直线的点斜式方程

合集下载

3.2.1直线的点斜式方程

3.2.1直线的点斜式方程
复习引入: 一、直线斜率的求解公式:
1)k tan y2 y1 2)k x2 x1
注意:
( 90 )
0
( x2 x1 )
不是所有的直线都有斜率, 斜率不存在的直线为与 x 轴垂直的直线
平行:对于两条不重合的直线l1、l2,其斜 率分别为k1、k2,有 l1∥l2 k1=k2.
1.点斜式方程
小结
y y0 k ( x x0 )
当知道斜率和一点坐标时用点斜式 2.斜截式方程
y kx b
当知道斜率k和截距b时用斜截式 3.特殊情况 ①直线和x轴平行时,倾斜角α=0°
y y0 0或y y0
②直线与x轴垂直时,倾斜角α=90°
x x0 0或x x0
l1:y=k1x+b1,l2:y=k2x+b2
() 1 l1 // l2 k1 k2 , 且b1 b2 .
(2)l1 l2 k1 k2 1
y b k ( x 0)
y kx b
斜率 截距
斜截式
说明:(1)当知道斜率和截距时用斜截式.
(2)斜率k要存在,纵截距b∈R.
思考
1.截距b是距离吗? 不是,是数
2.截距与距离有什么区别? 截距为实数,可正,可负,可为零, 而距离是大于等于零的实数. 3.b的几何意义是什么? 与y轴交点的纵坐标
(2)l1 l2 k1 k2 1
判断下列各直线是否平行或垂直
1 (1) l1 : y x 3 2 5 (2) l1 : y x 3 1 l2 : y x 2 2 3 l2 : y x 5
(1)求经过点(1,1),与直线y=2x+7平行的直线的方程;

3.2.1直线的点斜式方程

3.2.1直线的点斜式方程
08:34:24 3.2.1直线的点斜式方程
y
P0
P1
4 3 2 1
-3
-2
-1 O
x
1、写出下列直线的点斜式方程: (1)经过点A(2,5),斜率是 4 ;
答案: (1)y-5=4(x-2)
(2)经过点B( 2 ,3),倾斜角是450 (2)y-3=x-2 (3)经过点C(-1,-1),与x轴平行(3)y=-1 (4)经过点D(1,1),与x轴垂直 (4)x=1
y
24
3.2.1直线的点斜式方程
此时,直线没有 斜率,直线与y轴 平行或重合,它 的方程不能用点 斜式表示。直线 的方程为 x x0 0 或 x x0
直线 l经过点 P0 (2,3) ,且倾斜 0 l的点斜式方 角 45,求直线 程,并画出直线 l。
解:直线经过点 P , 0 (2,3) k tan 45 1 ,代入 斜率 点斜式方程得 y 3 x 2 画图时,只需取直线上的另 一点P1,例如取x1 1, y1 4 得P 1 ( x1 , y1 ) 的坐标为(-1,4) 过点 P 的直线即为所求。 0, P 1
你都作对了吗?
08:34:24 3.2.1直线的点斜式方程
2、填空题(书本95页练习2)

1)已知直线的点斜式方程是 y 2 x 1
1 那么此直线的斜率是_______ ,倾斜角是 0 __________ 。 45
(2)已知直线的点斜式方是 y 2 3( x 1)
3 那么此直线的斜率是__________ ,倾斜 0 角是____________ 。 60
08:34:24 3.2.1直线的点斜式方程
如果直线 l 的斜率为 k ,且与 y 轴的交 点为 (0, b) ,代入直线 的点斜式方程得:

直线的点斜式方程

直线的点斜式方程
解:
即:
∵直线与坐标轴组成一等腰直角三角形
由直线的点斜式方程得:
又∵直线过点(1,2)
O
y
x
A
数学之美:
数学之美:
例四:1.下列方程表示直线的倾斜角各为多少度? 1) 2) 3)
根据图形你能够推测直线有什么特点?
P100 习题3.2 A组:1、5
思考:
数学之美:
直线 表示斜率为2的一系列平行直线.
直线 是过定点(0,2)的直线束;
感谢观赏
同学们再见!
汇报人姓名
单击此处添加正文,文字是您思想的提炼,请言简意赅地阐述您的观点。
3.2.1 直线的点斜式方程
单击此处添加副标题
202X
2.已知直线上两点P1(x1,y1),P2(x2,y2)(x1≠x2) ,则直线的斜率k等于?
1.已知直线的倾斜角为α,则直线的斜率k= ;
复习回顾
tanα
点斜式方程的形式特点.
特例:(1)
l
P0(x0,y0)
l与x轴平行或重合倾斜角为0°斜率 k=0
y0
直线上任意点纵坐标都等于y0
直线x轴的方程:
y=0
特例:(2)
直线y轴的方程:
x=0
l
x0
直线上任意点横坐标都等于x0
P0(x0,y0)
l与x轴垂直倾斜角为90°斜率 k 不存在不能用点斜式求方程
直线 是过定点(0,2)的直线束;
过点(2, 1)且平行于x轴的直线方程为_______
01
02
03
04
过点(2, 1)且平行于y轴的直线方程为_______
过点(2, 1)且过原点的直线方程为_________

3.2.1直线的点斜式方程

3.2.1直线的点斜式方程

思维拓展
拓展1:
y ①过点(2, 1)且平行于x轴的直线方程为___ 1
x ②过点(2, 1)且平行于y轴的直线方程为___ 2
1 y ③过点(2, 1)且过原点的直线方程为___ x 2
④过点(2, 1)且过点(1, 2)的直线方程为___
x y 3 0
思维拓展
拓展2:
①过点(1, 1)且与直线y=2x+7平行的直线
(3)经过点C(0, 3),倾斜角是0°;
y3
3
1.写出下列直线的点斜式方程:
(4)经过点D(-4, -2),倾斜角是120°. y 2 3 ( x 4) 2.填空题: (1)已知直线的点斜式方程是 y-2=x-1,那么此直线的 斜率是__________,倾斜角是_____________. 45 1
(2) l1 l2 的条件是什么?
结论: l1 : y k1 x b1,l2 : y k2 x b2


l1 // l2 l1 l2
k1 k2 ,且 b1 b2
k1k2 1
练习(P95第4):判断下列各对直线是否平行 或垂直。
1 1 (1)1 : y x 3, l2 : y x 2; l 2 2
(2)
平行
5 3 l1 : y x, l2 : y - x. 3 5
垂直
形式
条件
直线方程
应用范围
点斜式 直线过点(x0, y0), 斜率存在 y y0 k ( x x 0 ) 且斜率为k 斜截式 在y轴上的截距 为b,且斜率为k
y kx b
斜率存在
注:在使用这两种形式求解直线方程时,若斜率 存在与否难以确定,应分“斜率存在”和“斜率 不存在”这两种情况分别考虑,以免丢解。

直线的点斜式方程(张爽)

直线的点斜式方程(张爽)

y − y0 = k ( x − x0 )
概念理解
斜率是k的直线 上的点 上的点,其坐标代入都 (1)过点 0(x0,y0) 斜率是 的直线 l上的点 其坐标代入都 )过点p 满足方程y-y 满足方程 0=k(x-x0)吗? 吗 (2)坐标满足方程 0=k(x-xo)的点都在过点 p0(x0, y0) ,斜 )坐标满足方程y-y 的点都在过点 斜 率为k的直线 上吗 率为 的直线l上吗? 的直线 上吗?
x
学以致用
1.已知直线经过点p(3,4),求 (1)倾斜角为0°时的直线方程; (2)斜率为2时的直线方程; (3)倾斜角为90°时的直线方程. 2.经过点p(2,3),倾斜角是30°的直线方程.
3.经过A(-2,-3),B(0,0)两点的直线的点斜式方程. 4.经过点p(0,3),斜率是1的直线方程,并画出图 形.
经过探究,上述两条都成立 所以这个方程就是过 经过探究 上述两条都成立,所以这个方程就是过 上述两条都成立 的直线l的方程 的方程. 点p0(x0,y0),斜率为 k 的直线 的方程. ,
直线的点斜式方程
方程y-y 由直线上一点 方程 0=k(x-x0)由直线上一点 0(x0,y0)及 由直线上一点p 及 斜率k确定 把这个方程叫做直线的点斜式方 确定, 其斜率 确定,把这个方程叫做直线的点斜式方 简称点斜式 点斜式. 程,简称点斜式.
x − x0 = 0

x = x0
x 点斜式的局限性: 点斜式的局限性:只适用于斜率存在 的情形。 的情形。
当直线L的倾斜角为0 当直线L的倾斜角为0°时,直 线的方程怎么表示? 线的方程怎么表示?
倾斜角为0 倾斜角为 ° 如图: 如图:
y
则 直线与x轴平行或重合;

3.2.1直线的点斜式方程

3.2.1直线的点斜式方程

2-1.若直线 ax+by+c=0 在第一、二、三象限,则( A.ab>0,bc>0 C.ab<0,bc>0 B.ab>0,bc<0 D.ab<0,bc<0
D )
a 解析:由题意,直线的斜率一定大于 0,所以 k=-b>0, c 即 ab<0;根据直线的纵截距大于 0,可得-b>0,即 bc<0.
的方程是?
y
l
P( x, y)
P 0 ( x0 , y0 )
y y0
y y0 k ( x x0 ) x x0
故:
x
x x0
o
y y0 k ( x x0 )
经过点 P0 ( x0 , y0 ) 斜率为k的直线 l 的方程 为:
y y0 k ( x x0 )
点斜式方程和斜截式方程的应用 例 3: 已知直线 l 经过点 P(-5,-4),且 l 与两坐标轴围成 的三角形的面积为 5,求直线 l 的方程. 思维突破:由题意知所围三角形为直角三角形.根据直角 三角形面积公式以及直线方程求出该直线在两坐标轴的坐标即 可. 解:由已知:l 与两坐标轴不垂直.
∵直线 l 经过点 P(-5,-4), ∴ 可设直线 l 的方程为 y-(-4)=k[x-(-5)], 即 y+4=k(x+5).
3.2.1 直线的点斜式方程
复习引入: 一、直线斜率的求解公式:
1)k t an 2)k
注意:
( 900 ) ( x2 x1 )
y2 y1 x2 x1
不是所有的直线都有斜率,源自斜率不存在的直线为与 x 轴垂直的直线
0 ( x0 , y0 ) ,斜率为k, 则此直线 若直线 l 经过点P
y 2x 4
y2
y

3.2.1直线的点斜式方程

3.2.1直线的点斜式方程

【错因分析】
上述解法的错误主要在于“误把直线在
两轴上的截距当作距离”.
【防范措施】
直线在两轴上的截距是直线与坐标轴交
点的横、纵坐标,而不是距离,因此本题在先求得截距后, 应对截距取绝对值再建立面积表达式.
4 【正解】 设 l:y=- x+b,令 x=0 得 y=b;令 y=0 3 3 得 x=4b, 1 3 由题意得2· |b |· |4b|=6,∴b2=16,∴b=± 4. 4 故直线 l 的方程为 y=- x± 4. 3
温故而知新
1、直线的倾斜角 与斜率k的关系是
k tan (

2
)
2、过点A x1, y1 、B x2 , y2 的直线的斜率是
y1 y2 k (x1 x2) x1 x2
3、简述在直角坐标系中确定一条直线的 几何要素
(1)直线上的一点和直线 的倾斜角(或斜率) (2)直线上两点
试试自己的能耐
4.直线 l 过点P(2,1),且斜率为3,点Q(x,y)是 l 上不同于P的一点,则x、y满足怎样的关系式?
设直线l经过点 P0(x0,y0) ,且斜率为k,点P(x,y)为
直线l上不同于P0的任意一点,则x、y满足的关系式
y y0 k x x0 是_____________
你这节课有什么收获?
1.建立点斜式方程的依据是:直线上任一点与这条 y-y1 直线上一个定点的连线的斜率相同,故有 =k,此式 x-x1 是不含点 P1(x1,y1)的两条反向射线的方程,必须化为 y -y1=k(x-x1)才是整条直线的方程.当直线的斜率不存 在时,不能用点斜式表示,此时方程为 x=x1.
④ 经过点P0 ( x0 , y0 ) 且垂直于 x 轴的直线方程?

直线的点斜式方程

直线的点斜式方程

¤知识要点:1. 点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=-.2. 斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为y kx b =+.3. 点斜式和斜截式不能表示垂直x 轴直线. 若直线l 过点000(,)P x y 且与x 轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为00x x -=,或0x x =.4. 注意:y y k x x -=-与00()y y k x x -=-是不同的方程,前者表示的直线上缺少一点000(,)P x y ,后者才是整条直线.¤例题精讲:【例1】写出下列点斜式直线方程:(1)经过点(2,5)A ,斜率是4; (2)经过点(3,1)B -,倾斜角是30.【例2】已知直线31y kx k =++.(1)求直线恒经过的定点;(2)当33x -≤≤时,直线上的点都在x 轴上方,求实数k 的取值范围.【例3】光线从点A (-3,4)发出,经过x 轴反射,再经过y 轴反射,光线经过点 B (-2,6),求射入y 轴后的反射线的方程.点评:由物理中光学知识知,入射线和反射线关于法线对称. 光线的反射问题,也常常需要研究对称点的问题. 注意知识间的相互联系及学科间的相互渗透. 【例4】已知直线l 经过点(5,4)P --,且l 与两坐标轴围成的三角形的面积为5,求直线l 的方程.点评:已知直线过一点时,常设其点斜式方程,但需注意斜率不存在的直线不能用点斜式表示,从而使用点斜式或斜截式方程时,要考虑斜率不存在的情况,以免丢解. 而直线在坐标轴上的截距,可正、可负,也可以为零,不能与距离混为一谈,注意如何由直线方程求其在坐标轴上的截距.¤知识要点:1. 两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为112121y y x x y y x x --=--, 2. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为1x ya b+=. 3. 两点式不能表示垂直x 、y 轴直线;截距式不能表示垂直x 、y 轴及过原点的直线.4. 线段12P P 中点坐标公式1212(,)22x x y y ++. ¤例题精讲:【例1】已知△ABC 顶点为(2,8),(4,0),(6,0)A B C -,求过点B 且将△ABC 面积平分的直线方程.【例2】菱形的两条对角线长分别等于8和6,并且分别位于x 轴和y 轴上,求菱形各边所在的直线的方程直线的一般式方程¤知识要点:1. 一般式:0Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A Cy x B B=--,表示斜率为A B -,y 轴上截距为CB-的直线. 2 与直线:0l Ax By C ++=平行的直线,可设所求方程为'0Ax By C ++=;与直线0Ax By C ++=垂直的直线,可设所求方程为'0Bx Ay C -+=. 过点00(,)P x y 的直线可写为00()()0A x x B y y -+-=.经过点0M ,且平行于直线l 的直线方程是00()()0A x x B y y -+-=; 经过点0M ,且垂直于直线l 的直线方程是00()()0B x x A y y ---=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别: (1)1212120l l A A B B ⊥⇔+=; (2)1212211221//0,0l l A B A B AC A B ⇔-=-≠; (3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210A B A B ⇔-≠.如果2220A B C ≠时,则11112222//A B C l l A B C ⇔=≠;1l 与2l 重合111222A B C A B C ⇔==;1l 与2l 相交1122A B A B ⇔≠.¤例题精讲:【例1】已知直线1l :220x my m +--=,2l :10mx y m +--=,问m 为何值时:(1)12l l ⊥;(2)12//l l .【例2】(1)求经过点(3,2)A 且与直线420x y +-=平行的直线方程;(2)求经过点(3,0)B 且与直线250x y +-=垂直的直线方程.【例3】已知直线l 的方程为3x +4y -12=0,求与直线l 平行且过点(-1,3)的直线的方程.点评:根据两条直线平行或垂直的关系,得到斜率之间的关系,从而由已知直线的斜率及点斜式求出所求直线的方程. 此题也可根据直线方程的一种形式00()()0A x x B y y -+-=而直接写出方程,即3(1)4(3)0x y ++-=,再化简而得.两条直线的交点坐标¤知识要点:1. 一般地,将两条直线的方程联立,得到二元一次方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点. ¤例题精讲:【例1】判断下列直线的位置关系. 如果相交,求出交点坐标.直线l 1: 1nx y n -=-, l 2: 2ny x n -=.【例2】求经过两条直线280x y +-=和210x y -+=的交点,且平行于直线4370x y --=的直线方程.两点间的距离¤知识要点:1. 平面内两点111(,)P x y ,222(,)P x y ,则两点间的距离为:22121212||()()PP x x y y =-+-.特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,PP 所在直线与y 轴平行时,1212||||PP y y =-;当12,P P 在直线y kx b =+上时,21212||1||PP k x x =+-. 2. 坐标法解决问题的基本步骤是:(1)建立坐标系,用坐标表示有关量;(2)进行有关代数运算;(3)把代数运算的结果“翻译”成几何关系.¤例题精讲:【例1】在直线20x y -=上求一点P ,使它到点(5,8)M 的距离为5,并求直线PM 的方程.【例2】直线2x -y -4=0上有一点P ,求它与两定点A (4,-1),B (3,4)的距离之差的最大值.【例3】已知AO 是△ABC 中BC 边的中线,证明|AB |2+|AC |2=2(|AO |2+|OC |2).点到直线的距离及两平行线距离¤知识要点:1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为0022||Ax By C d A B++=+.2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式1222||C C d A B-=+,推导过程为:在直线2l 上任取一点00(,)P x y ,则0020A x B y C ++=,即002A x B y C +=-. 这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为001122222||||Ax By C C C d A BA B++-==++.¤例题精讲:y x B (-c ,0) A (a ,b ) C (c ,0) O【例1】求过直线1110:33l y x =-+和2:30l x y -=的交点并且与原点相距为1的直线l 的方程.【例2】在函数24y x =的图象上求一点P ,使P 到直线45y x =-的距离最短,并求这个最短的距离.圆的标准方程¤知识要点:1. 圆的标准方程:方程222()()(0)x a y b r r -+-=>表示圆心为A (a ,b ),半径长为r 的圆.2. 求圆的标准方程的常用方法:(1)几何法:根据题意,求出圆心坐标与半径,然后写出标准方程;(2)待定系数法:先根据条件列出关于a 、b 、r 的方程组,然后解出a 、b 、r ,再代入标准方程. ¤例题精讲: 【例1】过点(1,1)A -、(1,1)B -且圆心在直线x +y -2=0上的圆的方程是( ). A.(x -3)2+(y +1)2=4 B.(x +3)2+(y -1)2=4 C.(x -1)2+(y -1)2=4 D.(x +1)2+(y +1)2=4 【例2】求下列各圆的方程: (1)过点(2,0)A -,圆心在(3,2)-;(2)圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --圆的一般方程¤知识要点:1. 圆的一般方程:方程220x y Dx Ey F ++++= (2240D E F +->)表示圆心是(,)22D E --,半径长为22142D E F +-的圆. 2. 轨迹方程是指点动点M 的坐标(,)x y 满足的关系式.¤例题精讲:【例1】求过三点A (2,2)、B (5,3)、C (3,-1)的圆的方程.【例2】设方程222422(3)2(14)16790x y m x m y m m +-++-+-+=,若该方程表示一个圆,求m 的取值范围及圆心的轨迹方程.直线与圆的位置关系¤知识要点:1. 直线与圆的位置关系及其判定: 方法一:方程组思想,由直线与圆的方程组成的方程组,消去x 或(y ),化为一元二次方程,由判别式符号进行判别;方法二:利用圆心(,a b )到直线0Ax By C ++=的距离22||Aa Bb C d A B ++=+,比较d与r 的大小.(1)相交d r ⇔<⇔ 0∆>;(2)相切d r ⇔=⇔0∆=;(3)相离d r ⇔>⇔0∆<. 2. 直线与圆的相切研究,是高考考查的重要内容. 同时,我们要熟记直线与圆的各种方程、几何性质,也要掌握一些常用公式,例如点线距离公式0022||Ax By C d A B ++=+¤例题精讲:【例1】若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为 .【例2】求直线:220l x y --=被圆22:(3)9C x y -+=所截得的弦长.圆与圆的位置关系¤知识要点:两圆的位置关系及其判定: 设两圆圆心分别为12,O O ,半径分别为12,r r ,则:(1)两圆相交121212||||r r O O r r ⇔-<<+;(2)两圆外切1212||O O r r ⇔=+;(3)两圆内切1212||||O O r r ⇔=-; ¤例题精讲:【例1】已知圆1C :22660x y x +--=①,圆2C :22460x y y +--=② (1)试判断两圆的位置关系;(2)求公共弦所在的直线方程.【例2】求经过两圆22640x y x ++-=和226280x y y ++-=的交点,并且圆心在直线40x y --=上的圆的方程.课后练习 一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=, 则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( )A 第一二三象限B 第一二四象限C 第一三四象限D .第二三四象限 5.直线1x =的倾斜角和斜率分别是( ) A .045,1B .0135,1-C .090,不存在D .0180,不存在6若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________;3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。

直线的点斜式方程、直线的两点式方程】

直线的点斜式方程、直线的两点式方程】

3.2 直线的方程 3.2.1 直线的点斜式方程 3.2.2 直线的两点式方程一、直线的点斜式方程 1.直线的点斜式方程的定义已知直线l 经过点000(,)P x y ,且斜率为k ,则直线l 的方程为这个方程是由直线上一定点及其斜率确定的,因此称为直线的 ,简称当直线l 的倾斜角为0°时(如图1),tan 00=,即k =0,这时直线l 与x 轴平行或重合,l 的方程就是00y y -=,或0y y =.当直线l 的倾斜角为90°时(如图2),直线没有斜率,这时直线l 与y 轴平行或重合,它的方程不能用点斜式表示.因为这时l 上每一点的横坐标都等于0x ,所以它的方程是00x x -=,或0x x =.深度剖析(1)当直线的斜率存在时,才能用直线的点斜式方程.(2)当k 取任意实数时,方程00()y y k x x -=-表示过定点00(,)x y 的无数条直线.2.直线的点斜式方程的推导如图,设点(,)P x y 是直线l 上不同于点000(,)P x y 的任意一点,根据经过两点的直线的斜率公式得y y k x x -=- (1),即00()y y k x x -=-(2).注意方程(1)与方程(2)的差异:点0P 的坐标不满足方程(1),但满足方程(2),因此,点0P 不在方程(1)表示的图形上,而在方程(2)表示的图形上,方程(1)不能称为直线l 的方程.上述过程可以证明直线上每个点的坐标都是方程(2)的解.对上面的过程逆推,可以证明以方程(2)的解为坐标的点都在直线l 上,所以这个方程就是过点0P ,斜率为k 的直线l 的方程. 二、直线的斜截式方程 1.直线的斜截式方程的定义我们把直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的如果直线l 的斜率为k ,且在y 轴上的截距为b ,则方程为(0)y b k x -=-,即 叫做直线的 ,简称当b =0时,y kx =表示过原点的直线;当k =0且b ≠0时,y b =表示与x 轴平行的直线;当k =0且b =0时,0y =表示与x 轴重合的直线.深度剖析(1)纵截距不是距离,它是直线与y 轴交点的纵坐标,所以可取一切实数,即可为正数、零或负数. 纵截距也可能不存在,比如当直线与y 轴平行时.(2)由于有些直线没有斜率,即有些直线在y 轴上没有截距,所以并非所有直线都可以用斜截式表示.2.直线的斜截式方程的推导已知直线l 在y 轴上的截距为b ,斜率为k ,求直线l 的方程.这个问题相当于给出了直线上一点(0,)b及直线的斜率k ,求直线的方程,是点斜式方程的一种特殊情况,代入点斜式方程可得(0)y b k x -=-,即y kx b =+. 三、直线的两点式方程 1.直线的两点式方程的定义已知直线l 过两点111222(,),(,)P x y P x y ,当1212,x x y y ≠≠时,直线l 的方程为 .这个方程是由直线l 上的两点确定的,因此称为直线的两点式方程,简称两点式. 2.直线的两点式方程的推导已知直线l 过两点111222(,),(,)P x y P x y (其中1212,x x y y ≠≠),此时直线的位置是确定的,也就是直线的方程是可求的当12x x ≠时,所求直线的斜率2121y y k x x -=-任取12,P P 中的一点,例如取111(,)P x y ,由点斜式方程,得211121()y y y y x x x x --=--当12y y ≠时,可写为112121y y x x y y x x --=--.四、直线的截距式方程1.直线的截距式方程的定义已知直线l 过点(,0)A a ,(0,)B b (0,0a b ≠≠),则由直线的两点式方程可以得到直线l 的方程为 ___________.我们把直线l 与x 轴的交点的横坐标a 叫做直线在x 轴上的_____________,此时直线在y 轴上的截距是 ___________.这个方程由直线l 在两个坐标轴上的截距a 和b 确定,因此叫做直线的截距式方程,简称截距式. 2.直线的截距式方程的推导已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,如图,其中0,0a b ≠≠.将两点(,0)A a ,(0,)B b 的坐标代入两点式,得000y x a b a --=--,即1x ya b+=. 五、中点坐标公式若点12,P P 的坐标分别为1122(,),(,)x y x y ,且线段12P P 的中点M 的坐标为(,)x y ,则____________________x y =⎧⎨=⎩.此公式为线段12P P 的中点坐标公式. 六、直线系方程 1.过定点的直线系方程当直线过定点000(,)P x y 时,我们可设直线方程为00()y y k x x -=-.由此方程可知,k 取不同的值时,它就表示不同的直线,且每一条直线都经过定点000(,)P x y ,当k 取遍所允许的每一个值后,这个方程就表示经过定点0P 的许多直线,所以把这个方程叫做过定点0P 的直线系方程由于过点000(,)P x y 与x 轴垂直的直线不能被00()y y k x x -=-表示,因此直线系00()y y k x x -=- (k ∈R )中没有直线0x x =. 2.平行直线系方程在斜截式方程(0)y kx b k =+≠中,若k 一定,而b 可变动,方程表示斜率为k 的一束平行线,这些直线构成的集合我们称之为平行直线系.K 知识参考答案:一、00()y y k x x -=- 点斜式方程 点斜式 二、截距 y kx b =+ 斜截式方程 斜截式三、112121y y x x y y x x --=--四、1x ya b+= 截距 b 五、122x x + 122y y +K —重点直线的点斜式、斜截式、两点式、截距式方程,根据直线方程判定两直线的平行与垂直K —难点直线系问题、直线方程的综合应用K —易错忽略直线重合的情形或直线方程成立的条件致错、忽略直线方程的局限性致错1.直线的点斜式方程用点斜式求直线的方程,确定直线的斜率和其上一个点的坐标后即可求解. 【例1】已知点(3,3)A 和直线l :3542y x =-.求: (1)过点A 且与直线l 平行的直线方程; (2)过点A 且与直线l 垂直的直线方程.【例2】已知在第一象限的△ABC 中,A (1,1),B (5,1),且∠CAB =60°,∠CBA =45°,求边AB ,AC 和BC 所在直线的点斜式方程.【解析】由A (1,1),B (5,1)可知边AB 所在直线的斜率为0,故边AB 所在直线的方程为y -1=0.由AB ∥x 轴,且△ABC 在第一象限,知边AC 所在直线的斜率k AC =tan 60°=,边BC 所在直线的斜率k BC =tan(180°-45°)=-1,所以,边AC 所在直线的方程为y -1=(x -1),边BC 所在直线的方程为y -1=-(x -5).2.直线的斜截式方程根据斜率和截距的几何意义判断k ,b 的正负时,(1)0k >直线呈上升趋势;0k <直线呈下降趋势;0k =直线呈水平状态.(2)0b >直线与y 轴的交点在x 轴上方;0b <直线与y 轴的交点在x 轴下方;0b =直线过原点. 【例3】已知直线l 与直线y =-2x+3的斜率相同,且在y 轴上的截距为5,求直线l 的斜截式方程,并画出图形.【解析】因为直线l 与直线y =-2x+3的斜率相同,所以直线l 的斜率为-2. 又直线l 在y 轴上的截距为5,所以直线l 的斜截式方程为y =-2x+5. 在直线l 上取一点(1,3),作出图形如图所示.【名师点评】直线的斜截式方程是点斜式方程的特殊情形. 【例4】已知直线l 的斜率为16,且和两坐标轴围成的三角形的面积为3,求直线l 的方程.3.直线的两点式方程已知直线上两点的坐标求解直线方程,可直接将两点的坐标代入直线的两点式方程,化简即得.代入点的坐标时注意横纵坐标的对应关系.若点的坐标中含有参数,需注意当直线平行于坐标轴或与坐标轴重合时,不能用两点式求解.【例5】已知三角形的三个顶点Α(-4,0),B (0,-3),C (-2,1),求: (1)BC 边所在的直线的方程; (2)BC 边上中线所在的直线的方程.4.直线的截距式方程(1)由已知条件确定横、纵截距.(2)若两截距为零,则直线过原点,直接写出方程即可;若两截距不为零,则代入公式1x ya b+=中,可得所求的直线方程.(3)如果题目中出现直线在两坐标轴上的截距相等、截距互为相反数或在一坐标轴上的截距是另一坐标轴上的截距的多少倍等条件时,采用截距式求直线方程时一定要注意考虑“零截距”的情况. 【例6】已知直线过点,且在两坐标轴上的截距之和为12,求直线的方程.【解析】设直线的方程为1x ya b+=,则,①又直线过点,∴341a b-+=,② 由①②得93a b =⎧⎨=⎩或416a b =-⎧⎨=⎩. ∴直线的方程为193x y +=或1416x y+=-,即或.5.中点坐标公式的应用(1)利用中点坐标公式可求以任意已知两点为端点的线段的中点坐标.(2)从中点坐标公式可以看出线段12P P 中点的横坐标只与12,P P 的横坐标有关,中点的纵坐标只与12,P P 的纵坐标有关.【例7】已知7(3,),(1,2),(3,1)2M A B ,则过点M 和线段AB 的中点的直线方程为 A .425x y += B .425x y -= C .25x y += D .25x y -=【答案】B【解析】由题意可知线段AB 的中点坐标为1321(,)22++,即3(2,)2.故所求直线方程为732372322y x --=--,整理,得4250x y --=,故选B. 6.直线过定点问题本题考查了直线过定点的问题,实际上就是考查直线方程的点斜式,同时要利用数形结合的思想解题. 若直线存在斜率,则可以把直线方程化为点斜式00()y y k x x -=-的形式,无论直线的斜率k 取何值时,直线都过定点00(,)x y .【例8】已知直线:21l y kx k =++. (1)求证:直线l 过一个定点;(2)当33x -<<时,直线上的点都在x 轴上方,求实数k 的取值范围.【解析】(1)由21y kx k =++,得1(2)y k x -=+.由直线方程的点斜式可知,直线过定点(2,1)-. (2)设函数()21f x kx k =++,显然其图象是一条直线(如图),若使33x -<<时,直线上的点都在x 轴上方,需满足(3)0(3)0f f -≥⎧⎨≥⎩,即32103210k k k k -++≥⎧⎨++≥⎩,解得115k -≤≤. 所以实数k 的取值范围是115k -≤≤.7.直线的平移规律直线y kx b =+上下(或沿y 轴)平移(0)m m >个单位长度,得y kx b m =+±(上加下减);直线y kx b =+左右(或沿x 轴)平移(0)m m >个单位长度,得()y k x m b =±+(左加右减).【例9】已知直线1:23l y x =-,将直线1l 向上平移2个单位长度,再向左平移4个单位长度得到直线2l ,则直线2l 的方程为 . 【答案】27y x =+【解析】根据直线的平移规律,可得直线2l 的方程为2(4)32y x =+-+,即27y x =+. 8.点斜式和斜截式的实际应用由直线的斜截式方程与一次函数的表达式的关系,利用一次函数的图象和性质求出直线方程,可以解决实际问题.9.忽略了直线重合的情形致错【例11】已知直线12:60,:(2)320l x my l m x y m ++=-++=,当12l l ∥时,求m 的值【错解】∵2l 的斜率223m k -=-,12l l ∥,∴1l 的斜率1k 也一定存在, 由1l 的方程得11k m =-,由12k k =,得213m m--=-解得3m =或1m =-∴m 的值为3或1-【错因分析】忽略了直线重合的情况,从而导致错误.【误区警示】当两直线的斜率存在时,两直线平行的等价条件是斜率相等且纵截距不相等,做题时容易忽略纵截距不相等,从而导致错解10.忽略直线方程的局限性致错【例12】求经过点(2,3)P ,并且在两坐标轴上截距相等的直线l 的方程. 【错解】设直线方程为1x y a a +=,将2,3x y ==代入,得231a a+=,解得5a =. 故所求的直线方程为50x y +-=.【错因分析】截距相等包含两层含义,一是截距不为0时的相等,二是截距为0时的相等,而后者常常被忽略,导致漏解.【正解】(1)当截距为0时,直线l 过点(0,0),(2,3), ∵直线l 的斜率为303202k -==-, ∴直线l 的方程为32y x =,即320x y -=. (2)当截距不为0时,可设直线l 的方程为1x ya a+=,∵直线l 过点(2,3)P ,∴231a a+=,∴5a =, ∴直线l 的方程为50x y +-=.综上,直线l 的方程为320x y -=或50x y +-=.【误区警示】不同形式的方程均有其适用条件,在解题时应注意截距式方程的应用前提是截距均不为0且不垂直于坐标轴.1.经过点(-2,2),倾斜角是60°的直线方程是 A .y +2=33(x -2) B .y -2=3(x +2)C .y -2=33(x +2) D .y +2=3(x -2)2.直线的方程00()y y k x x --= A .可以表示任何直线 B .不能表示过原点的直线 C .不能表示与y 轴垂直的直线 D .不能表示与x 轴垂直的直线 3.直线1x ya b+=过一、二、三象限,则 A .a >0,b >0 B .a >0,b <0 C .a <0,b >0 D .a <0,b <04.直线1y ax a=-的图象可能是5.与直线21y x =+垂直,且在y 轴上的截距为4的直线的斜截式方程是 A .142y x =+ B .y =2x +4 C .y =−2x +4D .142y x =-+ 6.在y 轴上的截距是-3,且经过A (2,-1),B (6,1)中点的直线方程为 A .143x y+= B .143x y-= C .134x y+= D .136x y-= 7.已知直线l 1过点P (2,1)且与直线l 2:y =x +1垂直,则l 1的点斜式方程为 . 8.直线32()y ax a a =-+∈R 必过定点 . 9.斜率与直线32y x =的斜率相等,且过点(4,3)-的直线的斜截式方程是 . 10.已知△ABC 中,A (1,-4),B (6,6),C (-2,0),则△ABC 中平行于BC 边的中位线所在直线的两点式方程是 .11.写出下列直线的点斜式方程:(1)经过点A (2,5),且与直线y =2x+7平行; (2)经过点C (-1,-1),且与x 轴平行.12.已知直线l 的斜率与直线326x y -=的斜率相等,且直线l 在x 轴上的截距比在y 轴上的截距大1,求直线l 的斜截式方程. 13.已知的顶点是,,.直线平行于,且分别交边、于、,的面积是面积的14.(1)求点、的坐标; (2)求直线的方程.14.两直线1x y m n -=与1x yn m-=的图象可能是图中的A B C D15.若直线l 1:y =k (x-4)与直线l 2关于点(2,1)对称,则直线l 2过定点A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)16.若三点()()()2,2,,,0)0,0(A B a C b ab ≠共线,则11a b+= . 17.已知直线l 过定点A (−2,3),且与两坐标轴围成的三角形面积为4,求直线l 的方程.1 2 3 4 5 6 14 15 BDCBDBBB1.【答案】B【解析】k =tan60°=3,则点斜式方程为y -2=3(x +2).5.【答案】D【解析】因为所求直线与y =2x +1垂直,所以设直线方程为12y x b =-+.又因为直线在y 轴上的截距为4,所以直线的方程为142y x =-+. 6.【答案】B【解析】易知A (2,-1),B (6,1)的中点坐标为(4,0),即直线在x 轴上的截距为4,则所求直线的方程为143x y-=. 7.【答案】y -1=-(x -2)【解析】根据题意可知直线l 1的斜率为−1,所以l 1的点斜式方程为y -1=-(x -2). 8.【答案】(3,2)【解析】将直线方程变形为y −2=a (x −3),由直线方程的点斜式可知,直线过定点(3,2).9.【答案】392y x =+ 【解析】因为所求直线的斜率与直线32y x =的斜率相等,所以所求直线的斜率32k =.又直线过点(4,3)-,所以直线方程为33(4)2y x -=+,所以直线的斜截式方程为392y x =+.11.【解析】(1)由题意知,直线的斜率为2,所以其点斜式方程为y-5=2(x-2).(2)由题意知,直线的斜率k =tan 0°=0,所以直线的点斜式方程为y-(-1)=0,即y =-1. 12.【解析】由题意知,直线l 的斜率为32,故可设直线l 的方程为32y x b =+,所以直线l 在x 轴上的截距为23b -,在y 轴上的截距为b ,所以213b b --=,35b =-,所以直线l 的方程为3325y x =-. 13.【解析】(1)因为,且的面积是面积的14,所以、分别是、的中点,由中点坐标公式可得点的坐标为502,⎛⎫ ⎪⎝⎭,点的坐标为722,⎛⎫ ⎪⎝⎭.(2)由两点式方程,可知直线的方程为502752022y x --=--,即.14.【答案】B【解析】由1x y m n -=,得y =n m x -n ;由1x y n m -=,得y =mnx -m ,即两条直线的斜率同号且互为倒数,故选B. 15.【答案】B【解析】因为直线l 1:y =k (x-4)过定点(4,0),所以原问题转化为求(4,0)关于(2,1)的对称点.设直线l 2过定点(x ,y ),则422012x y +⎧=⎪⎪⎨+⎪=⎪⎩,解得x =0,y =2.故直线l 2过定点(0,2).16.【答案】12【解析】易知直线BC 的方程为1x y a b +=,由点A 在直线BC 上,得221a b +=,故1112a b +=.。

3.2.1 直线的点斜式方程

3.2.1  直线的点斜式方程
式方程.
y y0 (2)方程y-y0=k(x-x0)与方程k= 不是等价的,前者是整 x x0
条直线,后者表示去掉点P(x0,y0)的一条直线. (3)当k取任意实数时,方程y-y0=k(x-x0)表示恒过定点 (x0,y0)的无数条直线.
例1 直线l经过点P0(-2,3),且倾斜角α =45°,求
是否都在直线l上? 为什么?
当 P与P重合 时,有x = x0 ,y = y0 ,此时满足y - y0 = k(x- x); 0 0
y - y0 当x≠x0时,则k = ,即P(x,y)在过点P(x 0 0 ,y0 ), x - x0 斜率为k的直线l上.
直线的点斜式方程 由直线上一定点和直线的斜率确定的直线 方程,叫直线的点斜式方程.
【例】已知直线l1:y=2x+3a,l2:y=(a2+1)x+3,若l1∥l2,则a= 【解析】因为l1∥l2,所以a2+1=2,a2=1①,所以a=〒1,
又由于l1∥l2,两直线l1与l2不能重合,
则3a≠3②,即a≠1,故a=-1. 答案:-1
例.过点P(2,1),且倾斜角是直线l:x-y-1=0的倾斜角的两 倍的直线方程为 ( A.x-2y-1=0 C.y-1=2(x-2) ) B.x=2 D.2x-y-1=0
解:(1)若l1 //l2,则k1 = k2,此时l1,l2与y轴的交点不同, 即b1 ≠b2;反之k1 = k2,且b1 ≠b2时,l1 //l2 . (2)若l1 ⊥ l2,则k1k2 = -1;反之k1k2 = -1时,l1 ⊥ l2 . 于是我们得到,对于直线 l1:y = k1x + b1,l2:y = k2x + b2, l1 //l2 k1 = k2且b1 ≠b2; l1 ⊥ l2 k1k2 = -1.

3.2.1 直线的点斜式方程

3.2.1 直线的点斜式方程

目标导航
知识梳理
重难聚焦
典例透析
②如图乙,过定点P(x0,y0),倾斜角是90°的直线不能用点斜式表
示,其方程为x-x0=0或x=x0.
-4-
3.2.1 直线的点斜式方程
12
目标导航
知识梳理
重难聚焦
典例透析
【做一做1】 若直线l的点斜式方程是y-2=3(x+1),则直线l的斜率 是( )
A.2 B.-1 C.3 D.-3 解析:直线l经过点(-1,2),且斜率为3. 答案:C
题型一 求直线的点斜式方程
【例1】 写出下列直线的点斜式方程: (1)经过点A(2,5),斜率是4; (2)经过点B(2,3),倾斜角是45°; (3)经过点C(-1,-1),与x轴平行. 解:(1)由点斜式方程可知,所求直线的点斜式方程为y-5=4(x-2). (2)直线的倾斜角为45°,则此直线的斜率k=tan 45°=1. 故直线的点斜式方程为y-3=x-2. (3)直线与x轴平行,则倾斜角为0°,斜率k=0.
所以直线的斜率为 − 3.
3
故所求直线的点斜式方程为
y+1=−
3 (������
3

2).
(3)因为直线与y轴垂直,所以倾斜角为0°,
即斜率k=0.故所求直线的点斜式方程为y=-2.
-12-
3.2.1 直线的点斜式方程
目标导航
知识梳理
重难聚焦
典例透析
题型一 题型二 题型三
题型二 求直线的斜截式方程
3.2.1 直线的点斜式方程
题型一 题型二 题型三
目标导航
知识梳理
重难聚焦
典例透析
正解:设直线l1,l2的斜率分别为k1,k2,则k1=-1,k2=a2-2.

3.2.1直线的点斜式方程

3.2.1直线的点斜式方程

温故而知新
1.直线的倾斜角α与斜率k的关系是
k tan __________
2.过点A(x1,y1)、B (x2,y2)的直线的斜率
y1 y2 x1 x2 k=_______
3.简述在直角坐标系中确定一条直线的 几何要素.
(1)直线上的一点和直线 的倾斜角(或斜率) (2)直线上两点
y
.
(1)当直线l的倾斜角为0°时, tan0 °=0,即k=0 这时直线l与x轴平行或重合,那么l的方程就是: y-y0=0, 或 y=y0 (2)当直线l的倾斜角为90°时, 斜率不存在
x , y P 0 0 0
o
y
x
.
这时直线l与y轴平行或重合,那么l的方程就是: x , y P x-x0=0,或x=x0 0
相信这个也难不倒你
直线l经过点 P0(x0,y0) ,且斜率为k,点
P(x,y)为直线l上不同于P0的任意一点,则x、
y y0 k x x0 y满足的关系式是_____________
y
P0 x0, y0
.
o
.
p x, y
y y0
x x0
点斜式方程
x
学会自己探究 直角坐标系上任意直线都可以用直 线的点斜式方程表示吗?
2
4、直线 2 x 3 y 1 0 的斜率为 上的截距为 1 ,y轴上的截距为
2
1 3
2 3
,x轴
学好数学要善于总结
你这节课有什么收获?、斜截式方程: y kx b
它们都是在斜率K存在时才适用。
3、垂直于X轴: x x0 垂直于Y轴:y y
广州第八十一中学
麦庆河

3.2.1 直线的点斜式方程

3.2.1 直线的点斜式方程

二、典型问题与方法
1.直线的点斜式方程 例 1 直线 l 经过点 P0(-2,3),且倾斜角 α=45° ,求直线 l 的点斜式方程,并画出直线 l. (链接教材 P93 例 1) [解析] 直线 l 经过点 P0(-2,3),斜率是 k=tan 45° =1,
代入点斜式方程得 y-3=x+2. 画图时,只需再找出直线 l 上另一点 P1(x1,y1),取 x1=-1,y1=4,得 P1 的坐标为(-1,4), 过 P0,P1 的直线即为所求,如图. 【方法小结】由点斜式写直线方程时,由于过 P(x0,y0)的直线有无数条,大致可分为两类:(1)斜率存在时 方程为 y-y0=k(x-x0);(2)斜率不存在时,直线方程为 x=x0. 【变式训练】 1.写出下列直线的点斜式方程. (1)经过点 B(- 2,2),倾斜角是 30° ;(2)经过点 C(0,3),倾斜角是 0° . 解:(1)因为倾斜角是 30° ,所以直线的斜率是 故直线的点斜式方程为 y-2= 3 , 3
3.2.1 直线的点斜式方程
一、课本知识梳理
1.直线的点斜式方程和斜截式方程 名称 点斜式 已知条件 点 P(x0,y0) 和斜 率k 斜率 k 和在 y 轴上 的截距 b 示意图 方程 y-y0=k(x-x0) 使用范围 斜率存在Βιβλιοθήκη 斜截式y=kx+b
斜率存在
2.直线 l 的截距 (1)直线在 y 轴上的截距:直线与 y 轴的交点(0,b)的纵坐标 b. (2)直线在 x 轴上的截距:直线与 x 轴的交点(a,0)的横坐标 a.
3 (x+ 2). 3
(2)因为倾斜角是 0° ,所以直线的斜率为 0,则直线的点斜式方程为 y-3=0(x-0),即 y=3.
2.直线方程的斜截式及应用 例 2 已知直线 l1:y=k1x+b1,l2:y=k2x+b2,试讨论:(1)l1∥l2 的条件是什么?(2)l1⊥l2 的条件是什么? (链接教材 P94 例 2) [解析](1)若 l1∥l2,则 k1=k2,此时 l1,l2 与 y 轴的交点不同,即 b1≠b2;反之,k1=k2,且 b1≠b2 时,l1∥l2. (2)若 l1⊥l2,则 k1k2=-1;反之,k1k2=-1 时,l1⊥l2. 【方法小结】对于直线 l1:y=k1x+b1,l2:y=k2x+b2, l1∥l2⇔k1=k2,且 b1≠b2;l1⊥l2⇔k1k2=-1.

直线的点斜式方程

直线的点斜式方程
解:由已知得k =5, b= 4,代入 斜截式方程 y= 5x + 4
练习
3、写出下列直线的斜截式方程: 3 (1)斜率是 , 在y轴上的截距是 2 2
(2)斜率是 2, 在y轴上的3,-5)和B(-2,5), 求直线l的方程
解:∵直线l过点A(3,-5)和B(-2,5) 5 5 kl 2 23 将A(3,-5),k=-2代入点斜式,得 y-(-5) =-2 ( x-3 ) 即 2x + y -1 = 0
B、若直线l1 ∥ l2,则两直线的斜率相等;
C、若两直线l1和l2中,一条斜率存在,另一条斜 率不存在,则l1和l2相交; D、若直线l1和l2斜率都不存在,则l1 ∥ l2;
E、若直线l1 ⊥ l2,则它们的斜率之积为-1;
练习
已知直线l1经过点A(2,a),B(a-1,3), 直线l2经过点C(1,2),D(-2,a+2),试确 定a的值,使得直线l1和l2满足l1⊥l2
0
(3)经过C (0,5), 倾斜角是0
0
2、说出下列点斜式方程所对应的直线斜 率和倾斜角: (1)y-2 = x-1 ( 2) y 2 3 x 3
2、直线的斜截式方程:
已知直线l的斜率是k,与y轴的交点是P(0, y b),求直线方程。
代入点斜式方程,得l的直线方程: y - b =k ( x - 0) (2) 即 y = kx + b。
1、直线的点斜式方程:
(1)、当直线l的倾斜角是00时, tan00=0,即k=0,这时直线l与 x轴平行或重合 l的方程:y-y0=0 或 y=y0
y y0 O l
x
y
(2)、当直线l的倾斜角是900时, 直线l没有斜率,这时直线l与y 轴平行或重合 l的方程:x-x0=0 或 x=x0

直线的点斜式方程

直线的点斜式方程

例2:斜率是5,在y轴上的截距是-4的直线方程.
解:由已知得k =5, b= - 4, 代入斜截式方程 y= 5x - 4
1、说出下列直线的斜率和在y轴上的截距:
(1)y 3x 2
(2) y 3x
3, -2
3, 0
2、写出下列直线的斜截式方程: 3 3 x2 (1)斜率是 ,在 y轴上的截距是 2; y 2 2 (2)斜率是 2 ,在 y轴上的截距是 4 ;y 2 x 4
y3
(2)斜率为2时的直线方程;
y 3 2( x 1)
(3)倾斜角为 90 时的直线方程.
x 1 (4)且过原点的直线方程.
y 3 x
巩固练习
1.经过点(- 2 ,2)倾斜角是1500的直线的方程是( (A)y+ 2 =- 3 x-2) (
3 3
C)
ห้องสมุดไป่ตู้
(B)y+2= (x- 2 ) - 3
[答案](1)过定点(3,-2) (2)(-1,3)
[解析](1)由直线点斜式方程的定义知,不论k取何 实数方程y+2=k(x-3)总表示经过点(3,-2),斜率为 k的直线,所以这些直线的共同特征是过定点(3,-2). (2)将方程mx-y+m+3=0变形为y-3=m(x+1)可 知,不论m取何实数,直线总过定点(-1,3).
1 1 (1) l1 : y x 3 , l2 : y x 2 2 2 5 3 (2) l1 : y x , l2 : y x 3 5
l1 // l2
l1 l2
条 件 : 有 斜 率 且 非 零 !
例、已知直线经过点 P1,3 ,求 (1)倾斜角为 0 时的直线方程;
2、直线的斜截式方程:

知识讲解-直线的点斜式与两点式-基础

知识讲解-直线的点斜式与两点式-基础

直线的点斜式与两点式方程要点一:直线的点斜式方程方程)(00x x k y y -=-由直线上一定点及其斜率决定,我们把)(00x x k y y -=-叫做直线的点斜式方程,简称点斜式.要点诠释:1.点斜式方程是由直线上一点和斜率确定的,点斜式的前提是直线的斜率存在.点斜式不能表示平行于y 轴的直线,即斜率不存在的直线;2.当直线的倾斜角为0°时,直线方程为1y y =;3.当直线倾斜角为90°时,直线没有斜率,它的方程不能用点斜式表示.这时直线方程为:1x x =.4.00y y k x x -=-表示直线去掉一个点),(000y x P ;)(00x x k y y -=-表示一条直线. 要点二:直线的斜截式方程如果直线l 的斜率为k ,且与y 轴的交点为),0(b ,根据直线的点斜式方程可得)0(-=-x k b y ,即b kx y +=.我们把直线l 与y 轴的交点),0(b 的纵坐标b 叫做直线l 在y 轴上的截距,方程b kx y +=由直线的斜率k 与它在y 轴上的截距b 确定,所以方程b kx y +=叫做直线的斜截式方程,简称斜截式.要点诠释:1.b 为直线l 在y 轴上截距,截距可以取一切实数,即可以为正数、零、负数;距离必须大于或等于零;2.斜截式方程可由过点(0,b)的点斜式方程得到;3.当0≠k 时,斜截式方程就是一次函数的表示形式.4.斜截式的前提是直线的斜率存在.斜截式不能表示平行于y 轴的直线,即斜率不存在的直线.5.斜截式是点斜式的特殊情况,在方程b kx y +=中,k 是直线的斜率,b 是直线在y 轴上的截距. 要点三:直线的两点式方程经过两点),(),,(222111y x P y x P (其中2121,y y x x ≠≠)的直线方程为1112122121(,)y y x x x x y y y y x x --=≠≠--,称这个方程为直线的两点式方程,简称两点式. 要点诠释:1.这个方程由直线上两点确定;2.当直线没有斜率(21x x =)或斜率为)(021y y =时,不能用两点式求出它的方程.3.直线方程的表示与),(),,(222111y x P y x P 选择的顺序无关.4.在应用两点式求直线方程时,往往把分式形式1112122121(,)y y x x x x y y y y x x --=≠≠--通过交叉相乘转化为整式形式121211()()()()y y x x y y x x --=--,从而得到的方程中,包含了x 1=x 2或y 1=y 2的情况,但此转化过程不是一个等价的转化过程,不能因此忽略由x 1、x 2和y 1、y 2是否相等引起的讨论.要避免讨论,可直接假设两点式的整式形式.要点四:直线的截距式方程若直线l 与x 轴的交点为A(a ,0),与y 轴的交点为B(0,b),其中0,0≠≠b a ,则过AB 两点的直线方程为1=+by a x ,这个方程称为直线的截距式方程.a 叫做直线在x 轴上的截距,b 叫做直线在y 轴上的截距.要点诠释:1.截距式的条件是0,0≠≠b a ,即截距式方程不能表示过原点的直线以及不能表示与坐标轴平行的直线.2.求直线在坐标轴上的截距的方法:令x=0得直线在y 轴上的截距;令y= 0得直线在x 轴上的截距.3.截距相等问题中,勿忽略a=b=0即直线过原点时的情况.要点五:中点坐标公式若两点P 1(x 1,y 1)、P 2(x 2,y 2),且线段12P P 的中点坐标为(x ,y),则x=122x x +,y=122y y +,则此公式为线段12P P 的中点坐标公式.要点六:直线方程几种表达方式的选取在一般情况下,使用斜截式比较方便,这是因为斜截式只需要两个独立变数,而点斜式需要三个独立变数.在求直线方程时,要根据给出的条件采用适当的形式.一般地,已知一点的坐标,求过这点的直线,通常采用点斜式,再由其他条件确定斜率;已知直线的斜率,常用斜截式,再由其他条件确定在y 轴上的截距;已知截距或两点选择截距式或两点式.从结论上看,若求直线与坐标轴所围成的三角形的面积或周长,则选择截距式求解较方便,但不论选用哪一种形式,都要注意各自的限制条件,以免遗漏.【典型例题】类型一:点斜式直线方程例1.求满足下列条件的直线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习引入:
1. 直线的斜率及斜率公式.
P1(x1, y1), P2 (x2, y2 ) (x1 x2 )
k y2 y1 (或k y1 y2 )
x2 x1
x1 x2
2. 若两直线 l1、l2的斜率分别为k1、k2, 则l1∥l2或l1⊥l2与k1、k2之间有怎样 的关系?
第1页/共20页
y
l
已知直线l经过点P0( 0 , b) ,其斜率为k,求直线l的方
P0(0,b)
程。 y b k(x 0)
y kx b
x
纵截距
斜率
方程y=kx+b 叫做直线的斜截式方程.
当已知斜率和纵截距时用斜截式 第11页/共20页
方程y=kx+b 叫做斜率为k,在y轴上的截距 为b的直线的斜截式方程.
第18页/共20页
课堂小结:
直线过点 P0 x0, y0
(1)斜率为K,
点斜式方程:y y0 kx x0
P0取0, b
斜截式方程: y kx(对b 比:一次函数)
(2)斜率不存在时,即直线与x轴垂直, 则直线方程为:x x0
第19页/共20页
感谢您的欣赏
第20页/共20页
x x0 x x0 0
第5页/共20页
点斜式方程
y
l
x
y
y0
l
x
y
l
O x0
x
①倾斜角α°≠90
y y0 k(x x0 )
②倾斜角α=0°
y y0 0或y y0
③倾斜角α=90°
x x0 0或x x0
第6页/共20页
例1.直线l经过点P0(-2, 3),且倾斜角=45º,求
思考2:若直线l的斜率为k,在x轴上的截距为a,则 直线l的方程是什么?
y=k(x-a) 思考3:如何求直线y-y0=k(x-x0)在x轴、y轴上的截 距?
第13页/共20页
思考:已知直线l1:y=k1x+b1,l2:y=k2x+b2,分别 在什么条件下l1与 l2平行?垂直?
l1 / /l2 k1 k2,b1 b2
l1 l2 k1 k2 1
l1
y
l1 y
b1
l2
l2
b2
l1
x
x
第14页/共20页
数学运用:
1.直线l不过第三象限, l的斜率为k,l
在y轴上的截距为b(b≠0),则有( B )
A. kb<0
B. kb≤0
C. kb>0
D. kb≥0
第15页/共20页
数学运用:
2. 求下列直线的斜截式方程: (1)经过点A(-1,2),且与直线y=3x+1垂直(平 行); (2)斜率为-2,且在x轴上的截距为5.
直线l的点斜式方程,并画出直线l.
解: 这条直线经过点P(2,3), 斜率为k tan450 1
代入点斜式,得
y3 x2 即 x y50
为所求的直线方程, 图形如图所示 .
第7页/共20页
练习:已知直线经过点 P1,,3求
(1)倾斜角为0时的直线方程;
y3
(2)斜率为2时的直线方程;
y 3 2(x 1) 即2x y 5 0
(1) y 1 x 5 33
(2) y 2x 10
y 3x 5
第16页/共20页
数学运用: 3.已知三角形的顶点 A(2,4), B(1,2),C(2,3)
求BC边上的高AD所在直线的方程。 3x-5y+14=0
第17页/共20页
数学运用:
1
4 已知直线l的斜率为 2 ,且与两坐标轴围成的 三角形的面积为4,求直线l的方程.
第9页/共20页
例3.已知直线l过A(3,-5)和B(-2,5),求直 线l的方程
y+5=-2(x-3)
2x+y-1=0
例4.求过点(1,2)且与两坐标轴组成一等腰直角 三角形的直线方程。
y-2=(x-1)或y-2=-1(x-1)
x-y+1=0或x+y-3=0
第10页/共20页
2.直线的斜截式方程
(3)倾斜角为90时 的直线方程.
.
x 1
第8页/共20页
例2.①已知直线的点斜式方程是y-2=x-1, 那么直线的斜率是__1__,倾斜角是_4_5___, 此直线必过定点_(_1_, 2_)__; ②已知直线的点斜式方程是 y 2 3 (x 1)
3
那么此直线经过定点_(__1,__2)__,直线的斜率 是___3_3__,倾斜角是___3_0___.
点斜式方程
y
P0(x0,y0)
y0
l
x O
直线上任意点 纵坐标都等于y0
l与x轴平行或重合 倾斜角为0° 斜率k=0
y y0 0(x x0) y y0 0 y y0
第4页/共20页
点斜式方程
y
l
P0(x0,y0)
x
O
x0
直线上任意点 横坐标都等于x0
l与x轴垂直 倾斜角为90° 斜率k 不存在 不能用点斜式求方程
注意:
(1)纵截距是直线和y轴交点的纵坐标,不是距离。纵截 距可正,可负,可为零,可以不存在。 (2)倾斜角为900时,k不存在,不能用斜截式方程. (3)k≠0时,斜截式方程就是一次函数的表示形式 (4)斜截式方程是点斜式方程的特例。
第12页/共20页
思考1:直线:y=-2x+1,y=x-4,y=3x,y=-3,在y轴 上的截距分别是什么?
讲授新课:
探究1:如图,直线l经过P0(x0, y0), 且斜率 为k, 若点P (x, y)是直线l上不同于点P0的任意 一点, 试问x与y之间应满足怎样的方程?
y
l
P(x, y) P0(x0, y0)
O

x
第2页/共20页
经过点 P0(x0, y0) 斜率为k的直线 l 的方程为:
y y0 k(x x0)
这个方程是由直线上一定点及其斜率确定,所以我们把它
叫做直线的点斜式方程.
(1)过点P0(x0,y0),斜率为k的直线l上的每一点的坐
标都满足方程 y y0 k(x x0 )
(2)坐标满足方程 y y0 k(x x0 ) 的每一点都在过点P0
(x0,y0),斜率为k的直线l上
第3页/共20页
相关文档
最新文档