南京市2017届高三年级三模数学卷(第三稿)

合集下载

江苏省南京市高考2017-2018学年数学三模试卷 Word版含解析

江苏省南京市高考2017-2018学年数学三模试卷 Word版含解析

2017-2018学年江苏省南京市高考数学三模试卷一、填空题(共14小题,每小题3分,满分42分)1.已知集合M={0,2,4},N={x|x=,a∈M},则集合M∩N=______.2.已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是______.3.若直线l1:x+2y﹣4=0与l2:mx+(2﹣m)y﹣3=0平行,则实数m的值为______.4.某校有A,B两个学生食堂,若a,b,c三名学生各自随机选择其中的一个食堂用餐,则三人不在同一个食堂用餐的概率为______.5.如图是一个算法流程图,则输出的S的值是______.6.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出______人.7.已知l是直线,α、β是两个不同的平面,下列命题中的真命题是______.(填所有真命题的序号)①若l∥α,l∥β,则α∥β②若α⊥β,l∥α,则l⊥β③若l∥α,α∥β,则l∥β④若l⊥α,l∥β,则α⊥β8.如图,抛物线形拱桥的顶点距水面4m时,测得拱桥内水面宽为16m;当水面升高3m 后,拱桥内水面的宽度为______m.9.已知正数a,b,c满足3a﹣b+2c=0,则的最大值为______.10.在△ABC中,角A,B,C的对边分别为a,b,c,且a=,b=3,sinC=2sinA,则△ABC的面积为______.11.已知s n是等差数列{a n}的前n项和,若s2≥4,s4≤16,则a5的最大值是______.12.将函数f(x)=sin(2x+θ)(﹣<θ)的图象向右平移φ(0<φ<π)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则φ的值为______.13.如图,在半径为1的扇形AOB中,∠AOB=60°,C为弧上的动点,AB与OC交于点P,则的最小值是______.14.用min{m,n}表示m,n中的最小值.已知函数f(x)=x3+ax+,g(x)=﹣lnx,设函数h(x)=min{f(x),g(x)}(x>0),若h(x)有3个零点,则实数a的取值范围是______.二、解答题(共6小题,满分88分)15.在平面直角坐标系xOy中,点A(cosθ,sinθ),B(sinθ,0),其中θ∈R.(Ⅰ)当θ=,求向量的坐标;(Ⅱ)当θ∈[0,]时,求||的最大值.16.如图,在四棱锥E﹣ABCD中,底面ABCD是正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.(1)求证:DE∥平面ACF;(2)若AB=CE,在线段EO上是否存在点G,使得CG⊥平面BDE?若存在,请证明你的结论;若不存在,请说明理由.17.如图,某水域的两直线型岸边l1,l2成定角120°,在该水域中位于该角角平分线上且与顶点A相距1公里的D处有一固定桩.现某渔民准备经过该固定桩安装一直线型隔离网BC(B,C分别在l1和l2上),围出三角形ABC养殖区,且AB和AC都不超过5公里.设AB=x公里,AC=y公里.(1)将y表示成x的函数,并求其定义域;(2)该渔民至少可以围出多少平方公里的养殖区?18.已知点P是椭圆C上的任一点,P到直线l1:x=﹣2的距离为d1,到点F(﹣1,0)的距离为d2,且=.(1)求椭圆C的方程;(2)如图,直线l与椭圆C交于不同的两点A,B(A,B都在x轴上方),且∠OFA+∠OFB=180°.(i)当A为椭圆C与y轴正半轴的交点时,求直线l的方程;(ii)是否存在一个定点,无论∠OFA如何变化,直线l总过该定点?若存在,求出该定点的坐标;若不存在,请说明理由.19.已知函数g(x)=2alnx+x2﹣2x,a∈R.(1)若函数g(x)在定义域上为单调增函数,求a的取值范围;(2)设A,B是函数g(x)图象上的不同的两点,P(x0,y0)为线段AB的中点.(i)当a=0时,g(x)在点Q(x0,g(x0))处的切线与直线AB是否平行?说明理由;(ii)当a≠0时,是否存在这样的A,B,使得g(x)在点Q(x0,g(x0))处的切线与直线AB平行?说明理由.20.已知数列{a n},{b n}满足b n=a n+1﹣a n,其中n=1,2,3,….(Ⅰ)若a1=1,b n=n,求数列{a n}的通项公式;(Ⅱ)若b n+1b n﹣1=b n(n≥2),且b1=1,b2=2.(ⅰ)记c n=a6n﹣1(n≥1),求证:数列{c n}为等差数列;(ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次.求a1应满足的条件.[选修4-1:几何证明选讲]21.如图,△ABC内接于圆O,D为弦BC上一点,过D作直线DP∥AC,交AB于点E,交圆O在A点处的切线于点P.求证:△PAE∽△BDE.[选修4-2:矩阵与变换]22.变换T1是逆时针旋转角的旋转变换,对应的变换矩阵是M1;变换T2对应的变换矩阵是M2=.(1)点P(2,1)经过变换T1得到点P′,求P′的坐标;(2)求曲线y=x2先经过变换T1,再经过变换T2所得曲线的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系.设点A,B分别在曲线C1:(θ为参数)和曲线C2:ρ=1上,求AB的最大值.[选修4-5:不等式选讲]24.已知:a≥2,x∈R.求证:|x﹣1+a|+|x﹣a|≥3.25.如图,在平面直角坐标系xOy中,抛物线y2=2px(p>0)的准线l与x轴交于点M,过M的直线与抛物线交于A,B两点.设A(x1,y1)到准线l的距离为d,且d=λp(λ>0).(1)若y1=d=1,求抛物线的标准方程;(2)若+λ=,求证:直线AB的斜率为定值.26.设f(n)=(a+b)n(n∈N*,n≥2),若f(n)的展开式中,存在某连续3项,其二项式系数依次成等差数列,则称f(n)具有性质P.(1)求证:f(7)具有性质P;(2)若存在n≤2016,使f(n)具有性质P,求n的最大值.2016年江苏省南京市高考数学三模试卷参考答案与试题解析一、填空题(共14小题,每小题3分,满分42分)1.已知集合M={0,2,4},N={x|x=,a∈M},则集合M∩N={0,2} .【考点】交集及其运算.【分析】把M中元素代入x=确定出N,求出两集合的交集即可.【解答】解:把a=0,代入得:x=0;把a=2代入得:x=1;把a=4代入得:x=2,∴N={0,1,2},∵M={0,2,4},∴M∩N={0,2},故答案为:{0,2}2.已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是(1,).【考点】复数的代数表示法及其几何意义.【分析】由复数z的实部为a,虚部为1,知|z|=,再由0<a<2,能求出|z|的取值范围.【解答】解:∵复数z的实部为a,虚部为1,∴|z|=,∵0<a<2,∴1<|z|=<.故答案为:(1,).3.若直线l1:x+2y﹣4=0与l2:mx+(2﹣m)y﹣3=0平行,则实数m的值为.【考点】直线的一般式方程与直线的平行关系.【分析】直线l1:x+2y﹣4=0与l2:mx+(2﹣m)y﹣3=0平行,直线l1的斜率存在,因此直线l2的斜率也存在.化为斜截式,利用直线相互平行的充要条件即可得出.【解答】解:∵直线l1:x+2y﹣4=0与l2:mx+(2﹣m)y﹣3=0平行,直线l1的斜率存在,∴直线l2的斜率也存在.∴两条直线的方程可以化为:y=﹣x+2;y=x+.∴,2≠.解得:m=.故答案为:.4.某校有A,B两个学生食堂,若a,b,c三名学生各自随机选择其中的一个食堂用餐,则三人不在同一个食堂用餐的概率为.【考点】古典概型及其概率计算公式.【分析】先求出基本事件的总数,再找出所要求的事件包括的基本事件的个数,利用古典概型的概率计算公式即可得出【解答】解:甲学生随机选择其中的一个食堂用餐可有两种选法,同理乙,丙也各有两种选法,根据乘法原理可知:共有23=8中选法;其中他们在同一个食堂用餐的方法只有两种:一种是都到第一个食堂,另一种是都到第二个食堂,则他们不同在一个食堂用餐的选法有8﹣2=6;他们不同在一个食堂用餐的概率为=.故答案为:5.如图是一个算法流程图,则输出的S的值是20.【考点】程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序,可得a=5,S=1满足条件a≥4,执行循环体,S=5,a=4满足条件a≥4,执行循环体,S=20,a=3不满足条件a≥4,退出循环,输出S的值为20.故答案为:20.6.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出25人.【考点】分层抽样方法.【分析】直方图中小矩形的面积表示频率,先计算出[2500,3000)内的频率,再计算所需抽取人数即可.【解答】解:由直方图可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500人按分层抽样应抽出人故答案为:257.已知l是直线,α、β是两个不同的平面,下列命题中的真命题是④.(填所有真命题的序号)①若l∥α,l∥β,则α∥β②若α⊥β,l∥α,则l⊥β③若l∥α,α∥β,则l∥β④若l⊥α,l∥β,则α⊥β【考点】空间中直线与平面之间的位置关系.【分析】利用线面平行、面面平行线面垂直的判定定理和性质定理对四个命题逐一分析解答.【解答】解:对于①若l∥α,l∥β,则α与β可能相交;故①错误;对于②若α⊥β,l∥α,则l与β可能平行;故②错误;对于③若l∥α,α∥β,则l可能在β内,故③错误;对于④若l⊥α,l∥β,由线面垂直和线面平行的性质定理,以及面面垂直的判定定理,可得α⊥β,故④正确;故选:④8.如图,抛物线形拱桥的顶点距水面4m时,测得拱桥内水面宽为16m;当水面升高3m 后,拱桥内水面的宽度为8m.【考点】椭圆的应用.【分析】先根据题目条件建立直角坐标系,设出抛物线的方程,然后利用点在曲线上,确定方程,求得点的坐标,也就得到水面的宽.【解答】解:以抛物线的顶点为原点,对称轴为y轴建立直角坐标系设其方程为x2=2py(p≠0),∵A(8,﹣4)为抛物线上的点∴64=2p×(﹣4)∴2p=﹣16∴抛物线的方程为x2=﹣16y设当水面上升3米时,点B的坐标为(a,﹣1)(a>0)∴a2=(﹣16)×(﹣1)∴a=4故水面宽为8米.故答案为:8.9.已知正数a,b,c满足3a﹣b+2c=0,则的最大值为.【考点】基本不等式.【分析】消去b,结合基本不等式的性质求出最大值,即可得答案.【解答】解:根据题意,设t=,由3a﹣b+2c=0可得3a+2c=b,则t===≤==;当且仅当a=c时“=”成立,则t≤,即的最大值为;故答案为:.10.在△ABC中,角A,B,C的对边分别为a,b,c,且a=,b=3,sinC=2sinA,则△ABC的面积为3.【考点】正弦定理.【分析】由已知及正弦定理可求c的值,利用余弦定理即可求得cosB的值,利用同角三角函数基本关系式可求sinB的值,根据三角形面积公式即可计算得解.【解答】解:在△ABC中,∵sinC=2sinA,a=,b=3,∴由正弦定理可得:c=2a=2,∴由余弦定理可得:cosB===,可得:sinB==,=acsinB==3.∴S△ABC故答案为:3.11.已知s n是等差数列{a n}的前n项和,若s2≥4,s4≤16,则a5的最大值是9.【考点】等差数列的前n项和.【分析】由s2≥4,s4≤16,知2a1+d≥4,4a1+6d≤16,所以16≥4a1+6d=2(2a1+d)+4d≥8+4d,得到d≤2,由此能求出a5的最大值.【解答】解:∵s2≥4,s4≤16,∴a1+a2≥4,即2a1+d≥4a1+a2+a3+a4≤16,即4a1+6d≤16所以16≥4a1+6d=2(2a1+d)+4d≥8+4d,得到d≤2,所以4(a1+4d)=4a1+6d+10d≤16+20,即a5≤9∴a5的最大值为9.故答案为:9.12.将函数f(x)=sin(2x+θ)(﹣<θ)的图象向右平移φ(0<φ<π)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则φ的值为.【考点】正弦函数的图象.【分析】由f(x)的图象经过点P(0,),且﹣<θ,可得θ=,又由g(x)的图象也经过点P(0,),可求出满足条件的φ的值【解答】解:将函数f(x)=sin(2x+θ)(﹣<θ)的图象向右平移φ(0<φ<π)个单位长度后,得到函数g(x)=sin[2(x﹣φ)+θ]=sin(2x﹣2φ+θ)的图象,若f(x),g(x)的图象都经过点P(0,),∴sinθ=,sin(﹣2φ+θ)=,∴θ=,sin(﹣2φ)=,∴﹣2φ=2kπ+,k∈Z,此时φ=kπ,k∈Z,不满足条件:0<φ<π;或﹣2φ=2kπ+,k∈Z,此时φ=﹣kπ﹣,k∈Z,故φ=,故答案为:.13.如图,在半径为1的扇形AOB中,∠AOB=60°,C为弧上的动点,AB与OC交于点P,则的最小值是.【考点】平面向量数量积的运算.【分析】根据题意,可以得到△OAB为等边三角形,则AB=1,设BP=x,则AP=1﹣x,(0≤x≤1),利用向量加法的三角形法则,将则向已知向量转化,运用向量数量积的定义,即可得到关于x的二次函数,利用二次函数的性质,即可求得答案.【解答】解:∵OA=OB=1,∠AOB=60°,∴△OAB为等边三角形,则AB=1,设BP=x,则AP=1﹣x,(0≤x≤1),∴=(+)=+=||•||cos+||•||cos<,>=1+(1﹣x)•x•cosπ==(x﹣)2﹣,∵0≤x≤1,∴当x=时,取得最小值为﹣.故答案为:﹣.14.用min{m,n}表示m,n中的最小值.已知函数f(x)=x3+ax+,g(x)=﹣lnx,设函数h(x)=min{f(x),g(x)}(x>0),若h(x)有3个零点,则实数a的取值范围是(,).【考点】函数零点的判定定理.【分析】由已知可得a<0,进而可得若h(x)有3个零点,则<1,f(1)>0,f()<0,解得答案.【解答】解:∵f(x)=x3+ax+,∴f′(x)=3x2+a,若a≥0,则f′(x)≥0恒成立,函数f(x)=x3+ax+至多有一个零点,此时h(x)不可能有3个零点,故a<0,令f′(x)=0,则x=±,∵g(1)=0,∴若h(x)有3个零点,则<1,f(1)>0,f()<0,即,解得:a∈(,),故答案为:(,)二、解答题(共6小题,满分88分)15.在平面直角坐标系xOy中,点A(cosθ,sinθ),B(sinθ,0),其中θ∈R.(Ⅰ)当θ=,求向量的坐标;(Ⅱ)当θ∈[0,]时,求||的最大值.【考点】平面向量数量积的坐标表示、模、夹角.【分析】(Ⅰ)把θ=代入,求出向量的坐标表示;(Ⅱ)由向量,求出||的表达式,在θ∈[0,]时,求出||的最大值.【解答】解:(Ⅰ)当θ=时,向量=(sin﹣cos,0﹣sin)=(+,﹣×)=(,﹣);(Ⅱ)∵向量=(sinθ﹣cosθ,﹣sinθ),∴||====;∴当θ∈[0,]时,2θ+∈[,],∴sin(2θ+)∈[﹣,1],∴sin(2θ+)∈[﹣1,],∴≤,即||的最大值是.16.如图,在四棱锥E﹣ABCD中,底面ABCD是正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.(1)求证:DE∥平面ACF;(2)若AB=CE,在线段EO上是否存在点G,使得CG⊥平面BDE?若存在,请证明你的结论;若不存在,请说明理由.【考点】直线与平面垂直的判定;直线与平面平行的判定.【分析】(1)利用正方形的性质以及中线性质任意得到OF∥DE,利用线面平行的判定定理可证;(2)取EO的中点G,连接CG,可证CG⊥EO,由EC⊥BD,AC⊥BD,可得平面ACE⊥平面BDE,从而利用面面垂直的性质即可证明CG⊥平面BDE.【解答】(本题满分为14分)证明:(1)连接OF由四边形ABCD是正方形可知,点O为BD的中点,又F为BE的中点,所以OF∥DE.…又OF⊂平面ACF,DE⊄平面ACF,所以DE∥平面ACF.…(2)在线段EO上存在点G,使CG⊥平面BDE,证明如下:取EO的中点G,连接CG,在四棱锥E﹣ABCD中,AB=CE,CO=AB=CE,所以CG⊥EO.…又由EC⊥底面ABCD,BD⊂底面ABCD,所以EC⊥BD.…由四边形ABCD是正方形可知,AC⊥BD,又AC∩EC=C,所以BD⊥平面ACE,而BD⊂平面BDE,…所以,平面ACE⊥平面BDE,且平面ACE∩平面BDE=EO,因为CG⊥EO,CG⊂平面ACE,所以CG⊥平面BDE.…17.如图,某水域的两直线型岸边l 1,l 2 成定角120°,在该水域中位于该角角平分线上且与顶点A 相距1公里的D 处有一固定桩.现某渔民准备经过该固定桩安装一直线型隔离网BC (B ,C 分别在l 1和l 2上),围出三角形ABC 养殖区,且AB 和AC 都不超过5公里.设AB=x 公里,AC=y 公里.(1)将y 表示成x 的函数,并求其定义域;(2)该渔民至少可以围出多少平方公里的养殖区?【考点】基本不等式在最值问题中的应用. 【分析】(1)由S △ABD +S △ACD =S △ABC ,将y 表示成x 的函数,由0<y ≤5,0<x ≤5,求其定义域;(2)S=xysinA=sin120°=(≤x ≤5),变形,利用基本不等式,即可得出结论.【解答】解:(1)由S △ABD +S △ACD =S △ABC ,得,所以x +y=xy ,所以y=又0<y ≤5,0<x ≤5,所以≤x ≤5, 所以定义域为{x |≤x ≤5};(2)设△ABC 的面积为S ,则结合(1)得:S=xysinA=sin120°=(≤x ≤5)=(x ﹣1)++2≥4,当仅当x ﹣1=,x=2时取等号.故当x=y=2时,面积S 取最小值\平方公里.答:该渔民总共至少可以围出平方公里的养殖区.18.已知点P 是椭圆C 上的任一点,P 到直线l 1:x=﹣2的距离为d 1,到点F (﹣1,0)的距离为d 2,且=.(1)求椭圆C 的方程;(2)如图,直线l与椭圆C交于不同的两点A,B(A,B都在x轴上方),且∠OFA+∠OFB=180°.(i)当A为椭圆C与y轴正半轴的交点时,求直线l的方程;(ii)是否存在一个定点,无论∠OFA如何变化,直线l总过该定点?若存在,求出该定点的坐标;若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(1)设P(x,y),则d1=|x+2|,d2=,由此利用=,能求出椭圆C的方程.(2)(i)由(1)知A(0,1),又F(﹣1,0),从而k AF=1,k BF=﹣1,直线BF的方程为:y=﹣(x+1)=﹣x﹣1,代入=1,得3x2+4x=0,由此能求出直线AB的方程.(ii)k AF+k BF=0,设直线AB的方程为y=kx+b,代入=1,得,由此利用韦达定理、椭圆性质,结合已知条件能推导出直线AB总经过定点M(﹣2,0).【解答】解:(1)设P(x,y),∵点P是椭圆C上的任一点,P到直线l1:x=﹣2的距离为d1,到点F(﹣1,0)的距离为d2,且=,∴d1=|x+2|,d2=,==,化简,得=1.∴椭圆C的方程为=1.(2)(i)由(1)知A(0,1),又F(﹣1,0),∴k AF==1,∵∠OFA+∠OFB=180°,∴k BF=﹣1,∴直线BF的方程为:y=﹣(x+1)=﹣x﹣1,代入=1,得3x2+4x=0,解得x1=0,,代入y=﹣x﹣1,得(舍),或,∴B(﹣,),k AB==,∴直线AB的方程为y=.(ii)∵∠OFA+∠OFB=180°,∴k AF+k BF=0,设直线AB的方程为y=kx+b,代入=1,得,设A(x1,y1),B(x2,y2),则,,∴k AF+k BF=+=+==0,∴(kx1+b)(x2+1)+(kx2+b)(x1+1)=2kx1x2+(k+b)(x1+x2)+2b=2k×﹣(k+b)×+2b=0,∴b﹣2k=0,∴直线AB的方程为y=k(x+2),∴直线AB总经过定点M(﹣2,0).19.已知函数g(x)=2alnx+x2﹣2x,a∈R.(1)若函数g(x)在定义域上为单调增函数,求a的取值范围;(2)设A,B是函数g(x)图象上的不同的两点,P(x0,y0)为线段AB的中点.(i)当a=0时,g(x)在点Q(x0,g(x0))处的切线与直线AB是否平行?说明理由;(ii)当a≠0时,是否存在这样的A,B,使得g(x)在点Q(x0,g(x0))处的切线与直线AB平行?说明理由.【考点】利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.【分析】(1)求出g(x)的导数,由题意可得g′(x)≥0对x>0恒成立,即为a≥x﹣x2对x>0恒成立,求出右边函数的最大值,即可得到a的范围;(2)(i)a=0时,求出g(x)的导数,可得切线的斜率,由两点的斜率公式,化简整理,结合中点坐标公式,即可得到结论;(ii)当a≠0时,假设存在这样的A,B,使得g(x)在点Q(x0,g(x0))处的切线与直线AB平行.由两直线平行的条件:斜率相等,化简整理,结合中点坐标公式,化为ln=,设t=(0<t<1),记函数h(t)=lnt﹣,求出导数,判断单调性,即可得到结论.【解答】解:(1)函数g(x)的定义域为(0,+∞),g(x)的导数为g′(x)=+2x﹣2=,若函数g(x)在定义域上为单调增函数,可得g′(x)≥0对x>0恒成立,即为a≥x﹣x2对x>0恒成立,由h(x)=x﹣x2=﹣(x﹣)2+,当x=时,h(x)取得最大值,则a≥;(2)(i)a=0时,g(x)=x2﹣2x,g′(x)=2x﹣2,g′(x0)=2x0﹣2,设A(x1,g(x1)),B(x2,g(x2)),(0<x1<x2),可得x0=,k AB====x1+x2﹣2=2x0﹣2,则g(x)在点Q(x0,g(x0))处的切线与直线AB平行;(ii)当a≠0时,假设存在这样的A,B,使得g(x)在点Q(x0,g(x0))处的切线与直线AB平行.可得g′(x0)=,即+2x0﹣2=,由x0=,可得+x1+x2﹣2=+x1+x2﹣2,即ln =,设t=(0<t <1),记函数h (t )=lnt ﹣,则h ′(t )=﹣=≥0,可得h (t )在(0,1)递增,可得当0<t <1时,h (t )<h (1)=0, 即方程lnt=在区间(0,1)上无解,故不存在这样的A ,B ,使得g (x )在点Q (x 0,g (x 0))处的切线与直线AB 平行.20.已知数列{a n },{b n }满足b n =a n +1﹣a n ,其中n=1,2,3,…. (Ⅰ)若a 1=1,b n =n ,求数列{a n }的通项公式; (Ⅱ)若b n +1b n ﹣1=b n (n ≥2),且b 1=1,b 2=2. (ⅰ)记c n =a 6n ﹣1(n ≥1),求证:数列{c n }为等差数列;(ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次.求a 1应满足的条件.【考点】数列递推式;等差关系的确定. 【分析】(Ⅰ)根据数列的基本性质以及题中已知条件便可求出数列{a n }的通项公式; (Ⅱ)(ⅰ)先根据题中已知条件推导出b n +6=b n ,然后求出c n +1﹣c n 为定值,便可证明数列{c n }为等差数列;(ⅱ)数列{a 6n +i }均为以7为公差的等差数列,然后分别讨论当时和当时,数列是否满足题中条件,便可求出a 1应满足的条件.【解答】解:(Ⅰ)当n ≥2时,有a n =a 1+(a 2﹣a 1)+(a 3﹣a 2)+…+(a n ﹣a n ﹣1) =a 1+b 1+b 2+…+b n ﹣1=.又因为a 1=1也满足上式,所以数列{a n }的通项为.(Ⅱ)由题设知:b n >0,对任意的n ∈N *有b n +2b n =b n +1,b n +1b n +3=b n +2得b n +3b n =1, 于是又b n +3b n +6=1,故b n +6=b n∴b 6n ﹣5=b 1=1,b 6n ﹣4=b 2=2,b 6n ﹣3=b 3=2,b 6n ﹣2=b 4=1,(ⅰ)c n +1﹣c n =a 6n +5﹣a 6n ﹣1=b 6n ﹣1+b 6n +b 6n +1+b 6n +2+b 6n +3+b 6n +4=(n ≥1),所以数列{c n }为等差数列. (ⅱ)设d n =a 6n +i (n ≥0),(其中i 为常数且i ∈{1,2,3,4,5,6}),所以d n+1﹣d n=a6n+6+i﹣a6n+i=b6n+i+b6n+i+1+b6n+i+2+b6n+i+3+b6n+i+4+b6n+i+5=7(n≥0)所以数列{a6n+i}均为以7为公差的等差数列.设,(其中n=6k+i(k≥0),i为{1,2,3,4,5,6}中的一个常数),当时,对任意的n=6k+i有=;由,i∈{1,2,3,4,5,6}知;此时重复出现无数次.当时,=①若,则对任意的k∈N有f k+1<f k,所以数列为单调减数列;②若,则对任意的k∈N有f k+1>f k,所以数列为单调增数列;(i=1,2,3,4,5,6)均为单调数列,任意一个数在这6个数列中最多各出现一次,即数列中任意一项的值最多出现六次.综上所述:当时,数列中必有某数重复出现无数次.当a1∉B时,数列中任意一项的值均未在该数列中重复出现无数次.[选修4-1:几何证明选讲]21.如图,△ABC内接于圆O,D为弦BC上一点,过D作直线DP∥AC,交AB于点E,交圆O在A点处的切线于点P.求证:△PAE∽△BDE.【考点】相似三角形的判定.【分析】由题意,根据相似三角形的判定方法,找出两组对应角分别相等,即可证明△PAE ∽△BDE.【解答】证明:∵PA是圆O在点A处的切线,∴∠PAB=∠C.∵PD∥AC,∴∠EDB=∠C,∴∠PAE=∠PAB=∠C=∠BDE.又∵∠PEA=∠BED,∴△PAE∽△BDE.[选修4-2:矩阵与变换]22.变换T1是逆时针旋转角的旋转变换,对应的变换矩阵是M1;变换T2对应的变换矩阵是M2=.(1)点P(2,1)经过变换T1得到点P′,求P′的坐标;(2)求曲线y=x2先经过变换T1,再经过变换T2所得曲线的方程.【考点】几种特殊的矩阵变换.【分析】(1)变换T1对应的变换矩阵M1==,M1=,即可求得点P在T1作用下的点P′的坐标;(2)M=M2•M1=,由=,求得,代入y=x2,即可求得经过变换T2所得曲线的方程.【解答】解:(1)T1是逆时针旋转角的旋转变换,M1==,M1=,所以点P在T1作用下的点P′的坐标是(﹣1,2);(2)M=M2•M1=,设是变换后图象上任一点,与之对应的变换前的点是,则M=,=,也就是,即,所以所求的曲线方程为y﹣x=y2.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系.设点A,B分别在曲线C1:(θ为参数)和曲线C2:ρ=1上,求AB的最大值.【考点】参数方程化成普通方程.【分析】把曲线C1的参数方程化为普通方程,把曲线C2的极坐标方程化为直角坐标方程,求出圆心距离,即可得出最大值.【解答】解:曲线C1:(θ为参数),消去参数θ化为曲线C1:(x﹣3)2+(y﹣4)2=4,曲线C1是以(3,4)为圆心,1为半径的圆;曲线C2:ρ=1,化为直角坐标方程:x2+y2=1,是以(0,0)为圆心,1为半径的圆,可求得两圆圆心距|C1C2|==5,∵AB≤5+2+1=8,∴AB的最大值为8.[选修4-5:不等式选讲]24.已知:a≥2,x∈R.求证:|x﹣1+a|+|x﹣a|≥3.【考点】绝对值不等式的解法.【分析】利用|m|+|n|≥|m﹣n|,将所证不等式转化为:|x﹣1+a|+|x﹣a|≥|2a﹣1|,再结合题意a≥2即可证得.【解答】证明:∵|m|+|n|≥|m﹣n|,∴|x﹣1+a|+|x﹣a|≥|x﹣1+a﹣(x﹣a)|=|2a﹣1|.又a≥2,故|2a﹣1|≥3.∴|x﹣1+a|+|x﹣a|≥3(证毕).25.如图,在平面直角坐标系xOy中,抛物线y2=2px(p>0)的准线l与x轴交于点M,过M的直线与抛物线交于A,B两点.设A(x1,y1)到准线l的距离为d,且d=λp(λ>0).(1)若y1=d=1,求抛物线的标准方程;(2)若+λ=,求证:直线AB的斜率为定值.【考点】抛物线的简单性质.【分析】(1)由题意可知x1=1﹣,A点坐标为(1﹣,1),将A点坐标代入抛物线方程求得p的值,写出抛物线的标准方程;(2)直线AB过M(﹣,0),设直线AB的方程为y=k(x+),代入抛物线方程y2=2px,消去y,整理得,解出x1、x2,将d=x1+,代入d=λp,得, +λ=,可知,,将x1、x2代入,即可解得,可证直线AB的斜率为定值.【解答】解:(1)由条件知,x1=1﹣,则A点坐标为(1﹣,1),代入抛物线方程得p=1,∴抛物线方程为y2=2x,(2)证明:设B(x2,y2),直线AB的方程为y=k(x+),将直线AB的方程代入y2=2px,消去y得:,解得:x1=,x2=.∵d=λp,∴,+λ=,,∴p=x2﹣x1=,∴,∴直线AB的斜率为定值.26.设f(n)=(a+b)n(n∈N*,n≥2),若f(n)的展开式中,存在某连续3项,其二项式系数依次成等差数列,则称f(n)具有性质P.(1)求证:f(7)具有性质P;(2)若存在n≤2016,使f(n)具有性质P,求n的最大值.【考点】二项式定理的应用.【分析】(1)利用二项式定理计算可知f(7)的展开式中第二、三、四项的二项式系数分别为7、21、35,通过验证即得结论;(2)通过假设+=2,化简、变形可知(2k﹣n)2=n+2,问题转化为求当n≤2016时n取何值时n+2为完全平方数,进而计算可得结论.【解答】(1)证明:f(7)的展开式中第二、三、四项的二项式系数分别为=7、=21、=35,∵+=2,即、、成等差数列,∴f(7)具有性质P;(2)解:设f(n)具有性质P,则存在k∈N*,1≤k≤n﹣1,使、、成等差数列,所以+=2,整理得:4k2﹣4nk+(n2﹣n﹣2)=0,即(2k﹣n)2=n+2,所以n+2为完全平方数,又n≤2016,由于442<2016+2<452,所以n的最大值为442﹣2=1934,此时k=989或945.2016年9月28日。

2017年江苏省南京市、淮安市高三三模数学试卷

2017年江苏省南京市、淮安市高三三模数学试卷

2017年江苏省南京市、淮安市高三三模数学试卷一、填空题(共14小题;共70分)1. 已知全集,集合,,则.2. 甲盒子中有编号分别为,的两个乒乓球,乙盒子中有编号分别为,,,的四个乒乓球.现分别从两个盒子中随机地各取出个乒乓球,则取出的乒乓球的编号之和大于的概率为.3. 若复数满足,其中为虚数单位,为复数的共轭复数,则复数的模为.4. 执行如下所示的伪代码,若输出的值为,则输入的值为.Read xIf x≥0 Theny←Elsey←End IfPrint y5. 如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为.6. 在同一直角坐标系中,函数的图象和直线的交点的个数是.7. 在平面直角坐标系中,双曲线的焦距为,则所有满足条件的实数构成的集合是.8. 已知函数是定义在上且周期为的偶函数,当时,,则的值为.9. 若等比数列的各项均为正数,且,则的最小值为.10. 如图,在直三棱柱中,,,,,点为侧棱上的动点,当最小时,三棱锥的体积为.11. 函数在区间上单调递增,则实数的最大值为.12. 在凸四边形中,,且,,则四边形的面积为.13. 在平面直角坐标系中,圆,圆(为实数).若圆和圆上分别存在点,,使得,则的取值范围为.14. 已知,,为正实数,且,,则的取值范围为.二、解答题(共6小题;共78分)15. 如图,在三棱锥中,,分别为,上的点,且 平面.(1)求证: 平面;(2)若平面,,求证:平面平面.16. 已知向量,,,为实数.(1)若,求的值;(2)若,且,求的值.17. 在水域上建一个演艺广场,演艺广场由看台Ⅰ,看台Ⅱ,三角形水域,及矩形表演台四个部分构成(如图),看台Ⅰ,看台Ⅱ是分别以,为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的倍,矩形表演台中,米,三角形水域的面积为平方米,设.(1)求的长(用含的式子表示);(2)若表演台每平方米的造价为万元,求表演台的最低造价.18. 如图,在平面直角坐标系中,椭圆的右顶点和上顶点分别为点,,是线段的中点,且.(1)求椭圆的离心率;(2)若,四边形内接于椭圆,,记直线,的斜率分别为,,求证:为定值.19. 已知常数,数列满足,.(1)若,,①求的值;②求数列的前项和;(2)若数列中存在三项,,(,)依次成等差数列,求的取值范围.20. 已知,函数的导数为.(1)求曲线在处的切线方程;(2)若函数存在极值,求的取值范围;(3)若时,恒成立,求的最大值.答案第一部分1.2.3.4.5.6.7.8.9.10.【解析】将直三棱柱展开成矩形,如图,连接,交于,此时最小,因为,,,,点为侧棱上的动点,所以当最小时,,此时三棱锥的体积:11.12.【解析】因为,所以,因为,所以所以,所以.所以四边形的面积.13.14.第二部分15. (1) 平面,平面,平面平面,,又平面,平面,平面.(2)平面,平面,,由()可知,又,,又,平面,平面,平面,又平面,平面平面.16. (1)向量,,,为实数.若,则,可得,平方可得,即为,由,解得即有,.则;(2)若,且,即有,即有,由为锐角,可得,即有,则,.17. (1)因为看台Ⅰ的面积是看台Ⅱ的面积的倍,所以,所以,因为,所以,所以,在中,由余弦定理得,所以.(2)设表演台的造价为万元,则,设,则,所以当时,,当时,,所以在上单调递减,在上单调递增,所以当时,取得最小值,所以的最小值为,即表演台的最小造价为万元.18. (1),,线段的中点.,.因为.所以,化为:.所以椭圆的离心率.(2)由,可得,所以椭圆的标准方程为:,,.直线的方程为:,联立化为:,解得,所以.即.直线的方程为:,联立化为:,所以,解得,,可得.所以,化为:.所以,所以.19. (1)①因为,所以,,.②因为,,所以当时,,当时,,即从第二项起,数列是以为首项,以为公比的等比数列,所以数列的前项和(),显然当时,上式也成立,所以.(2)因为,所以,即单调递增.(i)当时,有,于是,所以,所以.若数列中存在三项,,(,)依次成等差数列,则有,即(),因为,所以,因此()不成立.因此此时数列中不存在三项,,(,)依次成等差数列.(ii)当时,有.此时.于是当时,,从而,所以.若数列中存在三项,,(,)依次成等差数列,则有,同(i)可知:,于是有,因为,所以.因为是整数,所以,于是,即,与矛盾.故此时数列中不存在三项,,(,)依次成等差数列.(iii)当时,有,.于是,.此时数列中存在三项,,依次成等差数列.综上可得:.20. (1)的定义域为.,,又.曲线在处的切线方程为.(2)因为(),.函数存在极值,即方程有正实数根,(),令,在恒成立.时,,所以函数存在极值,的取值范围为.(3)由(),()可知,,结合()时,,可得(),,则在恒成立.所以单调递增,从而.所以时,,在递增,.故在递增,所以.当时,存在,使,所以时,,即时,递减,而,所以时,,此时递减,而,所以在,,故当时,不恒成立;综上时,恒成立,的最大值为.。

2017年江苏省南京市高三一模数学试卷

2017年江苏省南京市高三一模数学试卷

2017年江苏省南京市高三一模数学试卷一、填空题(共14小题;共70分)1. 若集合,,则 ______.2. 复数(是虚数单位)是纯虚数,则实数的值为______.3. 已知命题:,是真命题,则实数的取值范围是______.4. 从长度为,,,的四条线段中任选三条,能构成三角形的概率为______ .5. 某个容量为的样本的频率分布直方图如下,则在区间上的数据的频数为______.6. 在如图所示的算法流程图中,若输出的的值为,则输入的的值为______ .7. 在平面直角坐标系中,点为抛物线的焦点,则点到双曲线的渐近线的距离为______.8. 已知,为实数,且,,则 ______ .(填“”、“”或“”)9. 是直角边等于的等腰直角三角形,是斜边的中点,,向量的终点在的内部(不含边界),则的取值范围是______.10. 已知四数,,,依次成等比数列,且公比不为.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数的取值集合是______.11. 已知棱长为的正方体,是棱的中点,是线段上的动点,则与的面积和的最小值是______.12. 已知函数的值域为,若关于的不等式的解集为,则实数的值为______.13. 若,均有成立,则称函数为函数到函数在区间上的“折中函数”.已知函数,,,且是到在区间上的“折中函数”,则实数的取值范围为______.14. 若实数,满足,则的取值范围是______.二、解答题(共10小题;共130分)15. 如图,在平面直角坐标系上,点,点在单位圆上,.(1)若点,求的值;(2)若,,求.16. 如图,六面体中,面面,面.(1)求证: 面;(2)若,,求证:.17. 如图,某城市有一条公路正西方通过市中后转向北偏东角方向的,位于该市的某大学与市中心的距,且,现要修筑一条铁路,在上设一站,在上设一站,铁路在部分为直线段,且经过大学,其中,,.(1)求大学在站的距离;(2)求铁路段的长.18. 设椭圆的离心率,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.(1).求椭圆的方程;(2)设直线与椭圆交于不同的两点,,以线段为直径作圆,若圆与轴相交于不同的两点,,求的面积;(3)如图,,,,是椭圆的顶点,是椭圆上除顶点外的任意点,直线交轴于点,直线交于点,设的斜率为,的斜率为,求证:为定值.19. 已知数列的前项和为,且满足.(1)证明:数列为等比数列,并求数列的通项公式;(2)若,数列的前项和为.求满足不等式的的最小值.20. 已知函数,,其中.设.(1)若在处取得极值,且,求函数的单调区间;(2)若时,函数有两个不同的零点,.①求的取值范围;②求证:.21. 已知点,先对它作矩阵对应的变换,再作对应的变换,得到的点的坐标为,求实数,值.22. 已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的正半轴重合,若直线的极坐标方程为.(1)把直线的极坐标方程化为直角坐标系方程;(2)已知为椭圆:上一点,求到直线的距离的最小值.23. 抛掷甲,乙两枚质地均匀且四面上分别标有,,,的正四面体,其底面落于桌面,记所得数字分别为,.设为随机变量,若为整数,则;若为小于的分数,则;若为大于的分数,则.(1)求概率;(2)求的分布列,并求其数学期望.24. 已知.(1)求及;(2)试比较与的大小,并说明理由.答案第一部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.第二部分15. (1)由点,所以,,,所以.(2)因为,所以.,所以,解得,因为,所以.所以16. (1)过点作,为垂足.面面,又面面,面,所以面.又面,则.又面,面,故 面.(2)由(1)知面,面,所以.又,且,平面,则面.因为面,所以.又,,面,则面.又面,故可得.17. (1)在中,,,且,,由余弦定理可得:所以可得:,大学在站的距离为.(2)因为,且为锐角,所以,在中,由正弦定理可得:,即,所以,所以,所以,因为,所以,,所以,又因为,所以.在中,,由正弦定理可得:,即,所以解得,即铁路段的长为.18. (1)因为直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.,化为.因为离心率,,联立解得,.所以椭圆的方程为;(2)把代入椭圆方程可得:,解得.所以的方程为:.令,解得,所以,所以.(3)由(1)知:,,,所以直线的方程为,由题意,直线的方程为,,且,由解得.设,则由得.所以,所以,.所以.设,则由,,三点共线得,.即,所以,所以.所以的斜率.所以为定值.19. (1)当时,,所以.因为,,所以,,两式相减得,,即,,所以数列为以为首项,为公比的等比数列,所以,所以,.(2),所以,所以,两式相减可得,所以,所以可化为,因为,,所以满足不等式的的最小值为.20. (1)因为,所以,由可得.又在处取得极值,所以,所以,,所以,其定义域为,,,令,得,当时,;当时,;所以函数在区间上单调递增,在区间上单调递减.(2)当时,,其定义域为,①由得,记,由题意得与函数的图象有两个不同的交点,又,,令,且,得;令,且,得;所以在上单调递减,在上单调递增;所以当时,取得最小值,又,所以当时,,而当时,,当时,,因为与函数的图象有两个不同的交点,所以的取值范围是.②由题意得,,所以,,所以,则,不妨设,要证,只需要证,即证,设(),则,令(),所以,所以函数在上单调递增,所以,即,所以,即.21. 由题意,,由逆矩阵公式得,,所以,即有,.22. (1)直线的极坐标方程为,整理得:即,则直角坐标系中的方程为,即;(2)设,所以点到直线的距离则到直线的距离的最小值为.23. (1)依题意,数对共有种,其中使为整数的有以下种:,,,,,,,,所以;(2)随机变量的所有取值为,,,有以下六种:,,,,,,故,有以下种:,,故,所以,所以的分布列为:的数学期望为.24. (1)令,则,令,则,所以.(2)要比较与的大小,只要比较与的大小.当时,,当或时,,当或时,.猜想:当时,.下面用数学归纳法证明:①由上述过程可知,当时,结论成立.②假设当时结论成立,即,两边同乘以,得,而所以,即时结论也成立.由①②可知,当时,成立.综上所述,当时,;当或时,,;当时,.。

2020届江苏省南京市2017级高三6月三模考试数学试卷参考答案(含附加题)

2020届江苏省南京市2017级高三6月三模考试数学试卷参考答案(含附加题)

2020届江苏省南京市2017级高三三模考试
数学参考答案
说明:
1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.
2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
4.只给整数分数,填空题不给中间分数.
一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸
的指定位置上)
1.{x |1<x <4} 2.2 3.60 4.10 5.23
6. 3 7.2n +1-2 8. 62 9.83
10.[2,4] 11.6 12. [-2,+∞) 13.-94 14.38 二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)
15.(本小题满分14分)
证明:(1)取PC 中点G ,连接DG 、FG .
在△PBC 中,因为F ,G 分别为PB ,PC 的中点,所以GF ∥BC ,GF =12
BC . 因为底面ABCD 为矩形,且E 为AD 的中点,
所以DE ∥BC ,DE =12BC , ················· 2分。

2017年普通高等学校招生全国统一考试3卷数学模拟试题

2017年普通高等学校招生全国统一考试3卷数学模拟试题

2017年普通高等学校招生全国统一考试3卷模拟试题(理科数学)一.选择题(共12小题)1.已知集合A={x|x2﹣x>0},,则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.已知i为虚数单位,则z=i+i2+i3+…+i2017=()A.0 B.1 C.﹣i D.i3.已知数列{an }满足:=,且a2=2,则a4等于()A.﹣B.23 C.12 D.114.已知向量=(1,2),=(﹣2,x).若+与﹣平行,则实数x的值是( )A.4 B.﹣1 C.﹣45.一算法的程序框图如图所示,若输出的,则输入的x可能为( )A.﹣1 B.1 C.1或5 D.﹣1或16.如图所示,由直线x=a,x=a+1(a>0),y=x2及 x 轴围成的曲边梯形的面积介于相应小矩形与大矩形的面积之间,即 a2<x2dx<(a+1)2.类比之,若对∀n∈N*,不等式<A<++…+恒成立,则实数A等于( )A.ln B.ln 2 C.ln 2 D.ln 57.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在截面A1DB上,则线段AP的最小值等于()A.B.C. D.8.△ABC的内角A,B,C的对边分别为a,b,c,若,bcosA+acosB=2,则△ABC的外接圆的面积为( )A.4π B.8π C.9π D.36π9.如图所示的阴影部分是由x轴,直线x=1及曲线y=e x﹣1围成,现向矩形区域OABC内随机投掷一点,则该点落在阴影部分的概率是()A.B.C.D.10.已知函数y=f(x)和函数y=g(x)的图象如下:则函数y=f(x)g(x)的图象可能是()A.B.C.D.11.已知F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,椭圆C上存在点P使∠F1PF2为钝角,则椭圆C的离心率的取值范围是()A.(,1)B.(,1)C.(0,)D.(0,)12.设定义域为R的函数f(x)=,则关于x的方程f2(x)+bf(x)+c=0有7个不同的实数解得充要条件是()A.b<0且c>0 B.b>0且c<0 C.b<0且c=0 D.b≥0且c=0二.填空题(共4小题)13.已知函数f(x)是定义在R上的奇函数,且当x>0时,,则f(﹣2+log35)= .14.已知(2x﹣)n展开式的二项式系数之和为64,则其展开式中常数项是.15.如图,边长为2的正方形ABCD中,点E、F分别是AB、BC的中点,将△ADE、△EBF、△FCD分别沿DE、EF、FD折起,使得A、B、C三点重合于点A′,若四面体A′EFD的四个顶点在同一个球面上,则该球的半径为.16.已知等差数列{an }的公差为d,等比数列{bn}的公比为q,设{an},{bn}的前n项和分别为Sn ,Tn,若,n∈N*,则d= ,q= .三.解答题(共6小题)17.已知a、b、c分别是△ABC的三个内角A、B、C的对边.(1)若△ABC面积S△ABC=,c=2,A=60°,求a、b的值;(2)若a=ccosB,且b=csinA,试判断△ABC的形状.18.已知某校5个学生的数学和物理成绩如下表学生的编号i12345数学xi8075706560物理yi7066686462(1)假设在对这5名学生成绩进行统计时,把这5名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有2名学生的物理成绩是自己的实际分数的概率是多少?(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用x表示数学成绩,用y 表示物理成绩,求y 与x 的回归方程;(3)利用残差分析回归方程的拟合效果,若残差和在(﹣0。

【江苏省南京市】2017届高考数学三模考试数学(理)试卷-答案

【江苏省南京市】2017届高考数学三模考试数学(理)试卷-答案


2 3s﹣2 -3t﹣2

2 9
3s

1 3t1 3

0
.∵
2 3s﹣2 -3t﹣2
是整数,∴
a1
a1 2p
1.
于是 a1 -a1-2 p ,即 a1 - p .与 - p a1 p 矛盾.
故此时数列{an}中不存在三项 ar ,as ,at (r,s,t N*,r s t) 依次成等差数列.
江苏省南京市 2017 届高考数学三模考试数学(理)试卷
答案
1.{2} 2. 3 .
8 3. 5
4. 1.
5. 34 . 5
6.2.
7.{ 3 }. 2
8. 1 . 2
9.8 .
10. 1 . 3
11. 1 5 . 2
12. 3 .
13. -1 a 3 . 5
14.[27,30] . 二、解答题:本大题共 6 小题,共 90 分.解答应写出必要的文字说明或推理、验算过程.
(iii)当
a1 p
1时,有 a1
-p

p,a1

p

0.
于是 a2 | P-a1 | 2a1 p p-a1 2a1 p a1 2 p . a3 | p-a2 | 2a2 p | a1 p | 2a1 5 p -a1-p 2a1 5 p a1 4 p 此时数列{an} 中存在三项 a1,a2,a3 依次成等差数列.
若 a b ( 2 ,0) ,则 (2cos a 2sin a,sin 2a t)=( 2 ,0) ,
5
5
1 / 17
可得 cos a sin a= 1 ,平方可得 sin 2a cos 2a 2cos asin a= 1 ,

2017年江苏省高考数学模拟应用题选编(三)

2017年江苏省高考数学模拟应用题选编(三)

2017年江苏省高考数学模拟应用题大全(三)1、(江苏省连云港、徐州、宿迁2017届高三年级第三次模拟考试)某景区修建一栋复古建筑,其窗户设计如图所示.圆O 的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点),与左右两边相交(F ,G 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m ,且12AB AD ≥.设EOF θ∠=,透光区域的面积为S .(1)求S 关于θ的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值 越大越好.当该比值最大时,求边AB 的长度.2、(江苏省南京、淮安市2017届高三第三次模拟考试数学试题)在一水域上建一个演艺广场.演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC ,及矩形表演台BCDE 四个部分构成(如图).看台Ⅰ,看台Ⅱ是分别以AB ,AC 为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍;矩形表演台BCDE 中,CD =10米;三角形水域ABC 的面积为4003平方米.设∠BAC =θ.(1)求BC 的长(用含θ的式子表示);(2)若表演台每平方米的造价为0.3万元,求表演台的最低造价.3、(江苏省南京师范大学附属中学2017届高三考前模拟考试数学试题)园林管理处拟在公园某区域规划建设一半径为r 米,圆心角为θ(弧度)的扇形观景水池,其中O 为扇形AOB 的圆心,同时紧贴水池周边建设一圈理想的无宽度步道.要求总预算费用不超过24万元,水池造价为每平米400元,步道造价为每米1000元.(1)当r 和θ分别为多少时,可使得广场面积最大,并求出最大面积;A BCDFEO(第1题)G θ(第2题图)(2)若要求步道长为105米,则可设计出的水池最大面积是多少.4、(江苏省南京市、盐城市2017届高三年级第二次模拟考试)在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD ,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x 厘米,矩形纸板的两边AB ,BC 的长分别为a 厘米和b 厘米,其中a ≥b .(1)当a =90时,求纸盒侧面积的最大值;(2)试确定a ,b ,x 的值,使得纸盒的体积最大,并求出最大值.5、(江苏省南通、扬州、泰州2017届高三第三次调研考试数学试题)如图,半圆AOB 是某爱国主义教育基地一景点的平面示意图,半径OA 的长为1百米.为了保护景点,基地管理部门从道路l 上选取一点C ,修建参观线路C -D -E -F ,且CD ,DE ,EF 均与半圆相切,四边形CDEF 是等腰梯形.设DE =t 百米,记修建每1百米参 观线路的费用为()f t 万元,经测算150()118 2.3t f t t t ⎧<⎪=⎨⎪-<<⎩,,≤,(1)用t 表示线段EF 的长; (2)求修建该参观线路的最低费用.(第4题图)DCB AO(第5题)6、(江苏省南通、扬州、泰州、徐州、淮安、宿迁2017届高三二模数学试题)一缉私艇巡航至距领海边界线l (一条南北方向的直线)3.8海里的A 处,发现在其北偏东30°方向相距4海里的B 处有一走私船正欲逃跑,缉私艇立即追击.已知缉私艇的最 大航速是走私船最大航速的3倍.假设缉私艇和走私船均按直线方向以最大航速航行. (1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领海内拦截 成功;(参考数据:sin17°≈5.7446)(2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明理由.7、(江苏省如皋市2017届高三下学期语数英学科联考(二)数学试题)如图所示,在一半径等于1千米的圆弧及直线段道路AB 围成的区域内计划建一条商业街,其起点和终点均在道路AB 上,街道由两条平行于对称轴l 且关于l 对称的两线段EF 、CD ,及夹在两线段EF 、CD 间的弧组成.若商业街在两线段EF 、CD 上收益为每千米2a 元,在两线段EF 、CD 间的弧上收益为每千米a 元.已知2AOB π∠=,设2EOD θ∠=,(1) 将商业街的总收益()f θ表示为θ的函数; (2) 求商业街的总收益的最大值.北(第6题)8、(江苏省苏州大学2017届高考数学考前指导卷 1)如图,某地区有一块(百米),植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为.(1(2,若计划9、舞,试求这块圆形广场的最大面积.(10、(江苏省泰州市2017届高三考前参考题数学试题)甲、乙分别位于扇形居民区弧⌒AB合)处建造一个大型快件集散中心,经过前期的调查,发现可以分别用抗拒系数⌒AB的中点时,(1(211、(上海市崇明区2017届高三第二次(4月)模拟考试数学试卷)某校兴趣小组在如图所示的矩形区域ABCD内举行机器人拦截挑战赛,在E器人甲,同时在A处按某方向释放机器人乙,设机器人乙在Q处成功拦截机器人甲.若点Q在矩形区域ABCD内(包含边界),则挑战成功,否则挑战失败.E为A B中点,机器人乙的速度是机器人甲的速度的2倍,比(1AD足够长,则如何设置机器人乙的释放角度才能挑战成功?(结(2)如何设计矩形区域ABCD的宽AD的长度,甲?12、(江苏省学大教育2017届高考数学密2)13、(江苏省学大教育2017届高考数学密1)某单位为端正工作人员仪容,在单位设置一面仪容镜(仪容镜为平面镜),如图,仪容2米,(1(2答案1、(12分分,所以定义域为10分12分所以,所以,故有最大,此时(2)1m .………16分2、(1)因为看台Ⅰ的面积是看台Ⅱ的面积的3倍,所以AB =3AC .在△ABC 中,S △ABC =12AB •AC •sin θ=4003,所以AC 2=800sin θ . …………………… 3分由余弦定理可得BC 2=AB 2+AC 2-2AB •AC •cos θ,=4AC 2-23AC 2 cos θ.=(4-23cos θ) 800sin θ ,即BC =(4-23cos θ)•800sin θ =402-3cos θsin θ.所以 BC =402-3cos θsin θ ,θ∈(0,π). …………………… 7分(2)设表演台的总造价为W 万元.因为CD =10m ,表演台每平方米的造价为0.3万元,所以W =3BC =1202-3cos θsin θ ,θ∈(0,π). …………………… 9分记f (θ)=2-3cos θsin θ,θ∈(0,π).则f ′(θ)=3-2cos θsin 2θ. …………………… 11分由f ′(θ)=0,解得θ=π6.当θ∈(0,π6)时,f ′(θ)<0;当θ∈(π6,π)时,f ′(θ)>0.故f (θ)在(0,π6)上单调递减,在(π6,π)上单调递增,从而当θ=π6 时,f (θ)取得最小值,最小值为f (π6)=1.所以W min =120(万元).答:表演台的最低造价为120万元. …………………… 14分34、解:(1)因为矩形纸板ABCD 的面积为3600,故当a =90时,b =40,从而包装盒子的侧面积S =2×x (90-2x )+2×x (40-2x )=-8x 2+260x ,x ∈(0,20) . ………………… 3分因为S =-8x 2+260x =-8(x -654)2+42252,故当x =654 时,侧面积最大,最大值为 42252 平方厘米.答:当x =654 时,纸盒的侧面积的最大值为42252平方厘米. ………………… 6分(2)包装盒子的体积V =(a -2x )(b -2x ) x =x [ab -2(a +b )x +4x 2],x ∈(0,b 2),b ≤60.…………… 8分V =x [ab -2(a +b )x +4x 2]≤x (ab -4abx +4x 2)=x (3600-240x +4x 2)=4x 3-240x 2+3600x . ………………… 10分当且仅当a =b =60时等号成立.设f (x )=4x 3-240x 2+3600x ,x ∈(0,30).则f ′ (x )=12(x -10)(x -30).于是当0<x <10时,f ′ (x )>0,所以f (x )在(0,10)上单调递增;当10<x <30时,f ′ (x )<0,所以f (x )在(10,30)上单调递减.因此当x =10时,f (x )有最大值f (10)=16000, ……………… 12分 此时a =b =60,x =10.答:当a =b =60,x =10时纸盒的体积最大,最大值为16000立方厘米.……………… 14分5、【解】设DE 与半圆相切于点QDQ=QE,以OF所在直线为x轴,OQ所在直线为y轴,建立如图所示的平面直角坐标系xOy.(1)方法一:由题意得,点E……1分设直线EF,因为直线EF与半圆相切,所以圆心O到直线EF (3)分F……5分即.……7分方法二:切圆所以Rt△EHF≌Rt△OGF,……3分……5分所以.……7分(2①所以当时,取最小值为……11分②……13分且当时,;当时,调递增.由①②知,取最小值为……15分答:(1(2)修建该参观线路的最低费用为万元.……16分6、解:(1,……2分.……5分又B到边界线l……8分(2AB C图甲走私……12分1.55所以缉私艇能在领海内截住走私船.……14分答:(1(2)缉私艇总能在领海内成功拦截走私船.……16分18.7、1)①3分②6分由①②8分(2)①列表:11分所以在时单调递减所以…………………14分10分的面积最大值为分⌒AB(2由(119.11、解:(1分分.....................................................6分(2)以所在直线为轴,中垂线为分分6为半径的上半圆在矩形区域人乙的释放角度使机器人乙在矩形区域ABCD内成功拦截机器人甲...........................................14分12、13由正弦定理,)2,21(tan 2321sin )32sin(sin sin ∈+=-==C C C C B AB AC π即的取值范围为AB AC 的取值范围为(2,21)(2)易知AD A A 2='、又由三角形ABC 的面积A AC AB AD BC S sin 2121⋅=⋅=,可得AC AB AD ⋅=43由余弦定理,AC AB AC AB AC AB A AC AB AC AB BC ⋅=⋅-⋅≥⋅⋅-+==2cos 24222, 解得4≤⋅AC AB ,当且仅当2==AC AB 时。

南京市2017届高三期初模拟考试数学卷

南京市2017届高三期初模拟考试数学卷

南京市2017届高三期初模拟考试数学 2016.09一、填空题:本大题共14个小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 已知集合 A {0,1,2},B {x|x 2 x 0},则 AI B2. 设复数z 满足(z i )i 3 4i ( i 为虚数单位),则z 的模为 .3. 为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的 200辆汽车的 时速,所得数据均在区间[40,80]中,其频率分布直方图如图所示,则在抽测的 200辆汽车中,时速在区间[40,60)内的汽车有 __________ 辆.GO4 G 03 a C2 a oi(第 3JS )0)的最小正周期为 ,则f (E )的值是k 的值是 .4& 50 60 70 804. 若函数 f (x ) sin ( x -)(5. 下图是一个算法的流程图,则输出是 _____ . ___10. 已知圆柱M 的底面半径为2,高为2,圆锥N 的底面直径和母线长相等,若圆柱 M 和 圆锥N 的体积相同,则圆锥 N 的高为.11. 各项均为正数的等比数列 {a n },其前n 项和为S n ,若a 278,S 3 13,则数列{a n }的通项公式a n12.已知函数f(x) 12x x 3 x 0',当x (, m ]时,f (x)的取值范围为[16,),2x,x 0则实数m 的取值范围是6.设向量 a (1,4), b ( 1,x), c a 3b ,若a//c ,则实数x 的值是7.某单位要在四名员工(含甲乙两人) 中随机选两名到某地出差,则甲乙两人中,至少有一人被选中的概率是8.2 x 在平面直角坐标系 xOy 中,双曲线C : -ya 2—1(a0)的一条渐近线与直线4 9. (x2x 1平行,则实数a 的值是在平面直角坐标系xOy 中,若直线ax y2 21) (y a) 16相交于A, B 两点,且2 0与圆心为C 的圆ABC 为直角三角形,则实数 a 的值umr i uuu uuur uuu 13. 在ABC 中,已知AB 3, BC 2 , D 在AB 上,AD —AB,若DB ? DC 3 ,3则AC的长是.114. 已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f (x) g(x) ^)x,若存在1x0[ ,1],使得等式af(x o) g(2x。

【江苏省南京市】2017届高考数学三模考试数学(理)试卷-答案

【江苏省南京市】2017届高考数学三模考试数学(理)试卷-答案

.即
C
( 1
8k2 4k2
2
,1 1
4k22 4k22
)
.
y k1 (x 2)
直线
AD
的方程为:
y

k1
(
x-2)
,联立

x
2
4

y2
1
,化为: (1 4k12 )x2 16k12 x 16k12 4 0 ,
∴ 2xD

16k12 4 1 4k12
由 a 为锐角,可得 cos (0,1) ,即有 tan sin a 1 , cos a 4
1

tan
2

2 tan a 1 tan2 a

2 1 1

8
, tan(2

π)
tan
2a

1

1

8 15
15
4 1 tan 2a 1 8
23 . 7
16
15
17.解:(1)∵看台Ⅰ的面积是看台Ⅱ的面积的 3 倍,
sin
∴ BC 40 2 3 cos . sin
(2)设表演台的造价为 y 万元,则 y 120 2 3 cos ,
sin
设 f ( ) 2 3 cos (0<<π) ,则 f ( )
sin
3 2cos sin2
∴当 0 π 时, f ( ) 0 ,当 π π 时, f ( ) 0 ,
(iii)当
a1 p
1时,有 a1
-p

p,a1

p

0.
于是 a2 | P-a1 | 2a1 p p-a1 2a1 p a1 2 p . a3 | p-a2 | 2a2 p | a1 p | 2a1 5 p -a1-p 2a1 5 p a1 4 p 此时数列{an} 中存在三项 a1,a2,a3 依次成等差数列.

江苏省南京市2017-2018学年高三第三次模拟考试数学试题 Word版含解析

江苏省南京市2017-2018学年高三第三次模拟考试数学试题 Word版含解析

2017-2018学年一、填空题:本大题共14个小题,每小题5分,共70分.1.已知全集U ={-1,2,3,a },集合M ={-1,3}.若∁U M ={2,5},则实数a 的值为 ▲ . 【答案】5 【解析】试题分析:因为{1,3,2,5}U U M C M ==- ,所以 5.a = 考点:集合补集2.设复数z 满足z (1+i)=2+4i ,其中i 为虚数单位,则复数z 的共轭复数为 ▲ . 【答案】3-i 【解析】试题分析:因为24(24)(1)(12)(1)3i,12i i i z i i i ++-===+-=++所以复数z 的共轭复数为3-i 考点:复数概念3.甲、乙两位选手参加射击选拔赛,其中连续5轮比赛的成绩(单位:环)如下表:则甲、乙两位选手中成绩最稳定的选手的方差是 ▲ .【答案】0.02考点:方差4.从2个白球,2个红球,1个黄球这5个球中随机取出两个球,则取出的两球中恰有一个红球的概率是 ▲ . 【答案】35【解析】试题分析:从5个球中随机取出两个球,共有10种基本事件,其中取出的两球中恰有一个红球包含有236⨯=种基本事件,其概率为63.105= 考点:古典概型概率5.执行如图所示的伪代码,输出的结果是 ▲ .【答案】8 【解析】试题分析:第一次循环:4,4I S ==,第二次循环:6,24I S ==,第三次循环:8,192100I S ==>,输出8.I = 考点:循环结构流程图6.6.已知α,β是两个不同的平面,l ,m 是两条不同直线,l ⊥α,m ⊂β.给出下列:①α∥β⇒l ⊥m ; ②α⊥β⇒l ; ③m ∥α⇒l ⊥β; ④l ⊥β⇒m ∥α.其中正确的是 ▲ . (填.写所有正确的......序号..). 【答案】①④考点:线面关系判定7.设数列{a n }的前n 项和为S n ,满足S n =2a n -2,则86a a = ▲ . 【答案】4(第5题图)【解析】试题分析:由S n =2a n -2,得S n-1=2a n-1-2,(n 2)≥所以a n =2a n -2a n-1 ,a n =2a n-1(n 2)≥,数列{a n }为等比数列,公比为2,2862 4.a a == 考点:等比数列定义及性质8.设F 是双曲线的一个焦点,点P 在双曲线上,且线段PF 的中点恰为双曲线虚轴的一个端点,则双曲线的离心率为 ▲ .【解析】试题分析:不妨设22221,(c,0)x y F a b-=,则点P(c,2b)-±,从而有222222415c b c e a b a-=⇒=⇒= 考点:双曲线离心率9.如图,已知A ,B 分别是函数f (x )ωx (ω>0)在y 轴右侧图象上的第一个最高点和第一个最低点,且∠AOB =2π,则该函数的周期是 ▲ .【答案】4 【解析】试题分析:由题意可设3((,22A B ππωω,又∠AOB =2π,所以324222T ππππωωωω⨯⇒=⇒== 考点:三角函数性质10.已知f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=2x-2,则不等式f (x -1)≤2的解集是 ▲ . 【答案】 【解析】试题分析:因为当x ≥0时,f (x )=2x-2,所以当0≤x ≤2时,f (x ) ≤f (2)=2,而f (x )是定义在R 上的偶函数,所以当-2≤x ≤2时,f (x ) ≤2,因此不等式f (x -1)≤2等价于-2≤x -1≤2,即-1≤x ≤3,解集是 考点:利用函数性质解不等式11.如图,在梯形ABCD 中,AB ∥CD ,AB =4,AD =3,CD =2,2AM MD = .若AC BM ⋅=-3,则AB AD ⋅= ▲ .【答案】32【解析】试题分析:因为122()()23233AC BM AD AB AB AD AB AD ⋅=+⋅-+=--⋅=-,所以3.2AB AD ⋅=考点:向量数量积12.在平面直角坐标系xOy 中,圆M :(x -a )2+(y +a -3)2=1(a >0),点N 为圆M 上任意一点.若以N 为圆心,ON 为半径的圆与圆M 至多有一个公共点,则a 的最小值为 ▲ . 【答案】3考点:两圆位置关系(第11题图)13.设函数f (x )=1,1,x x x a e x x a-⎧≥⎪⎨⎪--<⎩,g (x )=f (x )-b .若存在实数b ,使得函数g (x )恰有3个零点,则实数a 的取值范围为 ▲ . 【答案】(-1-21e ,2) 【解析】 试题分析:令1x x y e -=,则2x x y e-'=,所以当2x ≤时,211(,]x x y e e -=∈-∞,当2x ≥时,211(0,]x x y e e -=∈ 因此要使函数g (x )恰有3个零点,须2a <且211a e --<,即实数a 的取值范围为(-1-21e ,2)考点:利用导数研究函数零点14.若实数x ,y 满足2x 2+xy -y 2=1,则222522x yx xy y --+的最大值为 ▲ .【解析】试题分析:由题意得(2)()1x y x y -+=,令12,x y t x y t -=+=,则1112(t ),y (t ),33x t t=+=-+因此2222212||52222t x y m m t x xy y m m t t--==≤≤-++++,其中1=m t t-,当且仅当|m 222522x yx xy y --+考点:基本不等式求最值二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边.若向量m =(a ,cos A ),向量n =(cos C ,c ),且m ²n =3b cos B . (1)求cos B 的值;(2)若a ,b ,c 成等比数列,求11tan tanCA +的值.【答案】(1)13(2【解析】试题分析:(1)先由向量数量积得a cos C +c cos A =3b cos B ,再由正弦定理将边化角,得sin A cos C +sin C cos A =3sin B cos B ,即得cos B =13.(2)由等比数列性质得b 2=ac ,再由正弦定理将边化角,得sin 2B =sin A ²sinC .利用同角三角函数关系、两角和正弦公式化11tan tanCA +得11tan tanC A +1sin B== 试题解析:解:(1)因为m ²n =3b cos B ,所以a cos C +c cos A =3b cos B . 由正弦定理,得sin A cos C+sin C cos A=3sin B cos B ,²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²3分所以sin(A +C )=3sin B cos B ,所以sin B =3sin B cos B . 因为B 是△ABC 的内角,所以sin B ≠0,所以cos B =13.²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²7分(2)因为a ,b ,c 成等比数列,所以b 2=ac . 由正弦定理,得sin 2B=sin A ²sin C . ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²9分因为cos B =13,B 是△ABC 的内角,所以sin B =3.²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²11分又11cos cos cos sin cos sin sin()tan tanC sin sin sin sin sin sin A C A C C A C A A A C A C A C +++=+==2sin sin 1sin sin sin sin B B A C B B ====²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²14分考点:向量数量积、正弦定理、同角三角函数关系16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D 为棱BC 上一点.(1)若AB =AC ,D 为棱BC 的中点,求证:平面ADC 1⊥平面BCC 1B 1; (2)若A 1B ∥平面ADC 1,求BDDC的值.【答案】(1)详见解析(2)1 【解析】试题分析:(1)证明面面垂直,一般利用面面垂直判定定理,即从线面垂直出发给予证明,而线面垂直的证明,一般需多次利用线面垂直判定与性质定理(2)已知线面平行,一般利用线面平行性质定理,将其转化为线线平行:连结A 1C ,交AC 1于O ,则可得A 1B ∥OD .再结合平面几何性质确定线段比值.试题解析:证明:(1)因为AB =AC ,点D 为BC 中点,所以AD ⊥BC . ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²2分因为ABC -A 1B 1C 1 是直三棱柱,所以BB 1⊥平面ABC . 因为AD ⊂平面ABC ,所以BB 1⊥AD . ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²4分 因为BC ∩BB 1=B ,BC ⊂平面BCC 1B 1,BB 1⊂平面BCC 1B 1, 所以AD ⊥平面BCC 1B 1. 因为AD ⊂平面ADC 1,所以平面ADC 1⊥平面BCC 1B 1. ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²6分(2)连结A 1C ,交AC 1于O ,连结OD ,所以O 为AC 1中(第16题图)ABCDA 1B 1C 1点. ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²8分因为A 1B ∥平面ADC 1,A 1B ⊂平面A 1BC ,平面ADC 1∩平面A 1BC =OD , 所以A 1B ∥OD . ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²12分因为O 为AC 1中点,所以D 为BC 中点, 所以BDDC=1. ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²14分考点:面面垂直判定定理,线面平行性质定理 17.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知椭圆C :22221x y a b += (a >b >0)点(2,1)在椭圆C 上. (1)求椭圆C 的方程;(2)设直线l 与圆O :x 2+y 2=2相切,与椭圆C 相交于P ,Q 两点.①若直线l 过椭圆C 的右焦点F ,求△OPQ 的面积; ②求证: OP ⊥OQ .【答案】(1)22163x y +=(2(第17题图)【解析】试题分析:(1)求椭圆标准方程,一般利用待定系数法,即列出两个独立条件,解方程组即可:由2c a =,22411a b+=,解得a 2=6,b 2=3.(2)①直线过一定点,又与圆相切,因此可先利用直线与圆位置关系确定直线方程yx.再根据弦长公式求底长PQ=②研究直线与椭圆位置关系,一般联立方程组,利用韦达定理求解:因为OP OQ ⋅=x 1x 2+y 1y 2=x 1x 2+(kx 1+m )(kx 2+m )=(1+k 2)x 1x 2+km (x 1+x 2)+m 2而直线PQ 方程代入椭圆方程,得(1+2k 2) x 2+4kmx +2m2-6=0.则有x 1+x 2=-2412kmk +,x 1x 2=222612m k -+=m 2=2k 2+2.代入化简得OP OQ ⋅=由方程组22163y y x x ⎧+=⎪⎨⎪⎩解得x y ⎧=⎪⎪⎨⎪⎪⎩或x y ⎧=⎪⎪⎨⎪⎪⎩所以PQ=. ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²6分因为O 到直线PQO PQ. 因为椭圆的对称性,当切线方程为y(x时,△O PQ综上所述,△O PQ的面积为. ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²8分②解法二 消去y 得5x 2-+6=0.设P (x 1,y 1) ,Q (x 2,y 2),则有x 1+x 2.由椭圆定义可得,PQ =PF +FQ =2a -e( x 1+x 2)=2³-³=.²²²²²²²²²²²²²²²6分② (i)若直线PQ 的斜率不存在,则直线PQ 的方程为x x当x P ,Q .因为OP OQ ⋅=0,所以OP ⊥OQ .当x =-时,同理可得OP ⊥OQ . ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²10分(ii) 若直线PQ 的斜率存在,设直线PQ 的方程为y =kx +m ,即kx -y +m =0.=m 2=2k 2+2.将直线PQ 方程代入椭圆方程,得(1+2k 2) x 2+4kmx +2m 2-6=0. 设P (x 1,y 1) ,Q (x 2,y 2),则有x 1+x 2=-2412km k +,x 1x 2=222612m k -+.²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²12分因为OP OQ ⋅ =x 1x 2+y 1y 2=x 1x 2+(kx 1+m )(kx 2+m )=(1+k 2)x 1x 2+km (x 1+x 2)+m2=(1+k 2)³222612m k -++km ³(-2412km k +)+m 2.将m 2=2k 2+2代入上式可得OP OQ ⋅ =0,所以OP ⊥OQ .综上所述,OP ⊥OQ . ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²14分考点:椭圆标准方程,直线与圆相切,直线与椭圆位置关系18.(本小题满分16分)如图,某森林公园有一直角梯形区域ABCD,其四条边均为道路,AD∥BC,∠ADC=90°,AB=5千米,BC=8千米,CD=3千米.现甲、乙两管理员同时从A地出发匀速前往D地,甲的路线是AD,速度为6千米/小时,乙的路线是ABCD,速度为v千米/小时.(1)若甲、乙两管理员到达D的时间相差不超过15分钟,求乙的速度v的取值范围;(2)已知对讲机有效通话的最大距离是5千米.若乙先到达D,且乙从A到D的过程中始终能用对讲机与甲保持有效通话,求乙的速度v的取值范围.【答案】(1)646497v≤≤(2)8<v≤394.【解析】试题分析:(1)由路程、速度、时间关系可得关系式:12161||64v-≤,解简单含绝对值不等式即可,注意单位统一(2)首先乙先到达D地,故16v<2,即v>8.然后乙从A到D的过程中与甲最大距离不超过5千米:分三段讨论①当0<vt≤5,由余弦定理得甲乙距离(6t)2+(vt)2-2³6t³vt³cos∠DAB≤25,②当5<vt≤13,构造直角三角形得甲乙距离(vt-1-6t)2+9≤25,②当5<vt≤13,由直角三角形得甲乙距离(12-6t)2+(16-vt)2≤25,三种情况的交集得8<v≤394.试题解析:解:(1)由题意,可得AD=12千米.(第18题图)C BD所以(v2-48vv+36)³(5v)2≤25,解得v≥154.²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²9分②当5<vt≤13,即5v<t≤13v时,f(t)=(vt-1-6t)2+9=(v-6) 2 (t-16v-)2+9.因为v>8,所以16v-<5v,(v-6) 2>0,所以当t=13v时,f(t)取最大值,所以(v-6) 2(13v-16v-)2+9≤25,解得39 8≤v≤394.²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²13分③当13≤vt≤16,13v≤t≤16v时,f(t)=(12-6t)2+(16-vt)2,因为12-6t>0,16-vt>0,所以当f(t)在(13v,16v)递减,所以当t=13v时,f(t)取最大值,(12-6³13v)2+(16-v³13v)2≤25,解得398≤v≤394.因为v>8,所以 8<v≤394.²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²16分考点:实际应用题,分段函数求函数最值19.(本小题满分16分)设函数f(x)=-x3+mx2-m(m>0).(1)当m=1时,求函数f(x)的单调减区间;(2)设g(x)=|f(x)|,求函数g(x)在区间上的最大值;(3)若存在t≤0,使得函数f(x)图象上有且仅有两个不同的点,且函数f(x)的图象在这两点处的两条切线都经过点(2,t),试求m的取值范围.【答案】(1)(-∞,0)和(23,+∞)(2)y max=3,0427m m mm m≥<<⎧⎪⎪⎨⎪⎪⎩-,(3)(0,83]∪∪∪≥(52,即得函数f(x)=试题解析:解:函数定义域为,且f(x)≥0.由柯西不等式得≥(5²+2,²²²²²²²²²²²²²²²²²²²²²²5分即27³4≥(52,所以x=10027时,取等号.所以,函数f(x)=²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²10分考点:利用柯西不等式求最值【必做题】第22题、第23题,每题10分,共计20分.请在答.卷卡指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X为所组成的三位数各位数字之和.(1)求X是奇数的概率;(2)求X 的概率分布列及数学期望. 【答案】(1)712(2)254【解析】试题分析:(1)因为X 是奇数,所以三个数字必是一奇二偶:按是否取0讨论,有11232223(2)28C C A A ⨯+=而能组成的三位数的个数是223424248C A A ⨯+=,因此所求概率为P (A )=287=4812.(2)先确定随机变量取法3,4,5,6,7,8,9.再分别求对应概率,最后利用公式求数学期望,注意按是否取0讨论 试题解析:解:(1)记“X 是奇数”为事件A ,能组成的三位数的个数是48. ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²2分X 是奇数的个数有28,所以P (A )=287=4812. 答:X 是奇数的概率为712. ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²4分(2) X 的可能取值为3,4,5,6,7,8,9.当 X =3时,组成的三位数只能是由0,1,2三个数字组成,所以P (X =3)=41=4812; 当 X =4时,组成的三位数只能是由0,1,3三个数字组成,所以P (X =4)=41=4812;当 X =5时,组成的三位数只能是由0,1,4或0,2,3三个数字组成,所以P (X =5)=81=486当 X =6时,组成的三位数只能是由0,2,4或1,2,3三个数字组成,所以P (X =6)=105=4824; 当 X =7时,组成的三位数只能是由0,3,4或1,2,4三个数字组成,所以P (X =7)=105=4824; 当 X =8时,组成的三位数只能是由1,3,4三个数字组成,所以P (X =8)=61=488;当 X =9时,组成的三位数只能是由2,3,4三个数字组成,所以P (X =9)=61=488; ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²8分所以X 的概率分布列为:E (X )=3³112+4³112+5³16+6³524+7³524+8³18+9³18=254.²²²²²²²²²²²²²²²²²²²²²²²²10分 考点:概率分布,数学期望 23.(本小题满分10分)在平面直角坐标系xOy 中,点P (x 0,y 0)在曲线y =x 2(x >0)上.已知A (0,-1),00(x ,y )n nn P ,n ∈N *.记直线AP n 的斜率为k n .(1)若k 1=2,求P 1的坐标; (2)若k 1为偶数,求证:k n 为偶数. 【答案】(1)(1,1)(2)详见解析 【解析】试题分析:(1)由两点间斜率公式得20000112y x x x ++==,解方程得P 1的坐标(2)先求出k n =2000000111n nnn n ny x x x x x ++==+ ,再利用k 1为偶数表示x 0,设k 1=2p (p ∈N *),则x 0=p k n 为偶数 试题解析:解:(1)因为k 1=2,所以20000112y x x x ++==,①当n =2m (m ∈N *)时, k n =22220(p 1)mk n k k nk C p -=-∑,所以 k n 为偶数. ②当n =2m +1(m ∈N )时,k n =22220(p 1)mk n k k nk C p -=-∑,所以 k n 为偶数. 综上, k n 为偶数. ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²10分 考点:二项式展开定理应用。

【江苏省南京市】2017届高考数学三模考试数学(理)试卷

【江苏省南京市】2017届高考数学三模考试数学(理)试卷

U A B=______________.则()乙盒子中有编号分别为3则取出的乒乓球的编号之和大于6的概率为为复数z的共轭复数的值为______________.π190,点D11.函数2((2))f x ex x x a =++﹣在区间[],1a a +上单调递增,则实数a 的最大值为______________. 12.在凸四边形ABCD 中,2BD =且0,()()5AC BD AB DC BC AD ⋅=+⋅+=,则四边形ABCD 的面积为______________.13.在平面直角坐标系xOy 中,圆221:x O y +=,圆22:121M x a y a +++=()(﹣)(a 为实数).若圆O 和圆M 上分别存在点,P Q ,使得30OQP ∠=︒,则a 的取值范围为______________.14.已知,,a b c 为正实数,且23228,a b c a b c+≤+≤,则38a b c +的取值范围是______________. 二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程. 15.(本小题满分14分)如图,在三棱锥A BCD -中,,E F 分别为,BC CD 上的点,且BD ∥平面AEF .(1)求证:EF ∥平面ABD ;(2)若AE ⊥平面BCD ,BD CD ⊥,求证:平面AEF ⊥平面ACD .16.(本小题满分14分)已知向量2π(2cos ,sin ),(2sin ,),(0,),t 2a a a b a t a ==为实数.(1)若2(,0)5a b -=,求t 的值;(2)若1t =,且1a b ⋅=,求πtan(2)4a +的值.17.(本小题满分14分)在水域上建一个演艺广场,演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC ,及矩形表演台BCDE 四个部分构成(如图),看台Ⅰ,看台Ⅱ是分别以,AB AC 为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍,矩形表演台BCDE 中,10CD =米,三角形水域ABC 的面积为平方米,设BAC θ∠=.(1)求BC 的长(用含θ的式子表示);(2)若表演台每平方米的造价为0.3万元,求表演台的最低造价.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>的右顶点和上顶点分别为点,,A B M 是线段AB 的中点,且232OM AB b =. (1)求椭圆的离心率;(2)若2a =,四边形ABCD 内接于椭圆,AB CD ∥,记直线,AD BC 的斜率分别为1,2k k ,求证:1?2k k 为定值.19.(本小题满分16分)已知常数0p >,数列{}n a 满足*1|2,|n n n a a p p a n +=++∈N -.(1)若n S a 1=﹣1,p=1,①求4a 的值;②求数列{}n a 的前n 项和n S ;(2)若数列{}n a 中存在三项*,,,,(,)ar as at r s t r s t ∈<<N 依次成等差数列,求1a p的取值范围. 20.(本小题满分16分) 已知λ∈R ,函数()(ln 1)xf x e ex x x x λ=+﹣﹣﹣的导数为()g x . (1)求曲线()y f x =在1x =处的切线方程;g x存在极值,求λ的取值范围;(2)若函数()f x≥恒成立,求λ的最大值.(3)若1x≥时,()0。

2017年江苏省高考数学三模试卷

2017年江苏省高考数学三模试卷

2017年江苏省高考数学三模试卷一、填空题(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上).1.已知集合A={﹣1,0,1,2},B={1,2,3},则集合A∪B中所有元素之和是.2.已知复数z满足(1+2i)z=i,其中i为虚数单位,则复数z的虚部为.3.已知点M(﹣3,﹣1),若函数y=tan x(x∈(﹣2,2))的图象与直线y=1交于点A,则|MA|=.4.某人5次上班途中所花的时间(单位:分钟)分别为12,8,10,11,9,则这组数据的标准差为.5.执行如图所示的算法流程图,则输出的结果S的值为.6.在区间[﹣1,2]内随机取一个实数a,则关于x的方程x2﹣4ax+5a2+a=0有解的概率是.7.如图,在平面四边形ABCD中,若AC=3,BD=2,则=.8.如图,在直三棱柱ABC﹣A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,M是AA1的中点,则三棱锥A1﹣MBC1的体积为.9.已知函数f(x)=x|x﹣2|,则不等式f(2﹣ln(x+1))>f(3)的解集为.10.曲线f(x)=xlnx在点P(1,0)处的切线l与两坐标轴围成的三角形的面积是.11.设向量=(4sin x,1),=(cos x,﹣1)(ω>0),若函数f(x)=•+1在区间[﹣,]上单调递增,则实数ω的取值范围为.12.设函数f(x)=x+cosx,x∈(0,1),则满足不等式f(t2)>f(2t﹣1)的实数t的取值范围是.13.已知双曲线C:﹣=1(a>0,b>0)的右焦点为F,抛物线E:x2=4y的焦点B是双曲线虚轴上的一个顶点,若线段BF与双曲线C的右支交于点A,且=3,则双曲线C的离心率为.14.已知a,b,c,d∈R且满足==1,则(a﹣c)2+(b﹣d)2的最小值为.二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.如图,在△ABC中,已知点D在边AB上,AD=3DB,cosA=,cos∠ACB=,BC=13.(1)求cosB的值;(2)求CD的长.16.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若平面PAD⊥平面ABCD,求证:AE⊥EF.17.如图,在平面直角坐标系xOy中,已知椭圆C: +=1的左、右顶点分别为A,B,过右焦点F的直线l与椭圆C交于P,Q两点(点P在x轴上方).(1)若QF=2FP,求直线l的方程;(2)设直线AP,BQ的斜率分别为k1,k2,是否存在常数λ,使得k1=λk2?若存在,求出λ的值;若不存在,请说明理由.18.某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m且≥,设∠EOF=θ,透光区域的面积为S.(1)求S 关于θ的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边AB 的长度.19.已知两个无穷数列{a n }和{b n }的前n 项和分别为S n ,T n ,a 1=1,S 2=4,对任意的n ∈N *,都有3S n +1=2S n +S n +2+a n .(1)求数列{a n }的通项公式;(2)若{b n }为等差数列,对任意的n ∈N *,都有S n >T n .证明:a n >b n ;(3)若{b n }为等比数列,b 1=a 1,b 2=a 2,求满足=a k (k ∈N *)的n 值.20.已知函数f (x )=+xlnx (m >0),g (x )=lnx ﹣2.(1)当m=1时,求函数f (x )的单调区间;(2)设函数h (x )=f (x )﹣xg (x )﹣,x >0.若函数y=h (h (x ))的最小值是,求m 的值; (3)若函数f (x ),g (x )的定义域都是[1,e ],对于函数f (x )的图象上的任意一点A ,在函数g (x )的图象上都存在一点B ,使得OA ⊥OB ,其中e 是自然对数的底数,O 为坐标原点,求m 的取值范围.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲21.如图,圆O 的弦AB ,MN 交于点C ,且A 为弧MN 的中点,点D 在弧BM 上,若∠ACN=3∠ADB ,求∠ADB 的度数.B.选修4-2:矩阵与变换22.已知矩阵A=,若A=,求矩阵A的特征值.C.选修4-4:坐标系与参数方程23.在极坐标系中,已知点A(2,),点B在直线l:ρcosθ+ρsinθ=0(0≤θ≤2π)上,当线段AB最短时,求点B的极坐标.D.选修4-5:不等式选讲24.已知a,b,c为正实数,且a3+b3+c3=a2b2c2,求证:a+b+c≥3.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]25.在平面直角坐标系xOy中,点F(1,0),直线x=﹣1与动直线y=n的交点为M,线段MF的中垂线与动直线y=n的交点为P.(Ⅰ)求点P的轨迹Г的方程;(Ⅱ)过动点M作曲线Г的两条切线,切点分别为A,B,求证:∠AMB的大小为定值.[选修4-5:不等式选讲]26.已知集合U={1,2,…,n}(n∈N*,n≥2),对于集合U的两个非空子集A,B,若A∩B=∅,则称(A,B)为集合U的一组“互斥子集”.记集合U的所有“互斥子集”的组数为f(n)(视(A,B)与(B,A)为同一组“互斥子集”).(1)写出f(2),f(3),f(4)的值;(2)求f(n).2017年江苏省高考数学三模试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上).1.已知集合A={﹣1,0,1,2},B={1,2,3},则集合A∪B中所有元素之和是5.【考点】1D:并集及其运算.【分析】利用并集定义先求出A∪B,由此能求出集合A∪B中所有元素之和.【解答】解:∵集合A={﹣1,0,1,2},B={1,2,3},∴A∪B={﹣1,0,1,1,2,3},∴集合A∪B中所有元素之和是:﹣1+0+1+2+3=5.故答案为:5.2.已知复数z满足(1+2i)z=i,其中i为虚数单位,则复数z的虚部为.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的除法运算化为a+bi(a,b∈R)的形式,则答案可求【解答】解:∵(1+2i)z=i,∴z===+,∴复数z的虚部为.故答案为3.已知点M(﹣3,﹣1),若函数y=tan x(x∈(﹣2,2))的图象与直线y=1交于点A,则|MA|=2.【考点】HC:正切函数的图象.【分析】解方程求出函数y与直线y=1的交点A的横坐标,再求线段的长|MA|.【解答】解:令y=tan x=1,解得x=1+4k,k∈Z;又x∈(﹣2,2),∴x=1,∴函数y与直线y=1的交点为A(1,1);又M(﹣3,﹣1),∴|MA|==2.故答案为:2.4.某人5次上班途中所花的时间(单位:分钟)分别为12,8,10,11,9,则这组数据的标准差为.【考点】BC:极差、方差与标准差.【分析】利用定义求这组数据的平均数、方差和标准差即可.【解答】解:数据12,8,10,11,9的平均数为:=×(12+8+10+11+9)=10,方差为:s2=×[(12﹣10)2+(8﹣10)2+(10﹣10)2+(11﹣10)2+(9﹣10)2]=2;∴这组数据的标准差为s=.故答案为:.5.执行如图所示的算法流程图,则输出的结果S的值为﹣1.【考点】EF:程序框图.【分析】模拟执行程序,依次写出每次循环得到的S,n的值,当S=﹣1,n=2016时不满足条件n<2016,退出循环,输出S的值为﹣1,即可得解.【解答】解:输入s=0,n=1<2016,s=0,n=2<2016,s=﹣1,n=3<2016,s=﹣1,n=4<2016,s=0,n=5<2016,…,由2016=503×4+3得,输出s=﹣1,故答案为:﹣1.6.在区间[﹣1,2]内随机取一个实数a,则关于x的方程x2﹣4ax+5a2+a=0有解的概率是.【考点】CF:几何概型.【分析】根据几何概型计算公式,用符合题意的基本事件对应的区间长度除以所有基本事件对应的区间长度,即可得到所求的概率.【解答】解:∵关于x的方程x2﹣4ax+5a2+a=0有解,∴16a2﹣20a2﹣4a≥0,∴﹣1≤a≤0时方程有实根,∵在区间[﹣1,2]上任取一实数a,∴所求的概率为P==.故答案为:7.如图,在平面四边形ABCD中,若AC=3,BD=2,则= 5.【考点】9V:向量在几何中的应用.【分析】先利用向量的加法把转化为,再代入原题整理后即可求得结论.【解答】解:因为=(+)+(+)=+()=.∴()•()=()•()=﹣=32﹣22=5.故答案为58.如图,在直三棱柱ABC﹣A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,M是AA1的中点,则三棱锥A1﹣MBC1的体积为4.【考点】LF:棱柱、棱锥、棱台的体积.【分析】推导出A1C1⊥平面A1MB,从而三棱锥A1﹣MBC1的体积=,由此能求出结果.【解答】解:∵在直三棱柱ABC﹣A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,∴A1C1⊥AA1,AC2+AB2=BC2,∴A1C1⊥A1B1,∵AA 1∩A 1B 1=A 1,∴A 1C 1⊥平面A 1MB ,∵M 是AA 1的中点,∴===3,∴三棱锥A 1﹣MBC 1的体积:====4.故答案为:4.9.已知函数f (x )=x |x ﹣2|,则不等式f (2﹣ln (x +1))>f (3)的解集为 {x |﹣1<x <﹣1} .【考点】7E :其他不等式的解法.【分析】由题意,f (x )=,在(2,+∞)单调递增,x <2,f(x )max =1<f (3)=3.f (2﹣ln (x +1))>f (3)化为2﹣ln (x +1)>3,即可解不等式.【解答】解:由题意,f (x )=,在(2,+∞)单调递增,x <2,f (x )max =1<f (3)=3.∵f (2﹣ln (x +1))>f (3),∴2﹣ln (x +1)>3,∴ln (x +1)<﹣1,∴0<x +1<,∴﹣1<x <﹣1,∴不等式f (2﹣ln (x +1))>f (3)的解集为{x |﹣1<x <﹣1},故答案为{x |﹣1<x <﹣1}.10.曲线f (x )=xlnx 在点P (1,0)处的切线l 与两坐标轴围成的三角形的面积是.【考点】6H :利用导数研究曲线上某点切线方程.【分析】求出函数的导数,利用导数的几何意义求出切线的斜率,由点斜式方程可得切线方程,计算切线与坐标轴的交点坐标,即可得出三角形面积.【解答】解:f′(x)=lnx+x•=lnx+1,∴在点P(1,0)处的切线斜率为k=1,∴在点P(1,0)处的切线l为y﹣0=x﹣1,即y=x﹣1,∵y=x﹣1与坐标轴交于(0,﹣1),(1,0).∴切线y=x﹣1与坐标轴围成的三角形面积为S=×1×1=.故答案为:.11.设向量=(4sin x,1),=(cos x,﹣1)(ω>0),若函数f(x)=•+1在区间[﹣,]上单调递增,则实数ω的取值范围为(0,2] .【考点】9R:平面向量数量积的运算;GL:三角函数中的恒等变换应用.【分析】化简f(x)=sinωx,根据正弦函数的单调性得出f(x)的单调增区间,从而列出不等式解出ω的范围.【解答】解:f(x)=+1=2sin xcos x=sinωx,令﹣+2kπ≤ωx≤+2kπ,解得﹣+≤x≤+,k∈Z,∵ω>0,∴f(x)的一个单调增区间为[﹣,],∴,解得0<ω≤2.故答案为(0,2].12.设函数f(x)=x+cosx,x∈(0,1),则满足不等式f(t2)>f(2t﹣1)的实数t的取值范围是<t<1.【考点】3N:奇偶性与单调性的综合.【分析】求导,求导函数的单调性,将不等式转化为具体不等式,即可得出结论.【解答】解:∵f(x)=x+cosx,x∈(0,1),∴f′(x)=1﹣sinx>0,函数单调递增,∵f(t2)>f(2t﹣1),∴1>t2>2t﹣1>0,∴<t<1,故答案为<t<1.13.已知双曲线C:﹣=1(a>0,b>0)的右焦点为F,抛物线E:x2=4y 的焦点B是双曲线虚轴上的一个顶点,若线段BF与双曲线C的右支交于点A,且=3,则双曲线C的离心率为.【考点】KC:双曲线的简单性质.【分析】由题意可知b=1,求出A点坐标,代入双曲线方程化简即可得出a,c 的关系,从而得出离心率的值.【解答】解:F(c,0),B(0,1),∴b=1.设A(m,n),则=(m,n﹣1),=(c﹣m,﹣n),∵=3,∴,解得,即A(,),∵A在双曲线﹣y2=1的右支上,∴﹣=1,∴=.∴e==.故答案为:.14.已知a,b,c,d∈R且满足==1,则(a﹣c)2+(b﹣d)2的最小值为ln.【考点】4H:对数的运算性质.【分析】根据题意可将(a,b),(c,d)分别看成函数=x+3lnx与y=2x+3上任意一点,然后利用两点的距离公式,结合几何意义进行求解.【解答】解:因为==1,所以可将P:(a,b),Q:(c,d)分别看成函数y=x+3lnx与y=2x+3上任意一点,问题转化为曲线上的动点P与直线上的动点Q之间的最小值的平方问题,设M(t,t+3lnt)是曲线y=x+3lnx的切点,因为y′=1+,故点M处的切斜的斜率k=1+,由题意可得1+=2,解得t=3,也即当切线与已知直线y=2x+3平行时,此时切点M(3,3+3ln3)到已知直线y=2x+3的距离最近,最近距离d==,也即(a﹣c)2+(b﹣d)2==ln,故答案为:ln二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.如图,在△ABC中,已知点D在边AB上,AD=3DB,cosA=,cos∠ACB=,BC=13.(1)求cosB的值;(2)求CD的长.【考点】HT:三角形中的几何计算.【分析】(1)在△ABC中,求出sinA==.,sin∠ACB=.可得cosB=﹣cos(A+∠ACB)=sinAsin∠ACB﹣cosAcosB;(2)在△ABC中,由正弦定理得,AB=sin∠ACB.在△BCD中,由余弦定理得,CD=.【解答】解:(1)在△ABC中,cosA=,A∈(0,π),所以sinA==.同理可得,sin∠ACB=.所以cosB=cos[π﹣(A+∠ACB)]=﹣cos(A+∠ACB)=sinAsin∠ACB﹣cosAcos∠ACB=;(2)在△ABC中,由正弦定理得,AB=sin∠ACB=.又AD=3DB,所以DB=.在△BCD中,由余弦定理得,CD===9.16.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若平面PAD⊥平面ABCD,求证:AE⊥EF.【考点】LZ:平面与平面垂直的性质.【分析】(1)推导出AB∥CD,从而AB∥平面PDC,由此能证明AB∥EF.(2)推导出AB⊥AD,从而AB⊥平面PAD,进而AB⊥AF,由AB∥EF,能证明AF⊥EF.【解答】证明:(1)因为ABCD是矩形,所以AB∥CD.又因为AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC.又因为AB⊂平面ABEF,平面ABEF∩平面PDC=EF,所以AB∥EF.(2)因为ABCD是矩形,所以AB⊥AD.又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊂平面ABCD,所以AB⊥平面PAD.又AF⊂平面PAD,所以AB⊥AF.又由(1)知AB∥EF,所以AF⊥EF.17.如图,在平面直角坐标系xOy中,已知椭圆C: +=1的左、右顶点分别为A,B,过右焦点F的直线l与椭圆C交于P,Q两点(点P在x轴上方).(1)若QF=2FP,求直线l的方程;(2)设直线AP,BQ的斜率分别为k1,k2,是否存在常数λ,使得k1=λk2?若存在,求出λ的值;若不存在,请说明理由.【考点】KL:直线与椭圆的位置关系.【分析】(1)由椭圆方程求出a,b,c,可得F的坐标,设P(x1,y1),Q(x2,y2),直线l的方程为x=my+1,代入椭圆方程,求得P,Q的纵坐标,再由向量共线的坐标表示,可得m的方程,解方程可得m,进而得到直线l的方程;(2)运用韦达定理可得y1+y2,y1y2,my1y2,由A(﹣2,0),B(2,0),P(x1,y1),Q(x2,y2),x1=my1+1,x2=my2+1,运用直线的斜率公式,化简整理计算可得常数λ的值,即可判断存在.【解答】解:(1)因为a2=4,b2=3,所以c==1,所以F的坐标为(1,0),设P(x1,y1),Q(x2,y2),直线l的方程为x=my+1,代入椭圆方程+=1,得(4+3m2)y2+6my﹣9=0,则y1=,y2=.若QF=2FP,即=2,则+2•=0,解得m=,故直线l的方程为x﹣2y﹣=0.(2)由(1)知,y1+y2=﹣,y1y2=﹣,所以my1y2=﹣=(y1+y2),由A(﹣2,0),B(2,0),P(x1,y1),Q(x2,y2),x1=my1+1,x2=my2+1,所以=•===,故存在常数λ=,使得k1=k2.18.某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m且≥,设∠EOF=θ,透光区域的面积为S.(1)求S关于θ的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边AB的长度.【考点】HN:在实际问题中建立三角函数模型.【分析】(1)过点O作OH⊥FG于H,写出透光面积S关于θ的解析式S,并求出θ的取值范围;(2)计算透光区域与矩形窗面的面积比值,构造函数,利用导数判断函数的单调性,求出比值最大时对应边AB的长度.【解答】解:(1)过点O作OH⊥FG于H,∴∠OFH=∠EOF=θ;又OH=OFsinθ=sinθ, FH=OFco sθ=cosθ,∴S=4S △OFH +4S 阴影OEF =2sinθcosθ+4×θ=sin2θ+2θ;∵≥,∴sinθ≥,∴θ∈[,);∴S 关于θ的函数关系式为S=sin2θ+2θ,θ∈[,);(2)由S 矩形=AD•AB=2×2sinθ=4sinθ,∴=+,设f (θ)=+,θ∈[,),则f′(θ)=﹣sinθ+===;∵≤θ<,∴sin2θ≤,∴sin2θ﹣θ<0, ∴f′(θ)<0,∴f (θ)在θ∈[,)上是单调减函数;∴当θ=时f (θ)取得最大值为+,此时AB=2sinθ=1(m );∴S 关于θ的函数为S=sin2θ+2θ,θ∈[,);所求AB 的长度为1m .19.已知两个无穷数列{a n }和{b n }的前n 项和分别为S n ,T n ,a 1=1,S 2=4,对任意的n ∈N *,都有3S n +1=2S n +S n +2+a n . (1)求数列{a n }的通项公式;(2)若{b n }为等差数列,对任意的n ∈N *,都有S n >T n .证明:a n >b n ;(3)若{b n }为等比数列,b 1=a 1,b 2=a 2,求满足=a k (k ∈N *)的n 值.【考点】8E :数列的求和;8H :数列递推式.【分析】(1)运用数列的递推式和等差数列的定义和通项公式,即可得到所求;(2)方法一、设数列{b n }的公差为d ,求出S n ,T n .由恒成立思想可得b 1<1,求出a n ﹣b n ,判断符号即可得证;方法二、运用反证法证明,设{b n }的公差为d ,假设存在自然数n 0≥2,使得a≤b,推理可得d >2,作差T n ﹣S n ,推出大于0,即可得证;(3)运用等差数列和等比数列的求和公式,求得S n ,T n ,化简,推出小于3,结合等差数列的通项公式和数列的单调性,即可得到所求值. 【解答】解:(1)由3S n +1=2S n +S n +2+a n ,得2(S n +1﹣S n )=S n +2﹣S n +1+a n , 即2a n +1=a n +2+a n ,所以a n +2﹣a n +1=a n +1﹣a n . 由a 1=1,S 2=4,可知a 2=3.所以数列{a n }是以1为首项,2为公差的等差数列. 故{a n }的通项公式为a n =1+2(n ﹣1)=2n ﹣1,n ∈N*. (2)证法一:设数列{b n }的公差为d ,则T n =nb 1+n (n ﹣1)d ,由(1)知,S n =n (1+2n ﹣1)=n 2.因为S n >T n ,所以n 2>nb 1+n (n ﹣1)d , 即(2﹣d )n +d ﹣2b 1>0恒成立,所以,即,又由S 1>T 1,得b 1<1,所以a n ﹣b n =2n ﹣1﹣b 1﹣(n ﹣1)d=(2﹣d )n +d ﹣1﹣b 1≥2﹣d +d ﹣1﹣b 1=1﹣b 1>0.所以a n >b n ,得证.证法二:设{b n }的公差为d ,假设存在自然数n 0≥2,使得a ≤b , 则a 1+2(n 0﹣1)≤b 1+(n 0﹣1)d ,即a 1﹣b 1≤(n 0﹣1)(d ﹣2),因为a 1>b 1,所以d >2.所以T n ﹣S n =nb 1+n (n ﹣1)d ﹣n 2=(d ﹣1)n 2+(b 1﹣d )n ,因为d ﹣1>0,所以存在N ∈N*,当n >N 时,T n ﹣S n >0恒成立. 这与“对任意的n ∈N *,都有S n >T n ”矛盾!所以a n >b n ,得证.(3)由(1)知,S n =n 2.因为{b n }为等比数列,且b 1=1,b 2=3,所以{b n }是以1为首项,3为公比的等比数列.所以b n =3n ﹣1,T n =(3n ﹣1).则===3﹣,因为n ∈N*,所以6n 2﹣2n +2>0,所以<3.而a k =2k ﹣1,所以=1,即3n ﹣1﹣n 2+n ﹣1=0(*).当n=1,2时,(*)式成立;当n ≥2时,设f (n )=3n ﹣1﹣n 2+n ﹣1,则f (n +1)﹣f (n )=3n ﹣(n +1)2+n ﹣(3n ﹣1﹣n 2+n ﹣1)=2(3n ﹣1﹣n )>0, 所以0=f (2)<f (3)<…<f (n )<…,故满足条件的n 的值为1和2.20.已知函数f(x)=+xlnx(m>0),g(x)=lnx﹣2.(1)当m=1时,求函数f(x)的单调区间;(2)设函数h(x)=f(x)﹣xg(x)﹣,x>0.若函数y=h(h(x))的最小值是,求m的值;(3)若函数f(x),g(x)的定义域都是[1,e],对于函数f(x)的图象上的任意一点A,在函数g(x)的图象上都存在一点B,使得OA⊥OB,其中e是自然对数的底数,O为坐标原点,求m的取值范围.【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)求出h(x)的导数,解关于导函数的不等式,求出函数的单调区间,求出h(x)的最小值,从而求出m的值即可;(3)根据OA和OB的关系,问题转化为﹣x2lnx≤m≤x2(e﹣lnx)在[1,e]上恒成立,设p(x)=﹣x2lnx,根据函数的单调性求出m≥p(1)=,设q (x)=x2(e﹣lnx),根据函数的单调性求出m≤q(1),从而求出m的范围即可.【解答】解:(1)当m=1时,f(x)=+xlnx,f′(x)=+lnx+1,因为f′(x)在(0,+∞)上单调增,且f′(1)=0,所以当x>1时,f′(x)>0;当0<x<1时,f′(x)<0,所以函数f(x)的单调增区间是(1,+∞).(2)h(x)=+2x﹣,则h′(x)=,令h′(x)=0,得x=,当0<x<时,h′(x)<0,函数h(x)在(0,)上单调减;当x>时,h′(x)>0,函数h(x)在(,+∞)上单调增.所以[h(x)]min=h()=2m﹣,①当(2m﹣1)≥,即m≥时,函数y=h(h(x))的最小值h(2m﹣)= [+2(2﹣1)﹣1]=,即17m﹣26+9=0,解得=1或=(舍),所以m=1;②当0<(2﹣1)<,即<m<时,函数y=h(h(x))的最小值h()=(2﹣1)=,解得=(舍),综上所述,m的值为1.(3)由题意知,K OA=+lnx,K OB=,考虑函数y=,因为y′=在[1,e]上恒成立,所以函数y=在[1,e]上单调增,故K OB∈[﹣2,﹣],所以K OA∈[,e],即≤+lnx≤e在[1,e]上恒成立,即﹣x2lnx≤m≤x2(e﹣lnx)在[1,e]上恒成立,设p(x)=﹣x2lnx,则p′(x)=﹣2lnx≤0在[1,e]上恒成立,所以p(x)在[1,e]上单调减,所以m≥p(1)=,设q(x)=x2(e﹣lnx),则q′(x)=x(2e﹣1﹣2lnx)≥x(2e﹣1﹣2lne)>0在[1,e]上恒成立,所以q(x)在[1,e]上单调增,所以m≤q(1)=e,综上所述,m的取值范围为[,e].【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲21.如图,圆O的弦AB,MN交于点C,且A为弧MN的中点,点D在弧BM 上,若∠ACN=3∠ADB,求∠ADB的度数.【考点】NB:弦切角.【分析】连结AN,DN.利用圆周角定理,结合∠ACN=3∠ADB,求∠ADB的度数.【解答】解:连结AN,DN.因为A为弧MN的中点,所以∠ANM=∠ADN.而∠NAB=∠NDB,所以∠ANM+∠NAB=∠ADN+∠NDB,即∠BCN=∠ADB.又因为∠ACN=3∠ADB,所以∠ACN+∠BCN=3∠ADB+∠ADB=180°,故∠ADB=45°.B.选修4-2:矩阵与变换22.已知矩阵A=,若A=,求矩阵A的特征值.【考点】OV:特征值与特征向量的计算.【分析】利用矩阵的乘法,求出a,d,利用矩阵A的特征多项式为0,求出矩阵A的特征值.【解答】解:因为A==,所以,解得a=2,d=1.所以矩阵A的特征多项式为f(λ)==(λ﹣2)(λ﹣1)﹣6=(λ﹣4)(λ+1),令f(λ)=0,解得矩阵A的特征值为λ=4或﹣1.C.选修4-4:坐标系与参数方程23.在极坐标系中,已知点A(2,),点B在直线l:ρcosθ+ρsinθ=0(0≤θ≤2π)上,当线段AB最短时,求点B的极坐标.【考点】Q4:简单曲线的极坐标方程.【分析】点A(2,)的直角坐标为(0,2),直线l的直角坐标方程为x+y=0.AB 最短时,点B为直线x﹣y+2=0与直线l的交点,求出交点,进而得出.【解答】解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,则点A(2,)的直角坐标为(0,2),直线l的直角坐标方程为x+y=0.AB最短时,点B为直线x﹣y+2=0与直线l的交点,联立,得,所以点B的直角坐标为(﹣1,1).所以点B的极坐标为.D.选修4-5:不等式选讲24.已知a,b,c为正实数,且a3+b3+c3=a2b2c2,求证:a+b+c≥3.【考点】R6:不等式的证明.【分析】利用基本不等式的性质进行证明.【解答】证明:∵a3+b3+c3=a2b2c2,a3+b3+c3≥3abc,∴a2b2c2≥3abc,∴abc≥3,∴a+b+c≥3≥3.当且仅当a=b=c=时,取“=”.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]25.在平面直角坐标系xOy中,点F(1,0),直线x=﹣1与动直线y=n的交点为M,线段MF的中垂线与动直线y=n的交点为P.(Ⅰ)求点P的轨迹Г的方程;(Ⅱ)过动点M作曲线Г的两条切线,切点分别为A,B,求证:∠AMB的大小为定值.【考点】K8:抛物线的简单性质.【分析】(Ⅰ)连接PF,运用中垂线的性质可得|MP|=|PF|,再由抛物线的定义可得点P的轨迹方程;(Ⅱ)求得M(﹣1,n),过点M的切线斜率存在,设为k,则切线方程为:y ﹣n=k(x+1),联立抛物线的方程,消去y,运用相切的条件:判别式为0,再由韦达定理,结合两直线垂直的条件:斜率之积为﹣1,即可得证.【解答】解:(Ⅰ)据题意,MP⊥直线x=﹣1,∴|MP|为点P到直线x=﹣1的距离,连接PF,∵P为线段MF的中垂线与直线y=n的交点,∴|MP|=|PF|,∴P点的轨迹是抛物线,焦点为F(1,0),准线为直线x=﹣1,∴曲线Г的方程为y2=4x;(Ⅱ)证明:据题意,M(﹣1,n),过点M的切线斜率存在,设为k,则切线方程为:y﹣n=k(x+1),联立抛物线方程可得ky2﹣4y+4k+4n=0,由直线和抛物线相切,可得△=16﹣4k(4k+4n)=0,即k2+kn﹣1=0,(*)∵△=n2+4>0,∴方程(*)存在两个不等实根,设为k1,k2,∵k1=k AM,k2=k BM,由方程(*)可知,k AM•k BM=k1•k2=﹣1,∴切线AM⊥BM,∴∠AMB=90°,结论得证.[选修4-5:不等式选讲]26.已知集合U={1,2,…,n}(n∈N*,n≥2),对于集合U的两个非空子集A,B,若A∩B=∅,则称(A,B)为集合U的一组“互斥子集”.记集合U的所有“互斥子集”的组数为f(n)(视(A,B)与(B,A)为同一组“互斥子集”).(1)写出f(2),f(3),f(4)的值;(2)求f(n).【考点】1H:交、并、补集的混合运算.【分析】(1)直接由“互斥子集”的概念求得f(2),f(3),f(4)的值;(2)由题意,任意一个元素只能在集合A,B,C=C U(A∪B)之一中,求出这n个元素在集合A,B,C中的个数,再求出A、B分别为空集的种数,则f(n)可求.【解答】解:(1)f(2)=1,f(3)=6,f(4)=25;(2)任意一个元素只能在集合A,B,C=C U(A∪B)之一中,则这n个元素在集合A,B,C中,共有3n种;其中A为空集的种数为2n,B为空集的种数为2n,∴A,B均为非空子集的种数为3n﹣2n+1+1,又(A,B)与(B,A)为一组“互斥子集”,∴f(n)=.2017年5月24日。

江苏省南京市2017届高三三模数学试卷(含解析)

江苏省南京市2017届高三三模数学试卷(含解析)

2017年江苏省南京市高考数学三模试卷一、填空题:(本大题共14小题,每小题5分,共70分)1.已知全集U={1,2,3,4},集合A={1,4},B={3,4},则∁U(A∪B)= .2.甲盒子中有编号分别为1,2的两个乒乓球,乙盒子中有编号分别为3,4,5,6的四个乒乓球.现分别从两个盒子中随机地各取出1个乒乓球,则取出的乒乓球的编号之和大于6的概率为.3.若复数z满足,其中i为虚数单位,为复数z的共轭复数,则复数z的模为.4.执行如图所示的伪代码,若输出的y值为1,则输入x的值为.5.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为.6.在同一直角坐标系中,函数的图象和直线y=的交点的个数是.7.在平面直角坐标系xoy中,双曲线的焦距为6,则所有满足条件的实数m 构成的集合是.8.已知函数f(x)是定义在R上且周期为4的偶函数,当x∈[2,4]时,,则的值为.9.若等比数列{a n}的各项均为正数,且a3﹣a1=2,则a5的最小值为.10.如图,在直三棱柱ABC﹣A1B1C1中,AB=1,BC=2,BB1=3,∠ABC=90°,点D为侧棱BB1上的动点,当AD+DC1最小时,三棱锥D﹣ABC1的体积为.11.函数f(x)=e x(﹣x2+2x+a)在区间[a,a+1]上单调递增,则实数a的最大值为.12.在凸四边形ABCD中,BD=2,且,,则四边形ABCD 的面积为.13.在平面直角坐标系xoy中,圆O:x2+y2=1,圆M:(x+a+1)2+(y﹣2a)2=1(a为实数).若圆O和圆M上分别存在点P,Q,使得∠OQP=30°,则a的取值范围为.14.已知a,b,c为正实数,且,则的取值范围为.二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程. 15.(14分)如图,在三棱锥A﹣BCD中,E,F分别为BC,CD上的点,且BD∥平面AEF.(1)求证:EF∥平ABD面;(2)若AE⊥平面BCD,BD⊥CD,求证:平面AEF⊥平面ACD.16.(14分)已知向量为实数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京市2017届高三年级第三次模拟考试数 学 2017.05注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校写在答题卡上.试题的答案写在答题卡...上对应题目的答案空格内.考试结束后,交回答题卡. 参考公式:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数. 柱体的体积公式:V =Sh ,其中S 为柱体的底面积,h 为柱体的高. 锥体的体积公式:V =13Sh ,其中S 为锥体的底面积,h 为锥体的高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上. 1.已知全集U ={1,2,3,4},集合A ={1,4},B ={3,4},则∁U(A ∪B )= ▲ .2.甲盒子中有编号分别为1,2的2个乒乓球,乙盒子中有编号分别为3,4,5,6的4个乒乓球.现分别从两个盒子中随机地各取出1个乒乓球,则取出的乒乓球的编号之和大于6的概率为 ▲ . 3.若复数z 满足z +2-z =3+2i ,其中i 为虚数单位,-z 为 复数z 的共轭复数,则复数z 的模为 ▲ . 4.执行如图所示的伪代码,若输出y 的值为1, 则输入x 的值为 ▲ .5的那名运动员的得分的方差为 ▲ .6.在同一直角坐标系中,函数y =sin(x +π3) (x ∈[0,2π])的图象和直线y =12 的交点的个数是 ▲ .7.在平面直角坐标系xOy 中,双曲线x 22m 2-y 23m =1的焦距为6,则所有满足条件的实数m 构成的集合是▲ .8.已知函数f (x )是定义在R 上且周期为4的偶函数.当x ∈[2,4]时,f (x )=|l o g 4(x -32)|,则f (12)的值为 ▲ .9.若等比数列{a n }的各项均为正数,且a 3-a 1=2,则a 5的最小值为 ▲ .10.如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,BB 1=3,∠ABC =90°,点D 为侧棱BB 1上的动点.当AD +DC 1最小时,三棱锥D -ABC 1的体积为 ▲ .11.若函数f (x )=e x (-x 2+2x +a )在区间[a ,a +1]上单调递增,则实数a 的最大值为 ▲ .12.在凸四边形ABCD 中, BD =2,且AC →·BD →=0,(AB →+→DC )•(→BC +→AD )=5,则四边形ABCD 的面积为 ▲ . 13. 在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆M :(x +a +3)2+(y -2a )2=1(a 为实数).若圆O 与圆M 上分别存在点P ,Q ,使得∠OQP =30 ,则a 的取值范围为 ▲ .14.已知a ,b ,c 为正实数,且a +2b ≤8c ,2a +3b ≤2c ,则3a +8b c的取值范围为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)如图,在三棱锥A -BCD 中,E ,F 分别为棱BC ,CD 上的点,且BD ∥平面AEF . (1)求证:EF ∥平面ABD ;(2)若BD ⊥CD ,AE ⊥平面BCD ,求证:平面AEF ⊥平面ACD .7 7 9 0 8 94 8 1 0 35 甲 乙 (第5题图)(第4题图)ACB A 1B 1C 1D(第10题图)ABCFED(第15题图)16.(本小题满分14分)已知向量a =(2cos α,sin 2α),b =(2sin α,t ),α∈(0,π2). (1)若a -b =(25,0),求t 的值;(2)若t =1,且a • b =1,求tan(2α+π4)的值.17.(本小题满分14分)在一水域上建一个演艺广场.演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC ,及矩形表演台BCDE 四个部分构成(如图).看台Ⅰ,看台Ⅱ是分别以AB ,AC 为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍;矩形表演台BCDE 中,CD =10米;三角形水域ABC 的面积为4003平方米.设∠BAC =θ.(1)求BC 的长(用含θ的式子表示);(2)若表演台每平方米的造价为0.3万元,求表演台的最低造价.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点和上顶点分别为A ,B ,M 为线段AB 的中点,且OM →·AB →=-32b 2.(1)求椭圆的离心率;(2)已知a =2,四边形ABCD 内接于椭圆,AB ∥DC .记直线AD ,BC 的斜率分别为k 1,k 2,求证:k 1·k 2为定值.19.(本小题满分16分)已知常数p >0,数列{a n }满足a n +1=|p -a n |+2 a n +p ,n ∈N *. (1)若a 1=-1,p =1,①求a 4的值;②求数列{a n }的前n 项和S n .(2)若数列{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列,求a 1p的取值范围.20.(本小题满分16分)已知λ∈R ,函数f (x )=e x -e x -λ(x ln x -x +1)的导函数为g (x ). (1)求曲线y =f (x )在x =1处的切线方程; (2)若函数g (x )存在极值,求λ的取值范围; (3)若x ≥1时,f (x )≥0恒成立,求λ的最大值.(第17题图)(第18题图)南京市2017届高三第三次模拟考试数学参考答案及评分标准一、填空题(本大题共14小题,每小题5分,计70分.)1.{2} 2.383. 5 4.-1 5.6.8 6.27.{32} 8.12 9.8 10.13 11.-1+52 12.313.[-65,0] 14.[27,30]二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤) 15.(本小题满分14分) 证明:(1)因为BD ∥平面AEF ,BD ⊂平面BCD ,平面AEF ∩平面BCD =EF ,所以 BD ∥EF . …………………… 3分 因为BD ⊂平面ABD ,EF ⊄平面ABD ,所以 EF ∥平面ABD . …………………… 6分 (2)因为AE ⊥平面BCD ,CD ⊂平面BCD ,所以 AE ⊥CD . …………………… 8分 因为 BD ⊥CD ,BD ∥EF ,所以 CD ⊥EF , …………………… 10分 又 AE ∩EF =E ,AE ⊂平面AEF ,EF ⊂平面AEF ,所以 CD ⊥平面AEF . …………………… 12分 又 CD ⊂平面ACD ,所以 平面AEF ⊥平面ACD . …………………… 14分16.(本小题满分14分) 解:(1)因为向量a =(2cos α,sin 2α),b =(2sin α,t ),且a -b =(25,0),所以cos α-sin α=15,t =sin 2α. …………………… 2分由cos α-sin α=15 得 (cos α-sin α)2=125,即1-2sin αcos α=125,从而2sin αcos α=2425.所以(cos α+sin α)2=1+2sin αcos α=4925.因为α∈(0,π2),所以cos α+sin α=75. …………………… 5分所以sin α=(cos α+sin α)-(cos α-sin α)2=35,从而t =sin 2α=925. …………………… 7分(2)因为t =1,且a • b =1,所以4sin αcos α+sin 2α=1,即4sin αcos α=cos 2α.因为α∈(0,π2),所以cos α≠0,从而tan α=14. …………………… 9分所以tan2α=2tan α1-tan 2α=815. …………………… 11分 从而tan(2α+π4)=tan2α+tanπ41-tan2α·tan π4=815+11-815=237. …………………… 14分17.(本小题满分14分)解:(1)因为看台Ⅰ的面积是看台Ⅱ的面积的3倍,所以AB =3AC .在△ABC 中,S △ABC =12AB •AC •sin θ=4003,所以AC 2=800sin θ . …………………… 3分由余弦定理可得BC 2=AB 2+AC 2-2AB •AC •cos θ,=4AC 2-23AC 2 cos θ. =(4-23cos θ)800sin θ, 即BC =(4-23cos θ)•800sin θ=402-3cos θsin θ.所以 BC =402-3cos θsin θ,θ∈(0,π). …………………… 7分(2)设表演台的总造价为W 万元.因为CD =10m ,表演台每平方米的造价为0.3万元,所以W =3BC =1202-3cos θsin θ,θ∈(0,π). …………………… 9分记f (θ)=2-3cos θsin θ,θ∈(0,π).则f ′(θ)=3-2cos θsin 2θ. …………………… 11分由f ′(θ)=0,解得θ=π6.当θ∈(0,π6)时,f ′(θ)<0;当θ∈(π6,π)时,f ′(θ)>0.故f (θ)在(0,π6)上单调递减,在(π6,π)上单调递增,从而当θ=π6 时,f (θ)取得最小值,最小值为f (π6)=1.所以W min =120(万元).答:表演台的最低造价为120万元. …………………… 14分18.(本小题满分16分)解:(1)A (a ,0),B (0,b ),由M 为线段AB 的中点得M (a 2,b2).所以OM →=(a 2,b 2),AB →=(-a ,b ).因为OM →·AB →=-32b 2,所以(a 2,b 2)·(-a ,b )=-a 22+b 22=-32b 2,整理得a 2=4b 2,即a =2b . …………………… 3分 因为a 2=b 2+c 2,所以3a 2=4c 2,即3a =2c .所以椭圆的离心率e =c a =32. …………………… 5分(2)方法一:由a =2得b =1,故椭圆方程为x 24+y 2=1.从而A (2,0),B (0,1),直线AB 的斜率为-12. …………………… 7分因为AB ∥DC ,故可设DC 的方程为y =-12x +m .设D (x 1,y 1),C (x 2,y 2).联立⎩⎨⎧y =-12x +m ,x 24+y 2=1,消去y ,得x 2-2mx +2m 2-2=0,所以x 1+x 2=2m ,从而x 1=2m -x 2. ……………………… 9分直线AD 的斜率k 1=y 1x 1-2=-12x 1+m x 1-2,直线BC 的斜率k 2=y 2-1x 2=-12x 2+m -1x 2,……………………… 11分所以k 1·k 2=-12x 1+m x 1-2·-12x 2+m -1x 2=14x 1x 2-12(m -1)x 1-12mx 2+m (m -1)(x 1-2)x 2=14x 1x 2-12m (x 1+x 2)+12x 1+m (m -1)x 1x 2-2x 2=14x 1x 2-12m ·2m +12(2m -x 2)+m (m -1)x 1x 2-2x 2=14x 1x 2-12x 2x 1x 2-2x 2=14, 即k 1·k 2为定值14. ………………………16分方法二:由a =2得b =1,故椭圆方程为x 24+y 2=1.从而A (2,0),B (0,1),直线AB 的斜率为-12. …………………… 7分设C (x 0,y 0),则x 024+y 02=1.因为AB ∥CD ,故CD 的方程为y =-12(x -x 0)+y 0.联立⎩⎨⎧y =-12(x -x 0)+y 0,x 24+y 2=1,消去y ,得x 2-(x 0+2y 0)x +2x 0y 0=0,解得x =x 0(舍去)或x =2y 0.所以点D 的坐标为(2y 0,12x 0). ……………………… 13分所以k 1·k 2=12x 02y 0-2·y 0-1x 0=14,即k 1·k 2为定值14. ……………………… 16分19.(本小题满分16分)解:(1)因为p =1,所以a n +1=|1-a n |+2 a n +1. ① 因为 a 1=-1,所以a 2=|1-a 1|+2 a 1+1=1, a 3=|1-a 2|+2 a 2+1=3,a 4=|1-a 3|+2 a 3+1=9. …………………………… 3分 ② 因为a 2=1,a n +1=|1-a n |+2 a n +1, 所以当n ≥2时,a n ≥1,从而a n +1=|1-a n |+2 a n +1=a n -1+2 a n +1=3a n ,于是有 a n =3n -2(n ≥2) . …………………………… 5分 当n =1时,S 1=-1;当n ≥2时,S n =-1+a 2+a 3+…+a n =-1+1-3n -11-3=3n -1-32 .所以 S n =⎩⎪⎨⎪⎧1,n =1,3n -1-32,n ≥2,n ∈N *, 即S n =3n -1-32,n ∈N *. ………………………… 8分(2)因为a n +1-a n =|p -a n |+a n +p ≥p -a n +a n +p =2 p >0,所以a n +1>a n ,即{a n }单调递增. ………………………… 10分 (i )当a 1p≥1时,有a 1≥p ,于是a n ≥a 1≥p ,所以a n +1=|p -a n |+2 a n +p =a n -p +2 a n +p =3a n ,所以a n =3n -1a 1.若{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列,则有2 a s =a r +a t , 即2×3s -1=3r -1+3t -1. (*)因为s ≤t -1,所以2×3s -1=23×3s <3t -1<3r -1+3t -1,即(*)不成立.故此时数列{a n }中不存在三项依次成等差数列. ……………………… 12分 (ii )当-1<a 1p<1时,有-p <a 1<p .此时a 2=|p -a 1|+2 a 1+p =p -a 1+2 a 1+p =a 1+2 p >p , 于是当n ≥2时,a n ≥a 2>p ,从而a n +1=|p -a n |+2 a n +p =a n -p +2 a n +p =3a n .所以a n =3n -2a 2=3n -2(a 1+2p ) (n ≥2).若{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列, 同(i )可知,r =1,于是有2×3s -2(a 1+2 p )=a 1+3t -2(a 1+2p ). 因为2≤s ≤t -1,所以a 1 a 1+2 p =2×3s -2-3t -2=29×3s -13×3t -1<0.因为2×3s -2-3t-2是整数,所以a 1a 1+2 p≤-1,于是a 1≤-a 1-2p ,即a 1≤-p ,与-p <a 1<p 相矛盾.故此时数列{a n }中不存在三项依次成等差数列. ………………… 14分 (iii )当a 1p ≤-1时,则有a 1≤-p <p ,a 1+p ≤0,于是a 2=| p -a 1|+2a 1+p =p -a 1+2 a 1+p =a 1+2p ,a 3=|p -a 2|+2a 2+p =|p +a 1|+2a 1+5p =-p -a 1+2a 1+5p =a 1+4p , 此时有a 1,a 2,a 3成等差数列.综上可知:a 1p ≤-1. ……………………………… 16分20.(本小题满分16分) 解:(1)因为f ′(x )=e x -e -λln x ,所以曲线y =f (x )在x =1处的切线的斜率为f ′(1)=0, 又切点为(1,f (1)),即(1,0),所以切线方程为y =0. ………………………… 2分 (2)g (x )=e x -e -λln x ,g ′(x )=e x -λx.当λ≤0时,g ′(x )>0恒成立,从而g (x )在(0,+∞)上单调递增,故此时g (x )无极值. ………………………… 4分 当λ>0时,设h (x )=e x -λx ,则h ′(x )=e x +λx2>0恒成立,所以h (x )在(0,+∞)上单调递增. ………………………… 6分 ①当0<λ<e 时,h (1)=e -λ>0,h (λe)=e λe -e <0,且h (x )是(0,+∞)上的连续函数, 因此存在唯一的x 0∈(λe ,1),使得h (x 0)=0.②当λ≥e 时,h (1)=e -λ≤0,h (λ)=e λ-1>0,且h (x )是(0,+∞)上的连续函数, 因此存在唯一的x 0∈[1,λ),使得h (x 0)=0.故当λ>0时,存在唯一的x 0>0,使得h (x 0)=0. …………………… 8分 且当0<x <x 0时,h (x )<0,即g ′(x )<0,当x >x 0时,h (x )>0,即g ′(x )>0, 所以g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 因此g (x )在x =x 0处有极小值.所以当函数g (x )存在极值时,λ的取值范围是(0,+∞). …………………… 10分 (3)g (x )=f ′(x )=e x -e -λln x ,g ′(x )=e x -λx .若g ′(x )≥0恒成立,则有λ≤x e x 恒成立.设φ(x )=x e x (x ≥1),则φ′(x )=(x +1) e x >0恒成立, 所以φ(x )单调递增,从而φ(x )≥φ(1)=e ,即λ≤e . 于是当λ≤e 时,g (x )在[1,+∞)上单调递增,此时g (x )≥g (1)=0,即f ′(x )≥0,从而f (x )在[1,+∞)上单调递增.所以f (x )≥f (1)=0恒成立. …………………………… 13分 当λ>e 时,由(2)知,存在x 0∈(1,λ),使得g (x )在(0,x 0)上单调递减, 即f ′(x )在(0,x 0)上单调递减. 所以当1<x <x 0时,f ′(x )<f ′(1)=0,于是f (x )在[1,x 0)上单调递减,所以f (x 0)<f (1)=0. 这与x ≥1时,f (x )≥0恒成立矛盾.因此λ≤e ,即λ的最大值为e . …………………………… 16分。

相关文档
最新文档