高级中学数学必修三知识点归纳

合集下载

高中数学必修三知识点大全

高中数学必修三知识点大全

知識點串講必修三第一章:演算法1. 1.1 演算法得概念1、演算法(algorithm)一詞源於算術(algorism),即算術方法,是指一個由已知推求未知得運算過程。

後來,人們把它推廣到一般,把進行某一工作得方法和步驟稱為演算法。

廣義地說,演算法就是做某一件事得步驟或程式。

2、任意給定一個大於1得整數n,試設計一個程式或步驟對n是否為質數做出判定。

解析:根據質數得定義判斷解:演算法如下:第一步:判斷n是否等於2,若n=2,則n是質數;若n>2,則執行第二步。

第二步:依次從2至(n-1)檢驗是不是n得因數,即整除n得數,若有這樣得數,則n不是質數;若沒有這樣得數,則n是質數。

3、一個人帶三隻狼和三隻羚羊過河,只有一條船,同船可以容納一個人和兩隻動物.沒有人在得時候,如果狼得數量不少於羚羊得數量,狼就會吃掉羚羊.請設計過河得演算法。

解:演算法或步驟如下:S1 人帶兩隻狼過河;S2 人自己返回;S3 人帶一隻羚羊過河;S4 人帶兩隻狼返回;S5 人帶兩隻羚羊過河;S6 人自己返回;S7 人帶兩隻狼過河;S8 人自己返回;S9 人帶一隻狼過河.1.1.2程式框圖(1得流程圖得首末兩端必須是起止框。

(2表示資料得輸入或結果得輸出,它可用在演算法中得任何需要輸入、輸出得位置。

(3(4判斷框一般有一個入口和兩個出口,有時也有多個出口,它是惟一得具有兩個或兩個以上出口得符號,在只有兩個出口得情形中,通常都分成“是”與“否”(也可用“Y ”與“N ”)兩個分支。

2、順序結構:順序結構描述得是是最簡單得演算法結構,語句與語句之間,框與框之間是按從上到下得順序進行得。

3、已知一個三角形得三邊分別為2、3、4,利用海倫公式設計一個演算法,求出它得面積,並畫出演算法得程式框圖。

演算法分析:這是一個簡單得問題,只需先算出p 得值,再將它代入公式,最後輸出結果,只用順序結構就能夠表達出演算法。

解:程式框圖:24、條件結構:根據條件選擇執行不同指令得控制結構。

高中数学必修三知识点归纳

高中数学必修三知识点归纳

一、函数与方程1. 函数的概念:函数是一种特殊的关系,它将一个数集(定义域)中的每个元素都对应到另一个数集(值域)中的一个唯一元素。

2. 函数的表示方法:函数可以用表达式、表格、图像等方式表示。

3. 函数的性质:单调性、奇偶性、周期性、有界性等。

4. 函数的运算:函数的加法、减法、乘法、除法等运算。

5. 函数的复合:两个或多个函数的复合运算。

6. 函数的反函数:如果一个函数的输入和输出可以互换,那么这个函数就是其自身的反函数。

7. 函数的极限:当自变量无限接近某个值时,函数值无限接近的值。

8. 函数的连续性:如果一个函数在某一点的极限存在,那么这个函数在这一点就是连续的。

9. 函数的导数:描述函数变化率的概念,可以用来研究函数的增减性、极值、凹凸性等性质。

10. 函数的积分:描述函数积累效果的概念,可以用来计算面积、体积等。

11. 一元二次方程:形如ax²+bx+c=0的方程,其中a≠0。

12. 一元二次方程的解法:因式分解法、配方法、公式法、求根公式等。

13. 一元二次方程的应用:求最值、求解实际问题等。

14. 一元一次不等式:形如ax+b>c或ax+b<c的不等式,其中a≠0。

15. 一元一次不等式的解法:移项、消去系数、求根等。

16. 一元一次不等式的应用:求解实际问题等。

二、数列与数学归纳法1. 数列的概念:数列是按照一定顺序排列的一组数。

2. 数列的性质:单调性、有界性、收敛性等。

3. 等差数列:每一项与前一项之差相等的数列。

4. 等比数列:每一项与前一项之比相等的数列。

5. 等差数列的性质:求和公式、通项公式等。

6. 等比数列的性质:求和公式、通项公式等。

7. 数学归纳法:通过证明一个命题对某个自然数成立,然后证明它对下一个自然数也成立,从而证明对所有自然数都成立的方法。

三、立体几何与空间向量1. 立体几何的基本概念:点、线、面、体等。

2. 空间直线与平面的位置关系:平行、垂直、相交等。

数学必修三知识点总结

数学必修三知识点总结

数学必修三知识点总结一、算法初步。

1. 算法的概念。

- 算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。

- 算法的特点:有限性(步骤有限)、确定性(每一步都有确切定义)、顺序性(步骤有先后顺序)、可行性(每一步都能有效执行)、不唯一性(解决问题的算法不唯一)。

2. 程序框图。

- 程序框图的基本图形符号:- 终端框(起止框):表示一个算法的起始和结束。

- 输入、输出框:用来表示数据的输入或结果的输出。

- 处理框(执行框):赋值、计算等操作。

- 判断框:判断某一条件是否成立,成立时在出口处标明“是”或“Y”,不成立时标明“否”或“N”。

- 流程线:连接程序框,表示算法步骤的执行顺序。

- 三种基本逻辑结构:- 顺序结构:是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。

- 条件结构:根据条件是否成立有不同的流向。

- 循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况。

有当型循环(先判断条件,满足条件执行循环体)和直到型循环(先执行一次循环体,再判断条件)。

3. 基本算法语句。

- 输入语句:`INPUT“提示内容”;变量`,用于向程序中输入数据。

- 输出语句:`PRINT“提示内容”;表达式`,用于输出程序的运行结果。

- 赋值语句:变量 = 表达式,将表达式的值赋给变量。

- 条件语句:- `IF - THEN`语句(单分支条件语句):- 格式:`IF 条件 THEN`。

语句体。

- 当条件满足时执行语句体。

- `IF - THEN - ELSE`语句(双分支条件语句):- 格式:`IF 条件 THEN`。

语句体1。

`ELSE`.语句体2。

- 当条件满足时执行语句体1,不满足时执行语句体2。

- 循环语句:- `FOR`循环语句:- 格式:`FOR 循环变量=初值 TO 终值 STEP 步长`。

循环体。

`NEXT 循环变量`。

- 用于已知循环次数的循环结构。

高中数学必修三知识点

高中数学必修三知识点

高中数学必修三知识点引言高中数学必修三通常包括概率统计、数列、算法、复数等重要数学领域,这些知识点对于培养学生的逻辑思维和解决问题的能力至关重要。

一、概率与统计1.1 随机事件与概率概念:随机事件的定义、概率的计算方法。

1.2 概率的性质总结:概率的基本性质,如非负性、规范性、加法法则。

1.3 条件概率与独立事件定义:条件概率的概念、独立事件的判断。

1.4 统计初步指标:均值、中位数、众数、方差、标准差的计算与意义。

1.5 统计图类型:条形图、直方图、饼图的绘制与解读。

二、数列2.1 等差数列公式:等差数列的通项公式、求和公式。

2.2 等比数列公式:等比数列的通项公式、求和公式。

2.3 数列的极限概念:数列极限的定义、无穷等比数列的极限。

2.4 数列的应用案例:数列在实际问题中的应用,如分期付款、人口增长模型。

三、算法3.1 算法的概念定义:算法的定义、特征。

3.2 程序框图绘制:程序框图的绘制方法,如顺序结构、条件结构、循环结构。

3.3 算法案例分析:常见算法问题的解决步骤,如排序、查找。

四、复数4.1 复数的概念定义:复数的定义、实部与虚部。

4.2 复数的运算规则:复数的四则运算、共轭复数、复数的模。

4.3 复数的几何意义解释:复数与复平面的关系、复数的代数表示与几何意义。

4.4 复数的应用案例:复数在电气工程、流体力学等领域的应用。

五、解析几何5.1 坐标系介绍:直角坐标系、极坐标系的基本概念。

5.2 直线的方程形式:直线的点斜式、斜截式、一般式。

5.3 圆的方程形式:圆的标准方程、一般方程。

5.4 圆锥曲线类型:椭圆、双曲线、抛物线的方程和性质。

六、逻辑推理6.1 逻辑与推理概念:逻辑推理的定义、演绎推理与归纳推理。

6.2 逻辑语句分析:逻辑语句的真假判断、逻辑运算。

6.3 推理方法总结:直接证明、间接证明、反证法的应用。

七、推理与证明7.1 推理的概念定义:推理的定义、日常生活中的推理应用。

高中数学必修3知识点总结

高中数学必修3知识点总结

高中数学必修3知识点总结一、直线与圆1. 直线的方程直线的方程有点斜式、斜截式和截距式。

其中,点斜式方程是通过直线上的一个点和直线的斜率来确定直线的方程;斜截式方程是通过直线的斜率和截距来确定直线的方程;截距式方程是通过直线在坐标轴上的两个截距来确定直线的方程。

2. 圆的方程圆的方程有标准方程和一般方程。

标准方程是圆心在原点的圆的方程,一般为x²+y²=r²;一般方程是圆心不在原点的圆的方程,一般为(x-a)²+(y-b)²=r²。

3. 直线与圆的位置关系直线与圆的位置关系有相离、相切和相交三种情况。

相离是指直线与圆没有公共点;相切是指直线与圆有且仅有一个公共点;相交是指直线与圆有两个交点。

4. 直线与圆的交点直线与圆有两个交点的情况下,求交点的方法可以通过联立直线方程和圆方程,再使用判别式来判断交点的情况。

5. 切线与法线圆上一点的切线和法线是确定的。

切线的斜率等于点到圆心的连线的斜率的相反数,法线的斜率等于切线的斜率的相反数。

二、平面向量1. 平面向量的定义平面向量是向量的一种,平面向量的定义是以有向线段为代表的,具有大小和方向的量。

平面向量通常用有向线段的起点和终点来表示。

2. 平面向量的加法与减法平面向量的加法与减法可以通过平行四边形法则进行计算,即两个向量相加时,将它们的起点放在一起,而两个向量的终点也放在一起,然后从起点到终点的有向线段即为它们的和。

3. 平行四边形法则平行四边形法则是求两个向量的和或差的方法。

在平行四边形中,对角线的和为两个向量的和,差为两个向量的差。

4. 数量积与向量积数量积也叫点积,是两个向量的数量乘积,定义为:a·b=|a|*|b|*cosθ,其中a、b为两个向量,|a|、|b|为它们的模,θ为它们的夹角。

向量积也叫叉积,是两个向量的向量乘积,定义为:a×b=|a|*|b|*sinθ*n,其中n为一个单位向量,垂直于a、b所确定的平面,并符合右手螺旋定则。

高中数学必修三知识点总结

高中数学必修三知识点总结

高中数学必修三知识点总结一、函数和极限1、函数函数是一种特殊的数学关系,即将一个变量与另一个变量的幂次方律或以其他形式表示的函数表达式相关联,使其中一个变量可以通过另一个变量确定。

它是将一个数量变化到另一个数量的过程。

例如,y=x²定义了函数y与x之间的关系。

在数学中,函数的定义一般表示为 f(x)=y。

2、极限极限是数学理论中的基本概念,它是描述一个函数沿某方向无限接近某一点的过程。

3、函数的运算性质(1)可加性如果函数a(x)与函数b(x)定义域上存在,那么a(x) + b(x) = a(x) + b(x),其中a(x) + b(x)定义域为定义域a(x)与定义域b(x)的交集。

(2)可乘性如果函数a(x)与函数b(x)定义域上存在,那么a(x) × b(x) = a(x) × b(x),其中a(x) × b(x)定义域为定义域a(x)与定义域b(x)的交集。

(3)绝对值函数的特性绝对值函数的定义域为R,其表达式为 f(x)=|x|,该函数为单增函数,其定义域上单调性为单调递增,又有f(-x)=f(x)成立。

二、坐标系1、什么是坐标系坐标系又被称为图形坐标系,是一种定义坐标位置的系统,可以用于表示,定位和绘制一个点,线或者面的几何形状。

2、极坐标、直角坐标和笛卡尔坐标(1)极坐标极坐标系中只有一个圆形坐标区域,其中x轴和y轴均在同一圆上,整个坐标系定义在一个圆环内,由一对极坐标来表示任意点的坐标,公式为(ρ,θ),ρ表示从原点到点的距离,θ表示从x轴正半轴向给点旋转的角度。

(2)直角坐标直角坐标是一种两个方向平行、正交的坐标系统,它也称为二维坐标系。

直角坐标系均有x轴(横轴)和y轴(纵轴)两个轴来表示,它们垂直于彼此,x轴从原点向右为正向,y轴从原点向上为正向。

每个坐标点都可以用两个坐标值(x, y)来描述。

(3)笛卡尔坐标笛卡尔坐标系是一种基于三个平行、正交的空间坐标系统,也叫三维坐标系,它有x 轴、y轴和z轴,三条轴均正交,x轴、y轴和z轴垂直于彼此,x轴从原点向右为正方向,y轴从原点向上为正方向,z轴从原点朝外为正方向。

高二数学必修三知识点总结

高二数学必修三知识点总结

高二数学必修三知识点总结一、函数与导数1. 函数的定义与性质•函数的定义:函数是一个将每个自变量对应唯一的因变量的规律。

•函数的性质:定义域、值域、单调性、奇偶性等。

2. 函数的图像与性质•函数的图像:可以通过绘制函数的图像来观察函数的性质。

•对称性:函数的图像在某些情况下可能具有对称性,如偶函数和奇函数。

•切线与斜率:可以通过切线和斜率来研究函数的变化趋势和极值点。

3. 导数的定义与几何意义•导数的定义:导数描述了函数在某一点变化的速率或斜率。

•几何意义:导数表示函数在某一点的切线斜率。

导数的绝对值越大,曲线变化越快。

4. 导数的计算•基本导数公式:常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。

•导数的四则运算:求导的基本运算:加、减、乘、除、复合函数等。

•链式法则、隐函数求导:用于求解复合函数和隐函数的导数。

5. 导数的应用•函数的单调性与极值:通过导数的正负性来判断函数的单调性和极值点。

•函数的凹凸性与拐点:通过导数的增减性来判断函数的凹凸性和拐点。

•最值问题:利用导数求解函数的最大值和最小值。

二、三角函数与同角三角函数1. 三角函数的定义与性质•常用三角函数:正弦函数、余弦函数、正切函数等。

•周期性与对称性:三角函数的周期性及其对称性质。

•基本关系:三角函数之间的基本关系,如倒数关系等。

2. 同角三角函数•同角三角函数的定义:同一个角的不同三角函数之间的关系。

•诱导公式:通过正弦函数和余弦函数的关系来推导其他同角三角函数的值。

3. 三角函数的图像和性质•三角函数的图像:通过绘制三角函数的图像来观察其性质。

•周期性与对称性:三角函数的周期性及其对称性。

•单调性与奇偶性:三角函数的单调性与奇偶性的判断。

4. 三角函数的性质和应用•三角函数的特殊值与恒等式:特殊角的三角函数值以及不同角度之间的对应关系。

•三角函数的应用:三角函数在实际问题中的应用,如角度的测量、航空导航等。

三、解三角形1. 三角形的基本概念与性质•三角形的基本概念:边、角、全等等概念的定义。

高二数学高考必修三知识点

高二数学高考必修三知识点

高二数学高考必修三知识点一、立体几何1. 点、线、面概念在立体几何中,点是最基本的概念,它没有长度、面积和体积,只有位置之分。

线是由无数个点连成的,具有长度但没有面积和体积。

面是由无数个线围成的,具有面积但没有体积。

2. 平行和垂直关系平行线是指不相交的两条直线在平面上永远也不会相交,它们具有相同的斜率。

垂直线是指两条直线相交时,相交角为90度,它们的斜率互为相反数。

3. 基本立体形状常见的基本立体形状包括球体、立方体、长方体、棱柱、棱锥和圆锥等。

这些形状具有特定的表面积和体积公式,掌握它们的计算方法对于解决与立体几何相关的题目十分重要。

二、函数与方程1. 一次函数一次函数是指具有形式为 y = kx + b 的函数,其中 k 和 b 是常数,k 表示直线的斜率,b 表示直线与 y 轴的截距。

掌握一次函数的性质和图像特征,能够解决与直线相关的问题。

2. 二次函数二次函数是指具有形式为 y = ax^2 + bx + c 的函数,其中 a、b 和 c 是常数,a 不为零。

二次函数的图像通常是抛物线,掌握它的性质和图像特征,能够解决与抛物线相关的问题。

3. 方程与不等式方程是指包含未知数的等式,解方程的过程就是求出使得等式成立的未知数的值。

不等式是指包含不等号的式子,解不等式的过程就是求出使得不等式成立的未知数的取值范围。

三、概率与统计1. 概率的基本概念概率是指某种事件发生的可能性大小,常用0到1之间的数值表示。

概率的计算方法包括古典概率、几何概率和条件概率等,通过掌握这些方法可以解决与概率相关的问题。

2. 统计的基本概念统计是指收集、整理、分析和解释数据的过程,统计学可以帮助我们归纳总结数据的规律,作出合理的推断和预测。

掌握统计学的基本方法和概念,能够解决与数据分析相关的问题。

3. 抽样与推断统计抽样是指从总体中选取一部分样本进行观察和测量,通过对样本数据的分析得出对总体的推断。

推断统计是指基于样本数据进行总体参数估计和假设检验等统计推断的过程。

高中数学必修三重要知识点总结归纳

高中数学必修三重要知识点总结归纳

高中数学必修三重要知识点总结归纳高中必修三数学知识1一.随机事件的概率及概率的意义1、根本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S确实定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在一样的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;对于给定的随机事件A,假如随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

(6)频率与概率的区别与联络:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率二.概率的根本性质1、根本概念:(1)事件的包含、并事件、交事件、相等事件(2)假设A∩B为不可能事件,即A∩B=ф,那么称事件A 与事件B互斥;(3)假设A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);假设事件A与B为对立事件,那么A∪B 为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)2、概率的根本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);3)假设事件A与B为对立事件,那么A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联络,互斥事件是指事件A与事件B在一次试验中不会同时发生,其详细包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发惹事件A不发生,对立事件互斥事件的特殊情形。

高中数学必修3全册知识点

高中数学必修3全册知识点

第1讲算法初步一.算法的概念1.算法的概念1、算法定义:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有穷性:一个算法在执行有限个步骤之后,必须结束.(2)确定性:算法的每一个步骤和次序应该是确定的.(3)可行性:原则上算法能够精确地元算,而且人们用笔和纸做有限次即可完成.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)输出:一个算法有0个或多个输入,以刻画运算对象的初始条件.所谓0个输入是指算法本身已经给出了初始条件.(6)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果,没有输出的算法是毫无意义的.3.算法的描述:自然语言、程序框图、程序语言。

例1、写出1×2×3×4×5×6的一个算法.解:按照逐一相乘的程序进行第一步:计算1×2,得到2;第二步:将第一步的运算结果2与3相乘,得到6;第三步: 将第二步的运算结果6与4相乘,得到24;第四步: 将第三步的运算结果24与5相乘,得到120;第五步: 将第四的运算结果120与6相乘,得到720;第六步:输出结果.例2、写出按从小到大的顺序重新排列三个数值的算法.,,x y z 解:(1).输入三个数值;,,x y z (2).从三个数值中挑出最小者并换到中;x (3).从中挑出最小者并换到中;,y z y (4).输出排序的结果.二.程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

高中数学必修三知识点大全

高中数学必修三知识点大全

高中数学必修三知识点大全一、集合1. 集合的定义集合是由确定的、互不相同的对象组成的整体。

例如:{1, 2, 3} 是一个集合,表示包含数字 1、2 和 3 的集合。

2. 集合的表示方法列举法:将集合中的元素一一列举出来,如 {a, b, c}。

描述法:使用描述性语言来表示集合,如 {x | x 是自然数且 x < 5}。

3. 集合的基本运算并集:表示两个集合中所有元素的集合。

交集:表示两个集合中共有的元素的集合。

差集:表示一个集合中有而另一个集合中没有的元素的集合。

二、函数1. 函数的定义函数是一种特殊的关系,它将一个集合(定义域)中的每个元素唯一地对应到另一个集合(值域)中的元素。

例如:f(x) = x^2 是一个函数,表示输入 x 后,输出 x 的平方。

2. 函数的性质单调性:函数值随着自变量的增大而增大或减小。

奇偶性:函数关于原点对称或关于 y 轴对称。

周期性:函数值在一定的周期内重复出现。

3. 函数的图像函数的图像是函数值与自变量的关系图,可以直观地反映函数的性质。

三、三角函数1. 三角函数的定义三角函数是描述角度与边长关系的函数,包括正弦、余弦、正切等。

例如:sin(θ) 表示角度θ 的正弦值。

2. 三角函数的性质周期性:三角函数的值在一定的周期内重复出现。

奇偶性:正弦和余弦函数是奇函数和偶函数。

3. 三角函数的图像三角函数的图像是函数值与角度的关系图,可以直观地反映函数的性质。

四、立体几何1. 空间几何体的定义空间几何体是由平面或曲面围成的几何形状。

例如:球体、长方体、圆柱体等。

2. 空间几何体的性质表面积:空间几何体外部面积的总和。

体积:空间几何体内部占据的空间大小。

3. 空间几何体的计算利用公式计算空间几何体的表面积和体积。

五、概率与统计1. 概率的定义概率是描述事件发生可能性大小的数值,取值范围在 0 到 1 之间。

例如:抛掷一枚硬币,出现正面的概率为 0.5。

2. 统计的基本概念总体:研究对象的全体。

高中数学必修三知识点归纳

高中数学必修三知识点归纳

高中数学必修三知识点归纳一、函数与方程1. 函数的定义与性质- 函数是一个或多个变量间的依赖关系。

- 定义域、值域、图像、奇偶性、单调性等。

2. 一元二次函数- 基本形式:f(x) = ax² + bx + c (a≠0)- 参数a、b、c对函数图像的影响- 顶点坐标、对称轴- 判别式和根的关系- 单调性、最大值最小值- 图像的平移、伸缩、翻转3. 幂函数、指数函数和对数函数- 幂函数:f(x) = x^a (a为实数,a≠0)- 指数函数:f(x) = a^x (a > 0, a ≠ 1)- 对数函数:f(x) = loga(x) (a > 0, a ≠ 1)- 特性和性质- 图像和变化规律4. 三角函数和三角方程- 正弦函数、余弦函数、正切函数、余切函数的定义- 周期和振幅- 正弦定理、余弦定理和正切定理- 三角方程的解法和应用二、数列与数学归纳法1. 数列的概念和性质- 数列是按照一定规律排列的一组数。

- 等差数列、等比数列、等差数列的前n项和- 通项公式、递推公式- 数列图像的性质2. 数列的极限- 数列趋于无穷的极限- 数列的收敛与发散- 等差数列、等比数列的极限- 极限的运算性质3. 数学归纳法- 数学归纳法的基本原理- 数学归纳法的应用三、数学推理与证明1. 几何证明方法- 直接证明、间接证明、反证法、数学归纳法- 常见几何定理的证明2. 合理推理方法- 演绎推理、归纳推理、直觉推理、假设-验证法 - 合理推理的特点和要求3. 几何证明- 平行线证明- 三角形的证明- 圆的证明。

最全高中数学必修三知识点总结归纳(经典版)

最全高中数学必修三知识点总结归纳(经典版)

最全高中数学必修三知识点总结归纳(经典版)一、初等函数1、函数基本概念(1)函数的定义函数是在一个或多个自变量之间,存在着 if and only if 关系的量的集合。

函数f 是由实域上的一个集合D 到实域上的另一个集合F 的一种规律性关系:若x 属于D,则必有y=f(x) 属于F,而且将元素xˆD 与元素f(x)ˆF 间确定起“一一”对应关系,称f 为从D 到F 的函数,表示为f:D→F ,称D 为函数f 的定义域,称F 为值域,f(x) 称为定义在x 处的函数值,D 和F 都是实域,实域外的点及点之间无关;(2)单调性函数y=f(x) 在定义域D 上单调,若:当x1<x2 时,有f(x1)<f(x2) ,则称函数y=f(x) 在D 上是递增的;当x1<x2 时,有f(x1)>f(x2) 时,则称函数y=f(x) 在D 上是递减的;当x1≠x2 时,f(x1)=f(x2) 时,则称函数y=f(x) 在D 上是偶函数。

2、指数函数与对数函数指数函数是指以自然数e 为底数得到的函数,表示为:y=a·ebx,其中a、b 为实数,此函数有加法律:若f1 (x)=a1·eb1 ·x,f2 (x)=a2·eb2 ·x,则有f1 (x)+f2 (x)=(a1+a2)·eb·x,并且有乘法律:若f1 (x)=a1·eb1 ·x,f2 (x)=a2·eb2 ·x,则有f1 (x)·f2 (x)=(a1·a2)·eb1+b2 ·x;(2)对数函数定义:若y=ax,其中a 为常数,a>0,x>0,则称f (x)=loga x 叫做以a 为底数的对数函数,简称对数函数,这样的函数是满足增函数类型以及幂律。

二、二次函数若函数f(x)为一关于x的二阶函数,则f(x)=ax^2+bx+c,其中a 不等于0,a 、b、c 均为实数,则称f(x) 为二次函数。

数学必修三知识点总结

数学必修三知识点总结

数学必修三知识点总结一、函数的概念与性质1. 函数的定义:描述变量间依赖关系的一种数学表达方式。

2. 函数的表示方法:符号表示法、图像表示法、表格表示法。

3. 函数的性质:单调性、奇偶性、周期性、有界性。

4. 函数的基本运算:加法、减法、乘法、除法、复合函数。

二、指数与对数1. 指数函数:定义、图像、性质。

2. 对数函数:对数的定义、对数的运算法则、对数函数的图像与性质。

3. 指数与对数的关系:换底公式、指数与对数的互化。

4. 指数方程和对数方程的解法。

三、三角函数1. 三角函数的定义:正弦、余弦、正切函数的定义及其图像。

2. 三角函数的基本关系:和差公式、倍角公式、半角公式。

3. 三角函数的性质:奇偶性、单调性、周期性。

4. 三角方程的解法。

四、平面向量1. 向量的概念:物理背景、基本运算(加法、数乘、数量积)。

2. 向量的几何表示与线性运算。

3. 向量的坐标表示与向量方程。

4. 向量的应用:速度、加速度、力的合成与分解。

五、数列1. 数列的概念:定义、通项公式。

2. 等差数列与等比数列:定义、通项公式、求和公式。

3. 数列的极限:极限的概念、性质、计算方法。

4. 数列的应用:级数、递推关系、数学归纳法。

六、解析几何1. 平面直角坐标系:点的坐标、距离公式、斜率公式。

2. 直线的方程:点斜式、两点式、一般式。

3. 圆的方程:标准方程、一般方程。

4. 圆锥曲线:椭圆、双曲线、抛物线的方程与性质。

七、概率与统计1. 随机事件与概率:事件的定义、概率的计算。

2. 随机变量及其分布:离散型与连续型随机变量、概率分布。

3. 统计量:平均数、中位数、众数、方差、标准差。

4. 抽样与估计:抽样方法、总体参数的点估计与区间估计。

八、数学归纳法1. 数学归纳法的原理与步骤。

2. 证明方法:直接证明、反证法。

3. 应用:证明等式、不等式、数列的性质。

九、复数1. 复数的概念:实部、虚部、模、辐角。

2. 复数的运算:加法、减法、乘法、除法。

高二必修三数学知识点归纳

高二必修三数学知识点归纳

高二必修三数学知识点归纳一、二次函数:1. 二次函数的定义:二次函数是形如y=ax²+bx+c(a≠0)的函数,其中a、b、c为常数,a决定了抛物线的方向。

2.抛物线的性质:对称轴、顶点、开口方向与开口程度、零点等。

3.讨论二次函数的性质:根据a的正负讨论开口向上或向下、顶点最值、对称轴、零点,同时也可利用导数、图像和恒等式等方法进行讨论。

4.解二次方程:根据二次函数的性质,可以利用因式分解、配方法、求根公式等方法来解二次方程。

5.判别式:通过判别式来判断二次方程有无解、有两个解还是一个解。

6.二次函数与实际问题的应用:综合数学与实际问题相结合,进行实际问题的建立、解答与解释。

二、数列与数学归纳法:1.数列的定义:数列是按一定顺序排列的一组数的集合。

2.数列的通项公式与递推公式:通过观察数列中的规律,得到数列的通项公式与递推公式。

3.等差数列:等差数列是公差相等的数列。

4.等比数列:等比数列是比例相等的数列。

5.数列求和:利用等差数列与等比数列的求和公式,求解数列的和。

6.数学归纳法:数学归纳法通过推理一些命题在初始情况成立的基础上,再假设跟后续条件有关的命题为真,最后推断该命题对任意的情况都成立。

三、概率与统计:1.随机事件与概率:通过之前学习的概率知识,对随机事件进行分析与求解,并计算随机事件的概率。

2.条件概率与盒子模型:根据盒子模型的概念,进行条件概率的计算。

3.事件的相互关系:包括互斥事件、对立事件、独立事件等概念,以及事件相互关系的计算。

4.排列组合与二项式定理:对排列组合的基本概念进行归纳总结,并利用二项式定理解决一些实际问题。

5.统计与抽样:分析统计数据,包括平均数、中位数、众数、标准差等,并利用抽样方法进行研究。

6.正态分布与抽样分布:通过正态分布的知识,对样本与总体进行分析与计算。

以上是高二必修三数学知识点的归纳总结,通过对这些知识点的掌握与理解,可以更好地应对高二数学的学习与考试。

高中数学必修3知识点总结

高中数学必修3知识点总结

高中数学必修3知识点一:算法初步7:辗转相除法与更相减损术(1)辗转相除法。

也叫欧几里德算法,用辗转相除法求最大公约数的步骤如下:(2)更相减损术我国早期也有求最大公约数问题的算法,就是更相减损术。

在《九章算术》中有更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之。

翻译为:①任意给出两个正数;判断它们是否都是偶数。

若是,用2约简;若不是,执行第二步。

②以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。

继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。

(3)辗转相除法与更相减损术的区别:①都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。

②从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到8:秦九韶算法与排序(1)秦九韶算法概念:f(x)=a n x n+a n-1x n-1+….+a1x+a0求值问题f(x)=a n x n+a n-1x n-1+….+a1x+a0=( a n x n-1+a n-1x n-2+….+a1)x+a0 =(( a n x n-2+a n-1x n-3+….+a2)x+a1)x+a0 =......=(...( a n x+a n-1)x+a n-2)x+...+a1)x+a0求多项式的值时,首先计算最内层括号内依次多项式的值,即v1=a n x+a n-1然后由内向外逐层计算一次多项式的值,即v2=v1x+a n-2 v3=v2x+a n-3 ...... v n=v n-1x+a0这样,把n次多项式的求值问题转化成求n个一次多项式的值的问题。

(2)两种排序方法:直接插入排序和冒泡排序①直接插入排序基本思想:插入排序的思想就是读一个,排一个。

数学必修3知识点总结

数学必修3知识点总结

数学必修3知识点总结一、函数与导数1.1 函数的基本概念在数学中,函数是一种将一个集合的元素映射到另一个集合的对应关系。

在函数中,自变量的取值范围称为定义域,因变量的取值范围称为值域。

函数可以用数学公式来表示,比如f(x) = x^2就是一个函数。

1.2 导数的概念导数是函数在某一点上的变化率,即函数在该点附近的变化趋势。

导数可以用极限的概念来定义,表示为f'(x)或者dy/dx,它表示函数的变化速率。

1.3 导数的计算导数的计算可以用求导法则来进行,包括了基本的求导公式、导数的四则运算、复合函数的导数等内容。

1.4 函数的应用导数在实际中有很多应用,比如在物理学中,它可以用来表示速度和加速度;在经济学中,它可以用来表示边际收益和边际成本等。

二、平面向量2.1 向量的概念向量是具有大小和方向的量,它是一个有序对(a, b)。

向量可以通过坐标来表示,也可以通过平行四边形法则来表示。

2.2 向量的运算向量有加法、减法、数乘等基本运算,通过这些运算可以得到向量的和、差、数量积等结果。

2.3 向量的应用向量在几何中有很多应用,比如用来表示平移、旋转等变换;在物理中,向量可以表示力、速度、位移等物理量。

三、空间解析几何3.1 点、直线、平面的方程在空间解析几何中,点、直线和平面可以用方程来表示。

比如,直线可以用两点式方程、点斜式方程、参数方程等来表示。

3.2 空间向量的表示空间中的向量可以用坐标表示,也可以用平面向量的形式表示,这样可以方便地进行运算。

3.3 空间解析坐标系空间解析几何中有四种坐标系,分别是直角坐标系、面向直角坐标系、极坐标系和球坐标系,每种坐标系有其特点和适用范围。

四、概率与统计4.1 随机事件与概率随机事件是指在一定的条件下可能出现也可能不出现的事件,概率是描述随机事件发生可能性大小的比值,概率是一个介于0和1之间的实数。

4.2 概率的基本性质概率有加法原理、乘法原理、条件概率、独立性等基本性质,这些性质可以用来计算多个随机事件的概率。

高中数学必修三知识点总结全

高中数学必修三知识点总结全

高中数学必修三知识点总结全
1. 一元二次方程与函数
- 一元二次方程的定义和性质
- 一元二次方程的解法(配方法、因式分解法、求根公式)
- 一元二次函数的定义和性质
- 一元二次函数的图像和性质
- 一元二次函数与一元二次方程的关系
2. 指数与对数
- 指数的定义和性质
- 指数函数的图像和性质
- 对数的定义和性质
- 对数函数的图像和性质
- 指数方程与对数方程的解法
3. 三角函数
- 弧度制和角度制
- 常用三角函数的定义和性质(正弦函数、余弦函数、正切函数)
- 三角函数图像的性质
- 三角函数的基本关系式
- 解三角函数方程
4. 解析几何
- 二维坐标系与平面直角坐标系
- 直线方程的一般形式和特殊形式
- 圆的方程和性质
- 直线与圆的位置关系
- 解析几何中的一些基本定理
5. 函数与导数
- 函数的定义和性质
- 函数的图像和性质
- 基本初等函数的性质
- 导数的定义和性质
- 导数的计算方法和应用
6. 统计与概率
- 统计中的基本概念(样本、总体、频率分布等)
- 统计中的常用方法(均值、中位数、众数等)
- 概率的定义和性质
- 概率的计算方法和应用
- 统计与概率的实际问题解决
以上是高中数学必修三的知识点总结。

通过学习这些知识,你将对一元二次方程与函数、指数与对数、三角函数、解析几何、函数与导数、统计与概率有深入的理解,并能应用于实际问题的解决中。

高中数学必修三:知识点

高中数学必修三:知识点

必修3:知识点一:算法初步 1:算法的概念(1)算法概念:通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成. (2)算法的特点:①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的. ②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果。

③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题. ④不唯一性:求解某一个问题的解法不一定是唯一的,但是答案是唯一的。

⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。

2: 程序框图(1)程序框图基本概念:①程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

2、框图一般按从上到下、从左到右的方向画。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。

判断框具有超过一个退出点的唯一符号。

4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,5、在图形符号内描述的语言要非常简练清楚。

3:算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

(1)顺序结构:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来, 按顺序执行算法步骤。

如在示意图中,A 框和B 框是依次执行的,只有在 执行完A 框指定的操作后,才能接着执行B 框所指定的操作。

(2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的 算法结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章算法初步一、算法与程序框图1.算法:算法指的是用阿拉伯数字进行算术运算的过程。

在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。

算法通常可以编成计算机程序,让计算机执行并解决问题。

2.算法与计算机:计算机解决任何问题都要依赖于算法。

只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题。

3.算法的特征:①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的。

②确定性:算法中的每一步应该是确定的,并且能有效地执行且得到确定的结果。

③可行性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一个都准确无误才能完成问题。

④不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以由不同的算法。

⑤普遍性:一个算法应该适用于求某一类问题的解,而不是只用来解决一个具体的问题。

【注意:有限性、确定性和可行性是算法特征里最重要的特征,是检验一个算法的主要依据。

】4.程序框图:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形。

5.程序框图的组成:程序框图由程序框及流程线组成;在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序。

6.基本程序框及其功能:【注意:起、止框是任何流程不可少的,表明程序的开始和结束。

输入和输出可用在算法中任何需要输入、输出的位置。

算法中间要处理数据或计算,可分别写在不同的处理框内。

一个算法步骤到另一个算法步骤用流程线连接。

如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码。

】7.程序框图的画法:①画一个算法的程序框图,应先对问题进行算法分析,必要时可先用自然语言设计该问题的算法,弄清算法的流程,然后把算法步骤逐个转化为框图表示,最后用流程线依步骤顺序连接成程序框图。

②画程序框图的规则:⑴使用标准的框图符号;⑵框图一般按从上到下、从左到右的方向画;⑶除判断框外,大多数框图符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;⑷一种判断框是“是”与“不是”两分支的判断,而且有且仅有两个结果;另一种公式多分支判断,有几种不同的结果。

⑸在图形符号内描述的语言要非常简练清楚。

8.算法的基本逻辑结构:①顺序结构:顺序结构是由若干个依次执行的步骤组成的,其特点是步骤与步骤之间,框与框之间是按从上到下的顺序依次执行,不会引起程序步骤的“跳转”,它是任何一个算法都离不开的基本结构。

②条件结构:⑴概念:在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向,这种先根据条件作出判断,再决定执行哪一种操作的结构称为条件结构。

这是一种依据指定条件选择执行不同指令的指控结构。

⑵结构形式③循环结构:⑴概念:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构,反复执行的步骤称为循环体。

⑵结构形式Ⅰ.直到型循环的结构特征:在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环。

Ⅱ.当型循环的结构特征:在每次执行循环体前,先对条件进行判断,当条件满足时,执行循环体,否则终止循环。

二、基本算法语句1.任何一种程序设计语言中都包含五种基本的算法语句,它们分别是输入语句、输出语句、赋值语句、条件语句、循环语句。

2.输入语句:输入语句是指程序运行中由用户输入数据的语句。

它的一般格式是【注意:①“提示内容”一般是提示用户输入什么样的信息;②输入语句中,提示内容要写在“”中,并且与变量之间要用“;”隔开;③一个输入语句可以输入多个变量,中间用“,”隔开;④输入语句不仅能够输入具体的常数,还可以输入单个或多个字符,但不能是函数、变量或表达式。

】3.输出语句:输出语句是将程序运行的信息显示出来的语句。

它的一般格式是【注意:①“提示内容”一般是提示用户输出什么样的信息;②输出语句中,提示内容与表达式之间要用“;”隔开;③一个输出语句可以输出多个变量的值,中间用“,”隔开;④输出语句中的表达式是指程序要输出的数据,输出语句可以输出常量、变量或表达式的值,输出语句具有计算功能。

】4.赋值语句“=”叫做赋值号,其作用是先计算“=”右边表达式的值,然后把这个值赋给“=”左边的变量,使该变量的值等于表达式的值。

【注意:①赋值号左边只能是变量名字,而不是表达式;②赋值号左右两边不能对换。

赋值语句是将赋值号右边的表达式赋给赋值号左边的变量;③不能利用赋值语句进行代数式(或符号)的演算;④赋值号与数学中的等号的意义不同,赋值号左边的变量如果原来没有值,则在执行赋值语句后,获得一个值,如果原已有值,则执行该语句后,以赋值号右边表达式的值代替该变量的原值,即将原值“冲掉”。

】5.语句中的常用符号①运算符号加减运算:a b+,a b-在程序语句中还是写为a b+,a b-;乘法运算:a b⨯在程序语句中写作a b*;除法运算:a b÷或a在程序语句中写作/a b;b乘方运算:b a 在程序语句中写作^a b ,也可用连乘的形式。

②函数符号算术平方根:()SQR x; 绝对值:()ABS x 表示||x ;取整:()INT x 表示不大于x 的最大整数。

6.条件语句:①概念:条件语句是处理条件结构的算法语句。

②条件语句的格式:其功能是:当计算机执行上述语句时,首先对IF后的条其功能是:当计算机执行上述语句时,首先对IF后的条件进行判断,如果(IF)条件符合,那么(THEN)执行件进行判断,如果(IF)条件符合,那么(THEN)执行语句体1,否则(ELSE)执行语句体2。

语句体,否则执行END IF之后的语句。

③两种条件语句的区别与联系共同点:两种语句都首先对条件进行判断,然后才执行相应的语句体;执行完语句体后退出条件结构。

从形式上看,都以IF开始,最后以END IF结束。

区别:第一种语句包含两个语句体,满足条件时执行一个语句体,不满足条件时执行另一个语句体;而第二种语句只有一个语句体,是满足条件时执行的语句体。

【注意:利用条件语句编写程序应该:⑴明确该程序解决什么问题,这个问题有几种不同的情况,每一种情况成立的条件是什么;⑵确定需要使用几个条件语句来设计程序,每一个条件语句能解决问题的哪一种情况,可以先设计解决问题的算法,画出相应的程序框图,然后把算法步骤及框图内容使用相应语句描述。

】7.循环语句:①循环语句的格式与功能:1.直到型循环结构对应的UNTIL语句⑴与直到型循环结构(图三)相对应的程序语句称为UNTIL ⑵与当型循环结构(图四)相对应的程序语句为WHILE 语句,它的一般格式是: 语句,它的一般格式是:功能:当计算机执行上述语句时,先执行一次DO 和UNTIL 功能:当计算机遇到WHILE 语句时,先判断条件的真之间的循环体,再对UNTIL 后的条件进行判断。

如果条件不 假,如果条件符合,就执行WHILE 和WEND 之间的循符合,继续执行循环体;然后再检查上述条件,如果条件仍不 环体;然后再检查上述条件,如果条件仍符合,再次执符合,再次执行循环体,直到条件符合时为止。

这时,计算机 行循环体,这个过程反复进行,直到某一次条件不符合不再执行循环体,直到跳到UNTIL 语句后,接着执行UNTIL 为止。

这时,计算机将不执行循环体,直接跳到WEND 语句之后的语句。

语句后,接着执行WEND 之后的语句。

②WHILE 语句和UNTIL 语句的关系:③几种对应关系:⑴变量初始值与循环体中变量值的对应。

初始值有时会直接影响循环体中的变量值。

⑵变量的初始值与循环条件的对应。

一般来讲,初始值可以确定循环条件。

三、算法案例1.辗转相除法:辗转相除法是求两个正整数的最大公约数的方法。

2.辗转相除法具体算法:用两个数中较大的数除以较小的数判断玉树是否为0,若不为0,则用较小的数除以余数再判断余数是否为0,反复进行上述步骤,直到余数为0为止。

这时的除数就是最大公约数。

3.更相减损术:更相减损术是求两个正整数的最大公约数的方法。

4.更相减损术的内容:任意给定两个正整数,判断它们是否都是偶数。

若是,用2约简;若不是,则以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减去小数。

继续这个操作,直到所得的数相等为止,这个数就是所求的最大公约数。

5.更相减损术与辗转相除法比较:更相减损术是作减法运算,而辗转相除法是作除法运算;更相减损术运算次数较多,但每一次的计算都较简单。

6.秦九昭算法:秦九昭算法是能求多项式函数值的一种算法。

7.秦九昭算法步骤:对于任意一元n 次多项式,首先将多项式改写为()()()()()()()1110121102312101210n n n n n n n n n n n n nn n P x a x a x a x a a x a x a x a a x a xa x a x a a x ax a x a x a ----------=++++=++++=++++=+++++L L L LL令()()()11k n n n k n k v a x a x a x a ----=++++L L 则递推公式为01nk k n kv a v v x a --==+其中1,2,,.k n =L所谓递推,就是在一系列数中已知第一个数,则其后的每一个数都可由前面的数求出。

根据上面的递推公式,我们可由0v 依次求出所有的k v 。

101212323110,,,,,,n n n k k n k n n v v x a v v x a v v x a v v a v v x a ------=+=+=+=+=+L L在上述公式中,1k k n k v v a --=+是反复执行的,因此可用循环结构实现。

8.进位制:①概念:进位制是人们为了计数或计算方便而约定的计数系统。

约定“满几进一”就是几进制,几进制的基数就是几。

如果k 是大于1的整数,那么以k 为基数的k 进制数可以表示为()()11121000,0,,,,n n k n n k a a a a a k a a a a k ---<<≤<L L⑴为了区分不同的进位制,常在数的右下角标明基数。

十进制数一般不标基数; ⑵由于每一种进制的基数不同,所以,每一种进制所用的数字个数也不同; ⑶任何一个k 进制数都可以写成不同位上的数字与基数的幂的乘积之和的形式;②不同进制之间的互化:⑴k 进制数化为十进制数:先把k 进制数写成不同数位上的数字与基数的幂的乘积之和的形式,再按十进制数的运算法则计算出结果。

相关文档
最新文档