陀螺仪与惯性导航共17页

合集下载

惯性导航陀螺仪

惯性导航陀螺仪

当汽车行驶到地下隧道、高层楼群、高速公路等遮掩物而与捕获不到GPS卫星信号时,系统可自动导入自律导航系统,此时由车速传感器检测出汽车的行进速度,通过微处理单元的数据处理,从速度和时间中直接算出前进的距离,陀螺传感器直接检测出前进的方向,陀螺仪还能自动存储各种数据,即使在更换轮胎暂时停车时,系统也可以重新设定。

惯性导航 inertial?navigation???? 通过测量飞行器的加速度(惯性),并自动进行积分运算,获得飞行器瞬时速度和瞬时位置数据的技术。

组成惯性导航系统的设备都安装在飞行器内,工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰,是一种自主式导航系统。

1942年德国在V-2火箭上首先应用了惯性导航原理。

1954年惯性导航系统在飞机上试飞成功。

1958年舡鱼号潜艇依靠惯性导航在北极冰下航行21天。

惯性导航系统通常由惯性测量装置、计算机、控制显示器等组成。

惯性测量装置包括加速度计和陀螺仪,又称惯性导航组合。

3个自由度陀螺仪用来测量飞行器的3个转动运动;3个加速度计用来测量飞行器的3个平移运动的加速度。

计算机根据测得的加速度信号计算出飞行器的速度和位置数据。

控制显示器显示各种导航参数。

按照惯性导航组合在飞行器上的安装方式,分为平台式惯性导航系统(惯性导航组合安装在惯性平台的台体上)和捷联式惯性导航系统(惯性导航组合直接安装在飞行器上);后者省去平台,所以结构简单、体积小、维护方便,但仪表工作条件不佳(影响精度),计算工作量大。

陀螺仪 gyroscope??? 由一个高速旋转转子和保证转子的旋转轴能在空间自由转动的支承系统组成的仪器。

简称陀螺,又称回转仪(见图)。

陀螺仪是量测载体的方位或角速度的核心元件,利用它的动力学特性制成的各种仪表或装置(见陀螺装置)广泛用于航空、航天、航海的导航系统和稳定装置中。

???? 陀螺仪可根据不同的支承方式分类:由一个或两个框架支承的陀螺仪称为框架陀螺仪;利用静电场或磁场支承的陀螺仪称为静电支承或磁支承陀螺仪;利用液体或气体润滑膜支承的陀螺仪称为液浮或气浮陀螺仪;利用挠性接头支承的陀螺仪称为挠性陀螺仪。

陀螺仪原理惯性导航精选幻灯片

陀螺仪原理惯性导航精选幻灯片
13 13
实际的陀螺仪中,由于结构和工艺的不完 备,总是不可避免的存在着干扰力矩。从而破 坏了稳定性,产生了章动(瞬时冲击力矩)和 进动(一定持续时间的力矩) 。
章动:陀螺受 到瞬时冲击力矩作 用后,自转轴在原 位附近做微小的圆 锥运动,其转子轴 的大方向基本不变。
14 14
2、陀螺相对地球的视在运动 由于陀螺仪的转动相对惯性空间保持方向
3.本身作为一个元部件,与其它自动控制元部件 组成各种陀螺装置。如陀螺稳定平台,惯性导 航系统等。
11 11
2.1 三自由度陀螺及基本特性 一、两个主要特性:
稳定性:陀螺转子绕自转轴高速旋转即具 有动量矩时,如果不受外力矩作用,自转轴将 相对惯性空间保持方向不变的特性。
进动性:在陀螺上施加外力矩时,会引起 陀螺动量矩矢量相对惯性空间转动的特性。
陀螺的应用:指示仪表,传感器,把陀螺本身作为 一个元部件,与其他自动控制元部件组成各种陀螺装
置。
99
基本部件:陀螺转子,内、外框架(支承部 件),附件(电机、力矩器等)
10 10
陀螺应用
1.指示仪表:指示飞机俯仰角和倾斜角的航空地 平仪,指示航向角的罗盘,指示转弯方向和速 度的转弯仪。
2.传感器:输出与被测量参数成一定关系的电信 号。如陀螺航向传感器,角速度传感器。
哥氏加速度是由于质点不仅做圆周运动, 而且也做径向或周向运动所产生的。
44
陀螺简介
陀螺是什么? 我们小时候都玩过它。它是
一种圆锥形玩具,下端有尖针, 绕上细绳,猛甩出去就能在地上 旋转。 陀螺定义:绕自身对称轴高速旋转 的刚体。(刚体—不变形的固体)
为什么用鞭子抽 打后,先轻微摆 动,后绕自转轴
高速旋转?
2.1 三自由度陀螺及基本特性 2.2 陀螺力矩 2.3 坐标系关系 2.4 二自由度陀螺及其应用

《陀螺仪与惯导》课件

《陀螺仪与惯导》课件

结论
陀螺仪与惯导作为现代导航和控制系统的重要组成部分,在航空航天、航 海、军事、交通、运动器材等领域得到广泛使用。随着技术的日益成熟和 应用场景的不断拓展,它们具有广阔的应用前景。
惯导仪的工作原理是基于牛顿第一定律,利用 加速度计测量直线加速度,再通过对加速度的 积分得到速度和位置信息。
陀螺仪的分类和运用领域
航空航天
飞机、导弹、卫星、航母等复 杂系统的导航、姿态控制、随 动平台等。
水面舰船
船舶、潜艇、遥控船等的自动 导航、稳定性控制和动态姿态 补偿,保证良好的航行性能。
汽车
并级惯导
车载导航、惯性测量单元 等便携式应用,以及姿态 控制等微小型载荷的试验 测试。
航空航天
汽车
飞机、导弹、卫星等复杂系统 的初始对准、飞行控制和导航, 保证高精度的位置、速度和姿 态信息。
车辆动态稳定控制、陀螺仪式 导航等,提高驾驶安全和舒适 性。
航天器和导弹
航天器进入轨道前的精确定位、 姿态调整和火箭导弹的制导系 统,确保极高的导航精度和命 中率。
陀螺仪和惯导的工作原理及区别
陀螺仪
按照旋转轴的不同,可分为陀螺式、圆盘式和 振荡器式,其中陀螺式陀螺仪是最常见的一种。
陀螺仪的工作原理是基于质量守恒和角动量守 恒原理,利用内部转子的角动量维持和检测平 台的角运动状态。
惯导仪
根据陀螺仪和加速度计的不同组合方式,可分 为串级、并级和纯陀螺式的惯性导航系统,其 中串级惯导系统是最为常见的一种。
陀螺仪和惯导的应用举例
1
飞机、船舶的导航
利用水平和垂直陀螺仪,加速度计、罗盘等传感器,实现飞机和船舶的控制与导 航,保证航线和航速的准确稳定。
2
火箭、导弹的控制

陀螺仪基本知识惯性导航

陀螺仪基本知识惯性导航

电子信息工程学院
30
将大地水准体用 一个有确定参数的 旋转椭球体来逼近 代替(如椭球面与 真实大地水准面之 间的高度差的偏差 平方和最小),这 种旋转椭球体称为 参考椭球体,简称 参考椭球。
电子信息工程学院
31
国际通用参考椭球体
电子信息工程学院
32
WGS-84坐标系基本参数
(1)椭球长半径 (a) 6378137 2m;
电子信息工程学院
38
5.机体坐标系 OX BY(BMZBobile Frame,Body Frame )
机体坐标系与飞机固连,
用表示OX BYB,Z坐B 标原点 机O纵与轴飞一机致重,心重O与合Z飞,B 机O竖X与B轴飞
一致, O与Y飞B 机横轴一致。Fra bibliotekZB YB
XB
电子信息工程学院
39
6.平台坐标系OX pYpZ(pPlatform frame )
电子信息工程学院
33
二、惯性系统中常用的坐标系
在地球上进行导航,所定义的坐标系要将惯导系统 的测量值与地球的主要方向联系起来。因此涉及到了 各种不同的坐标系,主要有以下几类:
陀螺坐标系 地理坐标系 惯性坐标系 地球坐标系 载体坐标系
电子信息工程学院
34
1.陀螺坐标系oxyz
x轴:与陀螺内环轴一致,固连于内环上; z轴:与陀螺转子轴一致,固连于内环上;但不随转子转动; y轴:与oxy平面平行,大方向与外环一致,但一般不与外环轴一致
2.传感器:输出与被测量参数成一定关系的电信号 。如陀螺航向传感器,角速度传感器。
3.本身作为一个元部件,与其它自动控制元部件 组成各种陀螺装置。如陀螺稳定平台,惯性导 航系统等。

惯性技术、陀螺仪、加速度计

惯性技术、陀螺仪、加速度计

惯性技术与惯性器件简介惯性技术与惯性器件简介●惯性技术简介1.什么是惯性技术2.惯性技术基本概念3.基本惯性器件4.惯性导航特点●陀螺仪简介1.什么是陀螺仪2.陀螺仪的特性3.常用陀螺仪的指标及其意义4.常见陀螺仪的种类及特点●加速度简介1.什么是加速度计2.加速度计的特性3.常用加速度计的指标及其意义4.常见加速度计的种类及特点一惯性技术简介一惯性技术简介1.什么是惯性技术2.惯性技术基本概念3.基本惯性器件4.惯性导航特点什么是惯性物体在不受外力或所受外力平衡的条件下,维持原有运动状态(静止或匀速直线运动)不变的特性。

牛顿三大定律(惯性、加速度、作用力与反作用力)。

惯性定律成立的空间为惯性空间。

经典力学认为,要选取一个绝对静止或作匀速直线运动的参考坐标系来考察加速度,牛顿第二定律才能成立。

在研究惯性敏感器件和惯性系统的力学问题时,通常将相对恒星所确定的参考系称为惯性空间,空间中静止或匀速直线运动的参考坐标系为惯性参考坐标系。

●宏观、绝对、静止或匀速直线运动●以太●恒星●相对惯性空间稳定●指向惯性空间某点北NS●地磁北●真北●地理北地球坐标系如右图所示。

其原点取在地心;轴沿极轴(地轴)方向;轴在赤道平面与本初子午面的交线上;轴在赤道平面上,与构成右手直角坐标系。

e e e z y ox e z e x e y e z e x 地球坐标系随地球转动。

载体坐标为经度、纬度、高度。

地球上任意点的地球坐标固定不变,但是地球坐标系相对惯性空间改变。

t t t z y ox e z 地理坐标系随载体一起线运动,不随载体角转动。

地球上任意一点的地理坐标系都不相同。

地理坐标系并不唯一,有东北天、北东地等。

地理坐标系如左图所示。

其原点位于载体所在的点;轴沿当地纬线指东;轴沿当地子午线指北;轴沿当地地理垂线指上,并与构成右手直角坐标系。

平面为当地水平面。

平面为当地子午面。

t x t y t z t x t y t t y ox t t z oy载体坐标系载体坐标系如右图所示。

惯性导航ppt课件

惯性导航ppt课件

受任何干扰 、隐蔽性强 、输出信息量大 、输出信息实时性强
等优点 ,使其在军事领域和许多民用领域都得到了广泛的应
用 ,已被许多机种选为标准导航设备或必装导航设备 。
一、惯性导航技术的发展历史
图1.4 陀螺仪弹
惯性导航是一门涉及精密机械、计算机技术、微电子、光 学、自动控制、材料等多种学科和领域的综合技术。由于陀螺 仪是惯性导航的核心部件,因此,可以按各种类型陀螺出现的 先后、理论的建立和新型传感器制造技术的出现,将惯性技术 的发展划分为四代。
几种姿态结算是重点
三、惯导系统的分类
Bortz 和 Jordon 最早提出了等效旋转矢量概念用于陀 螺输出不可交换误差的修正, 从而在理论上解决了不可交换 误差的补偿问题, 其后的研究就主要集中在旋转矢量的求解 上 ,根据在相同姿态更新周期内 ,对陀螺角增量等间隔采样 数的不同 、有双子样算法、 三子样算法等 。为减少计算量 Gilmore 提出了等效旋转矢量双回路迭代算法Miller 讨论 了在纯锥运动环境下等效旋转矢量的三子样优化算法, 此后 ,在 Miller 理论的基础上 Jang G. Lee 和 Yong J.Yoon 对等效旋转矢量的四子样优化算法进行了研究。 Y.F.Jiang 对利用陀螺的角增量及前一更新周期采样值的算法进行了研究 , 研究结果表明, 采样阶数越高,更新速率越快 ,姿态更新 算法的误差就越小。 Musoff 提出了圆锥补偿算法的优化指 标, 分析了圆锥补偿后的算法误差与补偿周期幂次 r 的关系 。 这些理论研究奠定了姿态更新算法的经典理论基础 。
一、惯性导航技术的发展历史
图1.5 惯导技术发展历史
二、惯性传感器的最新发展现状
2.1陀螺仪 定义:传统意义上的陀螺仪是安装在框架中绕回转体的对

惯性导航系统概论惯性导航

惯性导航系统概论惯性导航

惯性导航系统概论惯性导航惯性导航系统(Inertial Navigation System,简称INS)是一种利用陀螺仪和加速度计等惯性传感器,通过测量物体的加速度和角速度来推导出物体的位置、方向和速度的导航系统。

与传统的基于外部引导信号的导航系统相比,惯性导航具有独立、快速响应和高精度等优点,因此在航空航天、船舶、火箭、导弹等领域得到广泛应用。

传感器部分是惯性导航系统的输入部分,主要由陀螺仪和加速度计两种惯性传感器组成。

陀螺仪用于测量物体的角速度,加速度计用于测量物体的线加速度。

陀螺仪通常有旋转式陀螺仪和光纤陀螺仪两种类型,光纤陀螺仪具有高精度和长寿命等优点。

加速度计常用的有压电式加速度计和微机械加速度计等。

计算部分是惯性导航系统的核心部分,主要包括运动方程、数值积分和误差补偿三个模块。

在运动方程模块中,根据牛顿第二定律和角动量守恒定律,建立物体的运动方程。

在数值积分模块中,对加速度和角速度数据进行积分,得到物体的速度和位移。

在误差补偿模块中,对传感器测量误差进行补偿,提高导航系统的精度和稳定性。

惯性导航系统的工作过程可以简单描述为:系统首先将初始位置和方向输入,并根据运动方程和数值积分推导出物体的速度和位移。

然后,系统利用传感器测量物体的加速度和角速度,并进行误差补偿,对上一时刻的位置和方向进行更新。

通过不断重复上述步骤,惯性导航系统能够实时更新物体的位置、方向和速度信息。

惯性导航系统具有许多优点。

首先,惯性导航系统不依赖于外部引导信号,具有独立工作的能力,能够在无GPS信号或其他导航信号的情况下进行导航定位。

其次,惯性导航系统响应速度快,能够实时更新导航信息,适用于需要高频率更新的应用场景。

此外,惯性导航系统具有高精度的特点,可以满足精密导航的需求。

然而,惯性导航系统也存在一些问题。

由于传感器测量误差的存在,惯性导航系统会产生导航漂移问题,即导航误差会随着时间的推移不断累计。

为了解决导航漂移问题,可以采用多传感器融合技术,将惯性导航系统与其他导航系统(如GPS)相结合,提高导航精度和可靠性。

惯性导航_第3章

惯性导航_第3章

武汉大学测绘学院 卫星应用研究所
它的核心部分为产生谐振运动的壳体(或
称谐振子)。谐振壳体有圆柱形和半球形 两种类型,目前后者应用较普遍。 半球谐振陀螺仪的随机漂移率可做到 0.005度/小时,可应用于炮弹的制导系 统中。
武汉大学测绘学院 卫星应用研究所
6.激光陀螺仪

早在1913年,法国科 学家萨格奈克 (Sagnac)提出一种 环形回路干涉仪,即 著名的萨格奈克干涉 仪,它成后来开发发 激光陀螺仪的基础。
陀螺仪— — 旋转的不倒翁
广义讲,凡是绕定点转动的刚体都可称为陀螺 仪;狭义讲,只有高速旋转的对称刚体,其自转轴 能在空间改变所指方向的才能成为应用的陀螺 仪。 1852年法国科学家傅科给陀螺仪定义为具有大 角动量的装置。陀螺(gyroscope)一词起源于 文明古国希腊,它含有“ 对称和旋转” 的意思,俄 语和英语中陀螺这一单词都是取自希腊语中的 译音,即含有“ 观察转动装置” 的意思。

武汉大学测绘学院 卫星应用研究所
常用的各种陀螺仪

自从框架式陀螺仪被应用到 工程实际后,为了减少支承 的干扰力矩,先后发展了下 列各种不同支承的陀螺仪, 此外还发展了没有转子和支 承等转动部件的光学陀螺 仪,例如激光陀螺仪、光纤 陀螺仪等已得到广泛应用。

1.液浮陀螺仪 2.气浮陀螺仪 3.静电陀螺仪 4.挠性陀螺仪 5.谐振式陀螺仪 6.激光陀螺仪 7.光纤陀螺仪
武汉大学测绘学院 卫星应用研究所
转子陀螺仪的组成与精度指标


在转子式陀螺仪中,最基本的元件包括下列 四种 : 1.陀螺转子及其驱动元件 2.万向支架 3.力矩器 4.角度传感器
武汉大学测绘学院 卫星应用研究所

惯性导航课件

惯性导航课件

三、惯导3系.1平统台式的惯分导系类统
图3.1 惯导平台弹
将陀螺仪和加速度等惯性元件通过万向支架 角运动隔离系统与运动载物固联的惯性导航系 统。早期的惯导系统由于采用了机械式精密稳 定平台,被称为平台惯式性导惯航 导系统,它不仅体积
三、惯导系统的分类
3.2捷联式惯导系统
捷联惯导系统(SINS)是在平台式惯导系统基础上发展而来的, 计算机的发展,激光陀螺仪技术的成熟 ,使捷联惯导系统逐步取 代了平台惯导系统。 捷联惯导系统除了具有结构简单 成本低 体积 重量小 准备时间短 MTBF长等优点
光纤陀螺的主要优点在于高可靠性、长寿命、快速启动、耐冲 击和振动、对重力 g 不敏感、大动态范围等。
目前光纤陀螺的精度已可达到0.0002º/h[18],同时从上世纪90 年代起,0.1º/h的中精度干涉型光纤陀螺IFOG 已投入批量生产。光 纤陀螺技术领域,美国在理论、测量技术和光纤元器件开发上领先 的单位是斯坦福大学和MIT。
(1)红外定位技术
(2)蓝牙定位技术惯性导航
四、惯性技术的应用
通过使用智能手机中的加速度传感器来测量行走的步长和步数, 方向传感器测量行走的角度。在用户行走的路径上布设NFC标签, 触碰NFC标签来对用户当前所在的位置进行校正,将这三种传感器 结合起来,形成了基于多传感器的导航定位流程图。
4.2 NFC+惯导系图统结构图
惯性导航
五、惯性导航发展趋势
5.1惯性测量传感器的发展趋势 惯性测量传感器的发展须要权衡以下几个因素:精确性、连续 性、可靠性、成本、体积/重量、功耗。
5.1 惯性传感器考虑因素
惯性导航
五、惯性导航发展趋势
5.2惯性导航系统发展方向
惯性导航系统发展方向: ① 必须针对并满足应用的需求② 实际 的应用环境是最大的挑战③ 提高惯性导航系统的通用性,拓展应 用领域。

第6章 惯性元件 惯性导航

第6章 惯性元件      惯性导航

电子信息工程学院
23
四 飞机激光陀螺
电子信息工程学院
24
内 腔 是 二 频 激 光 陀 螺 结 构
电子信息工程学院
25
飞机激光陀螺组件位置
电子信息工程学院
26
6.2.2光纤陀螺
一 概述
电子信息工程学院
27
光纤陀螺仪适应捷联系统需求而出现。基本原理同激光陀 螺,只是激光束来自外部,用光导纤维做传播环路。 优点:成本低、体积小、重量轻。 发展:1970s 光纤技术发展; 1976 年犹它大学瓦里提出设想和演示; 1978 麦道研制出第一个实用光纤陀螺; 1980s后,Littion,Honeywell,Draper 等公司以 及英、法、德、日、苏等国也展开了研制。 国内:1980s初,原理研究、试验(少数大学); 1980s末,实质性研制; 2000s,进入实用阶段。 精度:国外 0.001度/小时;国内 0.01度/小时
L L N2
1
两束光的频差为:
4A f L
电子信息工程学院
22
3.激光陀螺的误差
(1)闭锁:当输入角速度绝对值小于阈值时,陀螺没有频差输 出。主要是由于环路的非均匀性。减小闭锁的办法是提高加工 精度,机械抖动偏频法、磁镜法、差动法。 (2)比例因子不稳定:输入输出比例因子不恒定。主要原因与 激光器的几何形状和尺寸有关。要保持比例因子恒定,采用低 膨胀系数的材料做腔体,采用温度补偿等措施。 (3)零点漂移误差:没有输入角速度时,有输出。主要原因有 流动介质引起的朗谬尔流,磁场影响,出现多膜等。采用完全 对称的双阳极共阴极结构并使用稳定分流电路,加磁屏蔽。
4A L c
A为面积
电子信息工程学院
20

陀螺仪原理与惯性导航

陀螺仪原理与惯性导航

陀螺仪的原‎理陀螺仪简介‎绕一个支点‎高速转动的‎刚体称为陀螺(top)。

通常所说的‎陀螺是特指‎对称陀螺,它是一个质‎量均匀分布‎的、具有轴对称‎形状的刚体‎,其几何对称‎轴就是它的‎自转轴。

由苍蝇后翅‎(特化为平衡‎棒)仿生得来。

在一定的初‎始条件和一‎定的外在力‎矩作用下,陀螺会在不‎停自转的同‎时,还绕着另一‎个固定的转‎轴不停地旋‎转,这就是陀螺‎的旋进(prece‎s sion‎),又称为回转‎效应(gyros‎c opic‎effec‎t)。

陀螺旋进是‎日常生活中‎常见的现象‎,许多人小时‎候都玩过的‎陀螺就是一‎例。

陀螺仪的原‎理我们不用一‎个完整的轮‎框,我们用四个‎质点ABC‎D来表示边‎上的区域,这个边对于‎用图来解释‎陀螺仪的工‎作原理是很‎重要的。

轴的底部被‎托住静止但‎是能够各个‎方向旋转。

当一个倾斜‎力作用在顶‎部的轴上的‎时候,质点A向上‎运动,质点C则向‎下运动,如其中的子‎图1。

因为陀螺仪‎是顺时针旋‎转,在旋转90‎度角之后,质点A将会‎到达质点B‎的位置。

CD两个质‎点的情况也‎是一样的。

子图2中质‎点A 当处于‎如图的90‎度位置的时‎候会继续向‎上运动,质点C也继‎续向下。

AC质点的‎组合将导致‎轴在子图2‎所示的运动‎平面内运动‎。

一个陀螺仪‎的轴在一个‎合适的角度‎上旋转,在这种情况‎下,如果陀螺仪‎逆时针旋转‎,轴将会在运‎动平面上向‎左运动。

如果在顺时‎针的情况中‎,倾斜力是一‎个推力而不‎是拉力的话‎,运动将会向‎左发生。

在子图3中‎,当陀螺仪旋‎转了另一个‎90度的时‎候,质点C在质‎点A受力之‎前的位置。

C质点的向‎下运动现在‎受到了倾斜‎力的阻碍并‎且轴不能在‎倾斜力平面‎上运动。

倾斜力推轴‎的力量越大‎,当边缘旋转‎大约180‎度时,另一侧的边‎缘推动轴向‎回运动。

万向节陀螺‎仪实际上,轴在这个情‎况下将会在‎倾斜力的平‎面上旋转。

轴之所以会‎旋转是因为‎质点AC在‎向上和向下‎运动的一些‎能量用尽导‎致轴在运动‎平面内运动‎。

惯性导航仪的工作原理

惯性导航仪的工作原理

惯性导航仪的工作原理惯性导航仪(Inertial Navigation System,简称INS)是一种利用惯性力学原理进行导航的设备。

它可以独立地测量和计算飞行器、舰船或者车辆的位置、速度和方向,而无需依赖外部导航系统,如全球定位系统(GPS)或者地面雷达。

惯性导航仪的工作原理基于牛顿第一定律,即物体在没有外力作用下保持匀速直线运动或者静止的性质。

惯性导航仪通过测量和集成三个相互垂直的加速度计和三个相互垂直的陀螺仪的输出信号来实现导航。

加速度计用于测量加速度,而陀螺仪用于测量角速度。

加速度计的工作原理是利用物体的惯性来测量加速度。

它包含一个质量块和一个弹簧系统,当加速度作用于质量块时,它会相对于惯性坐标系发生位移,通过测量位移可以确定加速度的大小。

惯性导航仪通常使用三个加速度计,分别测量飞行器在三个坐标轴方向上的加速度。

陀螺仪的工作原理是利用陀螺效应来测量角速度。

陀螺仪包含一个旋转的转子,当飞行器发生旋转时,转子相对于惯性坐标系会保持不变的方向,通过测量转子相对于惯性坐标系的角位移可以确定角速度的大小。

惯性导航仪通常使用三个陀螺仪,分别测量飞行器绕三个坐标轴旋转的角速度。

惯性导航仪将加速度计和陀螺仪的输出信号进行集成和处理,通过积分加速度计的输出信号可以得到速度,再次积分得到位置。

同时,通过陀螺仪的输出信号可以得到飞行器的姿态信息,如俯仰角、横滚角和偏航角。

然而,惯性导航仪存在一定的误差积累问题。

加速度计会受到震动和振动的影响,导致加速度测量的误差。

陀螺仪会受到温度变化和机械振动的影响,导致角速度测量的误差。

为了解决这些问题,惯性导航仪通常会结合其他导航系统,如GPS,进行误差校正和更新。

总结起来,惯性导航仪的工作原理是通过测量和集成加速度计和陀螺仪的输出信号来实现导航。

它可以独立地测量和计算飞行器、舰船或者车辆的位置、速度和方向,具有高精度和高可靠性的特点。

然而,由于误差积累的问题,惯性导航仪通常会与其他导航系统结合使用,以提高导航的准确性和稳定性。

惯性导航基本原理课件

惯性导航基本原理课件
03
坐标系及转换
01
02
03
地理坐标系
以地球中心为原点,地球 表面为基准的坐标系。
导航坐标系
以航行载体中心为原点, 载体运动方向为基准的坐 标系。
转换关系
利用旋转矩阵将地理坐标 系下的位置和速度转换为 导航坐标系下的位置和速 度。
陀螺仪和加速度计的工作原理
陀螺仪
通过角动量守恒原理,测量载体在三个轴向的角速度。
• 实时性:惯性导航系统可以提供实时的位置、速 度和姿态信息。
惯性导航技术的优势与不足
不足
误差积累:由于惯性导航系统 依赖于陀螺仪和加速度计等传 感器的测量数据,长时间工作
后会产生误差积累。
精度受限于传感器性能:惯性 导航系统的精度受到传感器性 能的影响,包括陀螺仪和加速 度计的精度、稳定性和交叉耦 合效应等。
惯性导航系统组成
惯性导航系统主要由惯性传感器、数 据处理单元和显示单元等组成。
数据处理单元对传感器数据进行积分 、滤波等处理,计算得到载体的速度 、位置和姿态等运动参数。
惯性传感器包括陀螺仪和加速度计等 ,用于测量载体在三个轴向的角速度 和加速度。
显示单元将运动参数实时显示给用户 ,以便用户了解载体运动状态。
捷联惯导算法
要点一
概述
捷联惯导算法是一种实时性较高的惯性导航算法,通过陀 螺仪和加速度计的测量数据,计算出物体的姿态、速度和 位置等信息。捷联惯导算法不需要外部信息源的辅助,可 以在短时间内实现较精确的导航。
要点二
实现过程
捷联惯导算法通过建立姿态、速度和位置的更新方程,结 合陀螺仪和加速度计的测量数据,进行实时计算。姿态更 新方程包括对加速度计测量值的补偿、速度更新方程包括 对陀螺仪测量值的补偿、位置更新方程包括对速度和时间 的积分。捷联惯导算法需要解决的主要问题是陀螺仪和加 速度计的误差补偿以及导航信息的初始对准。

惯性导航系统与陀螺仪

惯性导航系统与陀螺仪

惯性导航系统与陀螺仪惯性导航系统(INS,以下简称惯导)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。

其工作环境不仅包括空中、地面,还可以在水下。

惯导的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。

属于一种推算导航方式.即从一已知点的位置根据连续测得的运载体航向角和速度推算出其下一点的位置.因而可连续测出运动体的当前位置。

惯性导航系统中的陀螺仪用来形成一个导航坐标系使加速度计的测量轴稳定在该坐标系中并给出航向和姿态角;加速度计用来测量运动体的加速度经过对时间的一次和分得到速度,速度再经过对时间的一次积分即可得到距离。

惯性导航系统有如下主要优点.(1)由于它是不依赖于任何外部信息.也不向外部辐射能量的自主式系统.故隐蔽性好,也不受外界电磁干扰的影响;(2)可全天流全球、全时间地工作于空中、地球表面乃至水下.(3)能提供位置、速度、航向和姿态角数据,所产生的导航信息连续性好而且噪声低.(4)数据更新率高、短期精度和稳定性好.其缺点是.(1)由于导航信息经过积分而产生,定位误差随时间而增大,长期精度差;(2)每次使用之前需要较长的初始对准时间;(3)设备的价格较昂贵;(4)不能给出时间信息但惯导有固定的漂移率,这样会造成物体运动的误差,因此射程远的武器通常会采用指令、GPS等对惯导进行定时修正,以获取持续准确的位置参数。

惯导系统目前已经发展出挠性惯导、光纤惯导、激光惯导、微固态惯性仪表等多种方式。

陀螺仪由传统的绕线陀螺发展到静电陀螺、激光陀螺、光纤陀螺、微机械陀螺等。

激光陀螺测量动态范围宽,线性度好,性能稳定,具有良好的温度稳定性和重复性,在高精度的应用领域中一直占据着主导位置。

由于科技进步,成本较低的光纤陀螺(FOG)和微机械陀螺(MEMS)精度越来越高,是未来陀螺技术发展的方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陀螺仪与惯性导航
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为来 愈发觉 自己的 无知。 ——笛 卡儿

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
相关文档
最新文档