是【】a.3 b. 2 c.1 d. 0】17.设f(x)可导,f(x)?f(x)(1?|sinx|),要使f(x)在x?0处可导,则必有【】a.f(0)?0b.f?(0)?0c.f(0)?f?(0)?0 d.f(0)?f?(0)?018.已知直线y?x与y?logax相切,则a?【】a.e b. e c.ee d.e19.已知f(x)?x(1?x)(2?x)?(100?x),且f?(a)?2?(98)!,则a?【】 a.0 b.1 c.2 d.3 ?1?1e1,则当?x?0时,在x?x0处dy是【】 3a.比?x高阶的无穷小b.比?x低阶的无穷小c.与?x等价的无穷小d.与?x同阶但非等价的无穷小221.质点作曲线运动,其位置与时间t的关系为x?t?t?2,y?3t2?2t?1,则当t?1时,质点的速度大小等于【】 20.已知f?(x0)?a.3 b.4 c.7 d.5三. 解答下列各题22.设f(x)?(x?a)?(x),?(x)在x?a连续,求f?(a)23.y?esin24.y?2(1?2x) ,求dy x2arcsin,求y?? 2d2y325.若f(u)二阶可导,y?f(x),求2 dx?1??,求y?(1) ?x??x?ln(1?t2)dyd2y27.若? ,求与2 dxdx?y?t?arctant28.y?(x2?1)e?x,求y(24)29.y?arctanx,求y(n)(0) 26.设y??1?1x?x2?xx?0?30.已知f(x)??ax3?bx2?cx?d0?x?1_在(??,??)内连续且可导,?2x?xx?1?求a,b,c,d的值xy31.求曲线e?2x?y?3上纵坐标为y?0的点处的切线方程?x?t(1?t)?032.求曲线?y 上对应t?0处的法线方程 ?te?y?1?0233.过原点o向抛物线y?x?1作切线,求切线方程?34.顶角为60底圆半径为a的圆锥形漏斗盛满了水,下接底圆半径为b(b?a)的圆柱形水桶,当漏斗水面下降的速度与水桶中水面上升的速度相等时,漏斗中水面的高度是多少?35.已知f(x)是周期为5的连续函数,它在x?0的某个邻域内满足关系式f(1?sinx)?3f(1?sinx)?8x??(x),其中,?(x)是当x?0时比x高阶的无穷小,且f(x)在x?1处可导,求曲线y?f(x)在点(6,f(6))处的切线方程习题答案及提示5. y?x x 6.x[(1?lnx)sinx?cosx]7. ?0.2 8. ?5 一. 1.?(x0) 2. 3f(x)f?(x) 3. 1 4二. 9. b 10. a 11. b 12. c 13. b 14. c 15. a16. b 17. a 18. c 19. c 20. d 21. d三. 22. 提示:用导数定义 f?(a)??(a) 23.dy??2esin2(1?2x)sin(2?4x)dxd2y343 24. y??? 25. 2?6xf?(x)?9xf(x) dxdytd2y1? ,2?(t?t?1) 26. y?(1)?1?2ln2 27. dx2dx428. y(24)?e?x[x2?48x?551]12x??y??29.由y?(x)? 1?x2(1?x2)2由(1?x2)y?(x)?1 两边求n阶导数,_利用莱布尼兹公式,代入x?0,得递推公式,y(n?1)(0)??n(n?1)y(n?1)(0)__利用y?(0)?1和y??(0)?0 ?(?1)k(2k)!n?2k?1 k?0,1,2,? y(0)??0n?2k?2?30. 提示:讨论分段点x?0与x?1处连续性与可导性a?2, b??3, c?1 , d?031. x?y?1?032. ex?y?1?0(n)33.y??2x35. 提示:关系式两边取x?0的极限,得f(1)?0limx?0f(1?sinx)?3f(1?sinx)?8x?(x)sinx??lim???8 ?x?0sinxxx? ?sinx而 f(1?sinx)?3f(1?sinx)f(1?t)?3f(1?t)?limx?0t?0sinxtf(1?t)?f(1)f(1?t)?f(1)???lim??3?4f?(1)?t?0t?t??得f?(1)?2,由周期性f(6)?f(1)?0f(x)?f(6)f?(6)?lim 令x?5?t 由周期性得 x?6x?6f(t)?f(1)?lim?2 t?1t?1切线方程y?2(x?6) lim。