Clark变换系数说明
Clark变换与Park变换
当P = 时,坐标变换前后电压空间矢量幅值不变;
当P = 时,坐标变换前后电机功率不变。 推导过程: ①恒功率变换
iα = i − 0.5i − 0.5i
幅值: 1 + + = 倍
√3 √3 iβ = 2 i − 2 i
=>k ∗
= 1 => k =
②等幅值变换 在复平面上的矢量V⃗总能用互差 120 度的 abc 三轴系中的分量 xa、 xb、xc 等效表示(a 轴与复平面实轴重合),如下所示(x⃗和x⃗ 将 合成矢量V⃗)。 x⃗ = k(x + ρx + ρ x )``````````````(1) x⃗ = k (x + x + x )``````````````` (2) 其中,ρ = e = − + j √ 、ρ = e = e = − − j √ ;x⃗ 的 方向与复平面的实轴方向一致。所以有式(2)可以表示为 x = k (x + x + x )````````````````(3) 写出式(1)的实部与虚部如下: R {x⃗} = k x − x − x = k x − (x + x ) ```````(4) I {x⃗} = k √ (x − x )``````````````````````````````````````````(5) 由式(3)可得: x + x = − x ```````````````````````````````````````````````(6) 将(6)代入式(4)中可得: R {x⃗} = k x − − x = 1.5kx − 0.5 ````````` (7) 等幅值变换时,规定x = R {x⃗} + x ,所以有: R {x⃗} = x − x `````````````````````````````````````````````````(8) 将(8)代入式(7)中可得: 1.5kx − 0.5 = x − x ````````````````````````````````````(9)
Clarke变换中系数槡_2_3_1_2_的推导_白钧生
阵; I 为单 位矩 阵; z、 z' 分 别为 阻抗 矩 阵; u, u' , i,i' 分别为 电 压、 电流 列 或行 矩 阵; 同 时 依 矩 阵 运
-1 算法则有: C C = I; ( Ci' ) T
= i T ' C T ; ( kC)
T
= kC T ;
( 12 )
u = Cu' ,则有 u' = C - 1 u。
[ ]
7期
2 / 3 的推导 白钧生等: Clarke 变换中系数 槡
· 81 ·
C=
槡
1 2 0 3 1 槡 2 1 2 - 1 3 2 1 - 2
-
1 2 3 槡 2 1 2 槡 0
-
1 2 3 -槡 2 1 2 槡
0
引
言
1
坐标变换数学理论基础
矢量坐标变换必须要遵循如下原则: ( 1 ) 应遵循变换前后电流所产生的旋转磁场等效 ( 2 ) 应遵循变换前后两系统的电动机功率不变 将原来坐标 下 的电 压 u 和 电流 i 变 换为 新 坐 标
永磁交流伺服 电动机的定子磁 场 由 定子的 三相 绕组的磁势( 或磁动 势 ) 产生 的, 根据 电动机 旋 转 磁 场理论可知,向对称 的 三相 绕组中 通以 对称 的 三相 正弦电流时, 就 会 产生合 成 磁 势, 它 是 一 个 在 空 间 以 ω 速度旋转的 空 间 矢 量。 如果 用 磁 势 或电流 空 间 矢量来描述等 效 的 三相 磁 场、 两 相 磁 场和 旋 转 直流 磁场,并对它 们 进 行 坐 标 变 换, 就 称 为 矢 量 坐 标 变 换
槡
1 2 槡 3 1 槡 C -1 = 2 2 槡 3 1 -槡 2 2 槡 因此: Clarke 变换( 或 3 / 2 变换) 式为:
坐标变换总结Clark变换和Park变换
一个坐标系的坐标变换为另一种坐标系的坐标的法则。
由于交流异步电动机的电压、电流、磁通和电磁转矩各物理量之间是相互关联的强耦合,并且其转矩正比与主磁通与电流,而这两个物理量是随时间变化的函数,在异步电机数学模型中将出现两个变量的乘积项,因此,又为多变量,非线性系统(关键是有一个复杂的电感矩阵),这使得建立异步电动机的准确数学模型相当困难。
为了简化电机的数学模型,需从简化磁链入手。
解决的思路与基本分析:1.已知,三相( ABC )异步电动机的定子三相绕组空间上互差120度,且通以时间上互差120度的三相正弦交流电时,在空间上会建立一个角速度为ω的旋转磁1场。
又知,取空间上互相垂直的(α,β)两相绕组,且在绕组中通以互差90度的两相平衡交流电流时,也能建立与三相绕组等效的旋转磁场。
此时的电机数学模型有所简化。
2. 还知, 直流电机的磁链关系为:F---励磁绕组轴线---主磁通的方向,即轴线在d轴上,称为直轴(Direct axis)。
A---电枢绕组轴线---由于电枢绕组是旋转的,通过电刷馈入的直流电产生电枢磁动势,其轴线始终被限定在q轴,即与d轴成90度,称为交轴(Quadrature axis)。
由于q轴磁动势与d轴主磁通成正交,因此电枢磁通对主磁通影响甚微。
换言之,主磁通唯一地由励磁电流决定,由此建立的直流电机的数学模型十分简化。
如果能够将三项交流电机的物理模型等效的变换成类似的模型,分析和控制就变得大大简单了。
电机模型彼此等效的原则:不同坐标系下产生的磁动势(大小、旋转)完全一致。
关于旋转磁动势的认识:1) 产生旋转磁动势并不一定非要三相绕组不可。
结论是:除了单相电机之外,两相、三相或四相等任意对称(空间)的多相绕组,若通以平衡的多相电流,都可产生旋转磁动势。
根据这一道理,利用其在空间上互差90度的静止绕组,并通以时间上互差90度的平衡交流电流,同样可产生旋转磁场(或磁动势F),因而可等效代替三相绕组的作用。
坐标变换总结Clark变换和Park变换
一个坐标系的坐标变换为另一种坐标系的坐标的法则。
由于交流异步电动机的电压、电流、磁通和电磁转矩各物理量之间是相互关联的强耦合,并且其转矩正比与主磁通与电流,而这两个物理量是随时间变化的函数,在异步电机数学模型中将出现两个变量的乘积项,因此,又为多变量,非线性系统(关键是有一个复杂的电感矩阵),这使得建立异步电动机的准确数学模型相当困难。
为了简化电机的数学模型,需从简化磁链入手。
解决的思路与基本分析:1.已知,三相( ABC )异步电动机的定子三相绕组空间上互差120度,且通以时间上互差120ω的旋转磁场。
度的三相正弦交流电时,在空间上会建立一个角速度为1又知,取空间上互相垂直的(α,β)两相绕组,且在绕组以互差90度的两相平衡交流电流时,也能建立与三相绕组等效的旋转磁场。
此时的电机数学模型有所简化。
2. 还知, 直流电机的磁链关系为:F---励磁绕组轴线---主磁通的方向,即轴线在d轴上,称为直轴(Direct axis)。
A---电枢绕组轴线---由于电枢绕组是旋转的,通过电刷馈入的直流电产生电枢磁动势,其轴线始终被限定在q轴,即与d轴成90度,称为交轴(Quadrature axis)。
由于q轴磁动势与d轴主磁通成正交,因此电枢磁通对主磁通影响甚微。
换言之,主磁通唯一地由励磁电流决定,由此建立的直流电机的数学模型十分简化。
如果能够将三项交流电机的物理模型等效的变换成类似的模型,分析和控制就变得大大简单了。
电机模型彼此等效的原则:不同坐标系下产生的磁动势(大小、旋转)完全一致。
关于旋转磁动势的认识:1) 产生旋转磁动势并不一定非要三相绕组不可。
结论是:除了单相电机之外,两相、三相或四相等任意对称(空间)的多相绕组,若通以平衡的多相电流,都可产生旋转磁动势。
根据这一道理,利用其在空间上互差90度的静止绕组,并通以时间上互差90度的平衡交流电流,同样可产生旋转磁场(或磁动势F),因而可等效代替三相绕组的作用。
坐标变换总结Clark变换和Park变换
坐标变换总结Clark变换和Park变换⼀个坐标系的坐标变换为另⼀种坐标系的坐标的法则。
由于交流异步电动机的电压、电流、磁通和电磁转矩各物理量之间是相互关联的强耦合,并且其转矩正⽐与主磁通与电流,⽽这两个物理量是随时间变化的函数,在异步电机数学模型中将出现两个变量的乘积项,因此,⼜为多变量,⾮线性系统(关键是有⼀个复杂的电感矩阵),这使得建⽴异步电动机的准确数学模型相当困难。
为了简化电机的数学模型,需从简化磁链⼊⼿。
解决的思路与基本分析:1.已知,三相( ABC )异步电动机的定⼦三相绕组空间上互差120度,且通以时间上互差120ω的旋转磁场。
度的三相正弦交流电时,在空间上会建⽴⼀个⾓速度为1⼜知,取空间上互相垂直的(α,β)两相绕组,且在绕组中通以互差90度的两相平衡交流电流时,也能建⽴与三相绕组等效的旋转磁场。
此时的电机数学模型有所简化。
2. 还知, 直流电机的磁链关系为:F---励磁绕组轴线---主磁通的⽅向,即轴线在d轴上,称为直轴(Direct axis)。
A---电枢绕组轴线---由于电枢绕组是旋转的,通过电刷馈⼊的直流电产⽣电枢磁动势,其轴线始终被限定在q轴,即与d轴成90度,称为交轴(Quadrature axis)。
由于q轴磁动势与d轴主磁通成正交,因此电枢磁通对主磁通影响甚微。
换⾔之,主磁通唯⼀地由励磁电流决定,由此建⽴的直流电机的数学模型⼗分简化。
如果能够将三项交流电机的物理模型等效的变换成类似的模型,分析和控制就变得⼤⼤简单了。
电机模型彼此等效的原则:不同坐标系下产⽣的磁动势(⼤⼩、旋转)完全⼀致。
关于旋转磁动势的认识:1) 产⽣旋转磁动势并不⼀定⾮要三相绕组不可。
结论是:除了单相电机之外,两相、三相或四相等任意对称(空间)的多相绕组,若通以平衡的多相电流,都可产⽣旋转磁动势。
根据这⼀道理,利⽤其在空间上互差90度的静⽌绕组,并通以时间上互差90度的平衡交流电流,同样可产⽣旋转磁场(或磁动势F),因⽽可等效代替三相绕组的作⽤。
K-L变换
K-L变换K-L变换(Karhunen-Loeve Transform)是建立在统计特性基础上的一种变换,有的文献也称为霍特林(Hotelling)变换,因他在1933年最先给出将离散信号变换成一串不相关系数的方法。
K-L变换的突出优点是相关性好,是均方误差(MSE,Mean Square Error)意义下的最佳变换,它在数据压缩技术中占有重要地位。
假定一幅N x N的数字图像通过某一信号通道传输M次,由于受随机噪音干扰和环境条件影响,接收到的图像实际上是一个受干扰的数字图像集合对第i次获得的图像fi(x,y) ,可用一个含N2 个元素的向量Xi 表示,即该向量的第一组分量(N个元素)由图像fi(x,y) 的第一行像素组成,向量的第二组分量由图像f i(x,y) 的第二行像素组成,依此类推。
也可以按列的方式形成这种向量,方法类似。
X向量的协方差矩阵定义为:m f定义为:C f 和m f 的表达式中,“E ”是求期望。
对于M幅数字图像,平均值向量m f 和协方差矩阵C f可由下述方法近似求得:可以看出,m f 是N2 个元素的向量,C f 是N2 x N2 的方阵。
根据线性代数理论,可以求出协方差矩阵的N2 个特征向量和对应的特征值。
假定是按递减顺序排列的特征值,对应的特征向量ei = 。
则K-L变换矩阵A定义为:从而可得K-L变换的变换表达式为:该变换式可理解为,由中心化图像向量X - mx 与变换矩阵A相乘即得到变换后的图像向量Y。
Y的组成方式与向量X相同。
K-L变换虽然具有MSE意义下的最佳性能,但需要先知道信源的协方差矩阵并求出特征值。
求特征值与特征向量并不是一件容易的事,维数较高时甚至求不出来。
即使能借助计算机求解,也很难满足实时处理的要求,而且从编码应用看还需要将这些信息传输给接收端。
这些因素造成了K-L变换在工程实践中不能广泛使用。
人们一方面继续寻求解特征值与特征向量的快速算法,另一方面则寻找一些虽不是“最佳”、但也有较好的去相关与能量集中的性能且容易实现的一些变换方法。
Clark变换与Park变换详解
Clark 变换与Park 变换详解很多同学对Clark 变换与Park 变换不求甚解,在运用的时候常常感到困惑,本文梳理了这两种变化的详细步骤,希望可以帮到大家。
设三相交流系统各相电压为:cos cos(120)cos(120)a mb mc m u V tu V t u V t ωωω=⎧⎪=-⎨⎪=+⎩ (0.1) a u b u c u 分别指ABC 三相电压的瞬时值,m V 指相电压基波幅值。
cos cos(120)cos120sin120122cos(120)cos120sin120122a m b m c m u V tV u V t V V V u V t V V V ααβαβαβαβωωω===-=+=-+=+=-=--(0.2)101/221/22a b c u V u V u αβ⎛⎫⎛⎫ ⎪⎛⎫ ⎪=- ⎪ ⎪ ⎪⎝⎭⎪ ⎪-⎝⎭⎝⎭ (0.3)0a b c u u u ++=(0.4)现在要求的是如何找到一个矩阵P 使a b c u V P u V u αβ⎛⎫⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪⎝⎭(0.5) 书上有两种表达式11/21/211/21/22302/20/22P P ----⎛⎫⎫== ⎪⎪⎝⎭⎭与 (0.6) 于是有同学开始疑问了,为什么?为什么非得是这种表达形式?由Clark 变换推出Park 变换cos sin sin cos d q d q u u u u u u αβαααα+=⎧⎨-=⎩(0.7) cos sin sin cos d q u u u u αβαααα⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭(0.8) 由式(1.7)可以得:22cos sin cos cos sin sin cos sin d q d q u u u u u u αβαααααααα⎧+=⎪⎨-=⎪⎩ (0.9) 两式相加有:cos sin d u u u αβαα=+ (0.10)22cos sin sin sin cos sin cos cos d q d q u u u u u u αβαααααααα⎧+=⎪⎨-=⎪⎩(0.11)两式相减有:sin cos q u u u αβαα=- (0.12) 可得:cos sin sin cos d q u u u u αβαααα⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭(0.13) 将式(1.5)代入(1.13)中可得: cos cos(120)cos(120)23sin sin(120)sin(120)a d b q c u u u u u αααααα⎛⎫⎛⎫-+⎛⎫ ⎪= ⎪ ⎪ ⎪-+⎝⎭⎝⎭ ⎪⎝⎭ (0.14)。
Clark变换Park变换及电机绕组折算的推导
学习中遇到的问题
学习中遇到的问题主要集中在知识点的理解与记忆上, 因为电机课程较难而且长时间没有复习,导致很多知识点都 忘了。其中:
1.变压器原理中频率折算没有找到相关概念与知识点。 2.对“三相不平滑”概念模糊,没有复习到。 3.交流电动机基本理论还没有复习完。
谢谢
i2
N1
k
14
变压器原理
3.功率和阻抗关系 一次和二次绕组瞬时功率关系:
u1i1
N1 N2
u2
N2 N1
i2
u2i2
上式表明一次侧瞬时功率与二次侧瞬时功率相等。设Z •
L
为二次侧负载阻抗,则
ZL
U2
•
,从一次侧看进去的
输入阻抗
Z
' L
为
I2
•
•
•
Z
' L
U1
•
kU2
•
k
2
U2
•
k2ZL
I1 I2 k
d cos sin
q
c
m
sin
cos
2020/3/22
8
Park变换
其中矩阵 c 满足c1 cT,解得m 1 ,因此:
c
cos sin
sin
c
os
9
Park反变换
对矩阵 c 求逆,解得:
c-1
cosБайду номын сангаас s in
- sin
c
os
10
Clark变换
Park变换 变压器原理 学习中遇到的问题
I2
15
变压器原理
4.变压器绕组折算
二次侧对一次侧的影响是通过二次磁动势实现的
关于Clark变换与Park变换
对Clark 变换与Park 变换的理解设三相交流系统各相电压为:cos cos(120)cos(120)a m b m c m u V t u V t u V t ωωω=⎧⎪=-⎨⎪=+⎩(1.1) a u b u c u 是指ABC 三相电压的瞬时值,m V 是指相电压基波幅值。
cos cos(120)cos120sin12012cos(120)cos120sin12012a m b m c m u V t V u V t V V V u V t V V V ααβαβαβαβωωω===-=+=-=+=-=- (1.2)101/221/22a b c u V u V u αβ⎛⎫⎛⎫⎪⎛⎫ ⎪=- ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪-⎝⎭⎝⎭(1.3)0a b c u u u ++= (1.4)现在要求的是如何找到一个矩阵P 使a b c u V P u V u αβ⎛⎫⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪⎝⎭(1.5) 书上有两种表达式11/21/211/21/223022022P P----⎛⎫⎫==⎪⎪⎝⎭⎭与(1.6)若为幅值Vm守恒算法,则取系数为2/3;若为功率P守恒算法,则须开根号取系数为后者。
为什么非得是这种表达形式?根据电机的磁动势转变过来的。
由Clark变换推出Park变换cos sinsin cosd qd qu u uu u uαβαααα+=⎧⎨-=⎩(1.7)cos sinsin cosdqu uu uαβαααα⎛⎫⎛⎫⎛⎫=⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭(1.8) 由式(1.7)可以得:22cos sin cos cossin sin cos sind qd qu u uu u uαβαααααααα⎧+=⎪⎨-=⎪⎩(1.9)两式相加有:cos sindu u uαβαα=+(1.10)22cos sin sin sincos sin cos cosd qd qu u uu u uαβαααααααα⎧+=⎪⎨-=⎪⎩(1.11)两式相减有:sin cosqu u uαβαα=-(1.12) 可得:cos sinsin cosdqu uu uαβαααα⎛⎫⎛⎫⎛⎫=⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭(1.13) 将式(1.5)代入(1.13)中可得:cos cos(120)cos(120)23sin sin(120)sin(120)adbqcuuuuuαααααα⎛⎫⎛⎫-+⎛⎫ ⎪= ⎪⎪ ⎪-+⎝⎭⎝⎭ ⎪⎝⎭(1.14)。
坐标变换总结Clark变换和Park变换
一个坐标系的坐标变换为另一种坐标系的坐标的法则。
由于交流异步电动机的电压、电流、磁通和电磁转矩各物理量之间是相互关联的强耦合,并且其转矩正比与主磁通与电流,而这两个物理量是随时间变化的函数,在异步电机数学模型中将出现两个变量的乘积项,因此,又为多变量,非线性系统(关键是有一个复杂的电感矩阵),这使得建立异步电动机的准确数学模型相当困难。
为了简化电机的数学模型,需从简化磁链入手。
解决的思路与基本分析:1.已知,三相( ABC )异步电动机的定子三相绕组空间上互差120度,且通以时间上互差120度的三相正弦交流电时,在空间上会建立一个角速度为ω的旋转磁1场。
又知,取空间上互相垂直的(α,β)两相绕组,且在绕组中通以互差90度的两相平衡交流电流时,也能建立与三相绕组等效的旋转磁场。
此时的电机数学模型有所简化。
2. 还知, 直流电机的磁链关系为:F---励磁绕组轴线---主磁通的方向,即轴线在d轴上,称为直轴(Direct axis)。
A---电枢绕组轴线---由于电枢绕组是旋转的,通过电刷馈入的直流电产生电枢磁动势,其轴线始终被限定在q轴,即与d轴成90度,称为交轴(Quadrature axis)。
由于q轴磁动势与d轴主磁通成正交,因此电枢磁通对主磁通影响甚微。
换言之,主磁通唯一地由励磁电流决定,由此建立的直流电机的数学模型十分简化。
如果能够将三项交流电机的物理模型等效的变换成类似的模型,分析和控制就变得大大简单了。
电机模型彼此等效的原则:不同坐标系下产生的磁动势(大小、旋转)完全一致。
关于旋转磁动势的认识:1) 产生旋转磁动势并不一定非要三相绕组不可。
结论是:除了单相电机之外,两相、三相或四相等任意对称(空间)的多相绕组,若通以平衡的多相电流,都可产生旋转磁动势。
根据这一道理,利用其在空间上互差90度的静止绕组,并通以时间上互差90度的平衡交流电流,同样可产生旋转磁场(或磁动势F),因而可等效代替三相绕组的作用。
Clark变换Park变换及电机绕组折算的推导PPT课件
专 业:电气工程 汇报人:
2021/3/30
1
汇报内容
Clark变换
Park变换 变压器原理 学习中遇到的问题
Clark变换
Park变换 变压器原理 学习中遇到的问题
Clark变换
Clark变换是将三相坐标系变为两相坐标系。
u v cos(2 ) w cos(2 )
q
c
m
sin
cos
2021/3/30
8
Park变换其中矩阵 来自 满足c1 cT,解得m 1 ,因此:
c
cos sin
sin
c
os
9
Park反变换
对矩阵 c 求逆,解得:
c-1
cos s in
- sin
c
os
10
Clark变换
Park变换 变压器原理 学习中遇到的问题
•
E2'
•
E2
N1 N2
k
将式
•
E2
•
I2 R2
•
jX 2 U2
乘以电压比 k
,可得
•
•
•
k E2 kI2 R2 jX 2
•
kU2
I2 k
k 2R2 jk 2 X 2
•
kU2
变压器原理
上式变型可得
•
•
•
•
•
E2'
I
' 2
k 2R2
jk 2 X 2
kU2
I
' 2
R2'
jX
13
变压器原理
2.一次侧和二次侧电流关系
克拉克(CLARKE)和帕克(PARK)变换
克拉克(CLARKE)和帕克(PARK)变换1918年,Fortescue提出对称分量法,为解决多相(三相)不对称交流系统的分析和计算提供了一个有效方法。
对称分量法是用于线性系统的坐标变换法。
它将不对称多相系统(后面均以三相系统为代表)以同等待定变量的三个三相对称系统来代替,其中正序、负序系统是两个对称、相序相反的三相系统;零序系统是一个三相幅值相同、三相量同相的系统,用来反映三相量之和不为零的不平衡量。
CLARKE 变换首先是将基于3 轴、2 维的定子静止坐标系的各物理量变换到2 轴的定子静止坐标系中。
该过程称为Clarke 变换,PARK 变换此刻,已获得基于αβ 2轴正交坐标系的定子电流矢量。
下一步是将其变换至随转子磁通同步旋转的 2 轴系统中。
该变换称为Park变换在矢量控制中包括以下系统变换从三相变换成二相系统Clarke变换直角坐标系的旋转(αβ静止)到(旋转d q),称为Park 变换反之为Park 反变换关于park变换从数学意义上讲,park变换没有什么,只是一个坐标变换而已,从abc坐标变换到dq0坐标,ua,ub,uc,ia,ib,ic,磁链a,磁链b,磁链c这些量都变换到dq0坐标中,如果有需要可以逆变换回来。
从物理意义上讲,park变换就是将ia,ib,ic电流投影,等效到d,q轴上,将定子上的电流都等效到直轴和交轴上去。
对于稳态来说,这么一等效之后,iq,id正好就是一个常数了。
从观察者的角度来说,我们的观察点已经从定子转移到转子上去,我们不再关心定子三个绕组所产生的旋转磁场,而是关心这个等效之后的直轴和交轴所产生的旋转磁场了。
Clarke变换将原来的三相绕组上的电压回路方程式简化成两相绕组上的电压回路方程式,从三相钉子A-B—C坐标系变换到两相定子α-β坐标系。
也称为3/2变换。
但Clarke变换后,转矩仍然依靠转子通量,为了方便控制和计算,再对其进行Park变换变换后的坐标系以转子相同的速度旋转,且d 轴与转子磁通位置相同,则转矩表达式仅与θ有关。
六相永磁同步电机的clarke变换
六相永磁同步电机的clarke变换
六相永磁同步电机的Clarke变换将三相坐标系下的电流和电压转换为两相正、负序电流和一个零序电流。
它是一种常用的变换方法,用于对电机在dq坐标系下的控制。
Clarke变换的数学表达式为:
I_α = I_a
I_β = (2/3) * (I_b - I_c)
其中,I_a、I_b和I_c分别代表电机的A、B和C相电流。
I_α和I_β是Clarke变换后的正、负序电流。
通过Clarke变换,我们可以将电机的三相电流转换为两相电流,方便在dq坐标系下进行控制和分析。
dq坐标系是一种以磁轴方向和旋转磁场方向为基准的坐标系,它与电机的转子位置无关,因此可以方便地进行转子位置估算和控制。
Clarke变换在永磁同步电机的电流控制和定子电流矢量控制中起着重要的作用,它可以将电机的三相电流转换为两相电流,使得控制算法更加简洁和有效。
同时,Clarke变换也可以用于故障检测和保护,通过对正、负序和零序电流的分析,可以判断电机是否存在故障或异常工况。
总之,Clarke变换是六相永磁同步电机控制和分析中的重要工
具,可以将三相电流转换为两相电流,在dq坐标系下进行转子位置控制和定子电流矢量控制。
Park-Clark-变换公式及锁相的推导
1 2 3 0
1 2 3 2
1 2 3 2 ,
V 因此: V
或:
1 2 3 0
1 2 3 2
1 Va 2 Vb 3 Vc 2
2 1 1 V (Va Vb Vb) 3 2 2 1 1 2 (Vm * cos t Vm * cos(t 120 ) Vm * cos(t 120 )) 3 2 2 1 2 (Vm * cos t * Vm * 2 * (cos t * cos120 )) 3 2 2 1 * (Vm * cos t Vm * cos t ) 3 2 Vm * cos t
也可由 Vd,Vq 反推 Va,Vb,Vc
1 0 Va 1 3 V Vb 2 V Vc 2 1 3 2 2 0 1 1 3 cos sin Vd Vq 2 sin cos 2 1 3 2 2 cos sin Vd cos( 120 ) sin( 120 ) cos( 120 ) sin( 120 ) Vq
1 | 1 0 0 2 2) (1) /(3) (1) 1 | 0 2 0 ( 1 |0 0 2 0 1)*6 ( 3 ) 0 ( 2 4 2 2 (1) ( 2 ) ( 3) / 3 2 3 6 0 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 2 2 3 3
即:
Vd Vm * cos( t ) Vq Vm * sin( t )
Clark变换系数说明
我们在使用SVPWM的时候都要涉及到Clark变换,而Clark的变换矩阵前有一个系数:sqrt(2/3) (发帖时没法粘贴公式编辑器编辑的公式,只能根据C语言的语法表达开方运算了,sqrt(2/3)就是:根号3分之2)。
这个系数给我学习Clark变换时带来过疑惑,我根据正交分解将三相坐标的电流变换到两相坐标时,根本就没有这个sqrt(2/3)。
对于这个系数的引入,有些书的解释是为了使的变换前后能量守恒,我再根据这个原理计算了一下变换前后的功率,终于找到了sqrt(2/3)出现的原因。
三相坐标下的电流为 ia,ib,ic根据clark变换iα=ia-0.5ib-0.5iciβ=0.5sqrt(3)*ib-0.5sqrt(3)*ic很容易推导出iα和iβ的幅值是ia幅值的1.5倍所以设ia的有效值为A,则iα,iβ的有效值为1.5A同理变换前的电压为U,则变换后的电压有效值为1.5U变换前的功率P1=U*A*3变换后的功率P2=1.5U*1.5A*2=4.5U*A可见变换前后的功率P1和P2不相等,为了使变换前后功率相等,需要给变换矩阵乘以一个系数,设为k则变换后的iα = k(ia-0.5ib-0.5ic )iβ=k*(0.5sqrt(3)*ib-0.5sqrt(3)*ic)则iα,iβ的有效值为1.5*k*A,电压有效值为1.5*k*U变换后的功率P2=4.5U*A*k*k令P1=P2所以:3*U*A = 4.5U*A*k*k解得:k = sqrt(2/3)clark变换矩阵的系数sqrt(2/3),就是这样来的。
希望以上的推导能对clark变换初学者有用,我在此时抛砖引玉,希望多多交流,共同进步!sqrt(2/3)是等功率变换2/3是等幅值变换。
坐标变换总结Clark变换和Park变换
一个坐标系的坐标变换为另一种坐标系的坐标的法则。
由于交流异步电动机的电压、电流、磁通和电磁转矩各物理量之间是相互关联的强耦合,并且其转矩正比与主磁通与电流,而这两个物理量是随时间变化的函数,在异步电机数学模型中将出现两个变量的乘积项,因此,又为多变量,非线性系统(关键是有一个复杂的电感矩阵),这使得建立异步电动机的准确数学模型相当困难。
为了简化电机的数学模型,需从简化磁链入手。
解决的思路与基本分析:1.已知,三相( ABC )异步电动机的定子三相绕组空间上互差120度,且通以时间上互差120度的三相正弦交流电时,在空间上会建立一个角速度为ω的旋转磁1场。
又知,取空间上互相垂直的(α,β)两相绕组,且在绕组中通以互差90度的两相平衡交流电流时,也能建立与三相绕组等效的旋转磁场。
此时的电机数学模型有所简化。
2. 还知, 直流电机的磁链关系为:F---励磁绕组轴线---主磁通的方向,即轴线在d轴上,称为直轴(Direct axis)。
A---电枢绕组轴线---由于电枢绕组是旋转的,通过电刷馈入的直流电产生电枢磁动势,其轴线始终被限定在q轴,即与d轴成90度,称为交轴(Quadrature axis)。
由于q轴磁动势与d轴主磁通成正交,因此电枢磁通对主磁通影响甚微。
换言之,主磁通唯一地由励磁电流决定,由此建立的直流电机的数学模型十分简化。
如果能够将三项交流电机的物理模型等效的变换成类似的模型,分析和控制就变得大大简单了。
电机模型彼此等效的原则:不同坐标系下产生的磁动势(大小、旋转)完全一致。
关于旋转磁动势的认识:1) 产生旋转磁动势并不一定非要三相绕组不可。
结论是:除了单相电机之外,两相、三相或四相等任意对称(空间)的多相绕组,若通以平衡的多相电流,都可产生旋转磁动势。
根据这一道理,利用其在空间上互差90度的静止绕组,并通以时间上互差90度的平衡交流电流,同样可产生旋转磁场(或磁动势F),因而可等效代替三相绕组的作用。
坐标变换总结Clark变换和Park变换
一个坐标系的坐标变换为另一种坐标系的坐标的法则。
由于交流异步电动机的电压、电流、磁通和电磁转矩各物理量之间是相互关联的强耦合,并且其转矩正比与主磁通与电流,而这两个物理量是随时间变化的函数,在异步电机数学模型中将出现两个变量的乘积项,因此,又为多变量,非线性系统(关键是有一个复杂的电感矩阵),这使得建立异步电动机的准确数学模型相当困难。
为了简化电机的数学模型,需从简化磁链入手。
解决的思路与基本分析:1.已知,三相( ABC )异步电动机的定子三相绕组空间上互差120度,且通以时间上互差120ω的旋转磁场。
度的三相正弦交流电时,在空间上会建立一个角速度为1又知,取空间上互相垂直的(α,β)两相绕组,且在绕组以互差90度的两相平衡交流电流时,也能建立与三相绕组等效的旋转磁场。
此时的电机数学模型有所简化。
2. 还知, 直流电机的磁链关系为:F---励磁绕组轴线---主磁通的方向,即轴线在d轴上,称为直轴(Direct axis)。
A---电枢绕组轴线---由于电枢绕组是旋转的,通过电刷馈入的直流电产生电枢磁动势,其轴线始终被限定在q轴,即与d轴成90度,称为交轴(Quadrature axis)。
由于q轴磁动势与d轴主磁通成正交,因此电枢磁通对主磁通影响甚微。
换言之,主磁通唯一地由励磁电流决定,由此建立的直流电机的数学模型十分简化。
如果能够将三项交流电机的物理模型等效的变换成类似的模型,分析和控制就变得大大简单了。
电机模型彼此等效的原则:不同坐标系下产生的磁动势(大小、旋转)完全一致。
关于旋转磁动势的认识:1) 产生旋转磁动势并不一定非要三相绕组不可。
结论是:除了单相电机之外,两相、三相或四相等任意对称(空间)的多相绕组,若通以平衡的多相电流,都可产生旋转磁动势。
根据这一道理,利用其在空间上互差90度的静止绕组,并通以时间上互差90度的平衡交流电流,同样可产生旋转磁场(或磁动势F),因而可等效代替三相绕组的作用。
电机控制的Clarke变换的等幅值变换和等功率变换
CClarke Cabc 0
2 2 cos 0 cos( ) cos( ) 1 3 3 2 2 2 2 sin 0 sin( ) sin( ) 0 3 3 3 3 1 1 1 1 2 2 2 2
(2) abc 0 :
CClarke Cabc 0
2 2 1 cos 0 cos( 3 ) cos( 3 ) 2 2 2 2 sin 0 sin( ) sin( ) 0 3 3 3 3 1 1 1 1 2 2 2 2
1 1 2 C 1 3 2 1 2
因此: Clarke 变( 或 3 /2 变换) 式为:
1 1 2 2 3 3 - 2 2 1 1 2 2 1 0 2 3 1 2 2 3 1 - 2 2 1 1 2 2 iA 3 3 - iB 2 2 i 1 1 C 2 2
1 2 i 1 i 2 i0 1 2
3. abc dq 变换整理(包含 Clarke 变换和 Park 变换)
3.1 恒幅值变换 (1) abc dq 0 :
C Cabcdq 0
cos 2 sin 3 1 2
Clarke 变换的等幅值变换和等功率变换
Collected by Jay Sur @SCUT 2016 永磁交流伺服电动机的定子磁场由定子的三相绕组的磁势( 或磁动势) 产生的, 根据电 动机旋转磁场理论可知, 向对称的三相绕组中通以对称的三相正弦电流时, 就会产生合成磁 势, 它是一个在空间以 ω 速度旋转的空间矢量。 如果用磁势或电流空间矢量来描述等效的 三相磁场、 两相磁场和旋转直流磁场, 并对它们进行坐标变换, 就称为矢量坐标变换。 Clarke 变换是三相平面坐标系 0ABC 向两相平面直角坐标系 0 的转换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们在使用SVPWM的时候都要涉及到Clark变换,而Clark的变换矩阵前有一个系数:sqrt(2/3) (发帖时没法粘贴公式编辑器编辑的公式,只能根据C语言的语法表达开方运算了,sqrt(2/3)就是:根号3分之2)。
这个系数给我学习Clark变换时带来过疑惑,我根据正交分解将三相坐标的电流变换到两相坐标时,根本就没有这个sqrt(2/3)。
对于这个系数的引入,有些书的解释是为了使的变换前后能量守恒,我再根据这个原理计算了一下变换前后的功率,终于找到了sqrt(2/3)出现的原因。
三相坐标下的电流为 ia,ib,ic
根据clark变换
iα=ia-0.5ib-0.5ic
iβ=0.5sqrt(3)*ib-0.5sqrt(3)*ic
很容易推导出iα和iβ的幅值是ia幅值的1.5倍
所以设ia的有效值为A,则iα,iβ的有效值为1.5A
同理变换前的电压为U,则变换后的电压有效值为1.5U
变换前的功率P1=U*A*3
变换后的功率P2=1.5U*1.5A*2=4.5U*A
可见变换前后的功率P1和P2不相等,为了使变换前后功率相等,需要给变换矩阵乘以一个系数,设为k
则变换后的
iα = k(ia-0.5ib-0.5ic )
iβ=k*(0.5sqrt(3)*ib-0.5sqrt(3)*ic)
则iα,iβ的有效值为1.5*k*A,电压有效值为1.5*k*U
变换后的功率P2=4.5U*A*k*k
令P1=P2
所以:3*U*A = 4.5U*A*k*k
解得:k = sqrt(2/3)
clark变换矩阵的系数sqrt(2/3),就是这样来的。
希望以上的推导能对clark变换初学者有用,我在此时抛砖引玉,希望多多交流,共同进步!
sqrt(2/3)是等功率变换
2/3是等幅值变换。