运动目标检测方法总结报告

合集下载

复杂条件下的运动目标检测方法研究综述

复杂条件下的运动目标检测方法研究综述
用 到实时 的视 频 图像处理 中。 以上 目标 检测 的常 用 方 法 , 于本 文 所 提及 对 的复杂 条 件均不 能 完全适 用 。所 以对 于复杂条件
和理 解 的奠定 基础 。 目前 , 动 目标 检测 方法 主 运
收稿 日期 :0 8— 3—1 20 0 6 作者简介 : 张森悦 ( 99一 , , 宁沈 阳人 , 师 , 士研究 生 , 17 ) 女 辽 讲 硕 主要研究方向 : 图像处理 、 机器视觉 , E—ma :tr 7 6 . O 。 i xl @13 Cr l e2 n
指 出 了方 向 。
关键词 : 复杂条 件 ; 目标检测 ; 光照变化 ; 背景干扰
中图分类号 :P 9 T 31 文献标 识码 : A
运 动 目标 检 测 , 就是 检 测 视 频 序 列 图像 中是 否存 在相 对 于整 幅 场 景 图 象运 动 的物 体 , 目前 被
广泛 应用 于安 全 监控 、 视频 压缩 编码 、 通监 测 等 交
取 运动 目标 。这 种 方 法 是 最 简单 最 直 接 的方 法 ,
点 问题之 一 。 目前 常用 的运动 目标 检测 技术 主 要
有 三种 : 景 减 除 法 、 差 法 和 光 流 法 。T ym 背 帧 oa a
在文献[ ] 4 中列举 了一个复杂条件( 场景) 大体上 所涉 及 的 问题 , 括 : 包 背景 中 的物 体 发生 运 动 ; 由
小 的情况 。 光 流法 是 目前 研 究 比较 多 的方 法 , a o B r n在 r
1 目标 检 测 的 常用 方 法
运动 目标 检测 的 目的是 为 了找 到产生 运 动 的 区域 , 测 出来 的运 动 区 域将 为 后续 的行 为 分 析 检

运动目标检测与跟踪

运动目标检测与跟踪

背景差方法
背景差分法假定背景是静止不 变的,因此背景不随帧数而变。
相减
二值化
后处理
结果
背景估计法
• 背景估计法适用于背景静止情况下的视频分割,其主要基 于以下两个假设:
假设1:在背景静止的情况下,若外界光照条件不变,且在不考虑噪 声的情况下,视频序列图像中的背景保持不变。 假设2:在目标可视的情况下,目标与背景的灰度之间存在着一定的 对比度。 • 根据假设1,在静态场景的条件下视频序列图像中不包含目标的完整 背景在每一帧都相同,由于运动目标会遮挡住一部分背景,所以每一 帧中的背景并不等于完整背景,关键技术就是根据一定的准则从连续 k帧图像中估计出该视频序列图像的完整背景。
根据假设2,运动目标与背景之间的灰度存在着一定的对比度,因此 在不考虑噪声的情况下,在差分图像中属于背景区域的像素的灰度值 为零,从而检测出了运动目标。
运动目标检测方法存在的实际应 用上的困难
1
运动阴影的 干扰
2
动态背景的 影响
3
场景光照的 变化
运动阴影的干扰
• 原因:由于阴影和目标都与背景的差别很大,并 且二者常有着相同的运动,阴影常被错划为运动 目标。
Contents
1
现状和应用
2
目标检测的相关技术
3
目标跟踪的常用方法
4
结语
现状
• 运动目标检测与跟踪是在基于动态图像分析的基 础上结合图像模式识别和图像跟踪方法对图像序 列中的目标进行检测—识别—跟踪的过程,它是 图像处理与计算机视觉领域中的一个非常活跃的 分支,在最近二十几年间,随着计算机技术、 CLSI技术与高分辨率传感技术,图像处理技术的 迅速更新,它在国名经济和军事领域的许多方面 有着广泛的应用。

基于视频的运动目标检测概述

基于视频的运动目标检测概述

基于视频的运动目标检测概述视频的运动目标检测是计算机视觉领域中的重要问题之一,是计算机对连续帧图像中的运动目标进行自动检测和跟踪的过程。

它在许多应用中起着关键作用,如视频监控、自动驾驶、人机交互等。

本文将对视频的运动目标检测进行概述,重点介绍其基本原理、常用方法以及现有的挑战和发展方向。

首先,视频的运动目标检测可以分为两个主要步骤:目标检测和目标跟踪。

目标检测是指在每一帧中找到属于运动目标的像素或区域,而目标跟踪是指在连续帧之间跟踪目标的位置和形状。

这两个步骤通常是连续进行的,以实现对视频中目标的准确检测和跟踪。

在目标检测中,有许多经典的方法。

其中一种常见的方法是基于背景建模的方法,它假设背景是静态的,通过建模背景来提取前景目标。

背景建模方法包括基于帧差法、基于基于高斯混合模型(GMM)的方法等。

另一种常见的方法是基于特征的方法,它通过提取图像中的特征,如颜色、纹理和形状等,来区分目标和背景。

基于特征的方法包括基于像素级的方法、基于区域的方法和基于深度学习的方法等。

在目标跟踪中,也有许多经典的方法。

其中一种常见的方法是基于卡尔曼滤波器的方法,它通过估计目标的状态变量和噪声方差来预测和更新目标的位置。

另一种常见的方法是基于粒子滤波器的方法,它通过使用一组粒子(即候选目标的样本)来估计目标的位置和形状。

此外,还有一些基于外观模型的方法,它们以目标在每一帧中的外观为基础,进行目标跟踪。

然而,视频的运动目标检测仍然存在一些挑战。

首先,复杂的场景和背景变化可能导致目标检测的错误和漏检。

其次,目标的运动速度和尺度变化可能导致目标的丢失和跟踪的困难。

此外,视频中的遮挡、部分遮挡和目标变形等问题也会影响目标的检测和跟踪精度。

因此,如何提高运动目标的检测和跟踪的精度和鲁棒性仍然是一个挑战。

未来,视频的运动目标检测在几个方面有着巨大的发展潜力。

首先,深度学习技术已经在图像目标检测和跟踪中取得了巨大的成功,将其应用于视频的运动目标检测可以进一步提高准确性和鲁棒性。

《2024年基于光流法的运动目标检测与跟踪技术》范文

《2024年基于光流法的运动目标检测与跟踪技术》范文

《基于光流法的运动目标检测与跟踪技术》篇一一、引言随着计算机视觉技术的不断发展,运动目标检测与跟踪技术在智能监控、自动驾驶、人机交互等领域得到了广泛应用。

其中,光流法作为一种重要的运动目标检测与跟踪技术,因其具有较高的准确性和实时性而备受关注。

本文将详细介绍基于光流法的运动目标检测与跟踪技术的原理、方法及其应用。

二、光流法的基本原理光流是指图像中像素点的运动矢量,描述了像素在时间域上的变化情况。

光流法利用图像序列中像素在时间上的变化以及其视点的运动来推断物体的运动状态。

基本原理是假设相邻帧之间像素的运动具有连续性和平滑性,从而估算出光流场。

光流场反映了图像中所有像素点的运动情况,因此可以用于运动目标的检测与跟踪。

三、运动目标检测方法基于光流法的运动目标检测方法主要包括以下步骤:1. 计算光流场:通过计算相邻帧之间的像素变化,得到光流场。

常用的光流场计算方法包括稀疏光流法和密集光流法。

2. 背景建模:根据已知的背景信息,建立背景模型。

在背景模型中,背景区域的像素点具有稳定的光流场,而运动目标的光流场则与背景模型存在差异。

3. 运动目标检测:通过比较实际光流场与背景模型的光流场,检测出运动目标。

通常采用阈值法或聚类法等方法进行检测。

四、运动目标跟踪方法基于光流法的运动目标跟踪方法主要利用光流场信息对运动目标进行连续跟踪。

具体步骤如下:1. 初始化:在第一帧图像中选取感兴趣的目标区域作为跟踪模板。

2. 光流估计:利用光流法估计目标在下一帧图像中的位置。

3. 模板更新:根据估计的位置更新跟踪模板,以适应目标的形状变化和背景干扰。

4. 跟踪结果输出:将跟踪结果输出到显示器或其他设备上。

五、技术应用及优势基于光流法的运动目标检测与跟踪技术在多个领域得到了广泛应用。

在智能监控领域,可以用于实现视频监控、人脸识别、行为分析等功能;在自动驾驶领域,可以用于实现车辆和行人的检测与跟踪,提高行车安全性;在人机交互领域,可以用于实现手势识别、动作捕捉等功能。

视频检测和运动目标跟踪方法总结

视频检测和运动目标跟踪方法总结

视频检测和运动目标跟踪方法总结目前常用的视频检测方法可分为如下几类:光流法,时域差分法,背景消减法,边缘检测法,运动矢量检测法[2]。

一、光流法光流法[1]是一种以灰度梯度基本不变或亮度恒定的约束假设为基础对运动目标进行检测的有效方法。

光流是指图像中灰度模式运动的速度,它是景物中可见的三维速度矢量在成像平面上的投影,表示了景物表面点在图像中位置的瞬时变化,一般情况下,可以认为光流和运动场没有太大区别,因此就可以根据图像运动来估计相对运动。

优点:光流不仅携带了运动目标的运动信息,而且还携带了有关景物三维结构的丰富信息,它能够检测独立运动的对象,不需要预先知道场景的任何信息,并且能够适用于静止背景和运动背景两种环境。

缺点:当目标与背景图像的对比度太小,或图像存在噪音时,单纯地从图像灰度强度出发来探测目标的光流场方法将会导致很高的虚警率。

且计算复杂耗时,需要特殊的硬件支持。

二、时域差分法时域差分法分为帧差法和改进的三帧双差分法。

1.帧差法帧差法[8]是在图像序列中的相邻帧采用基于像素点的时间差分, 然后阈值化来提取出运动区域。

视频流的场景具有连续性,在环境亮度变化不大的情况下,图像中若没有物体运动,帧差值会很小;反之若有物体运动则会引起显著的差值。

优点:时域相邻帧差法算法简单,易于实现,对背景或者光线的缓慢变化不太敏感,具有较强的适应性,能够快速有效地从背景中检测出运动目标。

缺点:它不能完全提取运动目标所有相关像素点,在运动实体内部不容易产生空洞现象。

而且在运动方向上被拉伸,包含了当前帧中由于运动引起的背景显露部分,这样提取的目标信息并不准确。

2.三帧双差分法三帧双差分法与相邻帧差法基本思想类似,但检测运动目标的判决条件上有所不同。

三帧双差分较两帧差分提取的运动目标位置更为准确。

三、背景消减法背景消减法[4]是将当前帧与背景帧相减,用阈值T判断得到当前时刻图像中偏离背景模型值较大的点,若差值大于T则认为是前景点(目标);反之,认为是背景点,从而完整的分割出目标物体。

2024年体格锻炼计划反思总结报告

2024年体格锻炼计划反思总结报告

在2024年的体格锻炼计划中,我始终坚持以增强体质、提高健康水平为核心目标,通过科学合理的锻炼计划和持之以恒的训练,取得了显著的成效。

以下是我的反思总结报告:一、锻炼计划的制定与执行在计划制定阶段,我充分考虑了个人的身体状况、时间安排以及运动偏好,量身定制了一套包括有氧运动、力量训练和柔韧性练习在内的综合锻炼方案。

每周的训练计划都确保了不同类型运动的有效结合,以实现全面的身体锻炼。

在执行过程中,我严格遵守计划安排,每周至少进行三次有氧运动,如慢跑、游泳或骑自行车,以提高心肺功能和燃烧脂肪。

同时,我也坚持进行两次力量训练,重点锻炼上半身、下半身和核心肌群,以增强肌肉力量和身体稳定性。

此外,每周我还安排了两次柔韧性练习,如瑜伽或拉伸运动,以保持身体的灵活性和减少运动损伤的风险。

二、饮食与营养管理健康的饮食是身体锻炼的基础。

在计划执行期间,我注重均衡营养,增加了蔬菜、水果和粗粮的摄入,减少了高脂肪、高糖食物的消费。

同时,我也确保每天摄入足够的蛋白质,以支持肌肉的生长和修复。

通过合理的饮食控制,我不仅保持了健康的体重,还为身体提供了充足的能量和营养。

三、休息与恢复适当的休息对于身体的恢复和适应性训练至关重要。

在计划中,我合理安排了休息日,确保身体有足够的时间来恢复和适应训练压力。

此外,我还采用了冷热水交替浴、按摩和冥想等恢复手段,以促进血液循环和肌肉放松。

这些措施有效减少了运动后的酸痛和疲劳,提高了训练效果。

四、监测与调整在整个锻炼计划中,我定期监测自己的身体状况,包括体重、体脂率、肌肉量等指标,并通过心率监测和运动表现来评估训练效果。

根据监测结果,我适时调整训练强度和内容,以保持身体持续进步和适应新的挑战。

五、面临的挑战与解决方案在计划的执行过程中,我也遇到了一些挑战,比如工作压力大导致训练时间不足,或是因伤病而需要调整训练计划。

面对这些困难,我采取了灵活应对的策略,比如利用午休时间进行简短的锻炼,或是寻求专业医生的建议来处理伤病问题。

运动目标跟踪

运动目标跟踪

运动目标跟踪运动目标跟踪是一种利用计算机视觉技术来自动识别和追踪视频中的运动目标的方法。

它在实际应用中具有广泛的用途,例如视频监控、交通监控、自动驾驶等。

运动目标跟踪的目标是识别和跟踪视频中的感兴趣目标,并在目标移动、形状变化、遮挡等复杂场景下保持准确的跟踪。

跟踪的过程一般包括目标检测、目标定位和目标跟踪三个步骤。

首先,目标检测是从视频中检测出所有可能的目标区域。

常用的目标检测算法包括基于深度学习的目标检测算法,如Faster R-CNN、YOLO等。

这些算法可以快速准确地检测出目标区域,并生成候选框。

然后,目标定位是确定目标在当前帧中的准确位置。

目标定位一般采用基于特征的方法,通过计算目标候选框与目标模板之间的相似度来确定目标的位置。

常用的目标定位算法包括颜色直方图、HOG特征等。

这些算法可以通过算法模型进行目标定位,并快速准确地输出目标的位置。

最后,目标跟踪是在视频序列中持续追踪目标,并在目标发生变化或遮挡时进行目标重新定位和跟踪。

常用的目标跟踪算法包括基于粒子滤波器的跟踪算法、卡尔曼滤波器跟踪算法等。

这些算法可以利用目标模型和观测模型进行目标跟踪,并实时更新目标的位置和状态。

运动目标跟踪的关键技术包括目标检测和定位、目标跟踪和状态估计、特征提取和匹配等。

当前,随着深度学习技术的发展,基于深度学习的运动目标跟踪方法已经取得了很大的突破。

这些方法可以通过大规模的数据训练模型,实现更加准确和鲁棒的目标跟踪效果。

总之,运动目标跟踪是一种利用计算机视觉技术来自动识别和追踪视频中的运动目标的方法。

它在实际应用中具有广泛的用途,并且随着深度学习技术的发展,其性能和效果正在不断提高。

将来,运动目标跟踪技术有望在各个领域得到更广泛的应用。

人体运动实验报告总结

人体运动实验报告总结

人体运动实验报告总结引言人体运动是许多领域中的重要研究课题,如运动生理学、运动医学、运动心理学等。

通过不同的实验手段和方法来研究人体运动,可以更好地理解人体的生理变化和运动机理,对个体健康和运动训练具有重要意义。

实验目的本次实验的目的是探究人体在运动过程中的生理反应和心理变化。

通过检测不同运动强度下的心率、血压、体温等指标,以及观察运动前后的心理状态变化,为进一步研究身体运动提供基础数据。

实验方法1. 实验对象选择:选择20名年龄在20-30岁的健康成年人作为实验对象,性别分布均衡。

2. 实验仪器准备:准备心率监测仪、血压计、体温计、心理测试问卷等实验器材。

3. 实验流程安排:将实验对象分为两组,一组进行有氧运动,如跑步、跳绳等,另一组进行无氧运动,如举重、腿蹬等。

每组实验持续时间为30分钟。

4. 实验数据记录:在不同运动阶段,记录实验对象的心率、血压、体温等指标。

运动前后进行心理测试,以评估实验对象的心理状态变化。

5. 实验数据分析:将实验数据进行统计分析,计算不同运动强度下的指标平均值、标准差等,通过t检验比较不同实验组之间的差异。

实验结果通过对实验数据统计和分析,我们得到了如下结果:1. 心率:在有氧运动组中,实验对象的平均心率为156次/分钟,标准差为8次/分钟。

而在无氧运动组中,平均心率为170次/分钟,标准差为10次/分钟。

两组之间的差异达到了统计学意义水平(P < 0.05)。

2. 血压:在有氧运动组中,实验对象的平均血压为120/80 mmHg,标准差为5/3 mmHg。

而在无氧运动组中,平均血压为130/90 mmHg,标准差为7/4 mmHg。

两组之间的差异也达到了统计学意义水平(P < 0.05)。

3. 体温:在有氧运动组中,实验对象的平均体温为37C,标准差为0.3C。

而在无氧运动组中,平均体温为37.2C,标准差为0.4C。

两组之间的差异未达到统计学意义水平。

《2024年基于光流法的运动目标检测与跟踪技术》范文

《2024年基于光流法的运动目标检测与跟踪技术》范文

《基于光流法的运动目标检测与跟踪技术》篇一一、引言随着计算机视觉技术的不断发展,运动目标检测与跟踪技术在智能监控、自动驾驶、人机交互等领域得到了广泛应用。

其中,光流法作为一种重要的运动目标检测与跟踪技术,因其能够实时准确地估计运动目标的运动状态而备受关注。

本文将详细介绍基于光流法的运动目标检测与跟踪技术,包括其原理、实现方法、应用场景以及未来发展趋势。

二、光流法原理光流是指图像中像素点在单位时间内运动的瞬时速度。

光流法基于这一概念,通过分析连续两帧图像中像素点的变化,计算图像中运动物体的速度和方向。

在光流法中,每个像素点都被赋予一个速度向量,形成光流场。

通过分析光流场的变化,可以检测出图像中的运动目标并实现跟踪。

三、光流法的实现方法1. 稀疏光流法:稀疏光流法仅对图像中的部分特征点进行光流计算,如角点、边缘等。

该方法计算量较小,适用于实时性要求较高的场景。

2. 密集光流法:密集光流法对图像中的每个像素点都进行光流计算,能够更准确地描述运动目标的运动状态。

但该方法计算量较大,需要较高的计算资源。

3. 基于匹配的光流法:该方法通过在连续两帧图像中寻找对应像素点的匹配关系来计算光流。

其中,特征匹配、区域匹配等方法被广泛应用。

4. 基于能量的光流法:该方法通过分析图像中的能量变化来计算光流。

能量变化与运动目标的运动状态密切相关,因此可以有效地检测和跟踪运动目标。

四、应用场景1. 智能监控:基于光流法的运动目标检测与跟踪技术可以实时监测监控画面中的运动目标,如行人、车辆等。

通过分析这些目标的运动状态,可以实现智能报警、行为分析等功能。

2. 自动驾驶:在自动驾驶领域,基于光流法的运动目标检测与跟踪技术可以实时检测道路上的行人、车辆等障碍物,为自动驾驶系统提供决策支持。

3. 人机交互:在虚拟现实、增强现实等应用中,基于光流法的运动目标检测与跟踪技术可以实现自然的人机交互,提高用户体验。

五、未来发展趋势1. 算法优化:随着计算机性能的不断提升,未来光流法将更加注重算法的优化,以提高运动目标检测与跟踪的准确性和实时性。

智能监控系统中的运动目标检测与跟踪

智能监控系统中的运动目标检测与跟踪

智能监控系统中的运动目标检测与跟踪一、引言随着科技的不断进步,智能监控系统在各个领域中的应用越来越广泛。

智能监控系统通过使用先进的图像处理和计算机视觉算法,能够对运动目标进行准确的检测与跟踪,为各类实时监控场景提供了有力的支持。

本文将围绕智能监控系统中的运动目标检测与跟踪展开讨论。

二、运动目标检测技术1. 基于背景建模的运动目标检测基于背景建模的运动目标检测方法是一种常见且常用的技术。

该方法通过对监控场景中的背景进行建模,将出现在背景之上的运动目标检测出来。

其中,背景建模包括静态背景建模和动态背景建模两种方法。

2. 基于运动轨迹的运动目标检测基于运动轨迹的运动目标检测方法是一种通过提取目标的运动轨迹信息来检测目标的方法。

该方法通过进行目标的区域跟踪,并分析目标的运动轨迹以判断目标是否为真实运动目标。

3. 基于深度学习的运动目标检测深度学习在计算机视觉领域中的应用取得了巨大的突破,基于深度学习的运动目标检测方法也逐渐被引入到智能监控系统中。

该方法通过使用神经网络模型对视频帧进行分析,可以更准确地检测出运动目标。

三、运动目标跟踪技术1. 基于卡尔曼滤波的运动目标跟踪卡尔曼滤波是一种常用的目标跟踪方法,它通过融合目标的预测和观测信息,实现对目标位置的准确估计和预测。

卡尔曼滤波在目标跟踪过程中具有较高的跟踪准确度和鲁棒性。

2. 基于粒子滤波的运动目标跟踪粒子滤波是一种通过不断生成和优化一系列粒子的方法来实现目标跟踪的技术。

该方法通过对目标的状态进行多次采样,根据观测信息进行粒子权重更新和重采样,从而实现对目标位置的跟踪和预测。

3. 基于深度学习的运动目标跟踪近年来,基于深度学习的目标跟踪方法也得到了广泛的研究和应用。

通过使用深度神经网络对目标进行特征提取和学习,可以实现对复杂运动目标的鲁棒跟踪。

四、智能监控系统中的应用智能监控系统中的运动目标检测与跟踪技术在各个领域中得到了广泛的应用。

1. 公共安全领域智能监控系统在公共安全领域中发挥着重要的作用。

目标检测目标跟踪报告

目标检测目标跟踪报告

• 利用有效片的概念,我们为每个目标建立两种模板 ,临时模板和参考模板。
• 临时模板—实时更新的模板,在无遮挡情况下跟
踪,可以解决目标外观缓慢变化的问题。
• 参考模板—能够很好的表示目标的模板,用于遮
挡情况下的跟踪。
分片跟踪
•多组实验结果:
1.可以有效的解决目标遮挡 2.在目标表现模型缓慢变化的情况下,实时更新模板 3.在背景较为简单的情况下实现目标尺度的更新
(a)实验序列1
(b)固定阈值二值化
(c)高斯模型分割
(d)自适应值 MRF分割
MRF运动目标分割结果二
(a)实验序列2
(b)固定阈值二值化
(c)高斯模型分割
(d)自适应值 MRF分割
报告内容
•1 •全局运动估计 •2 •马尔可夫随机场分割 •3 •运动目标分片跟踪 •4 •车辆检测与跟踪 •5 •图像超分辨率重
车辆检测与跟踪概述
智能交通系统: ( Intelligent Transport Systems, ITS)
车辆检测与跟踪概述
影响车辆检测和跟踪的主要因素: (1)车辆自身阴影; (2)车辆间相互遮挡或车辆被背景中物体遮
挡; (3)同车型车辆之间具有较大的相似性; (4)光线突变; (5)夜晚和雨、雪等恶烈天气等。 主要针对(1)、(2)两种情况开展研究
静态场景 目标检测相对简单,研究渐趋成熟 动态场景 相对复杂,成为当前研究领域的热点
静态场景帧差的一个例子
视频序列运动检测
• 对于动态场景,由于目标与摄像头之间存在复杂的
相对运动,运动检测富有挑战性。传统的帧差方法 已经不再适用,如何能对全局的运动进行估计和补 偿,成为问题的关键。
第一帧

基于机器视觉的运动目标检测与跟踪研究

基于机器视觉的运动目标检测与跟踪研究

基于机器视觉的运动目标检测与跟踪研究摘要:机器视觉在目标检测与跟踪领域具有广泛的应用。

随着技术的不断发展,基于机器视觉的运动目标检测与跟踪研究在许多领域取得了显著的进展。

本文总结了当前主流的运动目标检测与跟踪算法,并分析了其优势与不足之处。

同时,针对现有算法中存在的问题,提出了一些改进方法,并展望了未来研究的方向。

1. 引言随着计算机技术和机器视觉的发展,运动目标检测与跟踪技术已经广泛应用于视频监控、智能交通、无人驾驶等领域。

传统的目标检测与跟踪方法面临着检测和跟踪精度不高、计算速度较慢等问题。

因此,基于机器视觉的运动目标检测与跟踪研究成为了当前的热点话题。

2. 运动目标检测算法2.1 基于背景建模的运动目标检测算法基于背景建模的运动目标检测算法通过对场景中的背景进行建模,将运动目标和背景进行区分。

常用的背景建模算法包括高斯模型、自适应平均背景模型等。

这些算法在许多环境下都能取得良好的效果,但是在存在光照变化、摄像头抖动等情况下容易产生误检测结果。

2.2 基于深度学习的运动目标检测算法近年来,深度学习在计算机视觉领域取得了巨大的进展。

基于深度学习的运动目标检测算法利用卷积神经网络(CNN)等深度学习模型,通过学习大量的数据提高检测准确性。

这些算法在目标检测的精度和鲁棒性方面取得了显著的提升,但是计算复杂度较高。

3. 运动目标跟踪算法3.1 基于相关滤波的运动目标跟踪算法基于相关滤波的运动目标跟踪算法通过对目标区域进行模板匹配,利用相关滤波器进行目标跟踪。

该算法在运动目标跟踪中表现出良好的性能,但是对于光照变化、目标形变等情况鲁棒性较差。

3.2 基于深度学习的运动目标跟踪算法近年来,基于深度学习的运动目标跟踪算法在精度和鲁棒性方面取得了显著的提升。

这些算法通过在训练过程中学习目标特征,利用卷积神经网络等深度学习模型实现目标跟踪。

但是这些算法对于遮挡、光照变化等情况还存在一定的挑战。

4. 改进方法4.1 多特征融合通过融合不同特征,例如颜色、纹理、形状等,可以提取更全面的目标特征,提高检测和跟踪的准确性。

运动目标检测方法概述

运动目标检测方法概述

运动目标检测方法概述作者:景阳黄柔周婧琳来源:《计算机光盘软件与应用》2012年第23期摘要:随着社会的发展,人们获取的信息途径越来越多,单纯的依靠人类的五官已不能及时的将我们获取的海量信息进行甄别和判断,因此计算机技术基础上发展的图像处理技术为我们生活、工作中的信息处理提供了很大的帮助,其在社会中的作用也越来越凸显。

其中,运动目标检测技术是整个图像处理技术的基础性环节,直接关系到后续信息处理的成败。

本文主要介绍了目标检测的常用算法的原理以及它们的优缺点,并对其中的帧间差分法和背景减除法进行了仿真实验,以验证其优缺点。

关键词:运动目标检测算法;帧间差分法;背景减除法中图分类号:TP391 文献标识码:A 文章编号:1007-9599 (2012) 23-0000-031 引言运动目标检测技术是图像处理技术中的关键基础技术[1],利用运动目标检测技术可以对视频图像中感兴趣的目标进行实时地检测、识别、提示报警,是进一步视频图像处理的重要依据。

运动目标检测技术已经广泛应用于智能视频监控、犯罪预防、智能分辨、自动制导等安防、军事领域[2]。

运动目标检测是将运动目标从视频序列图像背景中分离出来。

各类实际应用需求的不断增多,大大地推动了运动目标检测技术的发展,产生了许多成熟的目标检测算法。

一般我们会把运动目标检测区分为动态环境下和静态环境下,由于动态环境处理较为复杂,所以本文主要介绍静态环境下的目标检测算法。

2 运动目标检测常见方法静态环境下的运动目标检测是指将视频序列中的图像分割为背景图像和前景图像[1],提取其中存在变化的区域为前景图像,即运动目标或称感兴趣区域,而没有发生变化的区域为背景图像。

能否准确地检测出监控场景中的运动目标直接影响了后续目标跟踪和行为分析等效果的好坏,因为目标检测提取出来的像素是后续处理分析的主要对象,是分析与处理的基础。

虽然,在视频监控场景中,监控环境情况十分复杂,但每个运动图像都具有独特的可供计算机识别的特点,计算机利用这些特点就可以将前景图像检测出来。

运动目标检测研究方法述论

运动目标检测研究方法述论

2017年第8期 信息通信2017(总第 176 期)INFORMATION & COMMUNICATIONS(Sum. N o 176)运动目标检测研究方法述论霍天枢,潘鸣宇(吉林广播电视大学,吉林长春130022)摘要:运动目标检测是视频处理系统的基本环节,它是运动目标跟踪、特征提取等复杂的处理的前提。

当前,运动目标检测技术在视频监控、工业监测、质量控制、智能交通系统等众多领域广泛应用。

文章介绍了背景减除、帧差法与光流法的 原理特征,并对比分析指出了这三种方法的优势和局限性,对进一步提高运动目标的准确检测具有意义。

关键词:运动目标检测;光流法;背景差分法;帧差法中图分类号:TP 391.41 文献标识码:A文章编号:1673-1131(2017)08-0104-03〇引言近年来,运动目标检测技术快速发展,是诸多学者在计 算机视觉范畴的热点研究课题,运动目标有效检测对于目标 根据和运动分析非常重要,其主要目的是通过序列图像将运 动物体从复杂的背景图像中分割出来,进而得到目标的位 置、大小、旋转角度及运动轨迹等信息。

运动区域的有效分 割为后续目标根据提供可参考的区域。

要在各种复杂场景(如关照变化、突变、噪声干扰、阴影)中寻找一种通用的运 动目标检测方法存在一定执行难度,众多研究学者提出了自 己的检测算法,致力于构建一种实时准确的检测方式,对相 关研究做出相应贡献。

运动检测算法多数利用连续图像的 时间、空间信息对检测目标区域进行提取的方法来实现,本 文就目前比较常见的方法,即背景减除法(Background Sub ­traction )、 侦差法 (Frame Difference ) 与光流 (Optical Flow )进行分析。

1背景减除法 1.1算法原理背景减除法将建立好的背景帧图像与输入的当前帧图像 逐像素点差分,用背景帧图像与当前帧图像的差分图像的绝 对值来表示,对有变化的区域则认为是运动目标。

运动目标检测算法综述

运动目标检测算法综述

Abstract: Moving object detection is to separate interested dynamic objects from image background, which is mainly used in image analysis and target tracking. In this paper, several classical moving object detection algorithms are introduced, including the basic difference method, the Gauss model method and the principle of Ada boost detection algorithm. The corresponding experimental results are given. Finally, the application scenarios and advantages and disadvantages of the algorithm are summarized. Key Words: Object detection; Image analysis; Difference method; Gauss model method; Ada boost detection
随着人工智能的快速发展,基于图像的运动目标检测 应 用越 来 越 广 泛,目标 检 测是 把 图 像 或 视 频中的 特 定目 标提 取出来,以供 后 续进 一步分析 [1-2]。视 频跟 踪,往 往 是 先进行目标检测,再用跟踪算法在视频图像中匹配目标位 置,目标检测为目标跟踪服务,目标跟踪也简化了目标检测 的难 度,目标 跟 踪 也为后 续 不间断目标 检 测服 务 [3]。该 文 主要介绍了几种常用和经典的运动目标检测算法。

运动目标检测原理

运动目标检测原理

运动检测(移动侦测)原理一、引言随着技术的飞速发展,人们对闭路电视监控系统的要求越来越高,智能化在监控领域也得到越来越多的应用。

在某些监控的场所对安全性要求比较高,需要对运动的物体进行及时的检测和跟踪,因此我们需要一些精确的图像检测技术来提供自动报警和目标检测。

运动检测作为在安防智能化应用最早的领域,它的技术发展和应用前景都受到关注。

运动检测是指在指定区域能识别图像的变化,检测运动物体的存在并避免由光线变化带来的干扰。

但是如何从实时的序列图像中将变化区域从背景图像中提取出来,还要考虑运动区域的有效分割对于目标分类、跟踪等后期处理是非常重要的,因为以后的处理过程仅仅考虑图像中对应于运动区域的像素。

然而,由于背景图像的动态变化,如天气、光照、影子及混乱干扰等的影响,使得运动检测成为一项相当困难的工作。

二、运动检测(移动侦测)原理早期的运动检测如MPEG1是对编码后产生的I帧进行比较分析,通过视频帧的比较来检测图像变化是一种可行的途径。

原理如下:MPEG1视频流由三类编码帧组成,它们分别是:关键帧(I 帧),预测帧(P帧)和内插双向帧(B帧)。

I帧按JPEG标准编码,独立于其他编码帧,它是MPEG1视频流中唯一可存取的帧,每12帧出现一次。

截取连续的I帧,经过解码运算,以帧为单位连续存放在内存的缓冲区中,再利用函数在缓冲区中将连续的两帧转化为位图形式,存放在另外的内存空间以作比较之用,至于比较的方法有多种。

此方法是对编码后的数据进行处理,而目前的MPEG1/MPEG4编码都是有损压缩,对比原有的图像肯定存在误报和不准确的现象。

目前几种常用的方法:1.背景减除(Background Subtraction )背景减除方法是目前运动检测中最常用的一种方法,它是利用当前图像与背景图像的差分来检测出运动区域的一种技术。

它一般能够提供最完全的特征数据,但对于动态场景的变化,如光照和外来无关事件的干扰等特别敏感。

小学生体育检测总结报告

小学生体育检测总结报告

小学生体育检测总结报告引言体育检测是对小学生身体素质和体育技能的测量和评价,旨在了解他们身体发育情况和运动能力水平。

本次体育检测主要测试了小学生的身高、体重、肺活量、柔韧性、协调性和敏捷性等指标。

通过这次检测,我们能够全面了解每位小学生的身体素质状况和体育技能水平,为他们的身体发育和运动训练提供有针对性的指导。

检测项目1. 身高和体重测量测量小学生的身高和体重是了解他们身体发育情况的基础。

通过身高和体重的测量,我们可以得出每位小学生的身体质量指数(BMI),判断他们的体重是否健康,并根据具体情况提出相应的建议。

2. 肺活量测试肺活量测试是了解小学生心肺功能发育情况的重要指标之一。

通过测量小学生的肺活量,我们能够判断他们的心肺功能是否良好,身体是否能够满足日常运动的需求。

3. 柔韧性测试柔韧性是衡量小学生身体灵活性和韧性的指标之一。

通过柔韧性测试,我们能够了解小学生的身体柔软程度,评估他们活动时的身体灵活性和关节可活动范围,从而为他们的运动训练提供相应的建议。

4. 协调性测试协调性是小学生运动能力的重要组成部分之一。

通过协调性测试,我们能够了解小学生的身体控制能力和动作协调性,评估他们在各种运动项目中的表现,并提供相应的训练建议。

5. 敏捷性测试敏捷性是小学生运动能力的另一个重要组成部分。

通过敏捷性测试,我们能够了解小学生的身体快速反应和移动能力,评估他们在各种运动和竞技项目中的表现,并为他们的训练提供相应的指导。

结果与分析经过对小学生的身高、体重、肺活量、柔韧性、协调性和敏捷性等指标的检测,我们得出了以下结论和建议:1. 大部分小学生的身高和体重处于正常范围内,但也有少数学生存在身高或体重过高或过低的情况。

对于身高过低或过高的学生,我们需要建议其进行相应的体育锻炼和饮食调节,以促进身体健康发展。

2. 小学生的肺活量普遍较低,这可能与缺乏适当的运动和锻炼有关。

我们建议学生们增加户外活动时间,加强有氧运动,提高心肺功能。

学生体质健康标准测试工作总结范文

学生体质健康标准测试工作总结范文

学生体质健康标准测试工作总结范文一、工作概述学生体质健康标准测试是对学生体质健康状况进行全面、客观、系统的评估的工作。

通过测试,可以了解学生的身体状况,为学生提供科学合理的体育锻炼方案,促进学生身体健康发展。

二、工作目标1. 提高学生体质健康水平,促进学生全面发展;2. 完善学生体育锻炼服务体系;3. 为学生提供科学合理的体育锻炼方案。

三、工作内容1. 组织测试:负责组织学生体质健康标准测试工作,确定测试流程、测试时间和测试地点。

2. 评估测试结果:根据测试结果,对学生的体质健康水平进行评估,制定针对性的体育锻炼方案。

3. 宣传教育:通过宣传和教育,提高学生、家长和教师对体育锻炼的重视程度,增强体育意识。

4. 数据分析:对测试数据进行分析和统计,制定改进措施,提高测试工作质量和效率。

四、工作总结1. 测试工作组织有序:我们在测试工作前制定了详细的工作计划,并组织人员进行培训,确保测试工作的顺利进行。

通过充分的前期准备和细致的组织安排,保证了测试工作的高效进行。

2. 测试结果准确可靠:我们严格按照体质健康标准进行测试,确保测试结果的准确性和可靠性。

对于测试结果异常的学生,我们及时进行复测,确保测试结果的真实有效。

3. 评估方案科学合理:根据测试结果,我们根据学生的特点和需求,制定了科学合理的体育锻炼方案。

通过让学生参与到锻炼过程中,增强了他们的兴趣和积极性。

4. 教育宣传工作有成效:我们通过多种方式宣传和教育学生、家长和教师,提高了他们对体育锻炼的重视程度。

通过增加体育锻炼的时间和场地,促进了学生的身体健康发展。

5. 数据分析提出改进方案:通过对测试数据的分析和统计,我们发现了一些问题和不足,并提出了相应的改进措施。

例如,我们发现学生的某项体能指标普遍较低,我们将在体育课上增加相关训练内容,提高学生的相关体能水平。

五、工作展望1. 提高测试工作的科学性和准确性,引入更先进的测试设备和技术;2. 加强对测试结果的分析和评估,提供更具针对性的体育锻炼方案;3. 深入学校各个层面,扩大影响范围,提高学生体质健康意识;4. 加强与学生家长和教师的沟通与合作,共同促进学生体质健康发展;5. 不断总结和改进工作经验,提高测试工作的质量和效率。

运动目标检测

运动目标检测

大者表示有较小的方差与较大的出现概率,说明这些点在1~t时 间段内出现的概率较大,因此这些分布可以作为背景的描述。
从由首权部重选wi取,t 和前阈B值t 个T高斯(0分,1)布决作定为:该B点t 处ar的g背m景in模(型b w,i,t时变T )参数 Bt
b
i 1
运动目标检测的方法
背景相减法 背景相减法是目前运动检测中最常用的一种方法,
帧间图像补偿
全局运动参数矩阵M代表的是背景的运动,即 摄像系统的旋转、水平和垂直偏移运动。对当 前帧的像素坐标利用M矩阵进行变换,得到新 的坐标,并将原图中像素赋给该新坐标,即可 获取补偿后的结果图像,实现对帧间背景运动 的校正。
混合高斯模型建模
假设图像中的每一点的像素观测值和其他像素
点的观测值相互独立,在某时刻t,设像素点 的观测值为 Xt ,则时刻t观测值为Xt的概率可 以用具有K个高斯分布的混合高斯模型建模:
滑函数
是高斯平
得到一个二阶实对称矩阵M=[A,C;C,B],必然存在两个特征值
代表2 自相关的主曲率。
和1

提取特征点
如果特征值1和2是极大值时,则点(x,y)是一个特征点。
即满足:R det(M ) k • trace2 (M ) T ,其
中,det M 1 2,traceM 1 ,2 这里T是
运动目标检测的简介 运动目标检测的预处理
帧间背景校正 混合高斯模型建模
运动目标检测的方法 卡尔曼滤波 粒子滤波
运动目标检测的简介
运动目标检测是指在序列图像中检测出变化区 域并将运动目标从背景图像中提取出来。
通常情况下,目标分类、跟踪和行为理解等后 处理过程仅仅考虑图像中对应于运动目标的像 素区域,因此运动目标的正确检测与分割对于 后期处理非常重要。

监控系统下的运动目标检测方法[文献综述]

监控系统下的运动目标检测方法[文献综述]
得到阈值T后,利用下面公式二值化查图像d。即令:
利用上述方法二值化差图像 后,其中包含真正的运动信息。
2.3.4目标检测[8]
2.3.4.1运动目标的提取
设n时刻背景参考图像为 ,当前帧图像为 ,则背景差分图像为:
(2.3.7)
对于运动目标检测的判断依据为:若 ,则 点属于运动目标象素,反之属于背景点象素。这里的T是门限阈值。首先需要评估活动值是由运动对象造成的,还是由摄像头的噪声造成的。假设摄像头的噪声是叠加噪声,遵从高斯分布。描述该分布的参数有均值 和标准差 。噪声假设是和空间和时间无关的。基于这些假设,第n帧颜色通道i的强度观测值 可以表达为:
,(2.1.2)
。(2.1.3)
得到运动目标的运动矢量场后,可以对矢量场图像进行分割以获得运动区域。首先由矢量场图像的均值确定阈值。然后对图像进行快速的阈值分割,得到初始的分割图像并对其进行中值滤波和闭运算。最后,由光流检测和形态滤波处理得到的运动目标区域,通过连通分量分析最终确定运动目标的位置。
2.1.3.该方法的特点:
(2.2.9)
2.2.3.3生成背景掩膜:
将当前帧与式(2.2.9)得到的背景帧对应像素相减可以得到背景帧差 ,见式(2.2.10)。
(2.2.10)
背景帧差 与阈值 比较,即可得到背景掩膜 中各点的值 。
(2.2.11)
2.2.3.4运动对象检测:
如果当前时刻像素点 满足条件时 ,也即该点属于背景的可能性是比较大的,那么背景掩膜 能更好地反映当前点的状态;否则,当前帧掩膜 能更好地反映当前点的状态。由当前帧掩膜 和背景掩膜 生成运动对象掩膜 ,并利用其进行运动对象检测。
(2.3.15)
2.3.5.背景更新[8]
由公式(2.3.1)可知每一个象素的背景差分值 ,于是可以得到变化检测掩模如下:
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要由于计算机技术的迅猛发展,使得基于内容的视频信息的存取、操作和检索不仅成为一种可能,更成为一种需要。

同时,基于内容的视频编码标准MPEG-4和基于内容的视频描述标准MPEG-7正在发展和完善。

因此提取和视频中具有语义的运动目标是一个急需解决的问题。

运动目标提取和检测作为视频和图像处理领域的重要研究领域,有很强的研究和应用价值。

运动检测就是将运动目标从含有背景的图像中分离出来,如果仅仅依靠一种检测算法,难以从复杂的自然图像序列中完整地检测出运动的目标。

较高的检测精度和效率十分重要,因此融合多种检测方法的研究越来越受到重视。

本文介绍了几种国内外文献中的经典的视频运动目标的检测和提取算法,并对各种方法进行了评价和总结。

首先介绍了基本的运动目标检测的基本知识和理论,然后介绍了基本的几种目标检测方法及其各种改进方法。

对今后的运动目标检测提取的相关研究提供一定的参考。

关键词:运动目标检测光流法帧差法背景建模方法ABSTRACTBecause of the rapid development of computer technology, it is possible to access, operate and retrieve the video information based on the content of the video. At the same time, based on the content of the video coding standard MPEG-4 and content-based video description standard MPEG-7 is developing and improving. Therefore, it is an urgent problem to be solved in the extraction and video. Moving object extraction and detection is a very important field of video and image processing, and has a strong research and application value. Motion detection is to separate moving objects from the image containing background, if only rely on a detection algorithm, it is difficult to from a complex natural image sequences to detect moving target. Higher detection accuracy and efficiency are very important, so the study of the fusion of multiple detection methods is becoming more and more important. In this paper, the detection and extraction algorithms of the classical video moving objects in the domestic and foreign literatures are introduced, and the methods are evaluated and summarized. Firstly, the basic knowledge and theory of basic moving target detection is introduced, and then the basic method of target detection is introduced. To provide a reference for the research on the extraction of moving target detection in the future.Keywords: Visual tracking Optical flow method Frame Difference Background modeling method目录摘要 (1)ABSTRACT (2)第一章绪论 (3)研究背景及意义 (4)研究现状 (4)第二章经典的运动目标检测算法 (5)光流法 (5)帧差法 (5)背景差分法 (7)第三章改进的运动目标检测算法 (9)改进的三帧差分法 (9)帧间差分法与光流法结合 (10)改进的背景建模算法 (11)第四章总结 (13)参考文献: (17)第一章绪论研究背景及意义近几十年来,在科学技术飞速发展的条件下,视频与图像处理技术不断提高,各种各样的视频监控产品已经走入了人们的视野,并且在给我们的生活带了很多方便。

视频监控系统的研究技术涉及到视频图像处理、计算机视觉、模式识别以及人工智能等科学领域。

视频监控系统多数要求监控人员长期盯着监控屏幕,进行人为的分析判断,这样容易因为监控人员的疏忽造成重要信息的遗漏。

为此,人们开始将计算机领域的相关技术引入到视频监控系统中,形成智能监控系统[1,2,3,4]。

智能监控系统可以在没有人为干预的条件下,利用计算机视觉的相关技术来对视频序列图像进行智能的分析,实现对运动目标的检测、跟踪、分类和识别等。

现在,运动目标检测技术不仅应用在发电站、商场、银行、民宅、广场和火车站等公共场所的智能监控系统中,而且在其他的领域也有十分广泛的应用。

研究现状目前,基于视频的运动目标检测算法主要有三种:光流法、帧差法和背景差分法,这三种算法都有各自的优缺点。

1981 年,Horn 和 Schunck 通过将二维速度场与图像灰度相联系,从而引入了光流约束方程,得到一个计算光流的基本方法[5]。

Meyer 等人[6]在对光流法进行了深入研究的基础上,提出在光流场中采用基于轮廓的跟踪方法,该方法在摄像机运动的情况下能够有效的对运动目标进行检测和跟踪。

Barron 等人[7]通过使用简单而有效的门限,先分割图像,再计算光流,通过消除杂乱的背景光流来得到较好的目标光流。

Roland 等人[8]利用相邻帧差,通过局部阈值的迭代松弛技术实现图像边缘的光滑滤波。

甘明刚等人[9]提出一种三帧差分和边缘信息相结合的运动目标检测算法,该算法有效地改善了一些情况下帧间差分法会出现“双影现象”的问题。

郝豪刚和陈佳琪等人[10]提出五帧差分法和景差分法相结合的运动目标检测算法,该算法利用背景差分法和帧间差分法性能上的互补来得较好的检测结果。

背景差分法有均值法、中值法、核密度估计法、Surendra 背景更新、单高斯模型和混合高斯模型等,从 20 世纪以来,相继出现了一批批成熟的背景差分法,Wren 等人[11]提出了单高斯模型,该方法在单一背景下能够获得较好的检测结果,但是不适合复杂背景。

Stauffer 等人[12]在单高斯模型的基础上提出了混合高斯模型,混合高斯模型在外界环境比较复杂的条件下仍然可以得到很好的检测效果。

左军毅等人[13]提出时间平均模型和混合高斯模型双模式切换式的运动目标检测算法。

除了以上三种的算法外,还有一些学者尝试采用其他的算法进行运动目标检测,例如,郝志成和吴川等人[14]提出的基于稳定矩阵的动态图像运动目标检测算法,该算法通过在短时间内自动的感知背景变来快速的建立背景模型。

近年来,越来越多的研究机构和学者都参与到基于视频的运动目标检测的研究之中,并提出很多有效的、新颖的方法。

但是仍存在一些问题善待提高,所以找到一种检测精度高、鲁棒性好的运动目标检测算法依然是我们为之努力的方向。

第二章经典的运动目标检测算法光流法空间中物体的运动可以用运动场来描述,同样可以通过序列图像中不同图像的灰度分布差异体现图像平面变化,对比空间中的运动场,体现在图像上表现为光流场。

在运动的某一个时刻,为图像中的各个像素点赋一个速度的矢量,这样就成为了一个图像的运动场。

由于空间物体上的点与图像上的点通过投影关系可以一一对应,则根据各个像素点的速度矢量的变化特征可以对图像进行动态分析[16]。

当图像中没有目标运动时,在整个图像区域中光流矢量的变化是连续的;而当图像中有运动目标时,图像的背景和目标就会有相对的运动,那么目标运动所形成的速度矢量必然和邻域背景速度矢量不同,由此能够检测出运动目标的位置。

光流法利用图像的灰度信息的变化从序列图像中计算出速度场,然后加上一些约束条件,从而推出运动目标的运动参数和物体结构[17]。

光流法事先不需要知道场景的任何信息,就可以准确的计算出运动物体的速度。

它不仅能应用于静态背景下的运动目标检测,而且可以用于摄像机运动的情况,实现动态背景下的运动目标检测。

它的缺点是:光流法的特点是要进行迭代运算,精度越高需要的计算量就越大,因此,光流法的计算量大,运算时间长,是一种比较耗时的算法,很难满足工程上对实时性的要求;光流法的抗噪性能差,例如,当光照发生变化时,即使没有运动发生,光流仍然存在,会被误检测为有目标运动,同时,如果缺少足够的灰度级变化,目标运动物体很难被检测到;当三维物体的运动投影到二维的图像时,亮度会有变化,从而导致通过光流约束是计算不出平面某点的图像速度流;使用光流法对运动目标进行检测,需要特定的硬件设备的支持。

已经有一些学者针对光流法所存在的缺点进行了改进,相信未来光流法能够得到更好的实际应用。

帧差法帧差法[18]又叫时间差分法,它通过将视频序列图像中的当前帧与相邻帧所对应的像素点的灰度值进行比较,然后找到差异,进而检测出运动目标[19]。

在视频序列图像中,相邻的图像之间具有连续性,当视频图像中有运动目标时,由于运动目标的运动,相邻图像间的像素点灰度值差别就会较大,相反,当视频图像中没有运动目标时,相邻图像间的像素点素灰度值差别就会较小,帧差法就是利用视频图像的这一特性进行检测的,它是运动目标检测的最简单方法。

帧差法是先用相邻两帧做差分运算,然后做二值化处理,从而检测出运动目标。

帧差法的基本运算原理框图如下:图帧差法基本原理在二值化的差分图像中,取值为 0 的像素点代表变化较小或是无变化的区域,表示为背景区域;取值为 255 的像素点代表变化的区域,表示为运动目标。

至此,大多数的运动目标的基本形状已经凸显出来了。

为了能够精确的提取出运动目标,通常还需要经过形态学处理,例如,膨胀、腐蚀、开运算、闭运算等,将断点进行连接或者将多余的部分去掉等,从而获得更加准确的检测结果。

相关文档
最新文档