数字地球:认识二十一世纪我们所居住的星球
智慧博物馆——数字博物馆发展新趋势【范本模板】
智慧博物馆——数字博物馆发展新趋势陈刚摘要:从数字博物馆到智慧博物馆的发展是以人为本理念在博物馆领域深入实践和物联网等新技术在博物馆应用普及的必然结果。
本文简单回顾了数字博物馆发展历程,分析了从数字博物馆到智慧博物馆的发展趋势,提出了智慧博物馆=数字博物馆+物联网+云计算的智慧博物馆发展模式,最后讨论了物联网、云计算、移动互联、大数据技术集成应用对智慧博物馆建设和发展带来的挑战。
关键词:博物馆,数字博物馆,智慧博物馆,物联网,云计算近年来,博物馆领域新技术应用发展极为迅速。
虚拟现实、三维建模、泛在网络、物联网、移动互联、云计算、大数据等各类新技术应用大量涌现.数字博物馆、虚拟博物馆、网络博物馆、掌上博物馆、新媒体博物馆、泛在博物馆、智慧博物馆等新概念层出不穷。
尤其是以数字化、网络化、虚拟化为特征的数字博物馆的发展,将“物"转化“数字”,极大地增强了博物馆展示的表现能力和交互能力,拓展了博物馆展示时间和空间。
数字博物馆的核心是数字资源,数字资源的采集、加工、传播与展示构成了数字博物馆的主要内容。
但是,数字化、网络化、虚拟化只是手段,为人类社会及其发展服务才是数字博物馆发展的根本目标。
“以人为本”理念在博物馆的深入实践和物联网等新技术在博物馆的普及应用,极大地推进了“以数字为中心”的数字博物馆向“以人为中心"的智慧博物馆的发展。
1、数字博物馆发展回顾数字博物馆早期发展主要受到数字图书馆的影响,强调以藏品资源数字化为主要内容。
一般认为,最早的数字博物馆实践是1990年美国国会图书馆启动的“美国记忆”计划。
该计划预期将美国国会图书馆珍藏的数百万件有关美国历史和文化的手稿、书籍、印刷文本、影像及录音等资源数字化,建立数据库,通过网络手段,让所有的学校、图书馆和家庭用户都能像那些公共阅览室的长期读者一样,便捷地接触到这些数字资源。
受此计划影响,1992年,联合国教科文组织启动“世界记忆”计划,在不同国家和地区的不同水准上,将全世界所有有形的和无形的人类文化遗产进行永久性的数字化存储和记忆,通过互联网实现资源共享。
数字地球 观后感
数字地球观后感21世纪的到来,意味着数字地球(GIS)的出现和发展。
这是一场新的技术革命,他使我们获取、存储、处理和显示信息的方法发生天翻地覆的变化。
它使得我们对有关我们所处的星球以及周围环境、文化现象等史无前例的海量数据的处理成为可能,而它们中的大部分信息是有关地球的地表位置有关的信息。
通过观看影片我懂得了数字地球,是对地球的一个多分辨率、三维的显示,而已在其上添加许多与我们所处的星球有关的地学数据。
数字地球,可以使我们只需戴上头盔就可以看到与从太空看到的一样的地球,然后,可以通过工具,随心所欲的对所看到的影响进行放大或者缩小,从而让我们对地球有一个更为充分的了解。
甚至于,它可以使我们听到世界上各种声音,也可以看到一些实时信息,她可以通过对所看到对象进行点击,从而可以看到更为详细的信息。
数字地球所需的技术比较多,包括:科学计算、海量存储、卫星图像、宽带网、互操作、Metadata等等。
数字地球的应用潜力很大,我们可以使用数字地球技术来分析和计算很多方面,比如:指导虚拟外交、打击犯罪、保护生物多样性、预测气候变化、增加农业生产等等。
数字地球的未来前景很广阔,它的广泛应用代表着人类技术的日益进步,倘若成功应用这项技术,它将在教育、未来可持续发展决策、土地利用规划、农业以及危机处理等领域产生广阔的社会和商业效益。
数字地球计划允许我们回应人为或自然灾害,或允许我们在我们长期所面临的环境挑战问题上进行合作。
数字地球技术的出现,是具有时代意义的,我们应该更好的开发和完善数字地球技术,在可持续发展的前提下,努力发展技术,发展生产力,用技术使生活更美好。
这部影片,对我很有启发意义,值得我们学习。
数字地球技术,也是未来数字领域不可或缺的角色。
谈谈你对数字地球的认识
谈谈你对数字地球的认识数字地球,首先是数字,而二十一世纪的数字,是建立在计算机科学的基础之上。
从1964年的“埃尼阿克”(ENIAC)的诞生到现在,我们的生活发生了翻天覆地的变化。
当我们早上起来,打开自己的PDA,查看备忘录,收发邮件;之后打开电脑,浏览新闻;出门购物,商家用网络管理自己的商品,确保您购物愉快;行车上路,交通部门对特殊路段进行实时监控,方便人们出行;吃饭的时候,可以上网浏览一下餐馆信息。
这些我们生活的方方面面都已经里不开计算机。
现在的人们,一顿饭不吃可以,但是一天不上网,那是不行。
当人们从计算机科学中获得便利的时候,我们更希望它能更好的服务与我们。
这样,我们更加需要一个极为数字的地球,来满足我们。
数字地球,一个以地球坐标为依据的、具有多分辨率的海量数据和多维显示的地球虚拟系统。
首先,我们需要足够精确的地球信息,精确到地球上每一平方米的土地,甚至是地面以下的;足够大的网络带宽,够我们顺畅的浏览;足够海量的数据库,能够存储下巨大的地球信息。
当然,这些只是首先,只是我们建立数字地球的一些根本需求。
当世界上有80%的事情都和空间信息有关的时候,那么数据的采集将变得十分的困难。
试想一下,把时间暂停在这一秒,看看我们周围,有多少事情发生;再前进一秒,看看那些事情已经改变。
而我们,肯定不只是希望看到一秒的地球,我们渴望看到过去,看到未来。
要建立起整个中国的数字地球时,仅影响数据就有53T,而中国的面积只占地球面积的1.88%。
面对这样的海量数据,存储,查找等方面都是难题,由此,元数据库的建设是非常必要的。
它是关于数据的数据,通过它可以了解有关数据的名称、位置、属性等信息,从而大大减少用户寻找所需数据的时间。
其次,信息不能只是仅仅的存储,还需要进行计算才能够被人们所使用,而地球上发生的大部分的事,都是非线性的,变化过程复杂,而空间时间跨度又大,这样计算的难度呈几何倍数增加,我们只能依靠于超级计算机的计算能力,及开发新的算法。
认识数字地球
认识“数字地球”0前言自“数字地球”的概念被提出以来,已经引起了世界各国的广泛关注,并受到了多国政界学术界和产业界的热烈响应。
“数字地球”这一概念的提出,既是人们认识世界、改造世界客观需要,更是知识经济、信息社会发展的必然进程。
构筑“数字地球”对于提高人们的生活质量、促进科学技术的进步,实现经济与社会的可持续发展有着十分重要的意义。
然而,“数字地球”在目前还仅仅是一个概念,关于它的科学含义还没有一种公认的解释,距离它的实现也还有很漫长的路要走,因此,需要我们大家就“数字地球”的理论、技术以及实现作进一步地探讨和研究。
1“数字地球”的产生背景地球———我们人类共同居住的家园。
古往今来,几乎人类的所有活动都发生在地球上。
但是经过漫长的人类活动和自然变迁,地球已向我们敲响了警钟:人口膨胀、资源短缺、环境恶化和灾害频繁等等,人类正面临着一系列可持续发展的难题。
如何应对这一艰巨的挑战,严峻的形势要求我们不断探索地球的奥秘和规律,深入认识和研究地球,以便科学地协调人地关系,有效地改善生存环境,努力营造一个适合子孙后代长期生存和发展的家园。
实现人类社会的可持续发展,为“数字地球”的诞生起到了催化作用。
人类社会的发展已进入了一个崭新的时代(信息时代)。
在信息时代,生产力的发展,已不再仅依赖生产资料(原材料、机器)、劳动力和资金,而主要依靠包括知识与技术在内的各种有用信息。
如今,我们一方面拥有大量的各种有用信息,但另一方面又没有对这些信息充分加以利用。
在新的历史时期,信息已成为人类社会发展生产力的基本要素,人们如何获取和利用各种有用的信息也已成为经济发展的动力。
人类社会对全球各种有用信息的迫切需要,为“数字地球”的诞生创造了必要的条件。
随着信息技术的不断发展,全球定位系统、遥感和地理信息系统已成为人们对地球进行科学研究的重要技术手段。
目前,全球定位系统技术已达到较高的水平,其定位精度一般可达到m级,若采用差分方法,定位精度还可提高到cm级;遥感技术已形成从航空遥感到卫星遥感的对地观测系统,其空间分辨率可从4000m 到cm 级,波段覆盖从紫外线到超长波的240个波段,探测周期能从每隔十多天一次到每天数次;地理信息系统技术已具备对大量数据进行有效存储和管理的能力,并且还可对这些数据进行查询、统计、分析和显示输出的处理。
《数字地球》教案(3)(1)
数字地球[教学目标]<知识与技能>举例说出全球定位系统(GPS)在定位导航中的应用。
结合实例,了解遥感(RS)在资源普查、环境和灾害监测中的应用。
运用相关资料,了解地理信息系统(GIS)在城市管理中的功能。
<过程与方法>在获取和应用数字地球的相关知识的过程中,理解数字地球的含义,锻炼学生搜集地理信息的能力,以及对地理知识进行分析、提取、整理的技能。
<情感态度与价值观>激发学生运用信息技术探究,解决地理问题的兴趣,提高学生对环境、资源、人口问题的整体认识,形成全球意识。
[教学重点]理解数字地球的定义,特点理解数字城市的意义[教学难点]明确3S技术的概念和区别[教学方法]讲授法、对比分析法[教具]课本,多媒体[教学过程]<导入>还记得我们以前学习过节3S技术吗?RS:主要用于地理信息数据的获取,能在很短时间内获取某区域全面资料的技术。
GPS:主要用于地理信息的空间定位,能为无人区科学考察的科技工作者全天侯提供本人具体地理位置的技术。
GIS:主要用来对地理信息数据进行管理、查询、更新、空间分析和应用评价,能对获得的地理信息进行处理、分析、管理、显示、输出的技术。
<新课>认识“数字地球”有了以上的回顾,我们来认识一下数字地球:数字地球的提出美国前副总统戈尔于1998年1月31日在加利福尼亚科学中心所做的“数字地球------认识21世纪我们这颗星球”的演讲中首次提出的。
他指出:数字地球是指一个以地理坐标为依据的、具有高分辨率和海量数据、立体显示地球信息的技术系统。
数字地球的核心思想用数字化的手段整体性地解决与空间位置相关的问题和最大限度地利用信息资源,它需要很多学科,特别是信息科学技术的支撑,如信息高速公路、高分辨率卫星影像、空间信息技术、大容量数据处理与存贮技术、可视化和虚拟现实技术,并与遥感、地理信息系统、全球定位系统技术相融合。
数字地球的特点(1)、数字地球具有空间性、数字性和整体性,这三者的融合统一,是数字地球与其他信息系统相区别的根本标志。
(完整)中图版高中地理必修三《数字地球》课件)精品PPT资料精品PPT资料
数字地球的基本定义
把地球上每一个确定点(点的范围 因需要可大可小)的相关信息和数据组 织起来,然后进一步组合地球上所有这 样的点,构造一个能包容自然和人类大 多数数据和信息的虚拟地球,这就是数 字地球(digital earth)。
数字地球的核心思想
一、用数字化的手段来处理整个地球的自然 和社会活动诸方面的问题。
儿童如果独自外出,他的 母亲可以打开实时跟踪屏,利 用接收到的信息来看护自己的 孩子。
思想有多远,我们就能走多远。
开放性作业
小短文:畅想数字地球时代的生活。 表 演:围绕数字地球时代的生活为主
题,自编短剧或相声,在班会 或科技节上表演。 辩论会:围绕数字地球对未来生活的影 响是利大于弊还是弊大于利开 展辩论。
时空变化装入电脑中,实现网上流通,并使之最大限 通俗地讲,数字地球(Digital Earth)就是用数字的手法将地球、地球上的活动及整个地球环境的时空变化装入电脑中,实现网上流
通,并使之最大限度地为人类的生存、可持续发展和日常的工作、学习、生活、娱乐服务。
中数体字验 地度太球空的地漫重步要的信为美息妙源人滋—味—类高分辨的率卫生星影存像 、可持续发展和日常的工作、学习、
能够通过一定方式方便地获得他们所想 “数字地球”与可持续发展 表 演:围绕数字地球时代的生活为主
网络及分布式数据库
全球பைடு நூலகம்位系统
地理信息系统(GIS )
信息管理
管理
咨询
数据整理
头戴式虚拟现实成像设备
戴上数据仪器,可以在虚拟空间 中体验太空漫步的美妙滋味
卫 星 影 像
“ 快 台鸟 湾” 的卫 卫星 星拍 影摄 像的 中 国
数字地球的最大特征与依据——虚拟现实技术 戴上数据仪器,可以在虚拟空间
数字地球的核心思想
二、数字地球技术基础
1、全球网络与大容量存储技术
二、数字地球技术基础
1、全球网络与大容量存储技术 2、高分辨率卫星遥感技术
为人类提供反映地表地理要素动态变化 的翔实数据
数字地球最基本的空间数据
乞力马扎罗的积雪
这座这“赤座道“上赤的道雪上 的峰雪”峰海拔”5海89拔5米5,895 米 融永减的化,久少变永减性, 暖积反 趋久少雪映 势,性的了 ,积反融气 有雪映化候 人了的 断气言候:的不变久暖的趋将势来,, 有赤人道断上将言见:不不到久雪的 将来峰,景赤象道了上!将见 不到雪峰景象了!
1)用数字化的手段来处理整个地球的自然和 社会活动等方面的信息。 2)最大限度地利用资源,并使普通百姓能够 通过一定方式方便地获得他们所想了解的有 关地球的信息。
[学生活动]用更简明的词语,总结数字地球的核心思想
二、数字地球技术基础
1、数字地球的基础 ——全球网络与大容量存储技术
2、数字地球的重要信息源 ——高分辨率卫星影像
[思考:现在的网络状况能不能满足数字地球的需要?]
2、数字地球的重要信息源
高分辨 率卫星
卫星图片=数字地球?
3、数字地球的信息呈现方式
——虚拟现实技术
/data/3dvenues/
美 国 纽 约 市 区 的 卫 星 影 像
比较起始画面和终了画面哪个尺度大? 哪个分辨率高?
1、数字地球的基本定义
数字地球是信息化的地球,即地球的虚拟对 照体。
数字地球将有关地球上每一点的信息,按地 球的地理坐标加以整理,然后构成一个全球 的信息模型。人们可以快速、形象、完整地 了解地球上的任何一点、任何方面的信息, 从而实现“信息就在指尖上”的梦想。
数字地球的概念与实现方式
数字地球的概念与实现方式在当今科技飞速发展的时代,“数字地球”这个词汇越来越多地出现在我们的视野中。
那么,究竟什么是数字地球?它又是如何实现的呢?数字地球,简单来说,就是对真实地球及其相关现象的统一性的数字化重现与认识。
它利用大量的地理信息数据,构建一个虚拟的地球模型,让人们能够更加直观、全面、深入地了解我们所生活的这个星球。
数字地球所包含的内容极其丰富。
它涵盖了地球上的各种自然和人文信息,比如地形地貌、气候气象、土壤植被、水资源、矿产资源、城市规划、交通网络、人口分布、经济活动等等。
通过将这些信息数字化,并进行整合和分析,我们可以在数字地球上实现对地球的全方位观测和研究。
那么,数字地球是如何实现的呢?这需要依靠一系列先进的技术手段。
首先,数据采集是基础。
要构建数字地球,必须获取大量准确、详细的地理信息数据。
这包括通过卫星遥感技术获取的高分辨率影像,通过航空摄影测量获取的地形数据,通过地面测量获取的控制点坐标等等。
此外,还有来自各种统计部门、科研机构、企业和个人的相关数据。
这些数据来源广泛、类型多样,需要进行有效的整合和管理。
其次,数据处理和存储至关重要。
采集到的海量数据需要进行处理和分析,以提取有用的信息。
这涉及到图像处理、地理信息系统(GIS)技术、数据分析算法等。
同时,这些数据需要存储在强大的数据库中,以便随时调用和查询。
云计算技术的发展为数字地球的数据存储和处理提供了强大的支持,使得大规模的数据管理变得更加高效和便捷。
再者,网络通信技术是数字地球实现的关键。
只有通过高速、稳定的网络,才能将分布在不同地点的数据和信息快速传输和共享,让用户能够实时访问和使用数字地球的服务。
另外,可视化技术让数字地球变得更加直观和生动。
通过三维建模、虚拟现实(VR)、增强现实(AR)等技术,将数字地球中的信息以逼真的图像和场景呈现给用户,让人们仿佛身临其境般地感受地球的各种现象和变化。
在实际应用中,数字地球具有广泛的用途。
《数字地球》 讲义
《数字地球》讲义一、什么是数字地球当我们提及“数字地球”这个概念时,或许您会感到有些陌生,但实际上,它已经在不知不觉中影响着我们生活的方方面面。
简单来说,数字地球就是对真实地球及其相关现象的统一性的数字化重现与认识。
它不是一个孤立的技术或者数据集合,而是将各种地理信息、社会经济信息、生态环境信息等整合在一起,通过数字化的手段,构建出一个虚拟的地球模型。
这个模型可以让我们从不同的角度、不同的尺度去观察和理解地球。
想象一下,您可以在电脑上或者移动设备上,随时随地查看地球的任何一个角落,了解那里的地形地貌、气候条件、人口分布、资源状况等等。
这不再是科幻电影中的场景,而是数字地球能够为我们带来的真实体验。
二、数字地球的构成要素要实现这样一个复杂而强大的数字地球,需要多种要素的协同工作。
首先是数据,海量的数据是数字地球的基础。
这些数据包括来自卫星遥感、航空摄影、地面测量等多种渠道获取的地理空间数据,以及与人口、经济、环境等相关的社会经济数据。
然后是技术,先进的信息技术是数字地球的支撑。
例如,地理信息系统(GIS)技术用于对地理数据的存储、管理、分析和展示;全球定位系统(GPS)用于获取精确的地理位置信息;遥感(RS)技术则可以大规模地获取地表信息。
此外,计算机技术、网络技术、数据库技术等也在数字地球的构建中发挥着重要作用。
最后是人才,具备跨学科知识和技能的专业人才是数字地球发展的关键。
他们需要懂得地理、计算机、数学、环境等多个领域的知识,能够将这些知识融合在一起,为数字地球的建设和应用提供智力支持。
三、数字地球的应用领域数字地球的应用领域极其广泛,几乎涵盖了人类社会的各个方面。
在环境保护方面,通过数字地球,我们可以实时监测全球的气候变化、森林砍伐、海洋污染等情况,为制定环境保护政策和采取应对措施提供科学依据。
在城市规划中,数字地球能够帮助规划师更直观地了解城市的地形、土地利用情况、交通流量等,从而制定出更加合理、高效的城市规划方案。
读书报告——浅谈数字地球
数字地球的应用
全球层
国家层
以一个国家 为对象,包 括资源、环 境、经济、 人口分析等
区域层
以城市、集 镇、农村、 社区为对象
以整个地球 为对象,主 要包括全球 气候变化、 全球植被与 土地利用等
数字地球应用
World wind 数字地球原型系统
Google Earth
数字地球 共享系统
ArcGlobal
数字地球到智慧地球
“物联网”的概念于1999 年提出,最初的定义
为“把所有物品通过射频识别等信息传感设备与互 联网联接起来,实现智能化识别和管理” 定义——通过射频识别(RFID) 、红外感应器、全 球定位系统、激光扫描器等信息传感设备,按约定的 协议把任何物品与互联网联接起来,进行信息交换和 通信,以实现智能化识别、定位、跟踪、监控和管理 的一种网络。(2005《ITU 互联网报告2005 :物 联网》)
数字地球到智慧地球
智慧地球(Smart Earth)——2009年, IBM首席执行官彭明盛首次提出。
这一理念的主要内容是把新一代的IT 技术充分运用 到各行各业中,即要把传感器装备到人们生活中的各 种物体当中,并且连接起来,形成“物联网”,并通过 超级计算机和云计算将“物联网”整合起来,实现网 上数字地球与人类社会和物理系统的整合。 在此基础上,人类可以以更加精细和动态的方式管理 生产和生活,从而达到“智慧”状态。
Glass World
Leica Visual Explorer
数字地图的应用
1
数字地球在全球变 化与可持续发展中 的应用
2
数字地球在地学工 作中的应用
3
数字地球在军事上 的应用
7 3
数字地球在城市管 理中的应用
地球科学与数字地球
§1.1数字地球概念“数字地球”的概念是由美国前副总统戈尔,于1988年1月在《数字地球—认识21 世纪我们这颗星球》的报告中首次提出的。
戈尔在这篇演讲中指出:我相信我们需要一个“数字地球”,即一个以地球坐标为依据的、嵌入海量地理数据的、具有多分辨率的、能三维可视化表示的虚拟地球。
“数字地球”是指数字化的地球,本质上就是信息化地球,代表采用数字化.定量化、系统化手段认知地球、改造和保护地球的方向。
它是对真实地球及其相关现象的整体性.系统性数字化综合和认知。
包摇时空数据.相关文本和多媒体数据,把数据转换成可理解的信息并可方便获取、演示分析、利用的一切相关理论和技术。
由此可见,数字地球核心思想是用数字化的手段来处理整个地球的自然和社会活动的诸方面的问题,最大限度地利用资源,并使普通百姓能够通过一定方式方便地获得他们想要了解的有关地球的信息。
其特点是嵌入海量地理数据,实现对地球的多分辩率、三维描述,具有空间性、数字性和整体性,实际上数字地球就是虚拟地球。
数字地球的关键技术是遥感技术、地理信息系统、计算机技术、网络技术和多维虚拟现实技术等。
它包括三个重要的组成部分:信息的获取、信息的处理、信息的应用。
数字地球是当今世界经济和信息技术发展的客观进程,是在现代高科技条件下信息全球化、国际化的历史必然。
一个国家在制订发展战略时如果忽视了数字地球战略,就会丧失抓住国际经济一体化所带来的历史性机遇,而且也会使国家经济安全面临严峻的挑战。
因此,拥有数字地球就等于占领了知识经济社会的一个重要战略制高点。
它与全球信息化的概念是一致的。
“数字地球”是继美国星球大战计划和信息高速公路两个全球性战略后的又一个全球性战略。
现在美国已经形成了一支浩大的数字化产业大军,专职从事“数字地球”的基础数据工作,在美国宣布2002年要完成“数字美国”之后,江泽民总书记1998年6月在接见两院院士的会议上也重点强调了“数字中国”的意义,因为它与我国的“国家信息化”和“国民经济信息化”的战略目标是相一致的。
北斗杯论文
星湖一梦(基于北斗的汽车自动驾驶系统)叮铃铃——叮铃铃,随着下课铃声的敲响,本周的最后一门课程——选修课《人工智能与未来交通发展》在大家的掌声中也结束了,小明收拾好书包,伴着咋暖还寒的夜色和点点星光走回了宿舍。
他打开电脑,习惯性的点击了凤凰网,“咦,第十一颗北斗导航卫星成功发射升空了!看来我们马上就会有自己的‘GPS’了”。
休息了片刻,小明带着激动的心情进入了梦乡······旭日东升,阳光普照,眼前是川流不息的车流,6车道的公路虽不算宽阔,但来往的车辆却井然有序,整整齐齐,就好像有什么无形的东西将6列汽车各自串成了一条直线。
车辆络绎不绝,却听不见一丝嘈杂的鸣笛。
小明怀着满心的疑惑,走向了前方的一个公交站。
不一会,一辆22路车停了下来。
小明往车头咋一看去,那是一幅巨大的广告图画,怎么会没有前窗玻璃啊?连两个后视镜也变成了前置的电子摄像头,这司机怎么开车啊?虽然震惊不已,但小明依然随着队伍上了汽车。
人都上来了,喇叭中传来一段电子录音:“车门将关闭,汽车将启动,请乘客们坐好,本车为无人自动驾驶,下一站······”无人自动驾驶!?小明彻底懵了,纵然主修的是相关专业,并且多少接触过相关知识,但是这种技术显然还不够成熟啊,这是什么地方,什么年代?但是对新奇事物的好奇立刻让小明冷静了下来,他往车前排看去,没有驾驶座,没有方向盘,车前方是一个巨大的显示屏,屏上正在显示的是虚拟的前方道路车辆等一系列景物,就如同平时从前窗玻璃往外看到的那样逼真。
裸眼3D技术,小明瞬间想到了这一点。
但是显示的物体诸如道路、车辆、护栏、树木,都是实时变更,毫无卡带、模糊等不适,这又是基于一个怎样强大的GIS系统啊!再看屏幕上方的一个小显示窗口,确也是一个三维的图像,上面的红点不断移动,两旁是模拟的道路两旁的标志建筑和地名。
数字地球名词解释
“数字地球”就是数字化的地球,是一个地球的数字模型,它是利用数字技术和方法将地球及其上的活动和环境的时空变化数据,按地球的坐标加以整理,存入全球分布的计算机中,构成一个全球的数字模型,在高速网络上进行快速流通,这样就可以使人们快速、直观完整地了解我们所在的这颗星球。
“数字地球”将最大限度地为人类的可持续发展和社会进步以及国民经济建设提供高质量的服务。
数字地球,是美国副总统戈尔于1998年1月在加利福尼亚科学中心开幕典礼上发表的题为“数字地球:认识二十一世纪我们所居住的星球” 演说时,提出的一个与GIS、网络、虚拟现实等高新技术密切相关的概念。
在戈尔的文章内,他将数字地球看成是“对地球的三维多分辨率表示、它能够放入大量的地理数据”。
在接下来对数字地球的直观实例解释中可以发现,戈尔的数字地球学是关于整个地球、全方位的GIS 与虚拟现实技术、网络技术相结合的产物。
〖2021年整理〗《数字地球》知识总结完整教学课件PPT
要点一 数字地球的含义
1数字地球的概念
要点一 数字地球的含义
2数字地球的关键技术
要点一 数字地球的含义
3 R、GI和G与数字地球之间的关系
要点二 数字地球的应用
应用前景
具体表现
Байду номын сангаас
可持续 发展
应用空间分析与虚拟现实技术,建立数字 化空间实验室,从全球角度研究可持续发 展
政府决策
为大型工程决策提供重要的参考数据,为 政府对城市的管理提供依据
百姓生活
接受远程教育,网上购物,交互娱乐项目, 游览风景名胜
阿尔·戈尔数字地球:认识二十一世纪我们所居住的星球(有中文翻译)
阿尔·戈尔数字地球:认识二十一世纪我们所居住的星球(有中文翻译)The Digital Earth: Understanding Our Planet in 21st Century 数字地球:认识二十一世纪我们所居住的星球Al GORE阿尔·戈尔A new wave of technological innovation is allowing us to capture, store, process and display an unprecedented amount of information about our planet and a wide variety of environmental and cultural phenomena. Much of this information will be "georeferenced" - that is, it will refer to some specific place on the Earth's surface.The hard part of taking advantage of this flood of geospatial information will be making sense of it. - turning raw data into understandable information. T oday, we often find that we have more information than we know what to do with. The Landsat program, designed to help us understand the global environment, is a good example. The Landsat satellite is capable of taking a complete photograph of the entire planet every two weeks, and it's been collecting data for more than 20 years. In spite of the great need for that information, the vast majority of those images have never fired a single neuron in a single human brain. Instead, they are stored in electronic silos of data. We used to have an agricultural policy where we stored grain in Midwestern silos and let it rot while millions of people starved to death. Now we have an insatiable hunger for knowledge. Yet a great deal of data remains unused.Part of the problem has to do with the way information is displayed. Someone once said that if we tried to describe the human brain in computer terms, it looks as if we have a low bit rate, but very high resolution. For example, researchers have long known that we have trouble remembering more than seven pieces of data in our short-term memory. That's a low bit rate. On the other hand, we can absorb billions of bits of information instantly if they are arrayed in a recognizable pattern within which each bit gains meaning in relation to all the others a human face, or a galaxy of stars.The tools we have most commonly used to interact with data, such as the "desktop metaphor" employed by the Macintosh and Windows operating systems, are not really suited to this new challenge. I believe we need a "Digital Earth". A multi-resolution, three-dimensional representation of the planet, into which we can embed vast quantities of geo-referenced data.Imagine, for example, a young child going to a Digital Earth exhibit at a local museum. After donning a head-mounted display, she sees Earth as it appears from space. Using a data glove, she zooms in, using higher and higher levels of resolution, to see continents, then regions, countries, cities, and finally individual houses, trees, and other natural and man-made objects. Having found an area of the planet she is interested in exploring, she takes the equivalent of a "magic carpet ride" through a 3-D visualization of the terrain. Of course, terrain is only one of the many kinds of data with which she can interact. Using the systems' voice recognition capabilities, she is able to request information on land cover, distribution of plant and animal species, real-time weather, roads, political boundaries, and population. She can alsovisualize the environmental information that she and other students all over the world have collected as part of the GLOBE project. This information can be seamlessly fused with the digital map or terrain data. She can get more information on many of the objects she sees by using her data glove to click on a hyperlink. T o prepare for her family's vacation to Yellowstone National Park, for example, she plans the perfect hike to the geysers, bison, and bighorn sheep that she has just read about. In fact, she can follow the trail visually from start to finish before she ever leaves the museum in her hometown.She is not limited to moving through space, but can also travel through time. After taking a virtual field-trip to Paris to visit the Louvre, she moves backward in time to learn about French history, perusing digitized maps overlaid on the surface of the Digital Earth, newsreel footage, oral history, newspapers and other primary sources. She sends some of this information to her personal e-mail address to study later. The time-line, which stretches off in the distance, can be set for days, years, centuries, or even geological epochs, for those occasions when she wants to learn more about dinosaurs.Obviously, no one organization in government, industry or academia could undertake such a project. Like the World Wide Web, it would require the grassroots efforts of hundreds of thousands of individuals, companies, university researchers, and government organizations. Although some of the data for the Digital Earth would be in the public domain, it might also become a digital marketplace for companies selling a vast array of commercial imagery and value-added information services. It could also become a "collaboratory"—a laboratory without walls for research scientists seeking to understand the complexinteraction between humanity and our environment.Technologies needed for a Digital EarthAlthough this scenario may seem like science fiction, most of the technologies and capabilities that would be required to build a Digital Earth are either here or under development. Of course, the capabilities of a Digital Earth will continue to evolve over time. What we will be able to do in 2005 will look primitive compared to the Digital Earth of the year 2020. Below are just a few of the technologies that are needed:Computational Science: Until the advent of computers, both experimental and theoretical ways of creating knowledge have been limited. Many of the phenomena that experimental scientists would like to study are too hard to observe - they may be too small or too large, too fast or too slow, occurring in a billionth of a second or over a billion years. Pure theory, on the other hand, cannot predict the outcomes of complex natural phenomena like thunderstorms or air flows over airplanes. But with high-speed computers as a new tool, we can simulate phenomena that are impossible to observe, and simultaneously better understand data from observations. In this way, computational science allows us to overcome the limitations of both experimental and theoretical science. Modeling and simulation will give us new insights into the data that we are collecting about our planet.Mass Storage: The Digital Earth will require storing quadrillions of bytes of information. Later this year, NASA's Mission to Planet Earth program will generate a terrabyte of information each day. Fortunately, we are continuing to make dramatic improvements in this area.Satellite Imagery: The Administration has licensed commercial satellites systems that will provide 1-meter resolution imagery beginning in early 1998. This provides a level of accuracy sufficient for detailed maps, and that was previously only available using aerial photography. This technology, originally developed in the U.S. intelligence community, in incredibly accurate. As one company put it, "It's like having a camera capable of looking from London to Paris and knowing where each object in the picture is to within the width of a car headlight."Broadband networks: The data needed for a digital globe will be maintained by thousands of different organizations, not in one monolithic database. That means that the servers that are participating in the Digital Earth will need to be connected by high-speed networks. Driven by the explosive growth of Internet traffic, telecommunications carriers are already experimenting with 10 gigabit/second networks, and terrabit networking technology is one of the technical goals of the Next Generation Internet initiative. The bad news is that it will take a while before most of us have this kind of bandwidth to our home, which is why it will be necessary to have Digital Earth access points in public places like children's museums and science museums.Interoperability: The Internet and the World Wide Web have succeeded because of the emergence of a few, simple, widely agreed upon protocols, such as the Internet protocol. The Digital Earth will also need some level of interoperability, so that geographical information generated by one kind of application software can be read by another. The GIS industry is seeking to address many of these issues through the Open GIS Consortium.Metadata: Metadata is "data about data." For imagery orother georeferenced information to be helpful, it might be necessary to know its name, location, author or source, date, data format, resolution, etc. The Federal Geographic Data Committee is working with industry and state and local government to develop voluntary standards for metadata.Of course, further technological progress is needed to realize the full potential of the Digital Earth, especially in areas such as automatic interpretation of imagery, the fusion of data from multiple sources, and intelligent agents that could find and link information on the Web about a particular spot on the planet. But enough of the pieces are in place right now to warrant proceeding with this exciting initiative.Potential ApplicationsThe applications that will be possible with broad, easy to use access to global geospatial information will be limited only by our imagination. We can get a sense of the possibilities by looking at today's applications of GIS and sensor data, some of which have been driven by industry, others by leading-edge public sector users:Conducting virtual diplomacy: T o support the Bosnia peace negotiations, the Pentagon developed a virtual-reality landscape that allowed the negotiators to take a simulated aerial tour of the proposed borders. At one point in the negotiations, the Serbian President agreed to a wider corridor between Sarajevo and the Muslim enclave of Gorazde, after he saw that mountains made a narrow corridor impractical.Fighting crime: The City of Salinas, California has reduced youth handgun violence by using GIS to detect crime patterns and gang activity. By collecting information on the distribution and frequency of criminal activities, the city has been able toquickly redeploy police resources.Preserving biodiversity: Planning agencies in the Camp Pendelton, California region predict that population will grow from 1.1 million in 1990 to 1.6 million in 2010. This region contains over 200 plants and animals that are listed by federal or state agencies as endangered, threatened, or rare. By collecting information on terrain, soil type, annual rainfall, vegetation, land use, and ownership, scientists modeled the impact on biodiversity of different regional growth plans.Predicting climate change: One of the significant unknowns in modeling climate change is the global rate of deforestation. By analyzing satellite imagery, researchers at the University of New Hampshire, working with colleagues in Brazil, are able to monitor changes in land cover and thus determine the rate and location of deforestation in the Amazon. This technique is now being extended to other forested areas in the world.Increasing agricultural productivity: Farmers are already beginning to use satellite imagery and Global Positioning Systems for early detection of diseases and pests, and to target the application of pesticides, fertilizer and water to those parts of their fields that need it the most. This is known as precision farming, or "farming by the inch."The Way ForwardWe have an unparalleled opportunity to turn a flood of raw data into understandable information about our society and out planet. This data will include not only high-resolution satellite imagery of the planet, digital maps, and economic, social, and demographic information. If we are successful, it will have broad societal and commercial benefits in areas such as education, decision-making for a sustainable future, land-use planning, agricultural, and crisis management. The Digital Earth project could allow us to respond to manmade or natural disasters - or to collaborate on the long-term environmental challenges we face.A Digital Earth could provide a mechanism for users to navigate and search for geospatial information - and for producers to publish it. The Digital Earth would be composed of both the "user interface" - a browsable, 3D version of the planet available at various levels of resolution, a rapidly growing universe of networked geospatial information, and the mechanisms for integrating and displaying information from multiple sources.A comparison with the World Wide Web is constructive. [In fact, it might build on several key Web and Internet standards.] Like the Web, the Digital Earth would organically evolve over time, as technology improves and the information available expands. Rather than being maintained by a single organization, it would be composed of both publically available information and commercial products and services from thousands of different organizations. Just as interoperability was the key for the Web, the ability to discover and display data contained in different formats would be essential.I believe that the way to spark the development of a Digital Earth is to sponsor a testbed, with participation from government, industry, and academia. This testbed would focus on a few applications, such as education and the environment, as well as the tough technical issues associated with interoperability, and policy issues such as privacy. As prototypes became available, it would also be possible to interact with the Digital Earth in multiple places around the country with access to high-speednetworks, and get a more limited level of access over the Internet.Clearly, the Digital Earth will not happen overnight.In the first stage, we should focus on integrating the data from multiple sources that we already have. We should also connect our leading children's museums and science museums to high-speed networks such as the Next Generation Internet so that children can explore our planet. University researchers would be encouraged to partner with local schools and museums to enrich the Digital Earth project possibly by concentrating on local geospatial information.Next, we should endeavor to develop a digital map of the world at 1 meter resolution.In the long run, we should seek to put the full range of data about our planet and our history at our fingertips. In the months ahead, I intend to challenge experts in government, industry, academia, and non-profit organizations to help develop a strategy for realizing this vision. Working together, we can help solve many of the most pressing problems facing our society, inspiring our children to learn more about the world around them, and accelerate the growth of a multi-billion dollar industry.一场新的技术革新浪潮正允许我们能够获取、储存、处理并显示有关地球的空前浩瀚的数据以及广泛而又多样的环境和文化数据信息。
数字化改革三阶段十一步法
数字化改革三阶段十一步法信息技术的发展使数字化浪潮在世界各行各业掀起了一场变革数字化改革,然而,数字化改革不是一个名词,而是一个动词,其并不是一蹴而就的事情,更像是一场以“数字化改革”为目的地的艰苦路程,这场路程有三个站点,分别是数据化、智能化、智慧化。
只有达到最后一个站点智慧化的时候,才算真正成功实现了数字化改革。
本文,成都深龙软件将介绍数字化改革必将经历的三个阶段。
1、数据化当踏上数字化改革这趟路程时,我们第一个目标是到达“数据化”站点。
1998年,美国副总统戈尔在加利福尼亚科学中心开幕典礼上发表的题为“数字地球:认识二十一世纪我们所居住的星球”演说,数字地球概念被提出。
也迎来了数据化的浪潮。
数字化改革初期,要将复杂多变的实体信息利用信息技术转换成用0和1标识的二进制码,引入计算机内部,进行统一处理,最终变成可以度量的数据。
实现数据化,可以将实体信息系统、有序的通过数据进行管理,给各种决策管理带来确切的数据依据,同时加快了信息传递速度。
比如数字油田、数字城市。
2、智能化但是,数字化改革的任务不仅仅是完成信息数据化,当海量的数据涌来,没有智能手段进行处理,人工、手动等方式便无力招架,难免淹没于数据的海洋里。
那么接下来就要迈向智能化目标,由数据化到智能化。
智能化目标是将繁琐的、简单的、机械化的工作基于数据化。
通过人工智能等方式直接调用或指导到工作,将人所需付出的时间及精力尽可能降至最低,具有“拟人智能”的特性和功能,实现智能化可以大大降低人力成本,比如自适应、自校正、自协调。
3、智慧化智能化和智慧化还是有很大区别的,智慧是生命具有的基于生理和心理器官的高级创造思维能力,尽管大数据具备多维度、大样本量的特性,加上人工智能技术赋能,我们比以往更接近复杂系统全貌,但仍不足以拥有真正的智慧。
其实我国目前的数字化改革大多停留在智能化阶段,要真正实现智慧化,还有较长的一段路程,但是随着科技的发展进步,我们可以从技术层面上无限接近于智慧化,以群体智能、类脑智能、神经芯片和脑机接口等为代表的强人工智能,水平会远超现在的人工智能,实现推理和解决问题,这时的智能化才会表现出类似生命体的思考能力。
(精选)数字地球展望21世纪咱们这颗行星(戈尔)
数字地球: 展望21世纪咱们这颗行星美国前副总统戈尔技术创新的新浪潮使咱们能够大量地取得、存储、处置和显示关于咱们行星的各类环境和文化现象信息。
如此大量的信息组成了“地理坐标系”,它涉及地球表面每一个特定的地址。
利用卫星对地面遥感形成“地球空间”(轨道)信息流,并将其中未经加工有效部份的数据转变成为可供利用的信息。
今天,咱们常常发觉咱们能够取得比咱们明白要做些什么更多的信息。
地球资源技术卫星能够帮忙咱们更好地了解全世界的环境确实是一个典型的例子。
地球资源技术卫星能够每两礼拜对地表进行一次完整的成像,而且它已持续搜集了20连年。
尽管对这种信息有着庞大的需求,但大多数图象还不能被人们利用。
因此,它们只能被存储在电子数据库中。
咱们过去曾有过如此的农业政策,当做千上万的人们正面临饥饿死亡的时候,在中西部地窖里却存储着大量正在霉变的粮食。
咱们此刻一方面表现出对知识的那种贪得无厌的饥饿,另一方面是大量数据目前仍然全然未被利用过。
问题之一是用什么方式把信息显示出来。
有人曾经说咱们是不是能试用运算机术语来描述人脑,但是,人脑看起来比特率比运算机低,但却具有极高的分辨率。
例如,研究说明由于人脑比特率低,因此,很难在短时刻记住七条以上的数据。
可是, 若是这些信息被排列在一个彼此能够被识别的模型内如人类的脸或银河星系,人脑那么能够同时吸收成千上万条信息。
过去咱们通常利用Macintosh和Windows操作系统提供的桌面图形来进行(实现)人机对话的,事实上,这些工具此刻已经不适合新的挑战。
我相信咱们需要一个“数字地球”,一个多种分辩率,三维的表述方式,使咱们能嵌入庞大数量的地理坐标系数据。
例如,假想一名年轻小孩去本地的博物馆参观数字地球展览。
在戴上显示头盔后,她看见地球从太空中显现,利用数据手套放大电子图象;利用愈来愈高的分辨率,看见大陆,然后是乡村、城市,最后是私人住房、树木和其他天然和人工的物质。
她采纳类似“魔毯骑乘”通过地形的3D视图,眼前被发觉的行星区域引发她探讨的爱好。
2013年测绘综合能力考试资料数字地球
一、什么是“数字地球”?数字地球(Digital Earth)最早是美国副总统戈尔于98年1月在美国加利福尼亚科学中心发表的题为“数字全球定位系统地球:二十一世纪认识地球的方式”的讲演中提出来的,戈尔在他的文章里指出“我们需要一个‘数字地球’,即一种可以嵌入海量地理数据的、多分辨率的和三维的地球的表示,可以在其上添加许多与我们所处的星球有关的数据”。
在科技界目前对“数字地球”还没有确切的学术的定义,一般认为“数字地球”是对真实地球及其相关现象的统一的数字化的认识,是以因特网为基础,以空间数据为依托,以虚拟现实技术为特征,具有三维界面和多种分辨率浏览器的面向公众开放的系统。
正如戈尔在他的文章描绘的一个小孩在一个地方博物馆参观数字地球的场景:“当她戴上头盔时,她便可以看到与从太空看到的一样的地球。
然后,通过数据手套她可以对所看到的影像进行放大,这样通过越来越高的分辨率她便可以看到各大洲以及不同的地区、国家、城市等内容,甚至最后还可以看到具体的房屋、树木以及其他的自然或人造的对象。
”通常认为数字地球主要由三部分组成:1、不同分辨率尺度下的地球(与目前普遍使用的GIS不同)。
2、网络化的地理信息世界,为用户提供公用信息和商业信息,为各类网络用户开辟一个认识“我们这个星球”的“没有围墙的实验室”。
3、多源信息的集成和显示机制,就是融合和利用现有的多源信息,并将其“嵌入”数字地球的框架,进行“三维的描述”和智能化网络虚拟分析。
数字地球将在农业、环境、资源、人口、灾害、城市建设、教育军事、政府决策和区域的可持续发展等领域起到巨大作用。
二、“数字地球”与政府决策有何关系?于数字地球具有三维和不同分辨率的浏览界面,广泛和易访问使用的全球地理空间数据,以及由于虚拟现实技术的应用,将对政府部门的决策起到巨大作用。
数字地球利用虚拟技术,可以在军事与外交领域的决策得到广泛应用。
数字地球的数据具有统一的标准和全球范围内的数据,这对政府部门获得资源与环境方面的信息,科学地执行可持续发展战略具有重要作用。
数字地球:理解21世纪我们的星球
数字地球:理解21世纪我们的星球
戈尔,艾;王大力
【期刊名称】《测绘软科学研究》
【年(卷),期】1998(004)004
【摘要】把我们人类居住的地球,数字化成业个虚拟现实的四维世界,这在几年前是难于想象的。
而计算机技术和通信技术的迅速发展,则以迅雷不及掩耳这势,突然把它摆在了我们的桌面上,本文作者做为一个科技强国-美国的现任副总统,对未来的数字地球提出了一个极富想象力和可操作性的概念模型,该模型对数字地球的内容和价值进行了概括和评估,并对其实现步骤和实现方法进行了规划。
【总页数】4页(P42-45)
【作者】戈尔,艾;王大力
【作者单位】不详;不详
【正文语种】中文
【中图分类】P2
【相关文献】
1.面向21世纪人类星球审视"数字地球"战略 [J], 仝培杰
2.21世纪的我们星球——数字地球 [J], 霍沛军
3.“数字地球”——展望21世纪我们这颗星球 [J], 王海;李晓萍
4.数字地球:认识21世纪我们这颗星球 [J], Gore,AI
5.数字地球对二十一世纪人类星球的理解 [J], 戈尔
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The Digital Earth: Understanding Our Planet in 21st Century数字地球:认识二十一世纪我们所居住的星球Al GORE阿尔·戈尔A new wave of technological innovation is allowing us to capture, store, process and display an unprecedented amount of information about our planet and a wide variety of environmental and cultural phenomena. Much of this information will be "georeferenced" - that is, it will refer to some specific place on the Earth's surface.The hard part of taking advantage of this flood of geospatial information will be making sense of it. - turning raw data into understandable information. Today, we often find that we have more information than we know what to do with. The Landsat program, designed to help us understand the global environment, is a good example. The Landsat satellite is capable of taking a complete photograph of the entire planet every two weeks, and it's been collecting data for more than 20 years. In spite of the great need for that information, the vast majority of those images have never fired a single neuron in a single human brain. Instead, they are stored in electronic silos of data. We used to have an agricultural policy where we stored grain in Midwestern silos and let it rot while millions of people starved to death. Now we have an insatiable hunger for knowledge. Yet a great deal of data remains unused.Part of the problem has to do with the way information is displayed. Someone once said that if we tried to describe the human brain in computer terms, it looks as if we have a low bit rate, but very high resolution. For example, researchers have long known that we have trouble remembering more than seven pieces of data in our short-term memory. That's a low bit rate. On the other hand, we can absorb billions of bits of information instantly if they are arrayed in a recognizable pattern within which each bit gains meaning in relation to all the others a human face, or a galaxy of stars.The tools we have most commonly used to interact with data, such as the "desktop metaphor" employed by the Macintosh and Windows operating systems, are not really suited to this new challenge. I believe we need a "Digital Earth". A multi-resolution, three-dimensional representation of the planet, into which we can embed vast quantities of geo-referenced data.Imagine, for example, a young child going to a Digital Earth exhibit at a local museum. After donning a head-mounted display, she sees Earth as it appears from space. Using a data glove, she zooms in, using higher and higher levels of resolution, to see continents, then regions, countries, cities, and finally individual houses, trees, and other natural and man-made objects. Having found an area of the planet she is interested in exploring, she takes the equivalent of a "magic carpet ride" through a 3-D visualization of the terrain. Of course, terrain is only one of the many kinds of data with which she can interact. Using the systems' voice recognition capabilities, she is able to request information on land cover, distribution of plant and animal species, real-time weather, roads, political boundaries, and population. She can also visualize the environmental information that she and other students all over the world have collected as part of the GLOBE project. This information can be seamlessly fused with the digital map or terrain data. She can get more information on many of the objects she sees by using her data glove to click on a hyperlink. To prepare for her family's vacation to Yellowstone National Park, for example, she plans the perfecthike to the geysers, bison, and bighorn sheep that she has just read about. In fact, she can follow the trail visually from start to finish before she ever leaves the museum in her hometown.She is not limited to moving through space, but can also travel through time. After taking a virtual field-trip to Paris to visit the Louvre, she moves backward in time to learn about French history, perusing digitized maps overlaid on the surface of the Digital Earth, newsreel footage, oral history, newspapers and other primary sources. She sends some of this information to her personal e-mail address to study later. The time-line, which stretches off in the distance, can be set for days, years, centuries, or even geological epochs, for those occasions when she wants to learn more about dinosaurs.Obviously, no one organization in government, industry or academia could undertake such a project. Like the World Wide Web, it would require the grassroots efforts of hundreds of thousands of individuals, companies, university researchers, and government organizations. Although some of the data for the Digital Earth would be in the public domain, it might also become a digital marketplace for companies selling a vast array of commercial imagery and value-added information services. It could also become a "collaboratory"—a laboratory without walls for research scientists seeking to understand the complex interaction between humanity and our environment.Technologies needed for a Digital EarthAlthough this scenario may seem like science fiction, most of the technologies and capabilities that would be required to build a Digital Earth are either here or under development. Of course, the capabilities of a Digital Earth will continue to evolve over time. What we will be able to do in 2005 will look primitive compared to the Digital Earth of the year 2020. Below are just a few of the technologies that are needed:Computational Science: Until the advent of computers, both experimental and theoretical ways of creating knowledge have been limited. Many of the phenomena that experimental scientists would like to study are too hard to observe - they may be too small or too large, too fast or too slow, occurring in a billionth of a second or over a billion years. Pure theory, on the other hand, cannot predict the outcomes of complex natural phenomena like thunderstorms or air flows over airplanes. But with high-speed computers as a new tool, we can simulate phenomena that are impossible to observe, and simultaneously better understand data from observations. In this way, computational science allows us to overcome the limitations of both experimental and theoretical science. Modeling and simulation will give us new insights into the data that we are collecting about our planet.Mass Storage: The Digital Earth will require storing quadrillions of bytes of information. Later this year, NASA's Mission to Planet Earth program will generate a terrabyte of information each day. Fortunately, we are continuing to make dramatic improvements in this area.Satellite Imagery: The Administration has licensed commercial satellites systems that will provide 1-meter resolution imagery beginning in early 1998. This provides a level of accuracy sufficient for detailed maps, and that was previously only available using aerial photography. This technology, originally developed in the U.S. intelligence community, in incredibly accurate. As one company put it, "It's like having a camera capable of looking from London to Paris and knowing where each object in the picture is to within the width of a car headlight."Broadband networks: The data needed for a digital globe will be maintained by thousands of different organizations, not in one monolithic database. That means that the servers that areparticipating in the Digital Earth will need to be connected by high-speed networks. Driven by the explosive growth of Internet traffic, telecommunications carriers are already experimenting with 10 gigabit/second networks, and terrabit networking technology is one of the technical goals of the Next Generation Internet initiative. The bad news is that it will take a while before most of us have this kind of bandwidth to our home, which is why it will be necessary to have Digital Earth access points in public places like children's museums and science museums.Interoperability: The Internet and the World Wide Web have succeeded because of the emergence of a few, simple, widely agreed upon protocols, such as the Internet protocol. The Digital Earth will also need some level of interoperability, so that geographical information generated by one kind of application software can be read by another. The GIS industry is seeking to address many of these issues through the Open GIS Consortium.Metadata: Metadata is "data about data." For imagery or other georeferenced information to be helpful, it might be necessary to know its name, location, author or source, date, data format, resolution, etc. The Federal Geographic Data Committee is working with industry and state and local government to develop voluntary standards for metadata.Of course, further technological progress is needed to realize the full potential of the Digital Earth, especially in areas such as automatic interpretation of imagery, the fusion of data from multiple sources, and intelligent agents that could find and link information on the Web about a particular spot on the planet. But enough of the pieces are in place right now to warrant proceeding with this exciting initiative.Potential ApplicationsThe applications that will be possible with broad, easy to use access to global geospatial information will be limited only by our imagination. We can get a sense of the possibilities by looking at today's applications of GIS and sensor data, some of which have been driven by industry, others by leading-edge public sector users:Conducting virtual diplomacy: To support the Bosnia peace negotiations, the Pentagon developed a virtual-reality landscape that allowed the negotiators to take a simulated aerial tour of the proposed borders. At one point in the negotiations, the Serbian President agreed to a wider corridor between Sarajevo and the Muslim enclave of Gorazde, after he saw that mountains made a narrow corridor impractical.Fighting crime: The City of Salinas, California has reduced youth handgun violence by using GIS to detect crime patterns and gang activity. By collecting information on the distribution and frequency of criminal activities, the city has been able to quickly redeploy police resources.Preserving biodiversity: Planning agencies in the Camp Pendelton, California region predict that population will grow from 1.1 million in 1990 to 1.6 million in 2010. This region contains over 200 plants and animals that are listed by federal or state agencies as endangered, threatened, or rare. By collecting information on terrain, soil type, annual rainfall, vegetation, land use, and ownership, scientists modeled the impact on biodiversity of different regional growth plans.Predicting climate change: One of the significant unknowns in modeling climate change is the global rate of deforestation. By analyzing satellite imagery, researchers at the University of New Hampshire, working with colleagues in Brazil, are able to monitor changes in land cover and thus determine the rate and location of deforestation in the Amazon. This technique is now being extended to other forested areas in the world.Increasing agricultural productivity: Farmers are already beginning to use satellite imageryand Global Positioning Systems for early detection of diseases and pests, and to target the application of pesticides, fertilizer and water to those parts of their fields that need it the most. This is known as precision farming, or "farming by the inch."The Way ForwardWe have an unparalleled opportunity to turn a flood of raw data into understandable information about our society and out planet. This data will include not only high-resolution satellite imagery of the planet, digital maps, and economic, social, and demographic information. If we are successful, it will have broad societal and commercial benefits in areas such as education, decision-making for a sustainable future, land-use planning, agricultural, and crisis management. The Digital Earth project could allow us to respond to manmade or natural disasters - or to collaborate on the long-term environmental challenges we face.A Digital Earth could provide a mechanism for users to navigate and search for geospatial information - and for producers to publish it. The Digital Earth would be composed of both the "user interface" - a browsable, 3D version of the planet available at various levels of resolution, a rapidly growing universe of networked geospatial information, and the mechanisms for integrating and displaying information from multiple sources.A comparison with the World Wide Web is constructive. [In fact, it might build on several key Web and Internet standards.] Like the Web, the Digital Earth would organically evolve over time, as technology improves and the information available expands. Rather than being maintained by a single organization, it would be composed of both publically available information and commercial products and services from thousands of different organizations. Just as interoperability was the key for the Web, the ability to discover and display data contained in different formats would be essential.I believe that the way to spark the development of a Digital Earth is to sponsor a testbed, with participation from government, industry, and academia. This testbed would focus on a few applications, such as education and the environment, as well as the tough technical issues associated with interoperability, and policy issues such as privacy. As prototypes became available, it would also be possible to interact with the Digital Earth in multiple places around the country with access to high-speed networks, and get a more limited level of access over the Internet.Clearly, the Digital Earth will not happen overnight.In the first stage, we should focus on integrating the data from multiple sources that we already have. We should also connect our leading children's museums and science museums to high-speed networks such as the Next Generation Internet so that children can explore our planet. University researchers would be encouraged to partner with local schools and museums to enrich the Digital Earth project possibly by concentrating on local geospatial information.Next, we should endeavor to develop a digital map of the world at 1 meter resolution.In the long run, we should seek to put the full range of data about our planet and our history at our fingertips. In the months ahead, I intend to challenge experts in government, industry, academia, and non-profit organizations to help develop a strategy for realizing this vision. Working together, we can help solve many of the most pressing problems facing our society, inspiring our children to learn more about the world around them, and accelerate the growth of a multi-billion dollar industry.一场新的技术革新浪潮正允许我们能够获取、储存、处理并显示有关地球的空前浩瀚的数据以及广泛而又多样的环境和文化数据信息。