概率论考试题以及解析汇总
概率论与数理统计》期末考试试题及解答
概率论与数理统计》期末考试试题及解答1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.3.解:由题意可得:P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1/e6.解答:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ)=5λe^(-λ/2)得e^(-λ/2)=0.4,即λ=ln2,所以P(X=2)=e^(-λ)λ^2/2!=1/6,又因为P(X≤1)=4P(X=2),所以P(X=0)+P(X=1)=4P(X=2),即e^(-λ)+λe^(-λ)=4λe^(-λ),解得λ=ln2,故P(X=3)=e^(-λ)λ^3/3!=1/e6.3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<4;其它为0.解答:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=F_X(y)-F_X(0)。
因为X~U(0,2),所以F_X(0)=0,F_X(y)=y/2,故F_Y(y)=y/2,所以f_Y(y)=F_Y'(y)=1/2,0<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-λ),则λ=2,P{min(X,Y)≤1}=1-e^(-λ)。
解答:因为P(X>1)=1-P(X≤1)=e^(-λ),所以λ=ln2.因为X,Y相互独立且均服从参数为λ的指数分布,所以P{min(X,Y)≤1}=1-P{min(X,Y)>1}=1-P(X>1)P(Y>1)=1-e^(-λ)。
(完整版)概率论与数理统计复习题带答案讲解
;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。
概率论习题及答案习题详解
222习题七( A )1、设总体X 服从参数为N 和p 的二项分布,n X X X ,,,21 为取自X 的一个样本,试求参数p 的矩估计量与极大似然估计量.解:由题意,X 的分布律为: ()(1),0k N kN P X k p p k N k -⎛⎫==-≤≤⎪⎝⎭. 总体X 的数学期望为(1)(1)011(1)(1)1NNk N k k N k k k N N EX k p p N p p p k k ----==-⎛⎫⎛⎫=-=- ⎪ ⎪-⎝⎭⎝⎭∑∑ 1((1))N N p p p N p -=+-=则E X p N=.用X 替换E X 即得未知参数p 的矩估计量为ˆX pN=.设12,,n x x x 是相应于样本12,,n X X X 的样本值,则似然函数为111211(,,;)()(1)nniii i n nx nN x n i i i i NL x x x p P Xx pp x ==-==∑∑⎛⎫===⋅- ⎪⎝⎭∏∏取对数111ln ln ln ()ln(1)nn ni i i i i iN L x p nN x p x ===⎛⎫=+⋅+-⋅- ⎪⎝⎭∑∑∑,11ln (1)nnii i i xnN x d L dpp p ==-=--∑∑.223令ln 0d L dp=,解得p 的极大似然估计值为11ˆnii x npN==∑.从而得p 的极大似然估计量为11ˆnii X X npNN===∑.2,、设n X X X ,,,21 为取自总体X 的一个样本,X 的概率密度为22,0(;)0,x x f x θθθ⎧<<⎪=⎨⎪⎩其它.其中参数0θ>,求θ的矩估计.解:取n X X X ,,,21 为母体X 的一个样本容量为n 的样本,则222()3xE X xf x dx x dx θθθ+∞-∞==⋅=⎰⎰32E X θ⇒=用X 替换E X 即得未知参数θ的矩估计量为3ˆ2X θ=.3、设12,,,n X X X 总体X 的一个样本, X 的概率密度为⎪⎩⎪⎨⎧≤>=--0,0,0,);(1x x ex x f xαλαλαλ其中0>λ是未知参数,0>α是已知常数,求λ的最大似然估计.解:设12,,,n x x x 为样本12,,,n X X X 的一组观测值,则似然函数为2241()1121(),0(,,,;)0,ni i n x n n i i n i x e x L x x x αλαλαλ=--=⎧∑⎪⋅≥=⎨⎪⎩∏ 其他 取对数 11ln ln ln (1)(ln )()n ni i i i L n n x x αλααλ===++--∑∑解极大似然方程1ln 0ni i d L nx d αλλ==-=∑得λ的极大似然估计值为1ˆnii nxαλ==∑从而得λ的极大似然估计量为1ˆnii nXαλ==∑.4、设总体X 服从几何分布,10,,2,1,)1()(1<<=-==-p k p p k X P k 试利用样本值n x x x ,,,21 ,求参数p 的矩估计和最大似然估计.解:因11111(1)(1)k k k k EX k p p p k p p∞∞--===⋅-=⋅-=∑∑,用X 替换E X 即得未知参数p 的矩估计量为1ˆpX=.在一次取样下,样本值12(,,,)n x x x 即事件1122{},{},,{}n n X x X x X x === 同时发生,由于12,,,n X X X 相互独立,得联合分布律为121122(,,,;)()(),,()n n n L x x x p P X x P X x P X x ====22512111(1)(1)(1)n x x x p p p p p p ---=-⋅-- ,即得极大似然函数为1()(1)ni i x nnL p p p =-∑=-取对数 1ln ()ln ()ln(1)ni i L p n p x n p ==+--∑解极大似然方程1ln ()01nii xnd L p n dppp=-=-=-∑得p 的极大似然估计值为11ˆ1nii pxn==∑从而得p 的极大似然估计量为111ˆ1nii pXXn===∑.5、设总体X 的概率密度为()1;exp ,2x f x σσσ⎧⎫=-⎨⎬⎩⎭0σ>为未知参数, n X X X ,,,21 为总体X 的一样本,求参数σ的最大似然估计.解:设12,,,n x x x 为样本12,,,n X X X 的一组观测值,则似然函数为121111(,,,;)(;)(;)exp{||}(2)nn n ini L x x x f x f x xσσσσσ====-∑取对数1211ln (,,,;)ln(2)||nn ii L x x x n xσσσ==--∑226解极大似然方程21ln 1||0nii d L nxd σσσ==-+=∑得σ的极大似然估计值11ˆ||nii x nσ==∑从而得σ的极大似然估计量为11ˆ||nii Xnσ==∑.6、证明第5题中σ的最大似然估计量为σ的无偏估计量.证明:由第5题知σ的最大似然估计量为11ˆ||nii X nσ==∑故 1111ˆ(||)||nniii i E E XE X nnσ====∑∑又1||||||exp{}2i x E X x dx σσ+∞-∞=⋅-⎰12exp{}exp{}()2x x x x dx x d σσσσ+∞+∞=⋅-=⋅-⎰⎰[exp{}|exp{}]xxx dx σσσ+∞+∞=-⋅---=⎰从而 ˆE σσ=,即ˆσ是σ的无偏估计. 7,、设总体X 的概率密度为()222220;0x x e x f x σσσ-⎧⎪>=⎨⎪⎩,,,其它.,20σ>为未知参数, n X X X ,,,21 为总体X 的一个样本,求参数2σ的的矩估计量和最大似然估计量.解:因22222(;)2xxE X x f x dx x e dx σσσ-+∞+∞-∞=⋅=⋅⎰⎰222222222002()[2|2]xxxxd exeedx σσσ---+∞+∞+∞=-=--⎰⎰22722222202xxedx edx σσ--+∞+∞===⎰⎰用X 替换E X 即得未知参数σ的矩估计量为ˆX σ=从而得未知参数2σ的估计量为22ˆ)X σ=设12,,,n x x x 为样本12,,,n X X X 的一组观测值,则似然函数为21211()222211212(,,,;)(;)(;)ni nix i n n nx L x x x f x f x eσσσσσ=-=∑==∏取对数222111ln ln ln 2nniii i L xn xσσ===--∑∑解极大似然方程22241ln 102nii d L nxd σσσ==-+=∑得2σ的极大似然估计值2211ˆ2nii x nσ==∑从而得未知参数2σ的估计量为2211ˆ2nii xnσ==∑.8、设总体),(~2σμN X ,μ已知,σ为未知参数, n X X X ,,,21 为X 的一个样本,∑=∧-=ni i X c 1||μσ, 求参数c ,使∧σ为σ的无偏估计.解:由无偏估计的定义,要使∧σ为σ的无偏估计,则ˆE σσ=228又11ˆ(||)||n ni i i i E E c X u c E X u σ===-=-∑∑由题意知总体),(~2σμN X ,从而22()2||||x u i E X u x u dx σ--+∞-∞-=-⎰2222()()2211[()]()x u x u u ux u dx x u dx σσ----+∞-∞=--+-⎰⎰且2222()220()x u yx u yux u dxydy σσ--=--+∞+∞-=⎰⎰22222()2yyed σσ-+∞=--=⎰由对称性有||i E X u -=从而有cnσ=,即2c n=.9、设θˆ是参数θ的无偏估计量,且有0)ˆ(>θD ,试证22)ˆ(ˆθθ=不是2θ的无偏估计量.证明:因为θˆ是参数θ的无偏估计量,故ˆE θθ=,且0)ˆ(>θD有22222ˆˆˆˆˆ()()()()E E D E D θθθθθθθ==+=+>即22)ˆ(ˆθθ=不是2θ的无偏估计量.10、设总体),(~2σμN X ,321,,X X X 是来自X 的样本,试证:估计量32112110351ˆX X X ++=μ;32121254131ˆX XX ++=μ;3213216131ˆX XX ++=μ229都是μ的无偏估计,并指出它们中哪一个最有效.证明:总体),(~2σμN X ,321,,X X X 是来自X 的样本,则1123123131131ˆ()51025102E E X X X E X E X E X u μ=++=++= 2123123115115ˆ()34123412E E X X X EX EX EX u μ=++=++=3123123111111ˆ()362362E E X X X EX EX EX u μ=++=++=即估计量123ˆˆˆ,,μμμ都是μ的无偏估计. 又211231231311911ˆ()510225100450D D X X X D X D X D X μσ=++=++=22123123115112525ˆ()341291614472D D X X X D X D X D X μσ=++=++=231231231111117ˆ()362936418D D X X X D X D X D X μσ=++=++=有 213ˆˆˆD D D μμμ<<,从而估计量2ˆμ最有效. 11,、设12,,,n X X X 是总体()20,X N σ 的一个样本,20σ>,证明:211ni i X n=∑是2σ的相合估计量.证明:由题意,总体()20,X N σ ,则220,EXEXσ==由样本的独立同分布性知2221111()nniii i E X EX nnσ====∑∑,即211ni i X n=∑是2σ的无偏估计.2221111()()nniii i D X D Xnn===∑∑又2422()()i i i D X E X E X =-,且23022222224432222|3]xxxi EX xdx x ex edx σσσ---+∞+∞+∞-∞-∞-∞==-⎰⎰2222423xx edx σσσ-+∞-∞==故2422444()()32i i i D X EX EX σσσ=-=-=,有42112()0()nii D X n nnσ==→→∞∑故211ni i X n=∑是2σ的相合估计量12、设总体X 的数学期望为μ,方差为2σ,分别抽取容量为1n 和2n 的两个独立样本,1X ,2X 分别为两样本均值,试证明:如果,a b 满足1a b +=,则12Y aX bX =+是μ的无偏估计量,并确定,a b ,使得()D Y最小.解:由题意,2,EX u D X σ==,且1X ,2X 分别为容量为1n 和2n 的两个独立样本得样本均值,故2111,E X u D X n σ==,2222,E X u D X n σ==.当1a b +=时,有12()EY aEX bEX a b u u=+=+=,即12Y aX bX =+是μ的无偏估计量.222221212()abD Y a D X b D X n n σ=+=+令2212(1)()aa g a n n -=+,由()0g a '=知函数()g a 的稳定点为231112n a n n =+,且1121211()2()0n g n n n n ''=+>+,故112n a n n =+为函数唯一极小值点,即当121212,n n a b n n n n ==++时,()D Y 最小.13、设12,,,n X X X 是总体X 的一个样本, X 的概率密度为();f x θ,0θ>,未知,已知()222nXn χθ,试求θ的置信水平为1α-的置信区间.解:由题意,统计量()222nXn χθ,则给定置信度为1α-时,有()()22122(22)1nXP n n ααχχαθ-≤≤=- ()()221222()122nXnXP n n ααθαχχ-⇔≤≤=-由置信区间的定义知,θ的置信水平为1α-的置信区间为()()221222,22nX nX n n ααχχ-⎛⎫⎪⎪ ⎪⎝⎭. 14、从大批彩色显像管中随机抽取100只,其平均寿命为10000小时,可以认为显像管的寿命X 服从正态分布.已知均方差40=σ小时,在置信水平0.95下求出这批显像管平均寿命的置信区间.解:设12,,,n X X X 是母体X 的样本容量为n 的子样,则显像管平均寿命(10000,16)X N构造统计量(0,1)X uU N -=,有232111222(||)1(1P U UP X UU X Uααααα---<=-⇔-<<+=-由题意10.950.05αα-=⇒=,查表可得0.975 1.96U =,故显像管平均寿命X 的置信度为95%的置信区间为:4040(10000 1.96 1.96(100007.84)-+=±.15、设随机地调查26年投资的年利润率(%),得样本标准差(%)15=S ,设投资的年利润率X 服从正态分布,求它的方差的区间估计(置信水平为0.95).解:由题意,构造统计量2222(1)(1)n Sn χχσ-=- ,则给定置信水平为1α-,有2222122(1)((1)(1))1n SP n n ααχχασ---<<-=-22222122(1)(1)()1(1)(1)n Sn SP n n αασαχχ---⇔<<=---取26,0.15,10.95n S α==-=,查表可得20.025(25)13.120χ=,20.975(25)40.616χ=,故方差的置信度为95%的置信区间为2222122(1)(1)(,)(0.014,0.043)(1)(1)n Sn Sn n ααχχ---=--.16,、从一批钉子中抽取16枚,测得其长度为(单位:厘米)2.14, 2.10, 2.13, 2.15, 2.13, 2.12, 2.13, 2.10, 2.15, 2.12, 2.14, 2.10, 2.13, 2.11, 2.14, 2.11.设钉子的长度X 服从正态分布,试求总体均值μ的置信水平为0.90的置信区间.233解:设1216,,,X X X 是母体X 的样本容量为16的子样,由题意知2.215X =,242.933310S -=⨯.构造统计量(1)X u t t n -=- ,有111222(||)1(1P t tP X tu X tααααα---<=-⇔-<<+=-由题意10.900.10αα-=⇒=,查表可得0.95(15) 1.7459t =,故显像管平均寿命X的置信度为90%的置信区间为:(2.1175,2.1325)=±. 17、生产一个零件所需时间(单位:秒)),(~2σμN X ,观察25个零件的生产时间得5.5=x ,73.1=s .试求μ和2σ的置信水平为0.95的置信区间.解:设1225,,,X X X 是母体X 的样本容量为25的子样,由题意知5.5X =, 1.73S =.构造统计量(1)X u t t n -=- ,有111222(||)1(1P t tP X tu X tααααα---<=-⇔-<<+=-由题意10.950.05αα-=⇒=,查表可得0.975(24) 2.0639t =,故参数μ的置信度为95%的置信区间为:(4.786,6.214)(5.50.714)=±.234构造统计量2222(1)(1)n Sn χχσ-=- ,则给定置信水平为1α-,有2222122(1)((1)(1))1n SP n n ααχχασ---<<-=-22222122(1)(1)()1(1)(1)n Sn SP n n αασαχχ---⇔<<=---取16, 1.73,0.05n S α===,查表可得20.025(15) 6.2621χ=,20.95(15)27.4884χ=,故方差的置信度为95%的置信区间为(1.825,5.. 18、产品的某一指标),(~2σμN X ,已知04.0=σ,μ未知.现从这批产品中抽取n 只对该指标进行测定,问n 需要多大,才能以95%的可靠性保证μ的置信区间长度不大于0.01?19、设A 和B 两批导线是用不同工艺生产的,今随机地从每批导线中抽取5根测量其电阻,算得721007.1-⨯=A s ,62103.5-⨯=B s ,若A 批导线的电阻服从),(211σμN ,B 批导线的电阻服从),(222σμN ,求2221σσ的置信水平为0.90的置信区间.20,、从甲乙两个蓄电池厂的产品中分别抽取6个产品,测得蓄电池的容量(A.h)如下:甲厂 140 , 138 , 143 , 141 , 144 , 137;乙厂135 , 140 , 142 , 136 , 138 , 140设蓄电池的容量服从正态分布,且方差相等,求两个工厂生产的蓄电池的容量均值差的95%置信区间.( B )1、设总体X 的概率分别为235其中102θθ⎛⎫<<⎪⎝⎭是未知参数,利用总体X 的如下样本值: 3, 1, 3, 0, 3, 1, 2, 3求θ的矩估计值和最大似然估计值.解:由题意可知总体X 为离散型随机变量,则总体X 的数学期望为()32()2123(12)34k EX kP Xk θθθθθ====-++-=-∑有34E X θ-=,由样本值可知2X =,用X 替换E X 即得未知参数θ的矩估计量为3ˆ4X θ-=,矩估计值1ˆ4θ=.设12340,1,2,3x x x x ====是相应于样本1234,,,X X X X 的样本值,则似然函数为12341234(,,,;)(0)(1)(2)(3)L x x x x P X P X P X P X θ=====462(12)4(1)θθθ=--取对数 ln 4ln(12)6ln 42ln(1)L θθθ=-++- 解极大似然方程ln 8620121d L d θθθθ-=+-=--有2121430θθ-+=,从而7ˆ12θ±=又当ˆ12θ=712106θ+-=-<矛盾,故舍去.所以θ的最大似然估计值ˆ12θ=2、设()111ˆˆ ,,n X X θθ= 和()221ˆˆ,,n X X θθ= 是参数θ的两个相236互独立的无偏估计量,且方差()()12ˆˆ2D D θθ=,试确定常数,a b ,使得12ˆˆa b θθ+是θ的无偏估计量,且在一切这样的线性估计类中方差最小.解:由题意,1ˆ θ和2ˆθ是参数θ的两个相互独立的无偏估计量,则 12ˆˆ,E E θθθθ==.要使得12ˆˆa b θθ+是θ的无偏估计量,有 1212ˆˆˆˆ()()E a b aE bE a b θθθθθθ+=+=+=恒成立,即1a b +=.又1ˆ θ,2ˆθ相互独立,且()()12ˆˆ2D D θθ=,则222212122ˆˆˆˆˆ()()()(2)()D a b a D b D a b D θθθθθ+=+=+令2222()22(1)g a a b a a =+=+-,由()0g a '=知函数()g a 的稳定 点为13a =,且1()03g ''>,故线性估计类中方差最小时13a =,23b =.3、在测量反应时间中,一心理学家估计的标准差为0.05秒,为了以0.95的置信水平使他对平均反应时间的估计误差不超过0.01秒,应取多大的样本容量.习题八1.在正常情况下,某炼钢厂的铁水含碳量(%)2(4.55,)X N σ .一日测得5炉铁水含碳量如下:4.48,4.40,4.42,4.45,4.47在显著性水平0.05α=下,试问该日铁水含碳量得均值是否有明显变化. 解:设铁水含碳量作为总体X ,则2(4.55,)X N σ ,从中选取容量为5的样本,测得24.444,0.0011X S ==.由题意,设原假设为0: 4.55H u =237构造检验统计量||(4)X u t t -=,则7.051t ==在显著性水平0.05α=下,查表可得0.97512(4)(4) 2.77647.051tt α-==<,拒绝原假设0H ,即认为有显著性变化.2.根据某地环境保护法规定,倾入河流的废物中某种有毒化学物质含量不得超过3ppm.该地区环保组织对某厂连日倾入河流的废物中该物质的含量的记录为:115,,x x .经计算得知15148ii x==∑, 1521156.26i i x ==∑.试判断该厂是否符合环保法的规定.(该有毒化学物质含量X 服从正态分布)解:设有毒化学物质含量作为总体X ,则2(,)X N u σ ,从中选取容量为15的样本,测得1511 3.215ii X x===∑,22221111()()0.1911nnii i i S x x x nx n n ===-=-=--∑∑.由题意,设原假设为0:3H u <,备择假设为1:3H u >.构造检验统计量||(14)X u t t -=,则|3.23| 1.777t -==,在显著性水平0.05α=下,查表可得10.95(14)(14) 1.7613 1.777t t α-==<,即拒绝原假设0H ,接受备择假设1H ,认为该厂不符合环保的规定.3.某厂生产需用玻璃纸作包装,按规定供应商供应的玻璃纸的横向延伸率238不应低于65.已知该指标服从正态分布2(,)N μσ,5.5σ=.从近期来货中抽查了100个样品,得样本均值55.06x =,试问在0.05α=水平上能否接受这批玻璃纸?解:设玻璃纸的横向延伸率为总体X ,则2(,5.5)X N u ,从中选取容量为100的样本,测得55.06x =.由题意,设原假设为0:65H u >,备择假设为1:65H u <.构造检验统计量||(0,1)X u U N -=,则|55.0665|18.07275.5U -==在显著性水平0.05α=下,查表可得10.95 1.644918.0727U U α-==<,即拒绝原假设0H ,接受备择假设1H ,不能接受该批玻璃纸..4.某纺织厂进行轻浆试验,根据长期正常生产的累积资料,知道该厂单台布机的经纱断头率(每小时平均断经根数)的数学期望为9.73根,标准差为1.60根.现在把经纱上浆率降低20%,抽取200台布机进行试验,结果平均每台布机的经纱断头率为9.89根,如果认为上浆率降低后均方差不变,问断头率是否受到显著影响(显著水平α=0.05)? 解:设经纱断头率为总体X ,则9.73u EX ==, 1.6σ==,从中选取容量为200的样本,测得9.89x =.由题意,设原假设为0:9.73H u =,备择假设为1:9.73H u ≠.构造检验统计量||(0,1)X u U N -=,则|9.899.73|1.4142U -==在显著性水平0.05α=下,查表可得0.975121.96 1.4142UU α-==>,即接受原假设0H ,认为断头率没有受到显著影响.2395. 某厂用自动包装机装箱,在正常情况下,每箱重量服从正态分布2(100,)N σ.某日开工后,随机抽查10箱,重量如下(单位:斤):99.3,98.9,100.5,100.1,99.9,99.7,100.0,100.2,99.5,100.9.问包装机工作是否正常,即该日每箱重量的数学期望与100是否有显著差异?(显著性水平α=0.05)解:设每箱重量为总体X ,则2(100,)X N σ ,从中选取容量为10的样本,测得99.9x =,20.34S =.由题意,设原假设为0:100H u =,备择假设为1:100H u ≠.构造检验统计量||(9)X u t t -=,则|99.9100|0.5423t -==,在显著性水平0.05α=下,查表可得0.97512(9)(9) 2.26220.5423tt α-==>,即接受原假设0H ,认为每箱重量无显著差异.6.某自动机床加工套筒的直径X 服从正态分布.现从加工的这批套筒中任取5个,测得直径分别为15,,x x (单位m μ:),经计算得到51124i i x ==∑, 5213139i i x ==∑.试问这批套筒直径的方差与规定的27σ=有无显著差别?(显著性水平0.01α=)解:设这批套筒直径为总体X ,则2(,)X N u σ ,从中选取容量为5的样本,测得151124.815ii X x===∑,22221111()()15.9511nnii i i S xx x nx n n ===-=-=--∑∑.由题意,设原假设为24020:7H σ=,备择假设为21:7H σ≠.构造检验统计量2222(1)(4)n Sχχσ-=,则2415.959.11437χ⨯==,在显著性水平0.01α=下,查表可得220.99512(4)(4)14.86αχχ-==,220.0052(4)(4)0.2070αχχ==,从而222122(4)(4)ααχχχ-<<,即接受原假设0H ,认为这批套筒直径的方差与规定的27σ=无显著差别.7.甲、乙两台机床同时独立地加工某种轴,轴的直径分别服从正态分布211(,)N μσ、222(,)N μσ(12,μμ未知).今从甲机床加工的轴中随机地任取6根,测量它们的直径为16,,x x ,从乙机床加工的轴中随机地任取9根,测量它们的直径为19,,y y ,经计算得知:61204.6ii x==∑, 6216978.9i i x ==∑91370.8i i y ==∑92115280.2i i y ==∑问在显著性水平0.05α=下,两台机床加工的轴的直径方差是否有显著差异?解:设两台机床加工的轴的直径分别为总体,X Y ,则211(,)X N μσ 、222(,)Y N μσ ,从总体X 中选取容量为6的样本,测得61134.16ii X x ===∑222211111()()0.40811nnii i i S x x x nx n n ===-=-=--∑∑241从总体Y 中选取容量为9的样本,测得91141.29i i Y y ===∑222221111()()0.40511nnii i i S y y y ny n n ===-=-=--∑∑ 由题意,设原假设为22012:H σσ=,备择假设为22112:H σσ≠.构造检验统计量2122(5,8)S F F S = ,则0.408 1.0070.405F ==,在显著性水平0.05α=下,查表可得0.97512(5,8)(5,8) 6.76FF α-==,0.0252(5,8)(5,8)0.1479F F α==,从而122(5,8)(5,8)F F Fαα-<<,即接受原假设0H ,认为两台机床加工的轴的直径方差无显著差异.8.某维尼龙厂根据长期正常生产积累的资料知道所生产的维尼龙纤度服从正态分布,它的标准差为0.048.某日随机抽取5根纤维,测得其纤度为1.32,1.55,1.36,1.40,1.44.问该日所生产得维尼龙纤度的均方差是否有显著变化(显著性水平α=0.1)?解:设维尼龙纤度为总体X ,则2(,0.048)X N u ,从中选取容量为5的样本,测得5111.4145ii X x ===∑,2211()0.00781nii S x x n ==-=-∑.由题意,设原假设为0:0.048H σ=,备择假设为1:0.048H σ≠.构造检验统计量2222(1)(4)n Sχχσ-=,则2240.007813.542(0.048)χ⨯==在显著性水平0.1α=下,查表可得220.9512(4)(4)9.487713.542αχχ-==<即拒绝原假设0H ,认为维尼龙纤度的均方差有显著变化.9.某项考试要求成绩的标准差为12,先从考试成绩单中任意抽出15份,计算样本标准差为16,设成绩服从正态分布,问此次考试的标准差是否符242合要求(显著性水平α=0.05)?解:设考试成绩为总体X ,则2(,12)X N u ,从中选取容量为15的样本,测得16S =.由题意,设原假设为0:12H σ=,备择假设为1:12H σ≠.构造检验统计量2222(1)(14)n Sχχσ-=,则222141619.055612χ⨯==.在显著性水平0.05α=下,查表可得220.97512(14)(14)26.1189αχχ-==,220.0252(14)(14) 5.6287αχχ==,从而222122(14)(14)ααχχχ-<<,即接受原假设0H ,认为此次考试的标准差符合要求.10.某卷烟厂生产甲、乙两种香烟,分别对他们的尼古丁含量(单位:毫克)作了六次测定,获得样本观察值为:甲:25,28,23,26,29,22;乙:28,23,30,25,21,27.假定这两种烟的尼古丁含量都服从正态分布,且方差相等,试问这两种香烟的尼古丁平均含量有无显著差异(显著性水平α=0.05,)?对这两种香烟的尼古丁含量,检验它们的方差有无显著差异(显著性水平α=0.1)?解:设这两种烟的尼古丁含量分别为总体,X Y ,则211(,)X N μσ 、222(,)Y N μσ ,从中均选取容量为6的样本,测得61125.56ii X x ===∑,22111()7.51nii S x x n ==-=-∑,61125.66676i i Y y ===∑,22211()11.06671nii S y y n ==-=-∑,由题意,在方差相等时,设原假设为012:H u u =,备择假设为112:H u u ≠.243构造检验统计量12(2)t t n n =+- ,其中222112212(1)(1)9.2834(2)wn S n S Sn n -+-==+-.则0.0948t ==,在显著性水平0.05α=下,查表可得120.97512(2)(10) 2.22810.0948tn n t α-+-==>,即接受原假设0H ,认为这两种香烟的尼古丁平均含量无显著差异.由题意,在方差待定时,设原假设为22012:H σσ=,备择假设为22112:H σσ≠.构造检验统计量2122(5,5)S F F S=,则7.50.677711.0667F ==,在显著性水平0.1α=下,查表可得0.9512(5,8)(5,5) 5.0503FF α-==,0.052(5,8)(5,5)0.1980F F α==,从而122(5,5)(5,5)F F Fαα-<<,即接受原假设0H ,认为它们的方差无显著差异.。
概率论考试题以及解析汇总
.试题一一、选择题(每题有且仅有一个正确答案,每题2分,共20分) 1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( )。
A. A,B 互不相容B. A,B 相互独立C.A ⊂BD. A,B 相容 2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( )A. 1/2B. 1/12C. 1/18D. 1/93、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( )A.919910098.02.0CB.i i i i C-=∑100100910098.02.0C.ii i i C-=∑1001001010098.02.0 D.i i i i C-=∑-100910098.02.014、设)3,2,1(39)(=-=i i X E i ,则)()31253(321=++X X X EA. 0B. 25.5C. 26.5D. 95、设样本521,,,X X X 来自N (0,1),常数c 为以下何值时,统计量25242321XX X X X c +++⋅服从t 分布。
( )A. 0B. 1C. 26D. -16、设X ~)3,14(N ,则其概率密度为( )A.6)14(261--x e πB.32)14(261--x eπC.6)14(2321--x eπD.23)14(261--x eπ7、321,,X X X 为总体),(2σμN 的样本, 下列哪一项是μ的无偏估计()A.3212110351X X X ++ B. 321416131X X X ++ C. 3211252131X X X ++ D. 321613131X X X ++ 8 、设离散型随机变量X 的分布列为X123.PC 1/4 1/8则常数C 为( )(A )0 (B )3/8 (C )5/8 (D )-3/89 、设随机变量X ~N(4,25), X1、X2、X3…Xn 是来自总体X 的一个样本,则样本均值X近似的服从( )(A ) N (4,25) (B )N (4,25/n ) (C ) N (0,1) (D )N (0,25/n ) 10、对正态总体的数学期望进行假设检验,如果在显著水平a=0.05下,拒绝假设00μμ=:H ,则在显著水平a=0.01下,( )A. 必接受0HB. 可能接受,也可能拒绝0HC. 必拒绝0HD. 不接受,也不拒绝0H 二、填空题(每空1.5分,共15分)1、A, B, C 为任意三个事件,则A ,B ,C 至少有一个事件发生表示为:_________;2、甲乙两人各自去破译密码,设它们各自能破译的概率为0.8,0.6,则密码能被破译的概率为_________;3、已知分布函数F(x)= A + Barctgx )(+∞<<-∞x ,则A =___,B =____;4、随机变量X 的分布律为k C k XP )31()(==,k =1,2,3, 则C=_______;5、设X ~b (n,p )。
概率论练习题与解析
概率论练习题与解析十、概率论与数理统计一、填空题1、设在一次试验中,事件A 发生的概率为p 。
现进行n 次独立试验,则A 至少发生一次的概率为np )1(1--;而事件A 至多发生一次的概率为1)1()1(--+-n n p np p 。
2、 三个箱子,第一个箱子中有4个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子有3个黑球5个白球。
现随机地取一个箱子,再从这个箱子中取出1个球,这个球为白球的概率等于 。
已知取出的球是白球,此球属于第二个箱子的概率为 。
解:用iA 代表“取第i 只箱子”,i =1,2,3,用B 代表“取出的球是白球”。
由全概率公式⋅=⋅+⋅+⋅=++=12053853*********)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P由贝叶斯公式⋅=⋅==5320120536331)()|()()|(222B P A B P A P B A P3、 设三次独立试验中,事件A 出现的概率相等。
若已知A 至少出现一次的概率等于19/27,则事件A 在一次试验中出现的概率为 。
解:设事件A 在一次试验中出现的概率为)10(<<p p ,则有2719)1(13=--p ,从而解得31=p4、已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)|(=A B P ,则和事件B A Y 的概率)(B A P Y = 。
7.08.05.06.05.0)|()()()()()()()(=⨯-+=-+=-+=A B P A P B P A P AB P B P A P B A P Y 5、 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5。
现已知目标被命中,则它是甲射中的概率为 。
用A 代表事件“甲命中目标”,B 代表事件“乙命中目标”,则B A Y 代表事件“目标被命中”,且8.06.05.06.05.0)()()()()()()()(=⨯-+=-+=-+=B P A P B P A P AB P B P A P B A P Y所求概率为75.08.06.0)()()|(===B A P A P B A A P Y Y6、 设随机事件A ,B 及其和事件B A Y 的概率分别是0.4,0.3和0.6。
概率基础测试题及答案解析
概率基础测试题及答案解析一、选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,那么P(X>0)等于多少?A. 0.5B. 0.6826C. 0.8413D. 0.5000答案:A解析:标准正态分布的均值为0,标准差为1,对称轴为X=0,因此P(X>0)等于0.5。
2. 已知随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么E(X)等于多少?A. 1.5B. 3C. 2.7D. 0.3答案:B解析:二项分布的期望值E(X)=np,所以E(X)=10*0.3=3。
3. 一组数据的平均数是5,方差是4,那么这组数据的中位数是多少?A. 4B. 5C. 6D. 无法确定答案:B解析:平均数是所有数据的总和除以数据的个数,而中位数是将数据按大小顺序排列后位于中间的数。
在没有具体数据的情况下,无法确定中位数,但根据平均数的定义,可以推断中位数为5。
4. 已知随机变量X和Y相互独立,且P(X=1)=0.5,P(Y=1)=0.3,那么P(X=1且Y=1)等于多少?A. 0.15B. 0.5C. 0.3D. 0.6答案:A解析:由于X和Y相互独立,所以P(X=1且Y=1)=P(X=1)*P(Y=1)=0.5*0.3=0.15。
5. 一组数据的样本容量为100,样本均值为50,样本方差为25,那么这组数据的标准差是多少?A. 5B. 10C. 20D. 25答案:A解析:标准差是方差的平方根,所以标准差=√25=5。
6. 已知随机变量X服从泊松分布,其参数λ=4,那么P(X=3)等于多少?A. 0.182B. 0.273C. 0.409D. 0.546答案:B解析:泊松分布的概率质量函数为P(X=k)=e^(-λ)λ^k/k!,代入λ=4和k=3,计算得到P(X=3)=e^(-4)4^3/3!=0.273。
7. 已知随机变量X服从均匀分布U(0,1),那么P(0.5<X<0.6)等于多少?A. 0.1B. 0.05C. 0.15D. 0.2答案:B解析:均匀分布的概率等于区间长度,所以P(0.5<X<0.6)=0.6-0.5=0.1,但因为题目中区间长度为0.1,所以答案为0.05。
高等数学(概率论)习题及解答
高等数学(概率论)习题及解答高等数学(概率论)题及解答
1. 题一
1.1. 题目
已知事件A和B的概率分别为P(A) = 0.2,P(B) = 0.3,且P(A∪B) = 0.4,求P(A∩B)。
1.2. 解答
根据概率的加法定理,有:
P(A∪B) = P(A) + P(B) - P(A∩B)
代入已知数据得:
0.4 = 0.2 + 0.3 - P(A∩B)
P(A∩B) = 0.1
所以,P(A∩B)的概率为0.1。
2. 题二
2.1. 题目
已知某城市一天中的天气分为晴天、阴天和雨天三种情况,其中晴天的概率为0.4,阴天的概率为0.3。
现已知,当下为晴天时,随后一天也是晴天的概率为0.7;当下为阴天时,随后一天为晴天的概率为0.5。
求当下为晴天时,随后一天为阴天的概率。
2.2. 解答
设事件A为当下为晴天,事件B为随后一天为阴天。
根据条件概率的定义,有:
P(B|A) = P(A∩B) / P(A)
已知 P(A) = 0.4,P(B|A) = 0.5,代入并整理得:
0.5 = P(A∩B) / 0.4
P(A∩B) = 0.5 * 0.4
P(A∩B) = 0.2
所以,当下为晴天时,随后一天为阴天的概率为0.2。
以上是高等数学(概率论)习题及解答的部分内容,如有更多问题或需要补充,请随时告知。
概率论习题及答案详解
一、填空题1. 掷21n +次硬币,则出现正面次数多于反面次数的概率是0.52. 把10本书任意的放到书架上,求其中指定的三本书放在一起的概率1153. 6.一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率274. 已知()0.7,()0.3,P A P A B =-= 则()0.6.P AB =5. 已知()0.3,()0.4,()0.5,P A P B P A B === 则(|)0.8.P B A B ⋃=6. 掷两枚硬币,至少出现一个正面的概率为34.7. 设()0.4,()0.7,P A P A B =⋃= 若,A B 独立,则()0.5.P B =8. 设,A B 为两事件,11()(),(|),36P A P B P A B === 则7(|).12P A B =9. 设123,,A A A 相互独立,且2(),1,2,3,3i P A i == 则123,,A A A 最多出现一个的概率是7.2710.某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为0.104二、选择题1. 下面四个结论成立的是(B ).()().,.().()A A B C A B C B AB C A BC C A B B A D A B B A--=-⋃=∅⊂=∅⋃-=-⋃=若且则2. 设()0,P AB =则下列说法正确的是( D ) ...()0()0.()()A AB B ABC P A P BD P A B P A ==-=和不相容 是不可能事件或3. 掷21n +次硬币,正面次数多于反面次数的概率为( C )1..21211.0.5.21nn A B n n n C D n -++++ 4. 设,A B 为随机事件,()0,(|)1,P B P A B >= 则必有( A ).()()..()().()()A P AB P A B B AC P A P BD P AB P A ⋃=⊂==5. 设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( B ).A .P (AB )=0 .B P (A -B )=P (A )P (B ).C P (A )+P (B )=1 .D .P (A |B )=06.设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( A ).A P (AB )=l .B P (A )=1-P (B ) .C P (AB )=P (A )P (B ).D P (A ∪B )=17. 已知()0.5P A =,()0.4P B =,()0.6P A B +=,则(|)P A B =( D ).A 0.2 .B 0.45 .C 0.6 .D 0.758.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( C ).A 0.125 .B 0.25 .C 0.375 .D 0.509.设事件,A B 互不相容,已知()0.4P A =,()0.5P B =,则()P AB =( B ).A 0.1 .B 0.4 .C 0.9 .D 110.已知事件A ,B 相互独立,且()0P A >,()0P B >,则下列等式成立的是( B ).A ()()()P A B P A P B ⋃=+ .B ()1()()P A B P A P B ⋃=- .C ()()()P A B P A P B ⋃=.D ()1P A B ⋃=三、 计算题1. 一宿舍内住有6位同学,求他们之中至少有2个人的生日在同一个月份概率。
概率论期末考试题及答案
概率论期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个事件是必然事件?A. 抛硬币正面朝上B. 抛硬币反面朝上C. 抛硬币出现正面或反面D. 抛硬币出现正面和反面2. 假设随机变量X服从正态分布N(μ, σ²),以下哪个选项是正确的?A. μ是X的期望值B. σ²是X的方差C. μ是X的中位数D. σ²是X的期望值3. 假设随机变量X和Y相互独立,以下哪个选项是正确的?A. P(X∩Y) = P(X)P(Y)B. P(X∪Y) = P(X) + P(Y)C. P(X∩Y) = P(X) + P(Y)D. P(X∪Y) = P(X)P(Y)4. 假设随机变量X服从二项分布B(n, p),以下哪个选项是正确的?A. X的期望值是npB. X的方差是np(1-p)C. X的期望值是nD. X的方差是p(1-p)二、填空题(每题5分,共20分)1. 如果随机变量X服从泊松分布,其概率质量函数为P(X=k) =________,其中λ > 0,k = 0, 1, 2, ...2. 假设随机变量X服从均匀分布U(a, b),其概率密度函数为f(x) = ________,其中a < x < b。
3. 假设随机变量X和Y相互独立,且X服从正态分布N(μ, σ²),Y 服从正态分布N(ν, τ²),则Z = X + Y服从正态分布N(μ+ν,________)。
4. 假设随机变量X服从二项分布B(n, p),其期望值E(X) = np,方差Var(X) = ________。
三、解答题(每题30分,共40分)1. 假设随机变量X服从正态分布N(0, 1),求P(-1 < X < 2)。
2. 假设随机变量X服从二项分布B(10, 0.3),求P(X ≥ 5)。
答案:一、选择题1. C2. A3. A4. A二、填空题1. λ^k * e^(-λ) / k!2. 1/(b-a)3. σ² + τ²4. np(1-p)三、解答题1. 根据标准正态分布表,P(-1 < X < 2) = Φ(2) - Φ(-1) =0.9772 - 0.1587 = 0.8185。
《概率论》考试试题(含答案)
《概率论》考试试题(含答案) ................................................................................................... 1 解答与评分标准 . (3)《概率论》考试试题(含答案)一.单项选择题(每小题3分,共15分) 1.设事件A 和B 的概率为12(),()23P A P B == 则()P AB 可能为( ) (A) 0; (B) 1; (C) 0.6; (D) 1/62. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为( )(A)12; (B) 225; (C) 425; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( )(A)518; (B) 13; (C) 12; (D)以上都不对 4.某一随机变量的分布函数为()3xxa be F x e +=+,则F (0)的值为( )(A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( )(A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对二.填空题(每小题3分,共15分)1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B =_____.2.设随机变量~(,), ()3, () 1.2B n p E D ξξξ==,则n =______.3.随机变量ξ的期望为()5E ξ=,标准差为()2σξ=,则2()E ξ=_______.4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。
设两人的射击是相互独立的,则目标被射中的概率为_________. 5.设连续型随机变量ξ的概率分布密度为2()22af x x x =++,a 为常数,则P (ξ≥0)=_______.三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球.四.(本题10分) 设随机变量ξ的分布密度为, 03()10, x<0x>3Ax f x x⎧⎪=+⎨⎪⎩当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望.五.(本题10分) 设二维随机变量(ξ,η)的联合分布是η=1 η=2 η=4 η=5ξ=0 0.05 0.12 0.15 0.07 ξ=1 0.03 0.10 0.08 0.11 ξ=2 0.070.010.110.10(1) ξ与η是否相互独立? (2) 求ξη⋅的分布及()E ξη⋅;六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少?七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望.八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件? (注:(1.28)0.90Φ=,(1.65)0.95Φ=)九.(本题6分)设事件A 、B 、C 相互独立,试证明AB 与C 相互独立.某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为________.十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃):1820,1834,1831,1816,1824 假定重复测量所得温度2~(,)N ξμσ.估计10σ=,求总体温度真值μ的0.95的置信区间. (注:(1.96)0.975Φ=,(1.65)0.95Φ=)解:1(18201834183118161824)18255ξ=++++=-------------------2分 已知10.95, 0.05αα-==,0.02521.96u u α==---------------------------5分10σ=,n=5,0.025210 1.96108.7755u u nασ⨯===-------------------8分所求真值μ的0.95的置信区间为[1816.23, 1833.77](单位:℃)-------10分解答与评分标准一.1.(D )、2.(D )、3.(A )、4.(C )、5.(C ) 二.1.0.85、2. n =5、3. 2()E ξ=29、4. 0.94、5. 3/4三.把4个球随机放入5个盒子中共有54=625种等可能结果--------------3分 (1)A={4个球全在一个盒子里}共有5种等可能结果,故P (A )=5/625=1/125------------------------------------------------------5分(2) 5个盒子中选一个放两个球,再选两个各放一球有302415=C C 种方法----------------------------------------------------7分4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故12572625360)(==B P --------------------------------------------------10分四.解:(1)⎰⎰∞∞-==+=34ln 1,4ln 1)(A A dx x A dx x f ---------------------3分 (2)⎰==+=<1212ln 1)1(A dx x A P ξ-------------------------------6分 (3)3300()()[ln(1)]1AxE xf x dx dx A x x x ξ∞-∞===-++⎰⎰13(3ln 4)1ln 4ln 4=-=-------------------------------------10分 五.解:(1)ξ的边缘分布为⎪⎪⎭⎫ ⎝⎛29.032.039.02 10--------------------------------2分 η的边缘分布为⎪⎪⎭⎫ ⎝⎛28.034.023.015.05 4 2 1---------------------------4分 因)1()0(05.0)1,0(==≠===ηξηξP P P ,故ξ与η不相互独立-------5分 (2)ξη⋅的分布列为ξη⋅0 1 2 4 5 8 10。
(完整版)《概率论与数理统计》期末考试试题及解答
一、填空题(每小题3分,共15分)1.设事件仅发生一个的概率为0.3,且,则至少有一个不发B A ,5.0)()(=+B P A P B A ,生的概率为__________.答案:0.3解:3.0)(=+A B A P 即)(25.0)()()()()()(3.0AB P AB P B P AB P A P A P B A P -=-+-=+=所以1.0)(=AB P.9.0)(1)((=-==AB P AB P B A P 2.设随机变量服从泊松分布,且,则______.X )2(4)1(==≤X P X P ==)3(X P 答案:161-e 解答:λλλλλ---==+==+==≤e X P e eX P X P X P 2)2(,)1()0()1(2由 知 λλλλλ---=+e e e 22)2(4)1(==≤X P X P即 0122=--λλ 解得,故1=λ161)3(-==e X P 3.设随机变量在区间上服从均匀分布,则随机变量在区间内的概率X )2,0(2X Y =)4,0(密度为_________.=)(y fY答案:04,()()0,.Y Y X y f y F y f <<'===⎩其它 解答:设的分布函数为的分布函数为,密度为则Y (),Y F y X ()F x ()X f x2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=- 因为,所以,即~(0,2)XU (0X F =()Y X F y F =故04,()()0,.Y Y Xyf y F y f<<'===⎩其它另解在上函数严格单调,反函数为(0,2)2y x=()h y=所以04,()0,.Y Xyf y f<<==⎩其它4.设随机变量相互独立,且均服从参数为的指数分布,,则YX,λ2)1(-=>eXP=λ_________,=_________.}1),{min(≤YXP答案:,2λ=-4{min(,)1}1eP X Y≤=-解答:,故2(1)1(1)P X P X e eλ-->=-≤==2λ={min(,)1}1{min(,)1}P X Y P X Y≤=->1(1)(1)P X P Y=->>.41e-=-5.设总体的概率密度为X.⎪⎩⎪⎨⎧<<+=其它,0,1,)1()(xxxfθθ1->θ是来自的样本,则未知参数的极大似然估计量为_________.nXXX,,,21Xθ答案:1111lnniixnθ==-∑解答:似然函数为111(,,;)(1)(1)(,,)nnn i niL x x x x xθθθθθ==+=+∏1ln ln(1)lnniiL n xθθ==++∑1lnln01niid L nxdθθ==++∑@解似然方程得的极大似然估计为θ.1111ln ni i x n θ==-∑二、单项选择题(每小题3分,共15分)1.设为三个事件,且相互独立,则以下结论中不正确的是,,A B C ,A B (A )若,则与也独立.()1P C =AC BC (B )若,则与也独立.()1P C =A C B (C )若,则与也独立.()0P C =A C B (D )若,则与也独立.( )C B ⊂A C 答案:(D ). 解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图可见A 与C 不独立.2.设随机变量的分布函数为,则的值为~(0,1),X N X ()x Φ(||2)P X > (A ). (B ).2[1(2)]-Φ2(2)1Φ- (C ). (D ).( )2(2)-Φ12(2)-Φ 答案:(A )解答: 所以~(0,1)X N (||2)1(||2)1(22)P X P X P X >=-≤=--<≤应选(A ).1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ3.设随机变量和不相关,则下列结论中正确的是X Y (A )与独立. (B ).X Y ()D X Y DX DY -=+ (C ).(D ).( )()D X Y DX DY -=-()D XY DXDY =解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ()+2cov x y D X Y DX DY -=+(,)应选(B ).4.设离散型随机变量和的联合概率分布为X Y (,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若独立,则的值为,X Y ,αβ (A ). (A ).21,99αβ==12,99αβ== (C ) (D ).( )11,66αβ==51,1818αβ==解答: 若独立则有,X Y(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+, ∴29α=19β=故应选(A ).5.设总体的数学期望为为来自的样本,则下列结论中X 12,,,,n X X X μ X 正确的是(A )是的无偏估计量.(B )是的极大似然估计量.1X μ1X μ (C )是的相合(一致)估计量. (D )不是的估计量. ( )1X μ1X μ 答案:(A ) 解答:,所以是的无偏估计,应选(A ).1EX μ=1X μ三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.解:设‘任取一产品,经检验认为是合格品’A =‘任取一产品确是合格品’B =则(1) ()()(|)()(|)P A P B P A B P B P A B =+ 0.90.950.10.020.857.=⨯+⨯=(2) .()0.90.95(|)0.9977()0.857P AB P B A P A ⨯===四、(12分) 从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设为途中遇到红灯的次数,X求的分布列、分布函数、数学期望和方差.X解:的概率分布为X3323()(()0,1,2,3.55k k kP X k C k -===即01232754368125125125125XP的分布函数为X0,0,27,01,12581(),12,125117,23,1251, 3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩263,55EX =⨯= .231835525DX =⨯⨯=五、(10分)设二维随机变量在区域 上服从(,)X Y {(,)|0,0,1}D x y x y x y =≥≥+≤均匀分布. 求(1)关于的边缘概率密度;(2)的分布函数与概(,)X Y X Z X Y =+率密度.(1)的概率密度为(,)X Y 2,(,)(,)0,.x y Df x y ∈⎧=⎨⎩其它22,01()(,)0,X x x f x f x y dy +∞-∞-≤≤⎧==⎨⎩⎰其它(2)利用公式()(,)Z f z f x z x dx+∞-∞=-⎰其中2,01,01(,)0,x z x x f x z x ≤≤≤-≤-⎧-=⎨⎩其它2,01, 1.0,x x z ≤≤≤≤⎧=⎨⎩其它.当 或时0z <1z >()0Z f z =时 01z ≤≤00()222zzZ f z dx x z===⎰故的概率密度为Z 2,01,()0,Z z z f z ⎧≤≤⎪=⎨⎪⎩其它.的分布函数为Z200,00,0,()()2,01,01,1, 1.1,1z z Z Z z z f z f y dy ydy z z z z z -∞<⎧<⎧⎪⎪⎪==≤≤=≤≤⎨⎨⎪⎪>⎩>⎪⎩⎰⎰ 或利用分布函数法10,0,()()()2,01,1, 1.Z D z F z P Z z P X Y z dxdy z z ⎧<⎪⎪=≤=+≤=≤≤⎨⎪⎪>⎩⎰⎰20,0,,01,1, 1.z z z z <⎧⎪=≤≤⎨⎪>⎩2,01,()()0,Z Z z z f z F z ≤≤⎧'==⎨⎩其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标相X Y 互独立,且均服从分布. 求(1)命中环形区域2(0,2)N 22{(,)|12}D x y x y =≤+≤的概率;(2)命中点到目标中心距离的数学期望.Z =1){,)}(,)DP X Y D f x y dxdy∈=⎰⎰22222880111248x y r De dxdy erdrd πθππ+--==⋅⎰⎰⎰⎰;2221122888211()8r r red ee e ------=-=-⎰ (2)22818x y EZ E edxdyπ+-+∞-∞-∞==⎰⎰22228801184r r rerdrd e r drπθπ--+∞+∞==⎰⎰⎰222888r r r reedr dr +∞---+∞+∞-∞=-+==⎰七、(11分)设某机器生产的零件长度(单位:cm ),今抽取容量为16的2~(,)X N μσ样本,测得样本均值,样本方差. (1)求的置信度为0.95的置信10x =20.16s =μ区间;(2)检验假设(显著性水平为0.05).20:0.1H σ≤ (附注)0.050.050.025(16) 1.746,(15) 1.753,(15) 2.132,t t t ===2220.050.050.025(16)26.296,(15)24.996,(15)27.488.χχχ===解:(1)的置信度为下的置信区间为μ1α- /2/2(((X t n X t n αα--+-0.02510,0.4,16,0.05,(15) 2.132X s n t α=====所以的置信度为0.95的置信区间为(9.7868,10.2132)μ (2)的拒绝域为.20:0.1H σ≤22(1)n αχχ≥- ,221515 1.6240.1S χ==⨯=20.05(15)24.996χ= 因为 ,所以接受.220.052424.996(15)χχ=<=0H 《概率论与数理统计》期末考试试题(A )专业、班级:姓名:学号:一、单项选择题(每题3分 共18分)1.D 2.A 3.B 4.A 5.A 6.B 题 号一二三四五六七八九十十一十二总成绩得 分一、单项选择题(每题3分 共18分)(1).0)(,0)(;;0)(0)();(( ).,0)(=>===A B P A P (D)B A (C)B P A P (B)B A (A)AB P B A 则同时出现是不可能事件与或互不相容互斥与则以下说法正确的是适合、若事件(2)设随机变量X 其概率分布为 X -1 0 1 2P 0.2 0.3 0.1 0.4则( )。
《概率论》考试知识点解析汇总
《概率论》考试知识点解析汇总例5:8支步枪中有5支已校准过,3支未校准。
一名射手用校准过的枪射击时,中靶概率为0.8;用未校准的枪射击时,中靶概率为0.3。
现从8支枪中任取一支用于射击,结果中靶。
求:所用的枪是校准过的概率。
(课堂练习) 解:设 A ={射击时中靶},B 1={枪校准过}, B 2={枪未校准},则 B 1,B 2 是Ω一个划分,由贝叶斯公式,得1111122(|)()(|)(|)()(|)()P A B P B P B A P A B P B P A B P B =+0.8(5/8)400.8(5/8)0.3(3/8)49⨯==⨯+⨯1.10 计算下列各题:(1) 设P(A) = 0.5, P(B) = 0.3, P(A ⋃B) = 0.6, 求P(AB); (2) 设P(A) = 0.8, P(A ⋃B) = 0.4, 求P(AB); (3) 设P(AB) = P(A B); P(A) = 0.3, 求P(B)。
解:(1)通过作图,可以知道,3.0)()()(=-⋃=B P B A P B A P (2)6.0))()((1)(1)(=---=-=B A P A P AB P AB P7.0)(1)()()()(1))()()((1)(1)()()3(=-=+--=-+-=⋃-==A P B P AB P B P A P AB P B P A P B A P B A P AB P 由于1.15 已知4.0)(,7.0)(==B P A P ,5.0)(=B A P , 求).)((B B A P ⋃ 解:)())()(()())(())((B P B B AB P B P B B A P B B A P ⋃=⋂⋃=⋃由于0)(=B B P ,故5.0)()()()()())((=-==⋃B P B A P A P B P AB P B B A P1.18 有两批相同的产品, 第一批产品共14 件, 其中有两件为次品, 装在第一个箱中; 第二批有10 件, 其中有一件是次品, 装在第二个箱中。
概率论期末试题及解析答案
概率论期末试题及解析答案1. 简答题(每题10分)1.1 什么是概率?概率是描述随机事件发生可能性的数值。
它可以用来衡量某一事件在多次重复试验中出现的频率。
1.2 什么是样本空间?样本空间是指一个随机试验中所有可能结果的集合。
1.3 什么是事件?事件是样本空间中包含的一组可能结果的子集。
1.4 什么是互斥事件?互斥事件是指两个事件不能同时发生。
1.5 什么是独立事件?独立事件是指两个事件的发生与不发生互不影响。
2. 计算题(每题20分)2.1 设一枚硬币抛掷3次,计算至少出现两次正面的概率。
解析:样本空间:{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}至少出现两次正面的事件:{HHH, HHT, HTH, THH}概率 = 事件发生的次数 / 样本空间的次数 = 4 / 8 = 1/22.2 设A、B两个事件相互独立,且P(A) = 0.4,P(B) = 0.6,计算P(A∪B)。
解析:由于A、B事件相互独立,所以P(A∩B) = P(A) * P(B) = 0.4 * 0.6 = 0.24P(A∪B) = P(A) + P(B) - P(A∩B) = 0.4 + 0.6 - 0.24 = 0.763. 应用题(每题30分)3.1 甲乙两个备胎分别拥有10个和15个备用轮胎,轮胎坏掉时甲用2个备用轮胎的概率为0.2,乙用3个备用轮胎的概率为0.15。
现在从甲、乙两个备胎中随机挑选一个备用轮胎,请计算此备用轮胎坏掉的概率。
解析:设事件A为甲备胎的备用轮胎坏掉,事件B为乙备胎的备用轮胎坏掉。
P(A) = 0.2 * 10 / (0.2 * 10 + 0.15 * 15) = 0.2 * 10 / (2 + 2.25) ≈ 0.6667 P(B) = 0.15 * 15 / (0.2 * 10 + 0.15 * 15) = 0.15 * 15 / (2 + 2.25) ≈0.3333由于只能选择甲或乙中的一个备用轮胎,所以备用轮胎坏掉的概率为P(A) + P(B) ≈ 13.2 水果篮子中有5个橙子、3个苹果和2个香蕉,现从篮子中随机挑选两个水果,请计算挑选出的两个水果中至少有一个是橙子的概率。
概率论考试题和答案解析
概率论考试题和答案解析一、单项选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,下列说法正确的是:A. P(X > 0) = 0.5B. P(X > 1) = 0.5C. P(X > 2) = 0.5D. P(X > 3) = 0.5答案:A解析:标准正态分布的均值μ=0,标准差σ=1。
由于正态分布曲线关于均值对称,所以P(X > 0) = 0.5。
2. 设随机变量X服从二项分布B(n, p),下列说法正确的是:A. E(X) = npB. D(X) = np(1-p)C. P(X = k) = C(n, k)p^k(1-p)^(n-k)D. 以上说法都正确答案:D解析:二项分布的期望E(X) = np,方差D(X) = np(1-p),概率质量函数P(X = k) = C(n, k)p^k(1-p)^(n-k)。
3. 设随机变量X服从泊松分布,下列说法正确的是:A. E(X) = λB. D(X) = λC. P(X = k) = λ^k / k!D. 以上说法都正确答案:D解析:泊松分布的期望E(X) = λ,方差D(X) = λ,概率质量函数P(X = k) = λ^k / k!。
4. 设随机变量X服从均匀分布U(a, b),下列说法正确的是:A. E(X) = (a + b) / 2B. D(X) = (b - a)^2 / 12C. P(a ≤ X ≤ b) = 1D. 以上说法都正确答案:D解析:均匀分布的期望E(X) = (a + b) / 2,方差D(X) = (b - a)^2 / 12,概率P(a ≤ X ≤ b) = 1。
5. 设随机变量X服从指数分布,下列说法正确的是:A. E(X) = 1/λB. D(X) = 1/λ^2C. P(X > x) = e^(-λx)D. 以上说法都正确答案:D解析:指数分布的期望E(X) = 1/λ,方差D(X) = 1/λ^2,累积分布函数F(x) = 1 - e^(-λx),所以P(X > x) = 1 - F(x) = e^(-λx)。
(完整版)概率论高等数学习题解答
1(A )三、解答题1•一颗骰子抛两次,以 X表示两次中所得的最小点数(1) 试求X 的分布律; (2)写出X 的分布函数.解:(1)分析:这里的概率均为古典概型下的概率,所有可能性结果共 36种,如果X=1,则表明两次中至少有一点数为1,其余一个1至6点均可,共有C 2 6-1 (这里C 2指任选某次点 数为1, 6为另一次有6种结果均可取,减1即减去两次均为1的情形,因为C ; 6多1 1算了一次)或C 2 5 1种,故P X 1 C 26-1C25 1耳,其他结果类似36 3636可得•0, X1P{X 1} ,1X 2P{X 1} P{X 2} ,2X3F(x)P{X 1} P{X 2} P{X 3}, 3 x 4P{X 1} P{X 2} P{X3}P{X 4}, 4 x 5 P{X1} P{X2} P{X 3} P{X4} P{X5}, 5 x 61 ,x 622 •某种抽奖活动规则是这样的:袋中放红色球及白色球各 5只,抽奖者交纳一元钱后得到一次抽奖的机会,然后从袋中一次取出 5只球,若5只球同色,则获奖100元,否则无奖,以X 表示某抽奖者在一次抽取中净赢钱数,求X 的分布律.解:注意,这里 X 指的是赢钱数,X 取0-1或100-1,显然P X 99k3.设随机变量 X 的分布律为P{X k} a ,k 0,1,2, k!k解:因为 a ae 1,所以a e k 0 k!4.设随机变量X 的分布律为X -1 2 3 p1/41/21/4(1)求X 的分布函数;1 3 512627,3 翌,4 3635,5 36x 2 x 3x 4 x 5x 6 62 1 C ;0 1260为常数,试求常数 a .3⑵求P{X 丄},P{- X 5},P{2 x 3}.2 2 2解:40, x -1布,而与时间间隔的起点无关(时间以小时计)(1) 求某一天中午12时至下午3时没有收到紧急呼救的概率. (2) 求某一天中午12时至下午5时至少收到一次紧急呼救的概率. 解:(1) X ~ P 0.5t P 1.5 P X 0 e 1.5. (2) 0.5t2.50, x -1P{X 1}, 1 x2(1) F (x)P{X 1} P{X 2}1, x 3⑵P 1XX1 124P 2 X 3 P X 2X 3 5.设随机变量X 的分布律为 P{X k}(1) P{X =偶数}(2) P{ X 5}(3) P{ X=3的倍数}2 x 33 , ,2x341, x 33 51 P — X P X2 —222P X2 3 P X 3.4扌,k 1,2, 求:解:(1) P X 偶数丄1丄 22 221 lim i1(2) P X 51 P X 4115 1 16 16⑶P X 3的倍数23236.某公安局在长度为i123ilim123t 的时间间隔内收到的紧急呼救的次数X 服从参数为0.5t 的泊松分2.5丄,1x2 45 7.某人进行射击,每次射击的命中率为0.02,独立射击400次,试求至少击中2次的概6解:设射击的次数为 X ,由题意知X ~ B 400,0.2i k k 400 kP X 2 1 P X 11 C 4000.02 0.98k 0查表泊松分布函数表得:P{X 2} 1 0.28 0.99728.设事件A 在每一次试验中发生的概率为 0.3,当A 发生不少于3次时,指示灯发出信(1)系数a ;(2) X 落在区间(0,[)内的概率.号•现进行5次独立试验,试求指示灯发出信号的概率.解:设X 为事件A 在5次独立重复实验中出现的次数,则指示灯发出信号的概率 X ~ B 5,0.3 p P X 3 1 P X 3 1 (C 00.3°0.75 C 50.310.74 C ;0.320.73) 1 0.8369 0.1631. 9.设顾客在某银行窗口等待服务的时间 X (以分钟计) 在窗口等待服务,若超过 务而离开窗口的次数.写出 服从参数为 5 10分钟,他就离开.他一个月要到银行 5次,以 Y 的分布律,并求P{Y 1}.指数分布•某顾客 Y 表示他未等到服 x 解:因为X 服从参数为5的指数分布,则F(x) 1 e T , P X 10 Y~ B5, e 2 , 1 F(10) e 2 ,则 P{Y k} C5 (e 2)k (1 e 2)5k,k 0,1, 5 P{Y 1} 1- P{Y 0} 1 (1 e 2)5 0.5167 a cosx. 10.设随机变量 X 的概率密度为 f(x)0,|x|~2,试求:|x |2解:(1)由归一性知:1 f (x)dx2a cosxdx 2a ,所以 a2由于上面二项分布的概率计算比较麻烦, 所以而且X 近似服P{X 2}18k ek 0k!7⑵-11.2.P{0 X —} ; cosxdx sin x |(424 .0,x011 . 设连续随机变量X的分布函数为F(x)Ax,0x 11,x1⑶X的概率密度.试求:(1) 解系数(1)A;由⑵X落在区间(0.3, 0.7)内的概率;的连续性可得lim F(x)F(x )在x=1 lim F(x) F(1),即A=1.x 1(2) 0.3 X 0.7 F(0.7) F(0.3) 0.4.(3) X的概率密度 f (x) F (x)2x,00,12.设随机变量X服从(0, 5)上的均匀分布,求的概率.x的方程4x2 4Xx X 0有实根解:因为X服从(0, 5)上的均匀分布,所以1f(x) 50x5其他2 2方程4x 4Xx X(x 2)( X2(4X) 16X1,所以有实根的概率为0有实根,则32 51dx2510dxX〜N(3, 4)13.设求P{2 X 5}, P{(1) X 10}, P{ X 2}, P{X解: 确定c使得P{X c}设d满足P{X d} 0.9,问d至多为多少?(1)因为X ~ N(3,4)所以P{X c};2 3P{2 X 5} P{〒穿}P{1}(1) (0.5) (1) (0.5) 1 0.8413 0.6915 0.5328P 4 X 108F(2)(2.5)经查表得1 (0),即2专)故斗214.设随机变量1.29,解:P XF(所以(k)15.设随机变量如何变化的?(3.5)2 0.999810 3 4 3(^)2 2(3.5) 2 (3.5)1 0.99962) 1(0.5)0.1,解:X ~ N(,(0.5)0.3023F(3),则P X2X2(2.5)0.6977(0)得c 3 ;由概率密度关于即(-d 3)20.42.X服从正态分布2 2 (k)0.95 , p XN(0,1 0.5 0.5.c 3 1F(c)(〒)-,x=3对称也容易看出。
(精品)概率论试题(含解析)
一、单项选择题(本大题共5小题,每小题3分,共15分)。
1、事件A B 、独立,且()0.8,()0.4P A B P A ⋃==,则__(|)P B A 等于 (A )0; (B )1/3; (C )2/3; (D )2/5.答:( B ) 2、设()f x 是连续型随机变量X 的概率密度函数,则下列选项正确的是 (A )()f x 连续; (B )()(),P X a f a a R ==∀∈; (C )()f x 的值域为[0,1]; (D )()f x 非负。
答:( D ) 3、随机变量),(~2σμN X ,则概率{1}P X μ≤+随着σ的变大而(A )变小; (B )变大; (C )不变; (D )无法确定其变化趋势。
答:( A ) 4、已知连续型随机变量X Y 、相互独立,且具有相同的概率密度函数()f x ,设随机变量min{,}Z X Y =,则Z 的概率密度函数为(A )2)]([z f ; (B )2()()z f u du f z -∞⎰; (C )2)](1[1z f --; (D )2(1())()zf u du f z -∞-⎰.答:( D )5、设12+1,,,,,,m m n X X X X X 是来自正态总体(0,1)N 的容量为n 的简单样本,则统计量2121()mi i ni i m n m X m X ==+-∑∑服从的分布是(A )(,)F n m m - (B )(1,1)F n m m --- (C )(,)F m n m - (D )(1,1)F m n m ---答:( C )二、填空题(本大题共5小题,每小题3分,共15分)。
6、某人投篮,每次命中的概率为23,现独立投篮3次,则至少命中1次的概率为2627.7、已知连续型随机变量X 的概率密度函数为(1)2,1()0,x Ae x f x --⎧⎪≥=⎨⎪⎩其它,则常数A =12. 8、二维随机变量(,)X Y 的分布函数为(12)(13),0,0(,)0,x y x y F x y --⎧-->>=⎨⎩其它,则概率(1)P Y ≤=2. 9、已知随机变量X Y 、的方差分别为2,1DX DY ==,且协方差(,)0.6Cov X Y =,则)(Y X D -=1.8.10、某车间生产滚珠,从长期实践中知道,滚珠直径X (单位:cm )服从正态分布2(,0.3)N μ,从某天生产的产品中随机抽取9个产品,测其直径,得样本均值_x =1.12,则μ的置信度为0.95的置信区间为(0.924,1.316).(已知0.025 1.96z =,0.05 1.65z =,0.025(8) 2.3060t =,0.05(8) 1.8595t =) 三、解答题(本大题共6小题,每小题10分,共60分)。
自考概率论试题及答案讲解
自考概率论试题及答案讲解概率论是研究随机现象及其规律性的数学分支,它在统计学、金融学、物理学等多个领域都有着广泛的应用。
以下是一份自考概率论的试题及答案讲解,供考生参考。
一、选择题1. 设随机变量X服从参数为λ的泊松分布,那么P(X=2)等于()。
A. λ^2B. e^(-λ)λ^2C. e^(-2λ)λ^2D. λ^2/2答案: B讲解:泊松分布的概率质量函数为 P(X=k) = (e^(-λ)λ^k) /k!,其中k为自然数。
将k=2代入公式,得到 P(X=2) = (e^(-λ)λ^2) / 2! = e^(-λ)λ^2。
2. 如果连续型随机变量X的概率密度函数为f(x),那么P(a<X<b)等于()。
A. ∫_a^b f(x) dxB. ∫_b^a f(x) dxC. f(a) - f(b)D. f(b) - f(a)答案: A讲解:对于连续型随机变量,其累积分布函数(CDF)是概率密度函数(PDF)的积分。
因此,P(a<X<b)可以通过计算从a到b的积分来得到,即∫_a^b f(x) dx。
二、填空题1. 设随机变量Y服从正态分布N(μ, σ^2),那么Y的期望值E(Y)等于______。
答案:μ讲解:正态分布的期望值由其均值参数μ决定,即E(Y) = μ。
2. 随机变量Z服从标准正态分布,即Z~N(0,1),那么P(Z<0)等于______。
答案: 0.5讲解:标准正态分布是关于Y轴对称的,因此Z小于0的概率等于Z大于0的概率,都是0.5。
三、解答题1. 一个工厂的机器在一天内出现故障的概率是0.05。
如果机器每天独立运行,那么在接下来的7天内,机器至少出现一次故障的概率是多少?答案: 1 - (1 - 0.05)^7 ≈ 0.28讲解:机器在一天内不出现故障的概率是1 - 0.05 = 0.95。
由于每天独立运行,7天内都不出现故障的概率是(0.95)^7。
(完整版)概率论大题附答案
第一章 随机事件及其概率1.6 假设一批100件商品中有4件不合格品.抽样验收时从中随机抽取4件,假如都为合格品,则接收这批产品,否则拒收,求这批产品被拒收的概率p . 解 以ν表示随意抽取的4件中不合格品的件数,则4964100C {1}1{0}110.84720.1528C p P P =≥=-==-≈-=νν.1.7 从0,1,2,,10…等11个数中随机取出三个,求下列事件的概率:1A ={三个数最大的是5};2A ={三个数大于、等于和小于5的各一个};3A ={三个数两个大于5,一个小于7}.解 从11个数中随机取出三个,总共有311C 165=种不同取法,即总共有311C 个基本事件,其中有利于1A 的取法有25C 10=种(三个数最大的是5,在小于5的5个数中随意取两个有25C 10=种不同取法);有利于2A 的取法有5×5=20种(在小于5的5个数中随意取一个,在大于5的5个数中随意取一个,有5×5=25种不同取法);有利于3A 的取法有5×25C 70=种(在小于5的5个数中随意取一个,在大于5的5个数中随意取两个).于是,最后得111102550()0.06()0.15()0.30165165165P A P A P A ======,,.1.8 考虑一元二次方程 02=++C Bx x , 其中B , C 分别是将一枚色子接连掷两次先后出现的点数. (1) 求方程无实根的概率α, (2) 求方程有两个不同实根的概率β.解 显然,系数B 和C 各有1,2,3,4,5,6等6个可能值;将一枚色子接连掷两次,总共有36个基本事件.考虑方程的判别式C B 42-=∆.事件{无实根}和{有两个不同实根},等价于事件{0}∆<和{0}∆>.下表给出了事件{∆由对称性知{0}∆<和{0}∆>等价,因此αβ=.易见,方程无实根的概率α和有两个不同实根的概率β为170.47αβ==≈.. ()1()1P AB P AB r =-=-, ()()1P A B P AB r +==-,()1()1[]P A B P A B p q r +=-+=-+-, ()()1[]P AB P A B p q r =+=-+-,([])()()P A A B P A AB P A p +=+==.1.18 假设箱中有一个球,只知道不是白球就是红球.现在将一个白球放进箱中,然后从箱中随机取出一个球,结果是白球.求箱中原来是白球的概率α.解 引进事件:=A {取出的是白球},1H ={箱中原来是白球},2H ={箱中原来是红球},则12,H H 构成完全事件组,并且12()()0.5P H P H ==.由条件知12(|)1(|)0.5P A H P A H ==,.由贝叶斯公式,有1111122()(|)2(|)()(|)()(|)3P H P A H P H A P H P A H P H P A H α===+.1.21 假设一厂家生产的每台仪器,以概率0.7可以直接出厂;以概率0.30需进一步进行调试, 经调试以概率0.90可以出厂,以概率0.10定为不合格品不能出厂.现在该厂在生产条件稳定的情况下,新生产了20台仪器.求最后20台仪器 (1) 都能出厂的概率α; (2) 至少两台不能出厂的概率β.解 这里认为仪器的质量状况是相互独立的.设1H ={仪器需要调试},2H ={仪器不需要调试},A ={仪器可以出厂}.由条件知1212()0.30 ()0.70 (|)0.80(|)1P H P H P A H P A H ====, ,,.(1) 10台仪器都能出厂的概率0112210100()()(|)()(|)0.300.800.700.940.940.5386P A P H P A H P H P A H ααα==+=⨯+===≈ ;.(2) 记ν——10台中不能出厂的台数,即10次伯努利试验“成功(不能出厂)”的次数.由(1)知成功的概率为p =0.06.易见,10台中至少两台不能出厂的概率109{2}1{0}{1}10.94100.940.060.1175P P P βννν=≥=-=-==--⨯⨯≈.1.23 设B A ,是任意二事件,证明:(1) 若事件A 和B 独立且B A ⊂,则()0P A =或()1P B =;(2) 若事件A 和B 独立且不相容,则A 和B 中必有一个是0概率事件.证明 (1) 由于B A ⊂,可见()()()()()()()()P AB P A P B P AB P A P A P A P B ===,,. 因此,若()0P A ≠,则()1P B =;若()0P B ≠,()0P A =.(2) 对于事件A 和B ,由于它们相互独立而且不相容,可见()()()0P A P B P AB ==,因此,概率()P A 和()P B 至少有一个等于0.补充:第二节 事件的关系和运算1. 设A ,B ,C 是三个随机事件,用事件A ,B ,C 的运算关系表示下列事件:⑴ A ,B ,C 三个都发生;⑵ A 发生而B ,C 都不发生;⑶ A ,B 都发生, C 不发生; ⑷ A ,B ,C 恰有一个发生;⑸ A ,B ,C 恰有两个发生;⑹ A ,B ,C 至少有一个发生; ⑺ A ,B ,C 都不发生.解:(1)ABC (2)ABC (3)ABC (4)ABC ABC ABC ++ (5)ABC ABC ABC ++ (6) A B C ++ (7) ABC第三节 事件的概率解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+0.40.30.6=+-=0.1 ()1()10.10.9P AB P AB =-=-=()()1()10.60.4P AB P A B P A B =+=-+=-= ()()()0.40.10.3P AB P A P AB =-=-=解:由()()()P A B P A P AB -=-,得()()()P A B P A P AB -=-()()()0.70.30.4P AB P A P A B =--=-=, ()1()10.40.6P AB P AB =-=-=3. 已知()09.P A =,()08.P B =,试证()07.P AB ≥. 解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+0.90.81≥+-0.7=解:由条件()()0P AB P BC ==,知()0P ABC =,()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ++=++---+1111500044488=++---+= 5. 设A ,B 是两事件,且()06.P A =,()07.P B =,问⑴ 在什么条件下,()P AB 取到最大值,最大值是多少? ⑵ 在什么条件下,()P AB 取到最小值,最小值是多少?解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+ 又因为()()P A P A B ≤+,()()P B P A B ≤+,所以(){}max (),()P A P B P A B ≤+, 所以0.7()1P A B ≤+≤,所以0.3()0.6P AB ≤≤.第四节 条件概率及与其有关的三个基本公式1.设有对某种疾病的一种化验,患该病的人中有90%呈阳性反应,而未患该病的人中有5%呈阳性反应,设人群中有1%的人患这种疾病,若某病人做这种化验呈阳性反应,则他患有这种疾病的概率是多少? 解:设{}A =某疾病患者,{}A =非某疾病患者,{}B =检查结果为阳性.依条件得,B A A ⊂+=Ω,且()0.01,P A = ()0.99P A =,(|)0.9P B A =(|)0.05P B A =所以()()()()()()()()0010901500109099005B P A P P AB ..A A P .B P B ....B BP A P P A P A A⨯===≈⨯+⨯+第五节 事件的独立性和独立试验1.设有n 个元件分别依串联、并联两种情形组成系统I 和II ,已知每个元件正常工作的概率为p ,分别求系统I 、II 的可靠性(系统正常工作的概率)解:{}A I =系统正常工作,{}B II =系统正常工作,{}B II =系统不正常工作 {}1,2,,i C i n ==每个元件正常工作,,且()i P C p =,{}i C =每个元件都不正常工作,()1i P C p =- 由条件知,每个元件正常是相互独立的,故1212()()()()()n n n P A P C C C P C P C P C p ===,()1i P C p =-,1212()()()()()(1)n n n P B P C C C P C P C P C p ===-()1()1(1)n P B P B p =-=--2. 设有六个相同的元件,如下图所示那样安置在线路中,设每个元件通达的概率为 p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独立的. 解: 设{}i A i =第条线路通达,1,2,3,i = {}A =代表这个装置通达,{}i A i =第条线路不通达,1,2,3,i = {}A =代表这个装置不通达, 由条件知,2()i P A p =,2()1i P A p =-,23123()1()1()1(1)P A P A P A A A p =-=-=--第二章 随机变量及其分布2.8 口袋中有7个白球,3个黑球,每次从中任取一球且不再放回. (1) 求4次抽球出现黑球次数X 的概率分布;(2) 抽球直到首次出现白球为止,求抽球次数Y 的概率分布.解 (1) 随机变量X 有4个可能值0,1,2,3,若以W 和B 分别表示白球和黑球,则试验“4次抽球”相当于“含7个W 和3个B ”的总体的4次不放回抽样,其基本事件总数为410C 210=,其中有利于{}X k = (0,1,2,3)k =的基本事件个数为:437C C k k-,因此 437410C C {}(0,1,2,3)C k k P X k k -===,或01230123~351056371131210210210210621030X ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. (2) 随机变量Y 显然有1,2,3,4等4个可能值;以W k 和B k 分别表示第(1,2,3,4)k k =次抽到白球和黑球,则“不放回抽球直到首次出现白球为止”相当于“自含7个白球3个黑球的总体的4次不放回抽样”,其基本事件总数410P 10987120=⨯⨯⨯=.易见 7843728{1}{2}10120109120P Y P Y ⨯======⨯,,327732171{3}{4}109812010987120P Y P Y ⨯⨯⨯⨯⨯======⨯⨯⨯⨯⨯, .1234~842871120120120120Y ⎛⎫ ⎪ ⎪ ⎪⎝⎭. 2.11 设X 服从泊松分布,且已知{1}{2}P X P X ===,求{4}P X =.解 以X 表示随意抽取的一页上印刷错误的个数,以)4,3,2,1(=k X k 表示随意抽取的第k 页上印刷错误的个数,由条件知X 和)4,3,2,1(=k X k 服从同一泊松分布,未知分布参数λ决定于条件:2{1}{2}ee 2!P X P X λλλλ--====,.于是λ=2.由于随机变量)4,3,2,1(=k X k 显然相互独立,因此42222{=4}=e =e 0.090243P X --≈ !2.14 设随机变量X 服从区间25[,]上的均匀分布,求对X 进行3次独立观测中,至少有2次的观测值大于3的概率α.解 设Y 3次独立试验事件{3}A X =>出现的次数,则Y 服从参数为(3,)p 的二项分布,其中23p =.因此234820(){2}{3}3(1)92727P B P Y P Y p p p ===+==-+=+=α.2.17 设随机变量X 服从正态分布(3,4)N ,且满足 {}{}P X C P X C <=≥和{}2{}P X C P X C <=≥ ,分别求常数C解 (1)由{}X C <与{}X C ≥为对立事件,又{}{}P X C P X C <=≥得 1{}2P X C <=所以C=3 (2) 由题意可知23{}=32C P X C Φ-<=()所以反查表可得 3.88C ≈2.22 设随机变量X 服从[1,2]-上的均匀分布,求随机变量Y 的分布律,其中10 00 10X Y X X -<==>⎧⎪⎨⎪⎩,若,,若,,若.解 由于X 服从[1,2]-上的均匀分布,知随机变量Y 的概率分布为1{1}{0}{10}{0}{0}032{1}{0}{02}31~1233P Y P X P X P Y P X P Y P X P X Y =-=<=-≤<=======>=<≤=⎛⎫ ⎪ ⎪ ⎪⎝⎭,,;-1.补充:第二节 离散随机变量解:由条件知,随机变量X 的分布列如下:设{}A =至多遇到一次红灯,则54()(0)(1)64P A P X P X ==+==2.设每分钟通过交叉路口的汽车流量X 服从泊松分布,且已知在一分钟内无车辆通过与恰好有一辆车通过的概率相同,求在一分钟内至少有两辆车通过的概率。
概率论试题(附含答案)详细
事件表达式A B 的意思是事件A 与事件B 至少有一件发生假设事件A 与事件B 互为对立,则事件A B 是不可能事件. 这是因为对立事件的积事件是不可能事件。
已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从自由度为2的χ2分布. 因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的χ2分布。
已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则X +Y ~N (0,5). 因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有1233X X X ++是μ的无偏估计. 因为样本均值是总体期望的无偏估计.随机变量X 服从在区间(2,5)上的均匀分布,则X 的数学期望E (X )的值为3.5. 选C ,因为在(a ,b )区间上的均匀分布的数学期望为(a +b )/2。
已知P (A )=0.6, P (B |A )=0.3, 则P (A B )= 0.18. 由乘法公式P (A B )=P (A )P (B |A )=0.6⨯0.3=0.18。
三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为0.784. 是因为三人都不中的概率为0.63=0.216, 则至少一人中的概率就是1-0.216=0.784。
一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为0.25. 由古典概型计算得所求概率为31053210.254C ⨯⨯==。
已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=0.875,因P {X ≤1.5} 1.5()d 0.875f x x ==⎰假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (X +Y )= 填 4.5,因E (X )=5⨯0.5=2.5, E (Y )=2, E (X +Y )=E (X )+E (Y )=2.5+2=4.5一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=0.4,因为总体X 的方差为4,10个样本的样本均值的方差是总体方差的1/10。
《概率论与数理统计》练习题试卷及答案解析
《概率论与数理统计》练习题试卷及答案解析一.单项选择题(每小题2 分,共 20 分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )B A .A 1A 2 B .21A A C .21A A D .21A A 2.则( )DA .121=a B .61=a C .121=a D .41=a 3.设事件A 与B 相互独立,则有( )CA .0)(=AB P B .)()()(B P A P B A P +=C .)()()(B P A P AB P =D .)()(A P A B P =4.设随机变量X 服从正态分布),(2σμN ,则其概率密度函数的最大值为( )D A .0 B .1 C .π21 D .212)2(-πσ5. 设随机变量X 与Y 互相独立, 且X ~),,(211σa N Y ~),,(222σa N 则Y X Z +=仍服从正态分布,且( ) DA . Z ~),(22211σσ+a N B . Z ~),(2121σσa a N +C . Z ~),(222121σσa a N + D . Z ~),(222121σσ++a a N6.设随机变量X 服从[-1,2]上的均匀分布,则X 的概率密度)(x f 为( )AA .⎪⎩⎪⎨⎧≤≤-=.,0;21,31)(其他x x f B .⎩⎨⎧≤≤-=.,0;21,3)(其他x x fC .⎩⎨⎧≤≤-=.,0;21,1)(其他x x fD . ⎪⎩⎪⎨⎧≤≤--=.,0;21,31)(其他x x f7.设,21X X ,3X 是总体~X ()2,σμN 的样本,则μ的无偏估计量是( )AA .3212110351X X X ++ B .321316131X X X ++ C .3211274131X X X ++ D .3211513151X X X ++8.某店有7台电视机,其中2台为次品,今从中随机地抽取3台,设X 为其中次品数,则数学期望EX =( )D A .73 B .74 C .75 D .76 9.设总体X ~N (2,σμ),X 1,X 2,…,X 10为来自总体X 的样本,X 为样本均值,则X ~( )CA .)10(2σμ,N B .)(2σμ,N C .)10(2σμ,N D .)10(2σμ,N 10.在假设检验中,H 0为原假设,H 1为备择假设,则第一类错误是( )BA. H 1成立,拒绝H 0B. H 0成立,拒绝H 0C. H 1成立,拒绝H 1D. H 0成立,拒绝H 1 二.填空题(每空 2 分,共 20 分)1.连续抛一枚均匀硬币4次,则正面至少出现一次的概率为___________.1615 2.设A ,B 为互不相容的两个随机事件,P (A )=0.3,P (B )=0.4,则)(B A P ⋃)=________.0.73.设随机变量X 的概率密度⎪⎩⎪⎨⎧≤≤=,,0;10,A )(2其他x x x f 则常数A=_________.34.设随机变量X 是服从区间(μ,2)上的均匀分布,且1=EX ,则μ= . 1 5.设X 为连续随机变量,c 为一个常数,则P {X =c }=____________.06.设随机变量X 服从二项分布),(p n B ,且,44.1,4.2==DX EX 则二项分布的参数p = . 0.47.10X =E ,4=DX ,若{}04.010≤≥-c X P ,则常数c = . 108.已知E (X )=1,E (Y )=2,E (XY )=3,则X ,Y 的协方差Cov (X ,Y )=_____________.2 9.设二维随机变量(X,Y)的分布律为则P{XY=0}=___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——第1页——系名____________班级____________姓名____________学号____________密封线内不答题试题一一、选择题(每题有且仅有一个正确答案,每题2分,共20分) 1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( )。
A. A,B 互不相容B. A,B 相互独立C.A ⊂BD. A,B 相容 2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( )A. 1/2B. 1/12C. 1/18D. 1/93、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( )A.919910098.02.0CB.i i i i C-=∑100100910098.02.0C.ii i i C-=∑1001001010098.02.0 D.i i i i C-=∑-100910098.02.014、设)3,2,1(39)(=-=i i X E i ,则)()31253(321=++X X X EA. 0B. 25.5C. 26.5D. 95、设样本521,,,X X X 来自N (0,1),常数c 为以下何值时,统计量25242321XX X X X c +++⋅服从t 分布。
( )A. 0B. 1C. 26D. -16、设X ~)3,14(N ,则其概率密度为( )A.6)14(261--x e πB.32)14(261--x eπC.6)14(2321--x eπD.23)14(261--x eπ7、321,,X X X 为总体),(2σμN 的样本, 下列哪一项是μ的无偏估计()A.3212110351X X X ++ B. 321416131X X X ++ C. 3211252131X X X ++ D. 321613131X X X ++ 8 、设离散型随机变量X 的分布列为则常数C 为( )(A )0 (B )3/8 (C )5/8 (D )-3/89 、设随机变量X ~N(4,25), X1、X2、X3…Xn 是来自总体X 的一个样本,则样本均值X近似的服从( )(A ) N (4,25) (B )N (4,25/n ) (C ) N (0,1) (D )N (0,25/n ) 10、对正态总体的数学期望进行假设检验,如果在显著水平a=0.05下,拒绝假设00μμ=:H ,则在显著水平a=0.01下,( )——第2页——A. 必接受0HB. 可能接受,也可能拒绝0HC. 必拒绝0HD. 不接受,也不拒绝0H 二、填空题(每空1.5分,共15分)1、A, B, C 为任意三个事件,则A ,B ,C 至少有一个事件发生表示为:_________;2、甲乙两人各自去破译密码,设它们各自能破译的概率为0.8,0.6,则密码能被破译的概率为_________;3、已知分布函数F(x)= A + Barctgx )(+∞<<-∞x ,则A =___,B =____;4、随机变量X 的分布律为k C k XP )31()(==,k =1,2,3, 则C=_______;5、设X ~b (n,p )。
若EX=4,DX=2.4,则n=_________,p= _________。
6、X 为连续型随机变量,1 , 0<x<1f (x )= ,则P(X ≤1) = _______。
0 , 其他7、在总体均值的所有线性无偏估计中,_______是总体均值的无偏估计量。
8、当原假设H0为假而接受H0时,假设检验所犯的错误称为_______。
三、判断题(只判断对错,无须改错。
正确的划√,错误的划×,每题1分,共5分) 1、如果事件A 、B 互不相容,那么A 、B 必相互独立。
()2、随机变量的取值个数为无限个,则该随机变量的类型即为连续型。
3、记)(x Φ为标准正态分布的分布函数,则)(1)(x x Φ-=-Φ。
() 4、对区间估计)(θθθ<<P =α-1,α-1是估计的置信度。
() 5、对任一假设检验,犯第一类错误的概率与犯第二类错误的概率之 和和为1。
( ) 四、计算题(共60分)1、(10分)对某校学生进行调查得知,该校学生参加英语四级辅导班后能通过四级考试的概率为0.86,不参加辅导班能通过四级考试的概率为0.35,假设该校学生有80%学生参加四级辅导班,试问:(1)该校任一学生能通过四级考试的概率是多少? (5分)(2)若该校一学生通过四级考试,则他已经参加培训班的概率是多少?(5分)2、(10分)设随机变量X 的概率密度函数为⎩⎨⎧<<=其它0Ax 02)(x x f(1)计算A 的值。
(3分) (2)计算X 的期望。
(3分) (3)计算X 的方差。
(4分)3、(10分)、设总体X 服从指数分布,其有概率密度函数为:⎩⎨⎧>=-其它00x e )(x x p λλ ,其中λ为未知参数, nX X X ,,,21 为总体的一组样本。
——第3页——系名____________班级____________姓名____________学号____________密封线内不答题(1)求λ的矩估计值;(5分) (2)求λ的极大似然估计值。
(5分)4、(10分)在某社区随机抽取40名男子的身高进行调查,得其平均身高为168厘米,样本标准差为8厘米,试求总体均值(该社区全体男子平均身高)μ的0.95的置信区间。
(注:0211.2)40(,0227.2)39(025.0025.0==t t )5、(10分)已知某炼铁厂铁水的含碳量服从正态分布N (4.55,0.1082)。
现在测定了9炉铁水,其平均含碳量为4.484。
如果估计方差没发生变化,可否认为现在生产的铁水平均含碳量仍为4.55 。
(α=0.05) (注:Z 05.0=1.96)6、(10分)下表列出了6个工业发达国家某年的失业率y 与国民经济增长率x 的数据。
(1)作散点图,能否认为y 与x 之间有线性相关关系?(2分) (2)建立y 关于x 的一元线性回归方程;(6分)(3)若一个工业发达国家国民经济增长率为3%,求其失业率的预测值。
(2分)——第4页——试题一答案选择题(每道题有且仅有一个正确答案,共20分,每题2分)1、D2、C3、B4、B5、C6、A7、A8、C9、B 10、B 填空题(每空1.5分,共20分)1、C B A ⋃⋃2、0.923、1/2;1/π4、27/135、10 ;0.46、17、X (样本均值)8、第二类错误(取伪错误,第Ⅱ类错误) 判断题。
(只判断对错,无须改错。
每题1分,共5分) 1、×2、×3、√4、√5、× 计算题(共50分)1、解:(1)用1A 表示该学生已经参加培训,用2A 表示该学生未受到培训。
用B 表示该学生通过CET-4。
(1分) 由题设可知P (1A )=0.8,P (2A )=0.2. (2分) 根据全概率公式 P (B )=)()(21ii iA B P A P ∑= (2分)=0.835.02.086.0⨯+⨯=758.0 (1分) (2)P(B A 1)=)()(B P B A P 1 (2分) =758.086.08.0⨯ (1分) =0.908 (2分)2、解:(1)由概率密度函数的正则性1=⎰+∞∞-x d x p )(得: (1分)120=⎰dx x A,即102=Ax 得: (1分)- 5 -A=1 (1分) (2)根据期望的计算公式⎰+∞∞-=dx x xp EX )( (1分)dx x x ⎰*=102=2/3 (2分)(3)根据方差计算公式22)(EX EX DX -= (1分) xdx x EX 21022*=⎰=1/2 (1分) 所以 2)3/2(2/1-=DX=1/1806.0≈ (2分)3、解:1)EX=x d x p ⎰+∞∞-)(=x x d e λλ-⎰1=λ1, (2分) 由矩法估计知:EX=λ1=x 得: (1分) ∧λ=x1 (2分)2)θ的极大似然函数为:L (θ)=∏∏=-==ni x nni i ie x p 11λλ)( (2分)∑=-=ni i x n L 1ln ln λλ (1分)∑=+=ni i x n d L d 1ln λλ (1分) ∧λ=x1(1分)4、解:设总体平均值为0227.2)39(,05.0025.0==t αμ,已知 (2分)——第6页——μ的置信系数为0.95的置信区间是: 0227.24081680227.2408168⨯+<<⨯-μ即为: (4分)165.44<<μ170.56 (2分) μ的置信系数为0.95的置信区间为[165.44, 170.56] (2分) 5、解:原假设H 0:μ=4.55 (2分) 选取 nX U σ55.4__-=作为统计量, (2分) 根据题得到:__X =4.484,σ=0.108 因为Z 05.0=1.96,3/108.055.4484.4-=U =-1.83>-1.96, (4分)所以接受H 0,即认为:认为现在生产的铁水平均含碳量仍为4.55 6解:(1)图略,由散点图可以认为y 与x 之间存在线性相关关系。
(2分)(2)设y=a+bx 计算:433.485.3033.1415.10135.11____===-==y x l l l yy xy xx (2分)则得到 a=7.94 b=-0.91 (3分)所以 x y91.094.7ˆ-= (1分) (3)x=3时,y=7.94-0.91*3=5.21 (2分)——第7页——系名____________班级____________姓名____________学号____________密封线内不答题试题二一、选择题(每道题有且仅有一个正确答案,共20分,每题2分) 1、已知P(A)=0.4, P(B)=0.5, P(A ∪B)=0.7则)(__B A P 为( )A.0.2B. 0.3C.0.4D. 不能确定 2、掷二骰子,求点数之和至少为10的概率是( )A .10/12 B.3/12 C. 10/36 D.1/63、一地区男女人数相等,随机抽取100人,恰好有50名男性的概率是( )A. 50)21( B. 5050100)21(C C. 10050100)21(C D. 1/24、设X~N(11,6),则其概率密度函数为( )A.()12112261--x eπ B.()62112261--x eπC.()12112121--x eπD.()62112121--x eπ5、对任意二事件A 和B ,有()P A B -=【 】。