2020山东高考命题专家预测卷数学(理科,附答案解析)
2020年高考数学临考押题卷(山东卷)(解析版)(01)
2020年高考临考押题卷(五)数学(山东卷)(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、单选题1.已知集合2{|560}A x x x =-+≤,{|15}B x Z x =∈<<,则A B =I ( ) A .[2,3] B .(1,5)C .{}2,3D .{2,3,4}【答案】C【解析】2560(2)(3)023x x x x x -+≤⇒--≤⇒≤≤Q ,{}23A x x ∴=≤≤, 又{}{|15}2,3,4B x Z x =∈<<=,所以{}2,3A B ⋂=,故本题选C.2.已知复数z 满足(12)|34|z i i ⋅+=-(i 为虚数单位),则在复平面内复数z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【解析】由(12)|34|5z i i ⋅+=-=, 得55(12)5(12)1212(12)(12)5i i z i i i i --====-++-, 在复平面内复数z 对应的点的坐标为()1,2-,位于第四象限, 故选:D.3.2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行;长三角城市群包括:上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”. 现有4 名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游, 假设每名同学均从这四个地方中任意选取一个去旅游, 则恰有一个地方未被选中的概率为( ) A .2764B .916C .81256D .716【答案】B【解析】4名同学去旅游的所有情况有:44256=种恰有一个地方未被选中共有:2113424322144C C C A A ⋅⋅=种情况 ∴恰有一个地方未被选中的概率:144925616p == 本题正确选项:B4.已知平面向量a r ,b r ,c r均为单位向量,若12a b ⋅=r r ,则()()a b b c +⋅-r r r r 的最大值是( )A .1B .3C .32+D .12+【答案】C【解析】Q 平面量a r ,b r ,c r均为单位向量,222()23a b a a b b ∴+=+⋅+=r r r r r r ,||a b ∴+=r r 2()()()a b b c a b b a b c ∴+⋅-=⋅+-+⋅r r r r r r r r r r333()||||222a b c a b c =-+⋅≤++⋅-=+r r r r rr 当且仅当a b +r r 与c r反向时取等号.故选:C.5.已知函数()f x 是定义在R 上的奇函数,当0x <时,()2|2|f x x =-+.若对任意的[]1,2x ∈-,()()f x a f x +>成立,则实数a 的取值范围是( )A .()0,2B .(0,2)(,6)⋃-∞-C .()2,0-D .()(2,06,)-⋃+∞【答案】D【解析】()f x Q 是定义在R 上的奇函数,当0x <时,()22f x x =-+. 作出()f x 的图象,如图所示()y f x a =+的图象可以看成是()y f x =的图象向左(0a >时)或向右(0a <时)平移a 个单位而得.当0a >时,()y f x =的图象至少向左平移6个单位(不含6个单位)才能满足()()f x a f x +>成立, 当0a <时,()y f x =的图象向右平移至多2个单位(不含2个单位)才能满足()()f x a f x +>成立(对任意的[1,2]x ∈-), 故(2,0)(6,)a ∈-⋃+∞. 故选:D.6.已知某函数的图像如图所示,则下列函数中,图像最契合的函数是( )A .()sin x x y e e -=+B .()sin x xy e e -=- C .()cos x x y e e -=- D .()cos x x y e e -=+【答案】D【解析】由图可知,当0x =时,0y <当0x =时,()sin x xy e e -=+20sin =>,故排除A ;当0x =时,()sin x xy e e-=-00sin ==,故排除B ;当0x =时,()cos x x y e e -=-010cos ==>,故排除C ;当0x =时,()cos x x y e e -=+20cos =<,满足题意.故选:D.7.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右顶点分别为A B ,,左焦点为F P ,为C 上一点,且PF x ⊥轴,过点A 的直线l 与线段PF 交于点M (异于P F ,),与y 轴交于点M ,直线MB 与y 轴交于点H .若3HN OH =-u u u r u u u u r (O 为坐标原点),则C 的离心率为( ) A .2 B .3C .4D .5【答案】B【解析】不妨设P 在第二象限,如图所示设||, (0, )(0)FM m H h h =>,由3HN OH =-u u u r u u u u r,可得(0,2)N h -.由AFM AON △∽△,得2m c a h a -=(1) 由BOH BFM △∽△,得h a m c a=+(2) 由(1),(2)两式相乘得12c a c a-=+,即3c a =. 所以离心率3ce a==. 故选:B.8.函数()f x 满足()()1,,2x e f x f x x x ⎡⎫=+∈+∞⎢⎣'⎪⎭, ()1f e =-,若存在[]2,1a ∈-,使得31232f a a e m ⎛⎫-≤--- ⎪⎝⎭成立,则m 的取值( )A .2,13⎡⎤⎢⎥⎣⎦B .2,3⎡⎫+∞⎪⎢⎣⎭C .[)1,+∞ D .12,23⎡⎤⎢⎥⎣⎦【答案】A【解析】由题意设()()xf xg x e=,则()()1()x f x f x g x e x -'='=,所以()ln g x x c =+(c 为常数).∵()1f e =-,∴(1)(1)1f g c e==-=,∴()()(1ln )x x f x g x e e x =⋅=-+, ∴1()(ln 1)xf x e x x =+-'.令1()ln 1h x x x =+-,则22111()x h x x x x-=-=,故当112x <<时,()0,()h x h x '<单调递减;当1x >时,()0,()h x h x '>单调递增.∴()(1)0h x h ≥=,从而当1,2x ⎡⎫∈+∞⎪⎢⎣⎭时,()0f x '≥,∴()f x 在区间1,2⎡⎫+∞⎪⎢⎣⎭上单调递增.设[]3()32,2,1a a a e a ϕ=---∈-,则2()333(1)(1)a a a a ϕ'=-=+-,故()a ϕ在(2,1)--上单调递增,在(1,1)-上单调递减,所以max ()(1)a e ϕϕ=-=-. ∴不等式31232f a a em ⎛⎫-≤--- ⎪⎝⎭等价于12(1)f e f m ⎛⎫-≤-= ⎪⎝⎭,∴1211122m m ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得213m ≤≤,故m 的取值范围为2[,1]3.选A .二、多选题9.空气质量指数AQI 是反映空气质量状况的指数,AQI 指数值越小,表明空气质量越好,其对应关系如表: AQI 指数值 0~50 51~100 101~150 151~200 201~300 300>空气质量优良轻度污染中度污染重度污染严重污染如图是某市12月1日-20日AQI 指数变化趋势:下列叙述正确的是( )A .这20天中AQI 指数值的中位数略高于100B .这20天中的中度污染及以上的天数占14C .该市12月的前半个月的空气质量越来越好D .总体来说,该市12月上旬的空气质量比中旬的空气质量好 【答案】ABD【解析】对A :将这20天的数据从小到大排序后,第10个数据略小于100,第11个数据约为120,因为中位数是这两个数据的平均数,故中位数略高于100是正确的,故A 正确; 对B :这20天中,AQI 指数大于150的有5天,故中度污染及以上的天数占14是正确的, 故B 正确;对C :由折线图可知,前5天空气质量越来越好,从6日开始至15日越来越差,故C 错误;对D :由折线图可知,上旬大部分AQI 指数在100以下,中旬AQI 指数大部分在100以上,故上旬空气质量比中旬的要好.故D 正确. 故选:ABD.10.已知函数()()sin 322f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线4x π=对称,则( )A .函数12f x π⎛⎫+⎪⎝⎭为奇函数 B .函数()f x 在,123ππ⎡⎤⎢⎥⎣⎦上单调递增C .若()()122f x f x -=,则12x x -的最小值为3π D .函数()f x 的图象向右平移4π个单位长度得到函数cos3y x =-的图象 【答案】AC 【解析】因为直线4x π=是()()sin 322f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的对称轴,所以()342k k Z ππϕπ⨯+=+∈,则()4k k Z πϕπ=-+∈,当0k =时,4πϕ=-,则()sin 34f x x π⎛⎫=-⎪⎝⎭, 对于选项A,sin 3sin 312124f x x x πππ⎡⎤⎛⎫⎛⎫+=+-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为()sin 3sin3x x -=-,所以12f x π⎛⎫+ ⎪⎝⎭为奇函数,故A 正确; 对于选项B,()232242k x k k Z πππππ-+<-<+∈,即()21212343k kx k Z ππππ-+<<+∈,当0k =时,()f x 在,124ππ⎡⎤-⎢⎥⎣⎦当单调递增,故B 错误; 对于选项C,若()()122f x f x -=,则12x x -最小为半个周期,即21323ππ⨯=,故C 正确; 对于选项D,函数()f x 的图象向右平移4π个单位长度,即()sin 3sin 3sin 344x x x πππ⎡⎤⎛⎫--=-=- ⎪⎢⎥⎝⎭⎣⎦,故D 错误 故选:AC11.下列结论正确的是( )A .x R ∀∈,12x x+≥B .若0a b <<,则3311a b ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .若()20x x -<,则()2log 0,1x ∈D .若0a >,0b >,1a b +≤,则104ab <≤【答案】BD【解析】当0x <时,1x x+为负数,所以A 不正确; 若0a b <<,则110b a<<,考虑函数3()f x x =在R 上单调递增, 所以11()()f f a b >,即3311()()ab>,所以B 正确;若()20x x -<,则02x <<,2log (,1)x ∈-∞,所以C 不正确; 若0a >,0b >,1a b +≤,根据基本不等式有21,0()224a b a b ab ab ++≤<≤= 所以D 正确. 故选:BD12.如图,四棱锥P ABCD -中,平面PAD ⊥底面ABCD ,PAD △是等边三角形,底面ABCD 是菱形,且60BAD ∠=︒,M 为棱PD 的中点,N 为菱形ABCD 的中心,下列结论正确的有( )A .直线PB 与平面AMC 平行 B .直线PB 与直线AD 垂直 C .线段AM 与线段CM 长度相等 D .PB 与AM 2【答案】ABD【解析】如图,连接MN ,易知//MN PB ,由线面平行的判定定理得//PB 面AMC ,A 正确.在菱形ABCD 中,60BAD ∠=︒,BAD ∴V 为等边三角形.设AD 的中点为O ,连接OB ,OP ,则OP AD ⊥,OB AD ⊥,由线面垂直的判定定理得出AD ⊥平面POB ,AD PB ∴⊥,B 正确.Q 平面PAD ⊥平面ABCD ,由面面垂直的性质可得POB V 为直角三角形设4=AD ,则23OP OB ==,26PB ∴=,162MN PB ==. 在MAN △中,23AM AN ==,6MN =,可得2cos 4AMN ∠=故异面直线PB 与AM 所成角的余弦值为24在MAN △中222AM AN MN ≠+,则ANM ∠不是直角,则AMC ∆不是等腰三角形,即AM 与CM 长度不等,故C 错误,D 正确 故选:ABD三、填空题 13.已知()3312,,,sin ,sin 45413ππαβπαββ⎛⎫⎛⎫∈+=--= ⎪ ⎪⎝⎭⎝⎭,则cos 4πα⎛⎫+= ⎪⎝⎭__________.【答案】5665-【解析】∵3,,4παβπ⎛⎫∈⎪⎝⎭, ∴3,22παβπ⎛⎫+∈⎪⎝⎭, ∴()()24cos =1sin 5αβαβ+-+=. 又3,424πππβ⎛⎫-∈ ⎪⎝⎭,12sin ,413πβ⎛⎫-=⎪⎝⎭ ∴25cos()=1sin ()4413ππββ----=-. ∴cos()cos[()()]44ππααββ+=+--cos()cos()sin ()sin()44ππαββαββ=+-++-4531256()()51351365=⨯-+-⨯=-. 答案:5665- 14.已知抛物线24y x =的焦点为F ,准线为l ,过点F 且斜率为3的直线交抛物线于点M (M 在第一象限),MN l ⊥,垂足为N ,直线NF 交y 轴于点D ,则| |MD =_____________. 【答案】23 【解析】如图所示设准线与x 轴交于E .易知()1,0F ,2EF =,由抛物线定义知||||MN MF =. 由题意60MFx ∠=︒,60NMF ∴∠=︒, NMF ∴V 为等边三角形,60NFE ∴∠=︒, 24cos60EF NM FE ∴===︒.又OD 是FEN △的中位线,MD ∴就是该等边NMF V 的高,||23MD ∴=.故答案为:2315.已知a ∈R ,若二项式(1)n x 的展开式中二项式系数和是16,所有项系数和是81,则n =_____,含x 项的系数是_____. 【答案】4 24或96【解析】∵二项式(1)n x 的展开式中二项式系数和是16, ∴216n =,解得4n =;令1x =,可得()4181a +=,解得2a =或4-, 二项式展开式的通项公式为2442144()r rrr rr TC x C ax---+==,令2r =,则x 项的系数是22246C a a =,当2a =时,2624a =,当4a =-时,2696a =, 所以含x 项的系数是24或96. 故答案为:4,24或96.16.已知函数()222,01,03x x ax a x f x e ex a x x⎧++≤⎪=⎨-+>⎪⎩,若存在实数k ,使得函数()y f x k =-有6个零点,则实数a 的取值范围为__________.【答案】3,32⎛⎫⎪⎝⎭【解析】由题得函数()y f x =的图象和直线y k =有六个交点.显然有200a a a >-<,.221(1)(),()3x x e e x f x e a f x x x -'=-+∴=,(0x >), 所以函数在(0,1)单调递减,在1+∞(,)单调递增,且21(1)03f a =>. 由题得221(,||),(0,),(1,)3A a a aB aC a --,,,A B C 三点的高度应满足A B C h h h ≥>或B A C h h h ≥>,所以21|1|3a a a a -≥>或21|1|3a a a a ≥->, 因为200a a a >-<, 所以23a ≤<或322a <≤,综合得332a <<. 故答案为:3,32⎛⎫ ⎪⎝⎭四、解答题17.如图,在ABC ∆中,2AB =,1cos 3B =,点D 在线段BC 上.(Ⅰ) 若34ADC π∠=,求AD 的长; (Ⅱ) 若2BD DC =,ACD ∆的面积为42,求sin sin BAD CAD ∠∠的值. 【解析】(I )在三角形中,∵1cos 3B =,∴22sin 3B =. 在ABD ∆中,由正弦定理得sin sin AB AD ADB B =∠, 又2AB =,4ADB π∠=,22sin 3B =.∴83AD =. (II )∵2BD DC =,∴2ABD ADC S S ∆∆=,, 又423ADC S ∆=∴42ABC S ∆=, ∵1·sin 2ABC S AB BC ABC ∆=∠,∴6BC =, ∵1·sin 2ABD S AB AD BAD ∆=∠,1·sin 2ADC S AC AD CAD ∆=∠, 2ABD ADC S S ∆∆=,∴sin 2?sin BAD AC CAD AB∠=∠, 在ABC ∆中,由余弦定理得2222?cos AC AB BC AB BC ABC =+-∠.∴42AC =∴sin 2?42sin BAD AC CAD AB∠==∠ 18.已知n S 是公差不为零的等差数列{}n a 的前n 项和,336,S a =是1a 与9a 的等比中项.(1)求数列{}n a 的通项公式;(2)设数列()*24(1)41n n n a b n N n =-∈-,数列{}n b 的前2n 项和为2n P ,若2112020n P +<,求正整数n 的最小值. 【解析】(1)公差d 不为零的等差数列{}n a ,由3a 是1a 与9a 的等比中项,可得 2193a a a ⋅=,即()()211182a a d a d +=+,解得1a d =. 又31336S a d =+=,可得11a d ==,所以数列{}n a 是以1为首项和公差的等差数列,所以*,N n a n n =∈.(2)由(1)可知()()241111412121n n n n b n n n ⎛⎫=-=-+ ⎪--+⎝⎭, 211111111113355743414141n P n n n n ∴=--++--+--++---+L 1141n =-++, 211201914120204n P n n +=<∴>+Q , 所以n 的最小值为505.19.在如图的空间几何体中,四边形BCED 为直角梯形,90,2DBC BC DE ︒∠==,2AB AC ==,3CE AE ==,且平面BCED ⊥平面ABC ,F 为棱AB 中点.(1)证明:DF AC ⊥;(2)求二面角B AD E --的正弦值.【解析】(1)证明:取AC 中点为G ,连接GE 和GF ,如图所示因为//GF BC ,且12GF BC =, 又因为//DE BC ,且12DE BC =,故//GF DE ,且GF DE =,即四边形GFDE 为平行四边形,故//GE DF ,CE AE =Q ,G 为AC 中点,GE AC ∴⊥;又//GE DF ,DF AC ∴⊥.(2)Q 平面BCED ⊥平面ABC ,平面BCED I 平面ABC BC DB AC =⊥,,DB ∴⊥平面ABC ,又AC ⊂平面ABC ,DB AC ∴⊥.由(1)知,DF AC BD DF D ⊥⋂=Q ,,BD DF ⊂平面ABC ,AC ∴⊥平面ABD ,而AB Ì平面ABD ,AC AB ∴⊥,2AB AC ==Q ,22,2BC DE ∴==.取BC 中点O 连接OE 和OA ,四边形BCED 为直角梯形,则//OE DB , DB ⊥Q 平面ABC ,OE ∴⊥平面ABC ,又BC ⊂平面ABC ,OA ⊂平面ABC ,故OE BC OE OA ⊥⊥,,,AB AC OA BC =∴⊥Q ,∴分别以OA 、OB 、OE 所在直线为x 轴、y 轴、z 轴建立直角坐标系,如图所示3,1CE AE OE ==∴=Q ,则2,1)D ,(0,0,1)E ,(2,0,0)A ,(0,2,0)C -,故(2,2,1)AD =-u u u r ,(2,0,1)AE =u u u r ,(2,2,0)CA =u u u r ,易知平面ABD 的一个法向量为(2,2,0)CA =u u u r ,设平面ADE 的一个法向量为(,,)n x y z =r ,则00n AD n AE ⎧⋅=⎨⋅=⎩u u u v v u u u v v ,即22020x z x z ⎧-++=⎪⎨-+=⎪⎩,令2,1,0z x y =∴==, 2)n ∴=r .设二面角B AD E --的为θ,则|cos ||cos ,|||||n CA n CA n CA θ⋅=〈〉==r u u u r r u u u r r u u u rsin θ\==. ∴二面角B AD E --. 20.已知椭圆2222:1(0)x y C a b a b+=>>与抛物线2:4D y x =-有共同的焦点F ,且两曲线的公共点到F 的距离是它到直线4x =- (点F 在此直线右侧)的距离的一半.(1)求椭圆C 的方程;(2)设O 为坐标原点,直线l 过点F 且与椭圆交于A B ,两点,以OAOB ,为邻边作平行四边形OAMB .是否存在直线l ,使点M 落在椭圆C 或抛物线D 上?若存在,求出点M 坐标;若不存在,请说明理由.【解析】(1)由题意知()1,0F -,因而1c =,即221a b =+,又两曲线在第二象限内的交点(),Q Q Q x y 到F 的距离是它到直线4x =-的距离的一半,即()421Q Q x x +=-+, 得23Q x =-,则283Q y =, 代入到椭圆方程,得2248193a b+=. 由2222481931a ba b ⎧+=⎪⎨⎪=+⎩, 解得224,3a b ==,∴所求椭圆的方程为22143x y +=. (2)当直线AB 的斜率存在且不为0时,设直线AB 的方程为()1y k x =+ 由22(1)143y k x x y =+⎧⎪⎨+=⎪⎩, 得()22223484120k x k x k +++-=,设()()()001122,,,,,M x y A x y B x y , 则221212228412,3434k k x x x x k k --+=⋅=++, 由于OABM 为平行四边形,得OM OA OB =+u u u u r u u u r u u u r ,故012012x x x y y y =+⎧⎨=+⎩,又()()11221,1y k x y k x =+=+, 可得2202220288634,,3434634k x k k k M k k ky k ⎧-=⎪⎛⎫-⎪+∴⎨ ⎪++⎝⎭⎪=⎪+⎩. 若点M 在椭圆C 上,则2200143x y +=,代入得()42221612134k k k +=+,无解. 若点M 在抛物线D 上,则200:4D y x =-,代入得()2222236323434k k k k =++,无解.当直线斜率不存在时,:1l x =-,此时存在点(2,0)M -在椭圆C 上.故不存在直线l ,使点M 落在抛物线D 上,存在直线l ,使点()2,0M -落在椭圆C 上.21.已知函数()(1)ln(1)f x x x =++,2()cos 2x g x ax x x =+-. (1)当0x ≥时,总有2()2x f x mx +…,求m 的最小值; (2)对于[]0,1中任意x 恒有()()f x g x ≤,求a 的取值范围.【解析】(1)令2()(1)1(1),02x x mx x n x x φ=+-++≥, 则1()ln(1)1,()101x x m x x x ϕφ'''=+-+-=->+, ()x ϕ'∴在[0,)+∞上单调递增,且(0)1m ϕ'=-若m 1≥,则()x ϕ在[0,)+∞上单调递增,()(0)0x ϕϕ∴≥=,即m 1≥满足条件;若1,(0)10,()m m x ϕϕ'<=-<存在单调递减区间[]00,x ,又(0)0ϕ=Q ,所以存在0x 使得()00x ϕ<与已知条件矛盾,所以m 1≥,m 的最小值为1.(2)由(1)知2()2x f x x ≤+,如果2()2x x g x +≤,则必有()()f x g x ≤成立.令2()()(1)cos (1cos )2x h x g x x a x x x x a x ⎛⎫=-+=--=-- ⎪⎝⎭, 则()(1cos )0h x x a x =--…,即1cos 0,1cos ,2a x a x a --≥+∴∴≥≥. 若()0h x ≥,必有()()f x g x ≤恒成立,故当2a ≥时,()()f x g x ≤恒成立,下面证明2a <时,()()f x g x ≤不恒成立.令1()()(1)ln(1)f x f x x x x x =-=++-,1()ln(1)f x x '=+,当0x >时,1()ln(1)0f x x '=+>,1()f x 在区间[]0,1上单调递增故11()(0)0f x f ≥=,即1()()0f x f x x =-≥,故()x f x ≤.2()()()(1)cos 1cos 22x x g x f x g x x a x x x x a x ⎛⎫-≤-=-+-=-+- ⎪⎝⎭, 令()1cos 2xt x a x =-+-,1()sin 02t x x '=+>, 所以()t x 在[]0,1上单调递增,又(0)20t a =-<,则一定存在区间()0,m (其中01m <<),当()0,x m ∈时,()0t x <,则()()()0g x f x xt x -≤<,故()()f x g x ≤不恒成立.综上所述:实数a 取值范围是[2,)+∞.22.为丰富学生课外生活,某市组织了高中生钢笔书法比赛,比赛分两个阶段进行:第一阶段由评委给出所有参赛作品评分,并确定优胜者;第二阶段为附加赛,参赛人员由组委会按规则另行确定.数据统计员对第一阶段的分数进行了统计分析,这些分数X 都在[70,100)内,在以组距为5画分数的频率分布直方图(设“=Y 频率组距”)时,发现Y 满足*8109,16300,N ,55(1)11,161520n n Y n n X n k n n -⎧⎪⎪=∈<+⎨⎪-⋅>⎪-⎩„„. (1)试确定n 的所有取值,并求k ;(2)组委会确定:在第一阶段比赛中低于85分的参赛者无缘获奖也不能参加附加赛;分数在[)95,100的参赛者评为一等奖;分数在[90,95)的同学评为二等奖,但通过附加赛有111的概率提升为一等奖;分数在[85,90)的同学评为三等奖,但通过附加赛有17的概率提升为二等奖(所有参加附加赛的获奖人员均不降低获奖等级).已知学生A 和B 均参加了本次比赛,且学生A 在第一阶段评为二等奖. (i )求学生B 最终获奖等级不低于学生A 的最终获奖等级的概率; (ii )已知学生A 和B 都获奖,记A B ,两位同学最终获得一等奖的人数为ξ,求ξ的分布列和数学期望.【解析】(1)根据题意,X 在[70,100)内,按组距为5可分成6个小区间, 分别是[70,75),[75,80),[80,85),[85,90),[90,95),[95,100),70100X ≤<Q ,由*55(1),n X n n ≤<+∈N ,14,15,16,17,18,19n ∴=. 每个小区间的频率值分别是8109,14,15,16605115,17,18,19320n n P Y k n n -⎧=⎪⎪==⎨⎪-⋅=⎪-⎩. 由3111911151160606032k ⎛⎫+++-++= ⎪⎝⎭,解得350k =. n ∴的所有取值为14,15,16,17,18,19,350k =.(2)(i )由于参赛学生很多,可以把频率视为概率.由(1)知,学生B 的分数属于区间[)[)[)[)[)[)70,75,75,80,80,85,85,90,90,95,95,100的概率分别是:360,1160,1960,1460,1160,260. 我们用符号ij A (或ij B )表示学生A (或B )在第一轮获奖等级为i ,通过附加赛最终获奖等级为j ,其中(,1,2,3)j i i j =….记“学生B 最终获奖等级不低于学生A 的最终获奖等级”为事件W , 则()12122223222()P W P B B B A B A =+++()()()()()()12122223222P B P B P B P A P B P A =+++2111111010141105160601160111160711220=+⋅+⋅⋅+⋅⋅=. (ii )学生A 最终获得一等奖的概率是()21111P A =, 学生B 最终获得一等奖的概率是()12121112116060272711272796060P B B ''+=+⋅=+=,1180(0)1111999P ξ⎛⎫⎛⎫==--= ⎪⎪⎝⎭⎝⎭, 111118(1)1111911999P ξ⎛⎫⎛⎫==⋅-+-⋅= ⎪ ⎪⎝⎭⎝⎭, 111(2)11999P ξ==⋅=, ξ∴的分布列为:801812001299999999E ξ=⋅+⋅+⋅=.。
2020年高考模拟试卷——理科数学(山东卷)解析版(2)(52020高考)
2021年山东高|考数学理试题解析一、选择题:本大题共12小题 ,每题5分 ,总分值60分.在每题给出的四个选项中 ,只有一项为哪一项符合题目要求的 .(1 )复数z 满足(z -3)(2 -i) =5(i 为虚数单位) ,那么z 的共轭复数为( )【答案】D 【解析】由(z-3)(2-i)=5,得(2 )设集合A ={0,1,2},那么集合B ={x -y |x ∈A, y ∈A }中元素的个数是( ) A. 1 B. 3 C 【答案】C【解析】因为,x y A ∈,所以2,1,0,1,2x y -=-- ,即{2,1,0,1,2}B =--,有5个元素 ,选【解析】因为函数为奇函数 ,所以(1)(1)(11)2f f -=-=-+=- ,选A.OP PAO OA ∠==,即3PAO π∠=,选B.(5 )将函数y =sin (2x +ϕ )的图像沿x 轴向左平移8π个单位后 ,得到一个偶函数的图像 ,那么ϕ的一个可能取值为 (A )34π (B ) 4π (C )0 (D ) 4π- 【答案】B【解析】将函数y =sin (2x +ϕ )的图像沿x 轴向左平移8π个单位 ,得到函数sin[2()]sin(2)84y x x ππϕϕ=++=++ ,因为此时函数为偶函数 ,所以,42k k Z ϕπ+=+∈ ,即,4k k Z ϕπ=+∈ ,所以选B.(6 )在平面直角坐标系xOy 中 ,M 为不等式组:2x y 20x 2y 103x y 80--≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点 ,那么直线OM 斜率的最||小值为 (A )2 (B )1 (C ) 13- (D ) 12- 【答案】 C【解析】作出可行域如图 ,由图象可知当M 位于点D 处时 ,OM的斜率最||小 .由210380x y x y +-=⎧⎨+-=⎩得31x y =⎧⎨=-⎩ ,即(3,1)D -,此时OM 的斜率为1133-=- ,选C. (7 )给定两个命题p 、q ,假设﹁p 是q 的必要而不充分条件 ,那么p 是﹁q 的(A )充分而不必条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件 【答案】B【解析】因为﹁p 是q 的必要而不充分条件 ,所以﹁q 是p 的必要而不充分条件 ,即p 是﹁q 的充分而不必要条件 ,选A.(8 )函数y =xcosx + sinx 的图象大致为(A ) (B ) (C) (D) 【答案】 D【解析】函数x π=时 ,()0f ππ=-<,排除A,选D.(9 )过点 (3 ,1 )作圆 (x -1 )2 +y 2 =1的两条切线 ,切点分别为A ,B ,那么直线AB 的方程为 (A )2x +y -3 =0 (B )2x -y -3 =0 (C )4x -y -3 =0 (D )4x +y -3 =0 【答案】A【解析】由图象可知 ,(1,1)A 是一个切点 ,所以代入选项知 ,,B D 不成立 ,排除 .又AB 直线的斜率为负 ,所以排除C ,选A.设切线的斜率为k ,那么切线方程为1(3)y k x -=- ,即130kx y k -+-= (10 )用0 ,1 ,… ,9十个数字 ,可以组成有重复数字的三位数的个数为 (A )243 (B )252 (C )261 (D )279 【答案】B【解析】有重复数字的三位数个数为91010900⨯⨯= .没有重复数字的三位数有1299648C A =,所以有重复数字的三位数的个数为900648=252- ,选B.(11 )抛物线C 1:y = 12px 2(p >0)的焦点与双曲线C 2: 2213x y -=的右焦点的连线交C 11在点M 处的切线平行于C 2的一条渐近线 ,那么p =332343【答案】D【解析】经过第|一象限的双曲线的渐近线为3y x =.抛物线的焦点为(0,)2p F ,双曲线的右焦点为2(2,0)F.1'y xp=,所以在2(,)2xM xp处的切线斜率为,即1xp=,所以0x p=,即三点(0,)2pF,2(2,0)F,,)6pM p共线,所以202p pp--=-,即p=,选D.【解析】由22340x xy y z-+-=,得2234z x xy y=-+.所以4yx=,即2x y=时取等号此时22yz=,1)(max=zxy.xyyyzyx2122212-+=-+)211(2)11(2yyxy-=-=1)221121(42=-+≤yy,应选B.二、填空题:本大题共4小题,每题4分,共16分(13 )执行右面的程序框图,假设输入的ε的值为0.25 ,那么输入的n的值为【答案】3【解析】第|一次循环 ,10123,312,2F F n =+==-== ,此时1110.253F =≤不成立 .第二次循环 ,10235,523,3F F n =+==-== ,此时1110.255F =≤成立 ,输出3n = . (14)在区间[ -3,3]上随机取一个数x ,使得 |x +1 | - |x -2 |≥1成立的概率为 【答案】13【解析】设()12f x x x =+-- ,那么3,31()1221,123,23x f x x x x x x --≤≤-⎧⎪=+--=--<<⎨⎪≤≤⎩.由211x -≥ ,解得12x ≤< ,即当13x ≤≤时 ,()1f x ≥ .由几何概型公式得所求概率为31213(3)63-==-- .(15 )向量AB 与AC 的夹角为120 ,且||3,||2,AB AC ==假设,AP AB AC λ=+且AP BC ⊥,那么实数λ的值为【答案】712【解析】向量AB 与AC 的夹角为120 ,且||3,||2,AB AC ==所以1cos1203232AB AC AB AC ⋅=⋅=-⨯⨯=- .由AP BC ⊥得 ,0AP BC ⋅= ,即()()0AP BC AB AC AC AB λ⋅=+⋅-= ,所以22(1)0AC AB AB AC λλ-+-⋅= ,即493(1)0λλ---= ,解得712λ=. (16 )定义 "正对数〞:0,01ln ln ,1x x x x +<<⎧=⎨≥⎩ ,现有四个命题:①假设0,0a b >> ,那么ln ()ln b a b a ++= ②假设0,0a b >> ,那么ln ()ln ln ab a b +++=+ ③假设0,0a b >> ,那么ln ()ln ln a a b b+++≥-④假设0,0a b >> ,那么ln ()ln ln ln 2a b a b ++++≤++ 其中的真命题有: (写出所有真命题的编号 )【答案】①③④【解析】①当1,0a b >>时 ,1ba > ,ln ()ln ln ,ln lnb b a a b a b a b a ++=== ,所以ln ()ln b a b a ++=成立 .当01,0a b <<>时 ,01b a << ,此时ln ()0,ln 0b a b a ++== ,即ln ()ln b a b a ++=成立 .综上ln ()ln b a b a ++=恒成立 .②当1,a e b e==时 ,ln ()ln10,ln ln 1,ln 0ab a e b +++===== ,所以ln ()ln ln ab a b +++=+不成立 .③讨论,a b 的取值 ,可知正确 .④讨论,a b 的取值 ,可知正确 .所以正确的命题为①③④ . 三、解答题:本大题共6小题 ,共74分. (17 )设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6 ,b =2 ,cosB = 79. (Ⅰ )求a ,c 的值;(Ⅱ )求sin (A -B )的值. 解答: (1 )由cosB = 79与余弦定理得 ,221449a c ac +-=,又 a +c =6 ,解得3a c ==(2 )又 a =3,b =2 ,42sin 9B =与正弦定理可得 ,22sin 3A =,1cos 3A = ,(18 ) (本小题总分值12分 )如下列图 ,在三棱锥P -ABQ 中 ,PB ⊥平面ABQ ,BA =BP =BQ ,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点 ,AQ =2BD ,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .(Ⅰ )求证:AB//GH ;(Ⅱ )求二面角D -GH -E 的余弦值 . 解答: (1 )因为C 、D 为中点 ,所以CD//AB 同理:EF//AB ,所以EF//CD ,EF ⊂平面EFQ , 所以CD//平面EFQ ,又CD ⊂平面PCD,所以 CD//GH ,又AB//CD ,所以AB//GH.(2)由AQ =2BD ,D 为AQ 的中点可得 ,△ABQ 为直角三角形 ,以B 为坐标原点 ,以BA 、BC 、BP 为x 、y 、z 轴建立空间直角坐标系 ,设AB =BP =BQ =2 ,可得平面GCD 的一个法向量为1(0,2,1)n = ,平面EFG 的一个法向量为2(0,1,2)n = ,可得4cos 5α==,所以二面角D (19 ) (2 )由题意可知X 的可能取值为:3,2,1,0相应的概率依次为:14416,,, ,所以EX =7解答: (1 )由S 4 =4S 2 ,a 2n =2a n +1 ,{a n }为等差数列 ,可得 ,11,2a d ==所以21n a n =-2.71828是自然对数的底数 (1 )求()f x 的单调区间 ,最||大值; (2 )讨论关于x 的方程|ln |()x f x =根的个数.于x 轴的直线被椭圆C 截得的线段长为l.(Ⅰ )求椭圆C 的方程;(Ⅱ )点P 是椭圆C 上除长轴端点外的任一点 ,连接PF 1、PF 2,设∠F 1PF 2的角平分线 PM 交C 的长轴于点M (m ,0 ) ,求m 的取值范围;(Ⅲ )在 (Ⅱ )的条件下 ,过点p 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共11||||PF PM PF PM ⋅ =22||||PF PM PF PM ⋅,11||PF PM PF ⋅ =22||PF PMPF ⋅,设(P 204x ≠ ,将向量坐标代入并化简得:m (23000416)312x x x -=- ,因为204x ≠ ,(2,2)∈- ,所以33(,)m ∈-。
2020年2020届山东省高三高考模拟考试数学试卷及解析
2020年2020届山东省高三高考模拟考试数学试卷★祝考试顺利★ (解析版)一、单项选择题:1.已知集合{1,2}A =-,{|1}B x ax ==,若B A ⊆,则由实数a 的所有可能的取值组成的集合为( )A. 11,2⎧⎫⎨⎬⎩⎭B. 11,2⎧⎫-⎨⎬⎩⎭C. 10,1,2⎧⎫⎨⎬⎩⎭D. 11,0,2⎧⎫-⎨⎬⎩⎭【答案】D 【解析】分B 为空集和B 不为空集两种情况讨论,分别求出a 的范围,即可得出结果. 【详解】因为集合{1,2}A =-,{|1}B x ax ==,B A ⊆, 若B 为空集,则方程1ax =无解,解得0a =; 若B 不为空集,则0a ≠;由1ax =解得1x a=,所以11a =-或12a =,解得1a =-或12a =,综上,由实数a 的所有可能的取值组成的集合为11,0,2⎧⎫-⎨⎬⎩⎭.故选D2.若1iz i =-+(其中i 是虚数单位),则复数z 的共轭复数在复平面内对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】D分析:变形1iz i =-+,利用复数代数形式的乘除运算化简,求出z 的坐标即可得结论. 详解:由i 1i z =-+, 得()()21i i 1i 1i i iz -+--+===+-,1z i =- ∴复数z 的共轭复数在复平面内对应的点的坐标为()1,1-,位于第四象限,故选D.3.函数()()22ln x xf x x -=+的图象大致为( )A. B.C. D.【答案】B 【解析】根据函数奇偶性的判断可知函数为偶函数,图象关于y 轴对称,排除D ;根据()0,1x ∈时,()0f x <,排除,A C ,从而得到正确选项. 【详解】()f x 定义域为{}0x x ≠,且()()()()22ln 22ln x x x x f x x x f x ---=+-=+=()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C . 本题正确选项:B4.《九章算术⋅衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”翻译为“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按个人带钱多少的比例交税,问三人各应付多少税?”则下列说法中错误的是( ) A. 甲付的税钱最多 B. 乙、丙两人付的税钱超过甲 C. 乙应出的税钱约为32 D. 丙付的税钱最少【答案】B 【解析】通过阅读可以知道,A D 说法的正确性,通过计算可以知道,B C 说法的正确性.【详解】甲付的税钱最多、丙付的税钱最少,可知,A D 正确:乙、丙两人付的税钱占总税钱的3511002<不超过甲。
2020年高考数学押题预测卷03(山东卷)(参考答案)
P( y ) P(43.91 y 73.09) 0.6826 , 所以 P( y„ 43.91) 1 0.6826 0.1587 ,
2
所以这 1000 名被调查者中午休睡眠时间低于 43.91 分钟(含 43.91)的人数估计有
0.1587 1000 159 (人).
(3) X 的可能值为 0,1,2,
~
2020 年高考押题预测卷 03(山东卷)
数学·参考答案
1
2
3
4
5
6
7
8
9 10 11 12
A
DD
D
C
B
D D ABD CD BCD AD
13. 3 5
14. 2 3
17.(本小题满分 10 分)
15. 2020 0
16. 2 6
8 6 729
【解析】(1)在VCAM 中,已知 CAM , sin CMA 3 , AC 2 ,由正弦定理,
所以 f (x) 有极小值 f (1) a ,无极大值; e
②当
a
0
时,令
f
(x)
0
x
1 或
x
ln
2 a
,
(ⅰ)
a
2e
时,x
,
ln
2 a
时,f
(x)
0
,f
(
x)
单调递减;x
ln
2 a
,
1
时,f
(
x)
0
,
f (x) 单调递增;
x (1, ) 时, f (x) 0 , f (x) 单调递减;
则 Sk2 k 22 k 2 k 2 5k 6 ,
若 a1 , ak , Sk2 成等比数列,则 ak 2 a1 Sk2 ,
2020年普通高校招生考试新高考山东押题预测数学试卷全解全析(5页)
2020年普通高校招生考试新高考山东押题预测数学试卷数学全解全析13.30 14.2π 215.16.12π 17.(本小题满分10分) 【解析】(1)由①b ac -=()2223a c b +-=-, 所以222cos 2a c b B ac +-==,由②2cos 22cos 12AA +=得,22cos cos 10A A +-=, 解得1cos 2A=或cos 1A =-(舍),所以3A π=,因为1cos 2B =<-,且()0,B π∈,所以23B π>,所以A B π+>,矛盾. 所以ABC ∆不能同时满足①,②.故ABC ∆满足①,③,④或②,③,④; (2)若ABC ∆满足①,③,④,因为2222cos b a c ac B =+-,所以2862c c =++2420c c +-=. 解得2c =.所以ABC ∆的面积1sin 2S ac B == 若ABC ∆满足②,③,④由正弦定理sin sin a b A B=sin B =,解得sin 1B =, 所以c =ABC ∆的面积1sin 2S bc A ==18.(本小题满分12分)【解析】(1)对任意的n *∈N ,132n nS S +=+,则1133311n n n n S S S S +++==++且113S +=,所以,数列{}1n S +是以3为首项,以3为公比的等比数列;(2)由(1)可得11333n n n S -+=⨯=,31nn S ∴=-.当2n ≥时,()()111313123nn n n n n S a S ---=-=---=⨯,12a =也适合上式,所以,123n n a -=⨯.由于曲线()22:191n n C x a y +-=是椭圆,则190191n n a a ->⎧⎨-≠⎩,即1123192318n n --⎧⨯<⎨⨯≠⎩, n N *∈Q ,解得1n =或2;(3)11333log 3log 3322n n n nn n a a b n --⎛⎫⎛⎫=⨯==⋅⎪ ⎪⎝⎭⎝⎭, 01211323333n n T n -∴=⨯+⨯+⨯++⋅L ,①()12131323133n n n T n n -=⨯+⨯++-⋅+⋅L ,②①-②得()()012111312312333333132n n n n nnn T n n -⨯--⋅--=++++-⋅=-⋅=-L , 因此,()21314n nn T -⋅+=. 19.(本小题满分12分)【解析】(1)证明:因为C 半圆弧»BD上的一点,所以BC BD ⊥. 在ABD ∆中,,E F 分别为,AD BD 的中点,所以112EF AB ==,且//EF AB . 于是在EFC ∆中, 222112EF FC EC +=+==, 所以EFC ∆为直角三角形,且EF FC ⊥. 因为AB BD ⊥,//EF AB ,所以.因为EF FC ⊥,,BD FC F ⋂=,所以EF ⊥平面BCD .又EF ⊂平面CEF ,所以平面CEF ⊥平面BCD .(2)由已知120BFC ∠=o ,以F 为坐标原点,分别以垂直于BD 、向量,FD FE u u u r u u u r所在方向作为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系F xyz -,则1,,0)22C ,(0,0,1)E ,(0,1,0)B -,(0,1,2)A -,1=(,1)2CE -u u u r ,(0,1,1)BE =u u u r ,(0,1,1)AE =-u u u r .设平面ACE 的一个法向量为111(,,)x y z =m ,则·0·0AE m CE m ⎧=⎨=⎩u u u v u u u v即111110102y z x y z -=⎧⎪⎨-+=⎪⎩,取11z =,得3=()m . 设平面BCE 的法向量222(,,)x y z =n ,则·0·0BE n CE n ⎧=⎨=⎩u u u v u u u v即2222201022y z x y z +=⎧⎪⎨--+=⎪⎩,取21z =,得1,1=-)n .所以cos ,||||<>==g m n m n m n , 又二面角A CE B --为锐角,所以二面角A CE B --.20.(本小题满分12分)【解析】(1)设椭圆C 的焦距为()20c c >,由题知,点,P c ⎛ ⎝⎭,b =则有22212c a ⎝⎭+=,2234c a ∴=,又22222a b c c =+=+,28a ∴=,26c =, 因此,椭圆C 的标准方程为22182x y +=;(2)当AB x ⊥轴时,M 位于x 轴上,且OMAB ⊥,由OMAB =12AOB S OM AB ∆=⋅=; 当AB 不垂直x 轴时,设直线AB 的方程为y kx t =+,与椭圆交于()11,A x y ,()22,B x y ,由22182x y y kx t ⎧+=⎪⎨⎪=+⎩,得()222148480k x ktx t +++-=. 122814kt x x k -∴+=+,21224814t x x k-=+,从而224,1414kt t M k k -⎛⎫ ⎪++⎝⎭已知OM =()2222214116k t k+=+.()()()22222212122284814141414kt t AB k x x x x k k k ⎡⎤--⎛⎫⎡⎤=++-=+-⨯⎢⎥ ⎪⎣⎦++⎝⎭⎢⎥⎣⎦Q ()()()222221682114k t k k -+=++. 设O 到直线AB 的距离为d ,则2221t d k=+, ()()()222222221682114114AOBk t t S k k k ∆-+=+⋅++. 将()2222214116k t k+=+代入化简得()()2222219241116AOB k k S k ∆+=+.令2116k p +=,则()()()22222211211192414116AOBp p k k S p k ∆-⎛⎫-+ ⎪+⎝⎭==+211433433p ⎡⎤⎛⎫=--+≤⎢⎥ ⎪⎢⎥⎝⎭⎣⎦.当且仅当3p =时取等号,此时AOB ∆的面积最大,最大值为2. 综上:AOB ∆的面积最大,最大值为2. 21.(本小题满分12分)【解析】(1)所有可能的方式有43种,恰有2人申请A 大学的申请方式有2242C ⋅种,从而恰有2人申请A 大学的概率为224428327C ⋅=; (2)由题意可知,随机变量的可能取值有1、2、3,则()4311327P X ===,()2232434341422327C A C A P X ⋅+===,()234344339C A P X ===. 所以,随机变量X 的分布列如下表所示:()1144651232727927E X =⨯+⨯+⨯=. 22.(本小题满分12分) 【解析】(1)因为()()2112xa f x ex e x =--,所以()x a f x xe xe '=-. 所以()01f =-,()00f '=.所以曲线()y f x =在点()()0,0f 处的切线为1y =-; (2)因为()()xaxaf x xe xe x e e'=-=-,令()0f x '=,得0x =或()0x a a =<.列表如下:所以,函数()y f x =的单调递增区间为(),a -∞和()0,∞+,单调递减区间为(),0a , 所以,当0x =时,函数()y f x =有极小值()01f =-; (3)当1x ≤时,()0f x <,且()222220af e e e =->->.由(2)可知,函数()y f x =在()0,∞+上单调递增,所以函数()y f x =的零点个数为1.。
2020年山东省新高考预测卷数学参考答案及解析
2020年山东省新高考预测卷数学 参考答案及解析参考答案:1-4:DCBA 5-8:DBCB 9:AC 10:ABD 11:ACD 12:ACD 13:14 14:22+2 15:2 23 16:[25-4,25+4]解析:1、z =(2+i)(3-2i)=8-i ,所以复数z 在复平面内对应的点的坐标为(8,-1),故选D.2、由题意得,A ={x |y =ln(x -1)}={x |x >1},B ={x |x 2-4≤0}={x |-2≤x ≤2},所以A ∩B ={x |1<x ≤2},故选C.3、根据线面垂直的判定和性质,可知由后者可推前者,但由前者不能推后者,故“直线l 与平面α内的无数条直线垂直”是“直线l 与平面α垂直”的必要不充分条件,选B.4、∵f (-x )=f (x ),∴f (x )是偶函数,故排除B ,D.∵f ⎝ ⎛⎭⎪⎫π2=2>1,∴排除C.故选A.5、法一 设AB →=a ,AD →=b ,则a·b =0,a 2=16,AC →=AD →+DC →=b +12a ,AE →=12(AC →+AB →)=12⎝ ⎛⎭⎪⎫b +12a +a =34a +12b ,所以AB →·(AC →+AE →)=a ·⎝ ⎛⎭⎪⎫b +12a +34a +12b =a ·⎝ ⎛⎭⎪⎫54a +32b =54a 2+32a ·b =54a 2=20,故选D.法二 以A 为坐标原点建立平面直角坐标系(如图所示),设AD =t (t >0),则B (4,0),C (2,t ),E ⎝ ⎛⎭⎪⎫3,12t ,所以AB →·(AC →+AE →)=(4,0)·⎣⎢⎡⎦⎥⎤(2,t )+⎝ ⎛⎭⎪⎫3,12t =(4,0)·⎝ ⎛⎭⎪⎫5,32t =20,故选D.6、由题意知,八卦中含1根与2根阴线的卦各有3种,含0根与3根阴线的卦各有1种,故从8种卦中取2卦的取法总数为C 28种,2卦中恰含4根阴线的取法为C 23+C 13·1=6种,所以所求概率P =6C 28=314,故选B.7、由抛物线的定义知|AF |=p 4+p2=3,解得p =4,所以抛物线C 的方程为y 2=8x ,A (1,a ),则a 2=8,解得a =22或a =-22(舍去),所以A (1,22).又焦点F (2,0),所以直线AF 的斜率为-22,直线AF 的方程为y =-22(x -2),代入抛物线C 的方程y 2=8x ,得x 2-5x +4=0,所以x A +x B =5,|AB |=x A +x B +p =5+4=9,故选C.8、根据AB ⊥BC 可知AC 为三角形ABC 所在截面圆O 1的直径,又平面PAC ⊥平面ABC ,△APC 为等边三角形,所以P 在OO 1上,如图所示,设PA =x ,则AO 1=12x ,PO 1=32x ,所以PO 1=32x =OO 1+2=4-⎝ ⎛⎭⎪⎫12x 2+2⇒⎝ ⎛⎭⎪⎫32x -22=4-⎝ ⎛⎭⎪⎫12x 2⇒x 2-23x =0⇒x =23,所以AO 1=12×23=3,PO 1=32×23=3,当底面三角形ABC 的面积最大时,即底面为等腰直角三角形时三棱锥P -ABC 的体积最大,此时V =13S △ABC ×PO 1=13×⎝ ⎛⎭⎪⎫12×23×3×3=3.9、因为a 2,a 3+1,a 4成等差数列,所以a 2+a 4=2(a 3+1),因此,a 1+a 2+a 3+a 4=a 1+3a 3+2=a 1+14,故a 3=4.又{a n }是公比为q 的等比数列,所以由a 2+a 4=2(a 3+1),得a 3⎝⎛⎭⎪⎫q +1q =2(a 3+1),解得q =2或12.10、由条形统计图知,B —自行乘车上学的有42人,C —家人接送上学的有30人,D —其他方式上学的有18人,采用B ,C ,D 三种方式上学的共90人,设A —结伴步行上学的有x 人,由扇形统计图知,A —结伴步行上学与B —自行乘车上学的学生占60%,所以x +42x +90=60100,解得x =30,故条形图中A ,C 一样高,扇形图中A 类占比与C 一样都为25%,A 和C 共占约50%,故D 也正确.D 的占比最小,A 正确.11、g (x )=cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π8+π12=cos ⎝ ⎛⎭⎪⎫2x +π3.g (x )的最小正周期为π,选项A 正确;当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π3∈⎣⎢⎡⎦⎥⎤π3,4π3,故g (x )在⎣⎢⎡⎦⎥⎤0,π2上有增有减,选项B 错误;g ⎝ ⎛⎭⎪⎫π12=0,故x =π12不是g (x )图象的一条对称轴,选项C 正确.当x ∈⎣⎢⎡⎦⎥⎤-π6,π6时,2x +π3∈⎣⎢⎡⎦⎥⎤0,2π3,且当2x +π3=2π3,即x =π6时,g (x )取最小值-12,D 正确.12、∵φ(x )=e x·f (x )-g (x )ex只有一个零点,∴2m (x 2+1)-e x-(m +2)(x 2+1)2e x=0只有一个实数根,即(m +2)⎝ ⎛⎭⎪⎫x 2+1e x 2-2m ·x 2+1e x +1=0只有一个实数根.令t =x 2+1e x ,则t ′=(x 2+1)′e x -(x 2+1)e x (e x )2=-(x -1)2e x≤0,∴函数t =x 2+1ex在R 上单调递减,且x →+∞时,t →0,∴函数t =x 2+1ex的大致图象如图所示,所以只需关于t 的方程(m +2)t 2-2mt +1=0(*)有且只有一个正实根. ①当m =2时,方程(*)为4t 2-4t +1=0,解得t =12,符合题意;②当m =3时,方程(*)为5t 2-6t +1=0,解得t =15或t =1,不符合题意;③当m =-3时,方程(*)为t 2-6t -1=0,得t =3±10,只有3+10>0,符合题意. ④当m =-4时,方程(*)为2t 2-8t -1=0,得t =4±322,只有4+322>0,符合题意.故选A ,C ,D.13、根据题意得:f (-2)=(-2)2=4, 则f (f (-2))=f (4)=24-2=16-2=14. 14、由题意得2b a +1b =2b a +a +2b b =2b a +ab+2≥22b a ·ab+2=22+2,当且仅当a =2b =2-1时,等号成立,所以2b a +1b的最小值为22+2.15、由已知可得(2-12)(1+a )3=27,则a =2,∴(2-x 2)(1+ax )3=(2-x 2)(1+2x )3=(2-x 2)(1+6x +12x 2+8x 3),∴展开式中含x 2的项的系数是2×12-1=23.16、由题意可知,直线OP 的方程为y =k 1x ,OQ 的方程为y =k 2x ,因为OP ,OQ 与圆M 相切,所以|k 1x 0-y 0|1+k 21=22,|k 2x 0-y 0|1+k 22=22, 分别对两个式子进行两边平方,整理可得k 21(8-x 20)+2k 1x 0y 0+8-y 20=0,k 22(8-x 20)+2k 2x 0y 0+8-y 20=0,所以k 1,k 2是方程k 2(8-x 20)+2kx 0y 0+8-y 2=0的两个不相等的实数根,所以k 1k 2=8-y 208-x 20.又k 1·k 2=-1,所以8-y 208-x 20=-1,即x 20+y 20=16.又|TO |=4+16=25,所以|TO |-4≤|TM |≤|TO |+4,所以25-4≤|TM |≤25+4. 答案 [25-4,25+4]17. (1)由题意,⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36,解得d =2,a 1=2. ∴a n =2+(n -1)×2=2n .(2)选条件①:b n =42n ·2(n +1)=1n (n +1),S n =11×2+12×3+…+1n (n +1)=⎝ ⎛⎭⎪⎫11-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=nn +1. 选条件②:∵a n =2n ,b n =(-1)na n , ∴S n =-2+4-6+8-…+(-1)n·2n , 当n 为偶数时,S n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=n2×2=n ;当n 为奇数时,n -1为偶数, S n =(n -1)-2n =-n -1.∴S n =⎩⎪⎨⎪⎧n ,n 为偶数,-n -1,n 为奇数.选条件③:∵a n =2n ,b n =2a n ·a n ,∴b n =22n ·2n =2n ·4n, ∴S n =2×41+4×42+6×43+…+2n ×4n,① 4S n =2×42+4×43+6×44+…+2(n -1)×4n +2n ×4n +1,②由①-②得,-3S n =2×41+2×42+2×43+…+2×4n -2n ×4n +1=8(1-4n )1-4-2n ×4n +1=8(1-4n )-3-2n ×4n +1,∴S n =89(1-4n )+2n 3·4n +1.18. (1)法一 因为m ∥n ,所以3a cos C =(2b -3c )cos A , 由正弦定理得3sin A cos C =2sin B cos A -3cos A sin C , 得3sin(A +C )=2sin B cos A ,所以3sin B =2sin B cos A ,因为sin B >0,所以cos A =32,又A ∈(0,π),所以A =π6. 法二 因为m ∥n ,所以3a cos C =(2b -3c )cos A ,易知cos C =a 2+b 2-c 22ab ,cos A =b 2+c 2-a 22bc ,代入上式得,3a ×a 2+b 2-c 22ab =(2b -3c )×b 2+c 2-a 22bc,整理得,3bc =b 2+c 2-a 2,所以cos A =b 2+c 2-a 22bc =32,又A ∈(0,π),所以A =π6.(2)由(1)得3bc =b 2+c 2-a 2,又b 2-a 2=12c 2,所以c =23b ,又S △ABC =12bc sin A =12b ×23b ×12=332,得b 2=9,所以b =3. 19. (1)E ,F 分别为BP ,CD 的中点,证明如下: 连接ME ,MF ,EF ,∵M ,F 分别为AD ,CD 的中点,∴MF ∥AC .又E 为BP 的中点,且四边形PBCD 为梯形,∴BC ∥EF .∵MF ⊄平面ABC ,AC ⊂平面ABC , ∴MF ∥平面ABC ,同理EF ∥平面ABC , 又∵MF ∩EF =F ,MF ,EF ⊂平面MEF , ∴平面MEF ∥平面ABC .(2)由题意知AP ,BP ,DP 两两垂直,以P 为坐标原点,PB ,PD ,PA 所在的直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,∵在等腰梯形ABCD 中,AB =2,BC =1,AD =3,BP ⊥AD ,∴AP =1,BP =1,PD =2, ∴M ⎝ ⎛⎭⎪⎫0,1,12,P (0,0,0),C (1,1,0),A (0,0,1),PC →=(1,1,0),PM →=⎝⎛⎭⎪⎫0,1,12.设平面MPC 的法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·PC →=0,n 1·PM →=0,即⎩⎪⎨⎪⎧x +y =0,y +12z =0,令z =-2,则y =1,x =-1,∴n 1=(-1,1,-2)为平面MPC 的一个法向量. 同理可得平面PAC 的一个法向量为n 2=(-1,1,0). 设二面角M -PC -A 的平面角为θ,由图可知θ∈⎝⎛⎭⎪⎫0,π2,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=26×2=33.∴二面角M -PC -A 的余弦值为33. 20. (1)根据表中数据,描点如图:(2)由已知数据得t -= 1+2+3+4+5+66=3.5,y -=3+5+8+11+13+146=9,∑6i =1t i y i =3+10+24+44+65+84=230,∑6i =1t 2i =1+4+9+16+25+36=91, b ^=∑6i =1t i y i -6t - y-∑6i =1t 2i -6t-2=230-6×3.5×991-6×3.52≈2.34,a ^=y --b ^ t -=9-2.34×3.5=0.81, 所以y 关于t 的线性回归方程为y ^=2.34t +0.81.(3)由(2)可知,当t =1时,y ^1=3.15;当t =2时,y ^2=5.49;当t =3时,y ^3=7.83;当t=4时,y ^4=10.17;当t =5时,y ^5=12.51;当t =6时,y ^6=14.85.与年利润数据y i 对比可知,满足y ^i -y i <0的数据有3个,所以X 的所有可能取值为0,1,2,则P (X =0)=C 23C 26=15,P (X =1)=C 13C 13C 26=35,P (X =2)=C 23C 26=15,X 的分布列为数学期望E (X )=0×15+1×35+2×5=1.21. (1)由椭圆x 2a 2+y 2b 2=1的右焦点为(3,0),知a 2-b 2=3,即b 2=a 2-3,则x 2a 2+y 2a 2-3=1,a 2>3.又椭圆过点M (-2,1),∴4a 2+1a 2-3=1,又a 2>3,∴a 2=6.∴椭圆Γ的标准方程为x 26+y 23=1.(2)设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 26+y 23=1,y =k (x -1)得x 2+2k 2(x -1)2=6,即(1+2k 2)x 2-4k 2x +2k 2-6=0,∵点N (1,0)在椭圆内部,∴Δ>0, ∴⎩⎪⎨⎪⎧x 1+x 2=4k21+2k2, ①x 1x 2=2k 2-62k 2+1, ②则t =MA →·MB →=(x 1+2)(x 2+2)+(y 1-1)(y 2-1) =x 1x 2+2(x 1+x 2)+4+(kx 1-k -1)·(kx 2-k -1) =(1+k 2)x 1x 2+(2-k 2-k )(x 1+x 2)+k 2+2k +5 ③, 将①②代入③得,t =(1+k 2)·2k 2-62k 2+1+(2-k 2-k )·4k22k 2+1+k 2+2k +5,∴t =15k 2+2k -12k 2+1,∴(15-2t )k 2+2k -1-t =0,k ∈R , 则Δ1=22+4(15-2t )(1+t )≥0,∴(2t -15)(t +1)-1≤0,即2t 2-13t -16≤0, 由题意知t 1,t 2是2t 2-13t -16=0的两根, ∴t 1+t 2=132.22.(1) ∵a =0时,∴f (x )=e x -ln x ,f ′(x )=e x-1x(x >0),∴f (1)=e ,f ′(1)=e -1,∴函数f (x )的图象在(1,f (1))处的切线方程为:y -e =(e -1)(x -1),即(e -1)x -y +1=0.(2)证明 ∵f ′(x )=ex +a-1x(x >0),设g (x )=f ′(x ),则g ′(x )=e x +a+1x2>0,∴g (x )是增函数,∵ex +a>e a ,∴由e a >1x⇒x >e -a,∴当x >e -a时,f ′(x )>0; 若0<x <1⇒ex +a<ea +1,由ea +1<1x⇒x <e -a -1,∴当0<x <min{1,e -a -1}时,f ′(x )<0,故f ′(x )=0仅有一解,记为x 0,则当0<x <x 0时,f ′(x )<0,f (x )递减;当x >x 0时,f ′(x )>0,f (x )递增;∴f (x )min =f (x 0)=e x 0+a -ln x 0,而f ′(x 0)=e x 0+a -1x 0=0⇒e x 0+a =1x 0⇒a =-ln x 0-x 0,记h (x )=ln x +x , 则f (x 0)=1x 0-ln x 0=h ⎝ ⎛⎭⎪⎫1x 0,a >1-1e ⇔-a <1e-1⇔h (x 0)<h ⎝ ⎛⎭⎪⎫1e,而h (x )显然是增函数, ∴0<x 0<1e ⇔1x 0>e ,∴h ⎝ ⎛⎭⎪⎫1x 0>h (e)=e +1. 综上,当a >1-1e时,f (x )>e +1.。
2020山东高考数学预测卷及答案(理科,附答案解析)
一、填空题:(本大题共 14小题,每小题 5分,共 70分.请将答案填入答题纸填空题de 相应答题线上.) 1 .复数2+i i在复平面上对应de 点在第 象限.2.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有 40种、10种、30种、20 种,从 中抽取一个容量为 20de 样本进行食品安全检测.若采用 分层抽样de 方法抽取样本,则抽取de 植物油类与果蔬类 食品种数之和是.3.已知集合 A { x | x 5} ,集合开始江,若命题B { x | x a} n输入 “ ”是命题“ ”de 充分不必要x Ax BS 0条件,则实是数de 取值范围是 a.n 2否4.如图,直三棱柱 ABC - A 1B 1C 1 输出 SSS n中,AB =1 BC =2 AC = AA =3,, , , 51 结束n n 1M 为线段 BB 1上de 一动点,则当+MC AM第 6题图1 AMC1de 面积为最小时,△ .(第 4题).5.集合 A {3,log a}, B { a, b}, 若 A I B {2},则 AU B.2 6.阅读如图所示de 程序框,若输入de 是 100 ,则输出den变量de 值是S.7.向量 a (cos10 ,sin10 ),b (cos70 ,sin 70o) ,a 2booo=.8.方程 xlg( x 2) 1 有 个不同de 实数根.9.设等差数列 a n de 前 n 项和为 S ,若1≤ a ≤ 4, 2≤ a ≤ 3, n 5 6de 取值范围是则 S6 .10.过双曲线 x 2y 2a 2b 21(a 0,b 0)de 左焦点 F ( c,0)(c 0) ,作圆:a 242x y 2de 切线,切点为,直线 交双曲线右支于点 ,若 E FEPuuur OE uuur uuur(OF OP) 1 2,则双曲线de离心率为 .11.若函数 f xmx 2 ln x 2x在定义域内是增函数,则实数dem取值范围是.12.如果圆 (x a) ( y a)24 x2上总存在两个点到原点de 距离为 1,则实数 ade 取值范围是 . 13.已知实数 满足x,yx 1y 3 y ,则 x y de 最大值为 .14 .当 n 为正整数时,函数 表示N(n)nde 最大奇因数 ,如N(3) 3,N(10) 5,,设S n N (1) N (2) N(3) N(4) ... N(2 n,nN(2 )则1) .S n二、解答题:本大题共六小题,共计 90分.请在答题卡指定 区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分 14分)在锐角 ABC 中,角 A ,B ,C 所对de 边分别为,b ,.已 a c 3 知 cos2C.4(1)求 sinC ;(2)当 c 2a ,且 b 3 7时,求 a .16.(本题满分 14分)如图 , 是边长为de 正方形,DE平面 ABCD ,ABCD 3 AF // DE , DE 3AF ,BE 与平面 ABCD 所成角为 60 0 .E(1)求证: AC 平面 BDE ; ( 2)设点是线段 上一个动 M BD 点,试确定点 de MFDC位置,使得 平面 ,并证明BEFAM // 你de 结论 .A B。
2020年高考数学临考押题卷(山东专版)(解析版)
2020年高考临考押题卷(六)数学(山东卷)(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、单选题1.设集合(){}30S x x x =-≤,1112x T x -⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则S T =U ( )A .[)0,+∞B .(]1,3C .[)3,+∞D .(](),01,-∞+∞U 【答案】D【解析】Q (){}30S x x x =-≤{|3x x =≥或}0x ≤, 1112x T x -⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭{}|1x x =>,{|0S T x x ∴⋃=≤或}1x >(](),01,=-∞⋃+∞,故选D.2.设312iz i-=+,z 的虚部是( ) A .75i B .75C .75i -D .75-【答案】B 【解析】因为()()()()31231717=121212555i i i i z i i i i ----===-++- 所以z 的虚部是75故选:B3.三位女歌手和她们各自的指导老师合影,要求每位歌手与她们的老师站一起,这六人排成一排,则不同的排法数为( ) A .24 B .48C .60D .96【答案】B【解析】先将三位女歌手和她们各自的指导老师捆绑在一起,记为三个不同元素进行全排,再将各自女歌手和她的指导老师进行全排,则不同的排法数3222322248N A A A A ==,4.在△ABC 中,AB c AC b ==u u ur r u u u r r ,若点D 满足3,BC BD =-u u u r u u u r 则AD =u u ur ( )A .4133c b -r rB .1334c b -r rC .4133c b -+r rD .3143c b -+r r【答案】A【解析】ABC ∆中,点D 满足3BC BD =-u u u r u u u r ,AB c =u u ur r ,AC b =u u u r r ,则1141()33333413AD AB BD AB BC AB AC c A AC b B AB =+=-=--=--=r r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 5.关于函数tan |||tan |y x x =+有下述四个结论:①y 是偶函数;②y 在(,0)2π-上是减函数;③y 在[,]-ππ上有三个零点;④y 的最小值是0.其中所有正确结论编号是( )A .①②④B .②③C .①③D .①④【答案】A【解析】作出函数()tan |||tan |f x x x =+的图象如图,由图可知,()()tan |||tan |tan |||tan |()f x x x x x f x -=-+-=+=,故()f x 是偶函数,故①正确;()f x 在区间(,0)2π-上单调递减,故②正确;y 在[,]-ππ上有无数个零点,故③错误;y 的最小值是0.,故④正确.故选:A .6.已知函数()422(1)f x x ax a x =-++-为偶函数,则()f x 的导函数()f x '的图象大致为( )A .B .C .D .【答案】A【解析】函数()()4221f x x ax a x =-++-为偶函数,则()()f x f x -=,即:()()42422121x ax a x x ax a x -+--=-++-,据此可得:10,1a a -=∴=,函数的解析式为:()422f x x x =-+,其导函数()3'44f x x x =-+,二阶导函数()()22''124431f x x x =-+=--,()'f x 在3,3⎛-∞- ⎝⎭ 递减,在3333⎛- ⎝⎭递增,在3⎫∞⎪⎪⎝⎭递减,所以 函数()'f x 的极大值为:33338'44329f =-=<⎝⎭, 观察所给的函数图象,只有A 选项符合题意.7.已知1F 、2F 分别是双曲线()222210,0y x a b a b-=>>的上、下焦点,过点2F 的直线与双曲线的上支交于点P ,若过原点O 作直线2PF 的垂线,垂足为M ,OM a =,23PMF M=,则双曲线的渐近线方程为( )A .53y x =±B .35y x =±C .43y x =±D .34y x =?【答案】D【解析】由题意,在直角2OMF ∆中,可得2F M b ==,所以21cos b PF F c∠=, 又因为23PMF M=,所以3PM b =,所以24PF b =,且142PF b a =-, 在12PF F ∆中,由余弦定理可得222212121212cos 2PF F F PF b PF F c PF F F +-∠==⨯⨯()()()2224242242b c b a b c+--=⨯⨯,代入222+=a b c ,解得34a b =, 所以双曲线的渐近线方程为34y x =?. 8.已知k ∈R ,函数()()2322,11,1x x kx k x f x x k e e x ⎧-+≤⎪=⎨--+>⎪⎩,若关于x 的不等式()0f x ≥在x ∈R 上恒成立,则k 的取值范围为( )A .20,e ⎡⎤⎣⎦B .22,e ⎡⎤⎣⎦C .[]0,4D .[]0,3【答案】D【解析】(1)当1x ≤时,()222f x x kx k =-+,∴()f x 的对称轴为x k =,开口向上①当1k <时,()f x 在(),k -∞递减,(),1k 递增 ∴当x k =时,()f x 有最小值,即()0f k ≥,∴01k ≤< ②当1k ³时,()f x 在(),1-∞上递减 ∴当1x =时,()f x 有最小值,即()10f ≥ ∴10≥显然成立,此时1k ³, ∴当1x ≤时, 0k ≥.(2)当1x >时,()()31xf x x k e e =--+,∴()()xf x x k e '=-①当1k ≤时,()f x 在()1,+∞上递增∴()()310f x f ke e >=-+≥,∴2k e ≤,∴此时1k ≤.②当1k >时,()f x 在()1,k 递减,()k +∞递增∴()()30kf x f k e e ≥=-+≥,∴3k ≤,∴此时13k <≤∴当1x >时, 3k ≤. 综上:0k ≤≤3. 二、多选题9.下列判断正确的是( ) A .若随机变量ξ服从正态分布()21,N σ,()40.79P ξ≤=,则()20.21P ξ≤-=;B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的充要条件;C .若随机变量ξ服从二项分布:14,4B ξ⎛⎫⎪⎝⎭:,则()1E ξ=; D .5122x y ⎛⎫- ⎪⎝⎭的展开式中含23x y 项的系数为20. 【答案】AC【解析】对于A ,随机变量ξ服从正态分布2(1,)N σ,所以图象关于1x =对称,根据(4)0.79P ξ=…,可得(4)1(4)0.21P P ξξ=-=厔, 所以(2)(4)0.21P P ξξ-==剠,故A 正确; 对于B ,直线l ⊥平面α,直线//m 平面β,若//αβ,则l m ⊥是真命题;若l m ⊥,则//αβ是假命题; 所以“//αβ”是“l m ⊥”的充分不必要条件”, 故B 错误;对于C ,随机变量ξ服从二项分布:1~(4,)4B ξ,则1()414E ξ=⨯=,故C 正确;对于D ,若5122x y ⎛⎫- ⎪⎝⎭,则展开式的通项为()515122rrr r T C x y -+⎛⎫=- ⎪⎝⎭,令3r =,则()232334502212T y x y C x ⎪=⎛-⎫=- ⎝⎭,故D 错误. 10.已知0a >,0b >,给出下列四个不等式,其中正确的不等式为( )A .a b++≥ B .()114a b a b ⎛⎫++≥⎪⎝⎭;C.124aa+≥-+;D22a b≥+【答案】ABCD【解析】对A,0,0,a b a b>>∴+≥≥= Q,当且仅当a b=⎧⎪⎨=⎪⎩,即a b==时,等号成立.故A正确;对B,()110,0,224b aa b a ba b a b⎛⎫>>∴++=++≥+=⎪⎝⎭Q,当且仅当b aa b=,即a b=时等号成立. 故B正确;对C,10,024a aa>∴+>≥-+Q,故C正确;对D,()()()()()()2222233220,0,0a b a b ab a b a b a b a b a ab b>>∴+-+=--=-++≥Q,()()()()2222222222a ba b ab a b a b a bab+∴+≥+∴≥+≥+,,.故D正确.11.将曲线()23sin sin2y x x xππ⎛⎫=-+⎪⎝⎭上每个点的横坐标伸长为原来的2倍(纵坐标不变),得到()g x的图象,则下列说法正确的是()A.()g x的图象关于直线23xπ=对称B.()g x在[]0,π上的值域为30,2⎡⎤⎢⎥⎣⎦C.()g x的图象关于点,06π⎛⎫⎪⎝⎭对称D.()g x的图象可由1cos2y x=+的图象向右平移23π个单位长度得到【答案】ABD【解析】()231cos2sin sin cos22xy x x x x xππ-⎛⎫=-+=+⎪⎝⎭1112cos2sin22262x x xπ⎛⎫=-+=-+⎪⎝⎭.()1sin 62g x x π⎛⎫∴=-+ ⎪⎝⎭,对于A ,当23x π=时,62x ππ-=,()g x ∴关于直线23x π=对称,A 正确;对于B ,当[]0,x π∈时,7,666x πππ⎡⎤-∈-⎢⎥⎣⎦,1sin ,162x π⎛⎫⎡⎤∴-∈- ⎪⎢⎥⎝⎭⎣⎦,()30,2g x ⎡⎤∴∈⎢⎥⎣⎦,B 正确; 对于C ,当6x π=时,06x π-=,162g π⎛⎫= ⎪⎝⎭,()g x ∴关于点1,62π⎛⎫⎪⎝⎭对称,C 错误; 对于D ,1cos 2y x =+向右平移23π个单位得:21cos 32y x π⎛⎫=-+= ⎪⎝⎭cos 62x ππ⎛⎫-- ⎪⎝⎭()11sin 262x g x π⎛⎫+=-+= ⎪⎝⎭,D 正确. 12.如图,已知六棱锥P ABCDEF -的底面是正六边形,PA ⊥平面ABC ,2PA AB =,则下列结论中正确的是( )A .PB AE ⊥B .平面ABC ⊥平面PBC C .直线//BC 平面PAED .45PDA ∠=︒【答案】AD【解析】对于A ,PA ⊥Q 平面ABC ,AE ⊂平面ABC ,PA AE ∴⊥, 又底面ABCDEF 为正六边形,AE AB ∴⊥,AB PA A ⋂=Q ,,AB PA ⊂平面PAB ,AE ∴⊥平面PAB ,又PB ⊂平面PAB ,PB AE ∴⊥,A 正确;对于B ,PA ⊥Q 平面ABC ,PA ⊂平面PAE ,∴平面PAE ⊥平面ABC , 同理可得:平面PAB ⊥平面ABC ,则在五棱锥P ABCDE -中,只有侧面PAE 、侧面PAB 与底面ABC 垂直,B 错误; 对于C ,//BC AD Q ,AD ⋂平面PAE A =,BC ∴与平面PAE 也相交,C 错误; 对于D ,2PA AB =Q ,底面ABCDEF 为正六边形,22AD BC AB ∴==,∴在Rt PAD V 中,PA AD =,45PDA ∴∠=o ,D 正确.三、填空题13.过原点()0,0作函数()322f x x x =+图象的切线,则切线方程为______.【答案】0y =或0x y +=【解析】()322f x x x =+,则2()34f x x x '=+,设切点为32000(,2)x x x +,则切线的斜率2000()34k f x x x '==+, 故切线方程为:3200(2)y x x -+=2000(34)()x x x x +-, 因为切线过点(0,0),所以3200(2)x x -+=2000(34)()x x x +-, 即320002200x x x +=⇒=或01x =-,故当00x =时,切线方程为0y =, 当01x =-时,切线方程为0x y +=, 14.若二项式(x ﹣)6(a >0)的展开式中x 3的系数为A ,常数项为B ,若B=4A ,则a 的值是 _________ .【答案】2 【解析】 展开式的通项为令得r=2, 所以A= 令得r=4, 所以B=∵B=4A ,即=4,解得a=215.公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius )在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:平面内到两定点距离之比等于已知数的动点轨迹为直线或圆.后世把这种圆称之为阿波罗尼斯圆. 已知直角坐标系中(20)A -,,0(2)B ,,动点P 满足(0)PA PB λλ=>,若点P 的轨迹为一条直线,则λ=______;若2λ=,则点P 的轨迹方程为_______________;【答案】1 22332040x y x +-+=【解析】设(),P x y ,由222PA PB PA PB λλ=⇒=,()()()2222221141440x yx λλλλ-+-+++-=,1λ=时,轨迹方程为0x =,表示直线,2λ=时,轨迹方程为22332040x y x +-+=,16.函数y=f (x ),x ∈[1,+∞),数列{a n }满足()*n a f n n N ,=∈,①函数f (x )是增函数; ②数列{a n }是递增数列.写出一个满足①的函数f (x )的解析式______.写出一个满足②但不满足①的函数f (x )的解析式______. 【答案】f (x )=x 2 ()24()3f x x =-【解析】由题意可知:在x ∈[1,+∞)这个区间上是增函数的函数有许多,可写为:f (x )=x 2.第二个填空是找一个数列是递增数列,而对应的函数不是增函数,可写为:()243f x x ⎛⎫=- ⎪⎝⎭. 则这个函数在[1,43]上单调递减,在[43,+∞)上单调递增, ∴()243f x x ⎛⎫=- ⎪⎝⎭在[1,+∞)上不是增函数,不满足①. 而对应的数列为:243n a n ⎛⎫=- ⎪⎝⎭在n ∈N*上越来越大,属递增数列.四、解答题17.已知a ,b ,c 分别为锐角ABC V 内角A ,B ,C 的对边,2sin a B =. (1)求角A ;(2)若6a =,求ABC V 面积的最大值.【答案】(1)3A π=(2)【解析】(1)由题意,在ABC V 中,因为2sin a B =根据正弦定理,可得2sin sin A B B ,因为ABC V 是锐角三角形,可得sin 0B >,所以2sin A =sin A =, 又由三角形是锐角三角形,则(0,)2A π∈,所以3A π=.(2)由(1)和三角形的面积公式,可得1sin 24ABC S bc A ==△, 由余弦定理得2221236cos 222b c a bc A bc bc+--==≥, 所以036bc <≤(当且仅当6b c ==时等号成立),所以ABC S V 36=18.已知各项均为正数的数列{}n a ,满足()22*1120n n n n a a a a n N++--=∈,且12a=.()1求数列{}n a 的通项公式;()2设12n n n b a log a =⋅,若nb 的前n 项和为n S ,求n S ;()3在()2的条件下,求使1250n n S n ++⋅>成立的正整数n 的最小值.【答案】(1)2nn a =; (2)()n 11n 22+-⋅-; (3)5.【解析】()2211120n n n n a a a a Q ++--=,()()1120n n n n a a a a ++∴+-=,Q 数列{}n a 的各项均为正数,10n n a a +∴+>, 120n n a a +∴-=,即()*12n n a a n N+=∈,∴数列{}n a 是以2为公比的等比数列.12a =Q ,∴数列{}n a 的通项公式2n n a =;()2由()1及12n n n b a log a =得,2n nb n =-⋅,n 12n S b b b =++⋯+Q ,23n 22232n 2n S ∴=--⋅-⋅-⋯-⋅ ①()2345n n 1n 2S 2223242n 12n 2+∴=--⋅-⋅-⋅-⋯--⋅-⋅ ②-②①得,2345n n 1n S 222222n 2+=+++++⋯+-⋅()()n n 1n 1212n 21n 2212++-=-⋅=-⋅--;()3要使n 1n S n 250++⋅>成立,只需n 12250+->成立, 即n 1252+>,n 5∴≥.∴使n 1n S n 250++⋅>成立的正整数n 的最小值为5.19.如图 1,在直角梯形ABCD 中, //,AB CD AB AD ⊥,且112AB AD CD ===.现以AD 为一边向外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使ADEF 平面与平面ABCD 垂直, M 为ED 的中点,如图 2.(1)求证: //AM 平面BEC ; (2)求证: BC ⊥平面BDE ; (3)求CD 与平面BEC 所成角的正弦值.【解析】(1)证明:取中点,连结.在中,分别为的中点,所以,且. 由已知,所以四边形为平行四边形.所以. 又因为平面,且平面,所以平面.(2)证明:在正方形中, ,又因为平面平面,且平面ADEF I 平面ABCD AD =, 所以平面.所以在直角梯形中,,可得. 在中,.所以. 所以平面.(3)作于点,连接,则为所求的角由(2)知,所以,又因为平面又.所以,.20.已知椭圆C :()222210y x a b a b +=>>的短轴长为2,且椭圆C 过点212⎛⎫-- ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设直线l 过定点1,02⎛⎫- ⎪⎝⎭,且斜率为1k -,若椭圆C 上存在A ,B 两点关于直线l 对称,求k 的取值范围.【解析】(1)∵椭圆C 的短轴长为2,∴22b =,即1b =.又点212⎛⎫-- ⎪ ⎪⎝⎭在C 上,∴21112a +=,∴22a =,∴椭圆C 的方程为2212y x +=.(2)由题意设直线AB 的方程为()0y kx mk =+≠,()11,A x y ,()22,B x y ,由2212y x y kx m ⎧+=⎪⎨⎪=+⎩消去y 得,()2222220k x kmx m +++-=, ∴>0∆,即222m k -<,① 且1222kmx x k 2+=-+, ∴线段AB 中点的横坐标022km x k =-+,纵坐标00222my kx m k =+=+, 即线段AB 的中点为222,22km m k k ⎛⎫-⎪++⎝⎭, 将222,22km m k k ⎛⎫- ⎪++⎝⎭代入直线112y x k ⎛⎫=-+ ⎪⎝⎭可得,222k m k+=-,② 由①,②可得,223k >,∴,33k ⎛⎛⎫∈-∞-+∞ ⎪ ⎪⎝⎭⎝⎭U . 21.已知函数()(2)(2)x f x ax e e a =---. (Ⅰ)讨论()f x 的单调性;(Ⅱ)当1x >时,()0f x >,求a 的取值范围.【解析】(1)()()2x f x ax a e =-+',当0a =时,()20xf x e '=-<,∴()f x 在R 上单调递减.当0a >时,令()0f x '<,得2a x a -<;令()0f x '>,得2ax a->. ∴()f x 的单调递减区间为2,a a -⎛⎫-∞ ⎪⎝⎭,单调递增区间为2,a a -⎛⎫+∞ ⎪⎝⎭. 当0a <时,令()0f x '<,得2a x a ->;令()0f x '>,得2ax a-<. ∴()f x 的单调递减区间为2,a a -⎛⎫+∞⎪⎝⎭,单调递增区间为2,a a -⎛⎫-∞ ⎪⎝⎭. (2)当0a =时,()f x 在()1,+∞上单调递减,∴()()10f x f <=,不合题意.当0a <时,()()()()22222222220f a e e a a e e e e =---=--+<,不合题意.当1a ≥时,()()20xf x ax a e '=-+>,()f x 在()1,+∞上单调递增,∴()()10f x f >=,故1a ≥满足题意. 当01a <<时,()f x 在21,a a -⎛⎫ ⎪⎝⎭上单调递减,在2,a a -⎛⎫+∞ ⎪⎝⎭单调递增,∴()()min 210a f x f f a -⎛⎫=<=⎪⎝⎭,故01a <<不满足题意.综上,a 的取值范围为[)1,+∞.22.有一片产量很大的水果种植园,在临近成熟时随机摘下某品种水果100个,其质量(均在l 至11kg )频数分布表如下(单位: kg ):以各组数据的中间值代表这组数据的平均值,将频率视为概率.(1)由种植经验认为,种植园内的水果质量Z 近似服从正态分布()2,N Sμ,其中μ近似为样本平均数2,Z S 近似为样本方差222.1S ≈.请估算该种植园内水果质量在()4,8.2内的百分比;(2)现在从质量为[1,3),[3,5),[5,7) 的三组水果中用分层抽样方法抽取14个水果,再从这14个水果中随机抽取3个.若水果质量[1,3),[3,5),[5,7)的水果每销售一个所获得的的利润分别为2元,4元,6元,记随机抽取的3个水果总利润为ξ元,求ξ的分布列及数学期望. 附:Z ()2,N Sμ~,则()0.6826,(22)0.9544P S Z S P S Z S μμμμ-<<+=-<<+=.【解析】(1)20.140.1560.4580.2100.1 6.1Z =⨯+⨯+⨯+⨯+⨯= ,()2,Z N Sμ: ,μ近似为Z ,222.1S ≈,由正态分布P(4Z 8.2)P(μσZ μσ)0.6826<<=-<<+=,所以该种植园内水果质量在()4,8.2内的百分比为68.26%. (2)ξ的可能取值为:8,10,12,14,16,18.()2123314C C 3P ξ8C 364===;()21122923314C C C C 15P ξ10C 364+===;()11132393314C C C C 55P ξ12C 364+===; ()21123929314C C C C 99P ξ14C 364+===; ()1239314C C 108P ξ16C 364===; ()39314C 84P ξ18C 364=== ;分布列为E ξ15364364364364364364364=+++++==.。
2020年山东高考专用系列押题卷数学试卷(二)(含答案及解析)
5
A.第一场得分的中位数为
2
C.第一场得分的极差大于第二场得分的极差
19
B.第二场得分的平均数为
3
D.第一场与第二场得分的众数相等
10.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐
美的结合产物,曲线 C : x2 y2 3 16x2 y2 恰好是四叶玫瑰线.给出下列结论正确的是( )
2020 年高考山东专用系列押题卷
数 学 试 卷(二)
(考试时间:120 分钟 试卷满分:150 分)
姓名:
日期:
成绩:
一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合
题目要求.
1.已知集合 A x | 1 x 0 ,集合 B x | y lg 2x 1 ,则 A B ( )
1
BE
3
2
B.
5
AD
BE
3
D.
5
AD
1
BE
3
2
5.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交
警劝导交通.现有甲、乙等 5 名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙
在同一路口的分配方案共有( )
A.12 种
B.24 种
意的实数 k ,直线 BC, BD 的斜率之积为定值.
21.某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果
中随机抽取100 个,利用水果的等级分类标准得到的数据如下:
等级
标准果
优质果
精品果
礼品果
2020年山东省高考数学模拟试卷(理科)含答案解析
2020年山东省高考数学模拟试卷(理科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,则a的值等于()A.1B.2C.5D.62.已知集合,则集合A的真子集的个数为()A.3B.4C.1D.23.已知函数f(x)=,若f(﹣1)=2f(a),则a的值等于()A.或﹣B.C.﹣D.±4.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为()A.10B.9C.8D.75.“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知直线l的方程为ax+2y﹣3=0,且a∈[﹣5,4],则直线l的斜率不小于1的概率为()A.B.C.D.7.一个空间几何体的三视图如图,其中主视图是腰长为3的等腰三角形,俯视图是边长分别为1,2的矩形,则该几何体的体积等于()A.2B.C.D.8.已知向量,若向量的夹角为φ,则有()A.φ=θB.φ=π﹣θC.φ=θ﹣πD.φ=θ﹣2π9.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.m>﹣10B.m<﹣10C.m>﹣8D.m<﹣810.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足==,则=()A.﹣B.C.﹣D.﹣二、填空题(每题5分,满分25分,将答案填在答题纸上)11.阅读如图所示的程序框图,运行相应的程序,输出的结果是.12.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为.13.若不等式|2x+a|<b的解集为{x|1<x<4},则ab等于.14.若函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=log n (x2﹣mx+4)的最大值等于.15.已知双曲线=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=cosx[sin(x+)﹣sin(x+)]+.(1)若f(+)=,0<θ<,求tanθ的值;(2)求函数f(x)的最小正周期和单调递增区间.17.在2020年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3﹣0或者3﹣1取胜的球队积3分,负队积0分;3﹣2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为.(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(1)求证:AE∥平面DCF;(2)若,且=λ,当λ取何值时,直线AE与BF所成角的大小为600?19.已知数列{a n}的前n项和S n=a n+.(1)求数列{a n}的通项公式;(2)若b n=,且数列{b n}的前n项和为T n,求T2n.20.已知椭圆=1(a>b>0)经过点,且离心率等于.(1)求椭圆的方程;(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.①当|CD|=2时,求直线l的方程;②若λ=,试求λ的取值范围.21.已知函数f(x)=ln()+(a∈R).(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?2020年山东省高考数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,则a的值等于()A.1B.2C.5D.6【考点】复数的代数表示法及其几何意义.【分析】求出对应点的坐标,代入直线方程,然后求解a的值.【解答】解:复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,可得3=a﹣1+2,解得a=2.故选:B.2.已知集合,则集合A的真子集的个数为()A.3B.4C.1D.2【考点】子集与真子集.【分析】先求出集合A,由此能求出集合A的子集的个数.【解答】解:∵集合={2},∴集合A的真子集只有一个为∅.故选:C.3.已知函数f(x)=,若f(﹣1)=2f(a),则a的值等于()A.或﹣B.C.﹣D.±【考点】分段函数的应用.【分析】利用分段函数的表达式建立方程关系进行求解即可.【解答】解:f(﹣1)=(﹣1)2=1,则由f(﹣1)=2f(a),得1=2f(a),即f(a)=,若a>0,由f(a)=得log3a=,得a=,若a<0,由f(a)=得a2=,得a=﹣或(舍),综上a的值等于或﹣,故选:A.4.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为()A.10B.9C.8D.7【考点】系统抽样方法.【分析】根据题意,求出系统抽样的分组组距,再求编号为121~400的个体中应抽取的个体数即可.【解答】解:把这800个个体编上001~800的号码,分成20组,则组距为=40;所以编号为121~400的个体中应抽取的个体数为=7.故选:D.5.“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】等差关系的确定.【分析】数列{a n}成等比数列,公比为q.若a1<0时,则lga n+1没有意义.由数列{lga n+1}成等差数列,则(lga n+1+1)﹣(lga n+1)=为常数,则为非0常数.即可判断出结论.【解答】解:∵数列{a n}成等比数列,公比为q.∴a n=.若a1<0时,则lga n+1没有意义.由数列{lga n+1}成等差数列,则(lga n+1+1)﹣(lga n+1)=为常数,则为非0常数.∴“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的必要不充分条件.故选:B.6.已知直线l的方程为ax+2y﹣3=0,且a∈[﹣5,4],则直线l的斜率不小于1的概率为()A.B.C.D.【考点】直线的斜率.【分析】先求出直线的斜率的范围,再根据几何概型的概率公式计算即可.【解答】解:由ax+2y﹣3=0得到y=﹣x+,故直线的斜率为﹣,∵直线l的斜率不小于1,∴﹣≥1,即a≤﹣2,∵且a∈[﹣5,4],∴﹣5≤a≤﹣2,∴直线l的斜率不小于1的概率为=,故选:C.7.一个空间几何体的三视图如图,其中主视图是腰长为3的等腰三角形,俯视图是边长分别为1,2的矩形,则该几何体的体积等于()A.2B.C.D.【考点】由三视图求面积、体积.【分析】由三视图易得这个几何体是一个四棱锥,四棱锥的底面是一个边长是1、2的长方形,顶点在底面的射影是长边的中点,短侧棱长为:3,求出棱锥的高,即可求解四棱锥的体积.【解答】解:由三视图知,这是一个四棱锥,四棱锥的底面是一个边长是1、2的长方形,顶点在底面的射影是长边的中点,短侧棱长为3,棱锥的高:=2,∴四棱锥的体积是:×1×2×2=.故选:D.8.已知向量,若向量的夹角为φ,则有()A.φ=θB.φ=π﹣θC.φ=θ﹣πD.φ=θ﹣2π【考点】平面向量数量积的运算.【分析】根据向量的夹角公式和两角和的余弦公式以及诱导公式,再根据向量的夹角的范围即可求出.【解答】解:∵向量,∴||==1,||=1,=﹣cosθcos2θ﹣sinθsin2θ=﹣cosθ=cos(π﹣θ),∴cosφ==cos(π﹣θ)=cos(θ﹣π),∵θ∈(π,2π),∴θ﹣π∈(0,π),∴φ=θ﹣π,故选:C.9.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.m>﹣10B.m<﹣10C.m>﹣8D.m<﹣8【考点】基本不等式.【分析】不等式2x+m+>0化为:2(x﹣1)+>﹣m﹣2,利用基本不等式的性质可得2(x﹣1)+的最小值,即可得出.【解答】解:不等式2x+m+>0化为:2(x﹣1)+>﹣m﹣2,∵x>1,∴2(x﹣1)+≥2×=8,当且仅当x=3时取等号.∵不等式2x+m+>0对一切x∈(1,+∞)恒成立,∴﹣m﹣2<8,解得m>﹣10,故选:A.10.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足==,则=()A.﹣B.C.﹣D.﹣【考点】正弦定理;余弦定理.【分析】由题意设===k,可得a=6k,b=4k,c=3k,由余弦定理可得cosA,再由正弦定理可得=,代值化简可得.【解答】解:由题意设===k,(k>0),则a=6k,b=4k,c=3k,∴由余弦定理可得cosA===﹣,∴由正弦定理可得====﹣,故选:A.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.阅读如图所示的程序框图,运行相应的程序,输出的结果是11.【考点】循环结构.【分析】按照循环结构的流程,列举出每个循环的变量的取值,与循环条件对比即可得结果【解答】解:依此程序框图,变量a的变化依次为1,12+2=3,32+2=11不满足循环条件a <10,故输出11故答案为1112.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为20.【考点】计数原理的应用.【分析】根据0的特点,分三类进行,当0在个为和十位时,当没有0参与时,根据分类计数原理可得.【解答】解:若三位数的个位为0,则有2×2×A22=8个;若十位为0,则有C21•C21=4个;若这个三位数没有0,则有C21•C21A22=8个.综上,要求的三位偶数的个数为8+8+4=20个,故答案为:20.13.若不等式|2x+a|<b的解集为{x|1<x<4},则ab等于﹣15.【考点】绝对值不等式的解法.【分析】解出不等式|2x+a|<b,得到关于a,b的不等式组,求出a,b的值,从而求出ab 即可.【解答】解:∵|2x+a|<b,∴﹣b<2x+a<b,∴﹣a﹣b<2x<b﹣a,∴﹣<x<,由不等式的解集为{x|1<x<4},则,解得:a=﹣5,b=3则ab=﹣15,故答案为:﹣15.14.若函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=log n(x2﹣mx+4)的最大值等于﹣1.【考点】函数与方程的综合运用;函数的最值及其几何意义.【分析】求出m、n,然后利用对数函数的性质,以及二次函数的性质求解函数的最值.【解答】解:函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),可知m=﹣2,n=,函数g(x)=log n(x2﹣mx+4)=log(x2+2x+4)=log[(x+1)2+3]≤﹣1.函数g(x)=log n(x2﹣mx+4)的最大值:﹣1.故答案为:﹣1.15.已知双曲线=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为\frac{{x}^{2}}{5}﹣\frac{{y}^{2}}{20}=1.【考点】双曲线的简单性质.【分析】求得双曲线的渐近线方程和抛物线的准线方程,由题意可得p=,=2,求得M (3,4)代入双曲线的方程,解方程可得a,b,进而得到双曲线的方程.【解答】解:双曲线=1的渐近线方程为y=±x,抛物线y2=2px的准线方程为x=﹣,由题意可得=,即p=,=2,即b=2a①又M的坐标(x0,4),可得16=2px0=x0,解得x0=3,将M(3,4)代入双曲线的方程可得﹣=1②由①②解得a=,b=2,即有双曲线的方程为﹣=1.故答案为:﹣=1.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=cosx[sin(x+)﹣sin(x+)]+.(1)若f(+)=,0<θ<,求tanθ的值;(2)求函数f(x)的最小正周期和单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x﹣),由f(+)=,可解得cosθ,又0<θ<,可由同角三角函数关系式即可求sinθ,tanθ的值.(2)由f(x)=sin(2x﹣),根据周期公式可求T,由2kπ﹣≤2x﹣≤2kπ+,k∈Z 可解得单调递增区间.【解答】解:(1)∵f(x)=cosx[sin(x+)﹣sin(x+)]+=cosx(sinx﹣cosx)+=sin2x﹣cos2x=sin(2x﹣),∵f(+)=,故有:sin[2(+)﹣]=sin(θ+﹣)=sin (θ+)=cosθ=,∴可解得:cosθ=,∵0<θ<,sinθ==,∴tanθ===.(2)∵f(x)=sin(2x﹣),∴T==π.∴由2kπ﹣≤2x﹣≤2kπ+,k∈Z可解得:x∈[kπ﹣,kπ+],k∈Z∴函数f(x)的最小正周期是π,单调递增区间是:x∈[kπ﹣,kπ+],k∈Z.17.在2020年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3﹣0或者3﹣1取胜的球队积3分,负队积0分;3﹣2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为.(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.【考点】离散型随机变量的期望与方差;互斥事件的概率加法公式;离散型随机变量及其分布列.【分析】(1)在中国队先输一局的情况下,中国队本场比赛获胜的可能性有两种:连胜3局或前3局两胜1负,第五局胜,由此能求出在中国队先输一局的情况下,中国队本场比赛获胜的概率.(2)中国队与美国队比赛中,中国队获得积分X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出中国队获得积分X的分布列和数学期望EX.【解答】解:(1)∵根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为,∴在中国队先输一局的情况下,中国队本场比赛获胜的概率:p=+=.(2)中国队与美国队比赛中,中国队获得积分X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)=()=,∴中国队获得积分X的分布列为:X 0 1 2 3PEX==.18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(1)求证:AE∥平面DCF;(2)若,且=λ,当λ取何值时,直线AE与BF所成角的大小为600?【考点】异面直线及其所成的角;直线与平面平行的判定.【分析】(1)推导出面ABE∥面CDF,由此能证明AE∥面CDF.(2)以C为坐标原点,以CB,CD,CF分别为x,y,z轴建系,利用向量法能求出当λ取1时,直线AE与BF所成角的大小为60°.【解答】证明:(1)∵BE∥CF,AB∥CD,且BE∩AB=B,FC∩CD=C,∴面ABE∥面CDF,又AE⊂面ABE,∴AE∥面CDF.解:(2)∵∠BCF=,且面ABCD⊥面BEFC,∴FC⊥面ABCD以C为坐标原点,以CB,CD,CF分别为x,y,z轴建系,∵,且=λ,∴AB=()λ,∴A(,()λ,0),E(,0,),F(0,0,),B(,0,0),=(0,(1﹣)λ,),=(﹣,0,),∵直线AE与BF所成角的大小为60°,∴cos60°==,由λ>0,解得λ=1,∴当λ取1时,直线AE与BF所成角的大小为60°.19.已知数列{a n }的前n 项和S n =a n +.(1)求数列{a n }的通项公式; (2)若b n =,且数列{b n }的前n 项和为T n ,求T 2n .【考点】数列的求和;数列递推式. 【分析】(1)由于数列{a n }的前n 项和S n =a n +,可得a 1+a 2=a 2+﹣2,解得a 1.当n ≥2时,S n ﹣1=a n ﹣1+﹣2,可得:a n =a n ﹣a n ﹣1+n ﹣2﹣[﹣2],化简整理即可得出.(2)b n =,可得b 2n ﹣1==.b 2n =.即可得出.【解答】解:(1)∵数列{a n }的前n 项和S n =a n +,∴a 1+a 2=a 2+﹣2,解得a 1=3.当n ≥2时,S n ﹣1=a n ﹣1+﹣2,可得:a n =a n ﹣a n ﹣1+n ﹣2﹣[﹣2],解得a n ﹣1=n+1.∴a n =n+2,当n=1时也成立.∴a n=n+2.=(2)b n=,∴b2n﹣1==.b2n==.∴数列{b n}的前2n项和T2n=+=﹣﹣.20.已知椭圆=1(a>b>0)经过点,且离心率等于.(1)求椭圆的方程;(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.①当|CD|=2时,求直线l的方程;②若λ=,试求λ的取值范围.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率公式和点M满足椭圆方程,结合a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(2)①求出O到直线的距离,由圆的弦长公式可得2,解方程可得m的值,进而得到直线的方程;②将直线y=x+m代入椭圆方程,运用判别式大于0,运用韦达定理和弦长公式,再由直线和圆相交的条件和弦长公式,化简整理,即可得到所求范围.【解答】解:(1)由题意可得e==,a2﹣b2=c2,将M的坐标代入椭圆方程,可得+=1,解得a=2,b=c=2,即有椭圆的方程为+=1;(2)①O到直线y=x+m的距离为d=,由弦长公式可得2=2,解得m=±,可得直线的方程为y=x±;②由y=x+m代入椭圆方程x2+2y2=8,可得3x2+4mx+2m2﹣8=0,由判别式为△=16m2﹣12(2m2﹣8)>0,化简可得m2<12,由直线和圆相交的条件可得d<r,即有<,即为m2<4,综上可得m的范围是(﹣2,2).设A(x1,y1),B(x2,y2),可得x1+x2=﹣,x1x2=,即有弦长|AB|=•=•=•,|CD|=2=,即有λ==•=•,由0<4﹣m2≤4,可得≥2,即有λ≥.则λ的取值范围是[,+∞).21.已知函数f(x)=ln()+(a∈R).(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求得函数的定义域和导函数f′(x),依题意可知f′(x)≥0,在(0,+∞)上恒成立,即a≤在(0,+∞)上恒成立,构造辅助函数,g(x)=,求导,利用导数法求得g(x)的单调区间及最小值,即可求得a的取值范围;(2)由题意可知:函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,根据二次函数性质求得a的取值范围,利用韦达定理,求得x1+x2和x1•x2表达式,写出f(x1)+f(x2),根据对数的运算性质求得a的值,判断是否满足a的取值范围.【解答】解:(1)由函数f(x)的定义域为(0,+∞),f′(x)=﹣,依题意可知:f′(x)≥0,在(0,+∞)上恒成立,即a≤在(0,+∞)上恒成立,令g(x)=,g′(x)==,令g′(x)=0,解得x=4,且1<x<4时,g′(x)<0,当x>4时,g′(x)>0,所以g(x)在x=4时取极小值,也为最小值,g(4)=12,故实数a的取值范围是a≤12;(2)f′(x)=﹣=,函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,即方程x2+(4﹣a)x+(4+a)=0,在(1,+∞)上由两个不同的实根,∴解得:a≥12,由韦达定理:x1+x2=a﹣4,x1•x2=a+4,于是,f(x1)+f(x2)=ln()++ln()+,=ln[]+a[],=ln[]+a[],=ln()+a(),=,=3,解得a=9,但不满足a>12,所以不存在实数a,使得f(x1)+f(x2)=3.2020年7月18日。
山东省潍坊市2020年高考押题预测卷数学(理)试题(解析版)1
山东省潍坊市2020年高考押题预测卷数学(理)试题一、单选题1.已知复数z =2+i ,则z z ⋅= A .3 B .5C .3D .5【答案】D【解析】题先求得z ,然后根据复数的乘法运算法则即得. 【详解】∵z 2i,z z (2i)(2i)5=+⋅=+-= 故选D. 【点睛】本容易题,注重了基础知识、基本计算能力的考查. 2.执行如图所示的程序框图,输出的s 值为A .1B .2C .3D .4【答案】B【解析】根据程序框图中的条件逐次运算即可. 【详解】运行第一次, =1k ,2212312s ⨯==⨯- ,运行第二次,2k = ,2222322s ⨯==⨯- ,运行第三次,3k = ,2222322s ⨯==⨯- ,结束循环,输出=2s ,故选B . 【点睛】本题考查程序框图,属于容易题,注重基础知识、基本运算能力的考查. 3.已知直线l 的参数方程为13,24x t y t=+⎧⎨=+⎩(t 为参数),则点(1,0)到直线l 的距离是 A .15B .25C .45D .65【答案】D【解析】首先将参数方程化为直角坐标方程,然后利用点到直线距离公式求解距离即可. 【详解】直线l 的普通方程为()()41320x y ---=,即4320x y -+=,点()1,0到直线l 的距离65d ==,故选D. 【点睛】本题考查直线参数方程与普通方程的转化,点到直线的距离,属于容易题,注重基础知识、基本运算能力的考查.4.已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】B【解析】由题意利用离心率的定义和,,a b c 的关系可得满足题意的等式. 【详解】 椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B. 【点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查.5.若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为A .−7B .1C .5D .7【答案】C【解析】首先画出可行域,然后结合目标函数的几何意义确定其最值即可. 【详解】由题意1,11yy x y-≤⎧⎨-≤≤-⎩作出可行域如图阴影部分所示.设3,3z x y y z x =+=-,当直线0:3l y z x =-经过点()2,1-时,z 取最大值5.故选C. 【点睛】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.6.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为m 1的星的亮度为E 2(k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为 A .1010.1 B .10.1C .lg10.1D .10–10.1【答案】D 【解析】先求出12lg E E ,然后将对数式换为指数式求12E E ,再求12E E . 【详解】两颗星的星等与亮度满足12125lg 2E m m E -= , 令2 1.45m =- ,126.7m =- ,()1212221g( 1.4526.7)10.155E m m E =-=-+=, 10.110.112211010E EE E -=⋅= , 故选D. 【点睛】考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.7.设点A ,B ,C 不共线,则“AB u u u v 与AC u u u v的夹角为锐角”是“||||AB AC BC +>u u u r u u u r u u u r”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由题意结合向量的减法公式和向量的运算法则考查充分性和必要性是否成立即可. 【详解】∵A 、B 、C 三点不共线,∴|AB u u u v +AC u u uv |>|BC uuu r|⇔|AB u u u v +AC u u u v |>|AB u u u v -AC u u uv |⇔|AB u u u v +AC u u u v |2>|AB u u u v -AC u u u v |2AB u u u r ⇔•AC u u u v >0AB u u u r ⇔与AC u u u v的夹角为锐角.故“AB u u u v 与AC u u u v 的夹角为锐角”是“|AB u u u v +AC u u uv |>|BC uuu r |”的充分必要条件,故选C. 【点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归数学思想.8.数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A .① B .②C .①②D .①②③【答案】C【解析】将所给方程进行等价变形确定x 的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围. 【详解】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔, 所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点2. 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C. 【点睛】本题考查曲线与方程、曲线的几何性质,基本不等式及其应用,属于难题,注重基础知识、基本运算能力及分析问题解决问题的能力考查,渗透“美育思想”.二、填空题9.函数f (x )=sin 22x 的最小正周期是__________. 【答案】2π.【解析】将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可. 【详解】函数()2sin 2f x x ==142cos x -,周期为2π【点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题. 10.设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为__________. 【答案】0. -10.【解析】首先确定公差,然后由通项公式可得5a 的值,进一步研究数列中正项、负项的变化规律,得到和的最小值. 【详解】等差数列{}n a 中,53510S a ==-,得322,3a a =-=-,公差321d a a =-=,5320a a d =+=,由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-. 【点睛】本题考查等差数列的通项公式、求和公式、等差数列的性质,难度不大,注重重要知识、基础知识、基本运算能力的考查.11.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40.【解析】画出三视图对应的几何体,应用割补法求几何体的体积. 【详解】在正方体中还原该几何体,如图所示 几何体的体积V=43-12(2+4)×2×4=40【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.12.已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l ⊥α,m ∥α,则l ⊥m .【解析】将所给论断,分别作为条件、结论加以分析. 【详解】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l ⊥α,m ∥α,则l ⊥m . 正确;(2)如果l ⊥α,l ⊥m ,则m ∥α.不正确,有可能m 在平面α内; (3)如果l ⊥m ,m ∥α,则l ⊥α.不正确,有可能l 与α斜交、l ∥α. 【点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.13.设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】-1; (],0-∞.【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用导函数的解析式可得a 的取值范围. 【详解】若函数()xxf x e ae -=+为奇函数,则()()(),xx x x f x f x eae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()xxf x e ae -=+是R 上的增函数,则()' 0xxf x e ae-=-≥恒成立,2,0x a e a ≤≤.即实数a 的取值范围是(],0-∞ 【点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查. 14.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元; ②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________. 【答案】130. 15.【解析】(1)将购买的草莓和西瓜加钱与120进行比较,再根据促销规则可的结果;(2)根据120y <、120y ≥分别探究. 【详解】(1)x =10,顾客一次购买草莓和西瓜各一盒, 需要支付(60+80)-10=130元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为y ×80%,符合要求.120y ≥元时,有(y -x )×80%≥y ×70%成立,即8(y -x )≥7y ,x ≤8y ,即x ≤(8y)min =15元. 所以x 的最大值为15. 【点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,有一定难度.三、解答题15.在△ABC 中,a =3,b −c =2,cos B =12-. (Ⅰ)求b ,c 的值; (Ⅱ)求sin (B –C )的值.【答案】(Ⅰ) 375a b c =⎧⎪=⎨⎪=⎩;(Ⅱ)【解析】(Ⅰ)由题意列出关于a ,b ,c 的方程组,求解方程组即可确定b ,c 的值; (Ⅱ)由题意结合正弦定理和两角和差正余弦公式可得()sin B C -的值.【详解】(Ⅰ)由题意可得:2221 cos2223a c bBacb ca⎧+-==-⎪⎪⎪-=⎨⎪=⎪⎪⎩,解得:375abc=⎧⎪=⎨⎪=⎩.(Ⅱ)由同角三角函数基本关系可得:23sin1cosB B=-=,结合正弦定理sin sinb cB C=可得:sin53sin14c BCb==,很明显角C为锐角,故211cos1sin14C C=-=,故()2sin sin cos cos sin37B C B C B C-=-=.【点睛】本题主要考查余弦定理、正弦定理的应用,两角和差正余弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.16.如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且13PFPC=.(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)求二面角F–AE–P的余弦值;(Ⅲ)设点G在PB上,且23PGPB=.判断直线AG是否在平面AEF内,说明理由.【答案】(Ⅰ)见解析;(Ⅱ) 3(Ⅲ)见解析.【解析】(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;(Ⅱ)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F-AE-P的余弦值;(Ⅲ)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量可判断直线是否在平面内. 【详解】(Ⅰ)由于PA ⊥平面ABCD ,CD ⊂平面ABCD ,则PA ⊥CD , 由题意可知AD ⊥CD ,且PA ∩AD =A , 由线面垂直的判定定理可得CD ⊥平面PAD .(Ⅱ)以点A 为坐标原点,平面ABCD 内与AD 垂直的直线为x 轴,AD ,AP 方向为y 轴,z 轴建立如图所示的空间直角坐标系A xyz -,易知:()()()()0,0,0,0,0,2,2,2,0,0,2,0A P C D ,由13PF PC =u u u r u u u r 可得点F 的坐标为224,,333F ⎛⎫⎪⎝⎭,由12PE PD =u u u r u u u r可得()0,1,1E ,设平面AEF 的法向量为:(),,m x y z =u r,则()()()224224,,,,0333333,,0,1,10m AF x y z x y z m AE x y z y z u u u v v u u u v v ⎧⎛⎫⋅=⋅=++=⎪ ⎪⎝⎭⎨⎪⋅=⋅=+=⎩, 据此可得平面AEF 的一个法向量为:()1,1,1m =-u r,很明显平面AEP 的一个法向量为()1,0,0n =r,3cos ,31m n m n m n⋅<>===⨯⨯u r ru r r u r r ,二面角F -AE -P 的平面角为锐角,故二面角F -AE -P 3(Ⅲ)易知()()0,0,2,2,1,0P B -,由23PG PB =u u u r u u u r 可得422,,333G ⎛⎫- ⎪⎝⎭, 则422,,333AG ⎛⎫=- ⎪⎝⎭u u u r ,注意到平面AEF 的一个法向量为:()1,1,1m =-u r,其0m AG ⋅=u r u u u r且点A 在平面AEF 内,故直线AG 在平面AEF 内.17.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:交付金额(元) 支付方式 (0,1000] (1000,2000] 大于2000仅使用A 18人 9人 3人 仅使用B 10人14人1人(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(Ⅱ)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由. 【答案】(Ⅰ) 25; (Ⅱ)见解析; (Ⅲ)见解析.【解析】(Ⅰ)由题意利用古典概型计算公式可得满足题意的概率值;(Ⅱ)首先确定X 可能的取值,然后求得相应的概率值可得分布列,最后求解数学期望即可.(Ⅲ)由题意结合概率的定义给出结论即可. 【详解】(Ⅰ)由题意可知,两种支付方式都是用的人数为:1003025540---=人,则: 该学生上个月A ,B 两种支付方式都使用的概率4021005p ==. (Ⅱ)由题意可知,仅使用A 支付方法的学生中,金额不大于1000的人数占35,金额大于1000的人数占25, 仅使用B 支付方法的学生中,金额不大于1000的人数占25,金额大于1000的人数占35, 且X 可能的取值为0,1,2.()32605525p X ==⨯=,()22321315525p X ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭,()32625525p X ==⨯=,X 的分布列为:其数学期望:()61360121252525E X =⨯+⨯+⨯=. (Ⅲ)我们不认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化.理由如下:随机事件在一次随机实验中是否发生是随机的,是不能预知的,随着试验次数的增多,频率越来越稳定于概率。
2020年高考(山东卷)名师押题猜想卷 数学试题(考试版)
2020年高考(山东卷)名师押题猜想卷数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、 单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.若集合{|12}A x x =-<<,{|13}B x x =剟,则A B =I ( ) A .(1,2)- B .[1,2) C .[1,3] D .(1,3]-2.设复数z 满足(1+i)z =2i ,则|z |=( ) A .12B.2CD .23.2019年4月,习近平总书记专程前往重庆石柱考察了“精准脱贫”工作,为了进一步解决“两不愁,三保障”的突出问题,当地安排包括甲、乙在内的4名专家对石柱县的A 、B 、C 、D ,4乡镇进行调研,要求每个乡镇安排一名专家,则甲安排在A 乡镇,乙不在B 乡镇的概率为( ) A .18B .112C .14D .164.已知向量()()1,2,2,2a b λ==-r r ,且a b ⊥r r ,则λ等于( )A .4B .3C .2D .15.已知1311531log ,log ,363a b c π-===,则,,a b c 的大小关系是( )A .b a c <<B .a c b <<C .c b a <<D .b c a <<6.函数cos(π)()e e x xx f x -=-的大致图象为( )A .B .C .D .7.设抛物线22y x = 的焦点为F ,过点30)M , 的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于点C ,2BF = ,则BCF V 与ACF V 的面积之比BCFACFS S V V 等于( ) A .45B .23C .47D .128.已知函数()21,0121,0xx f x x x x x -⎧≥⎪=+⎨⎪++<⎩,函数g(x)=f(1-x)-kx +k -12恰有三个不同的零点,则k的取值范围是( ) A .(-22,0]∪92⎧⎫⎨⎬⎩⎭B .(-22,0]∪92⎧⎫⎨⎬⎩⎭C .(-22,0]∪12⎧⎫⎨⎬⎩⎭D .(-22,0]∪12⎧⎫⎨⎬⎩⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.居民消费价格指数(Consumer Price Index ,简称CPI ),是度量居民生活消费品和服务价格水平随着时间变动的相对数,综合反映居民购买的生活消费品和服务价格水平的变动情况.如图为国家统计局于2020年4月公布的2019年3月至2020年3月CPI 数据同比和环比涨跌幅折线图:(注:同比CPI CPI =本月去年同月,同比涨跌幅=100%CPI CPICPI-⨯本月去年同月去年同月,环比CPI CPI =本月上月,环比涨跌幅100%CPI CPICPI-=⨯本月上月上月),则下列说法正确的是( )A .2019年12月与2018年12月CPI 相等B .2020年3月比2019年3月CPI 上涨4.3%C .2019年7月至2019年11月CPI 持续增长D .2020年1月至2020年3月CPI 持续下降 10.下列说法中正确的有( )A .正角的正弦值是正的,负角的正弦值是负的,零角的正弦值是零B .若三角形的两内角,αβ满足sin cos 0αβ⋅<,则此三角形必为钝角三角形C .对任意的角α,都有sin cos sin cos αααα+=+D .对任意角,2k k Z παα⎛⎫≠∈ ⎪⎝⎭,都有11tan tan tan tan αααα+=+ 11.设正项等差数列{}n a 满足()211029220a a a a +=+,则( ) A .29a a 的最大值为10B .29a a +的最大值为10C .222911a a +的最大值为15D .4429a a +的最小值为20012.若存在m ,使得()f x m ≥对任意x D ∈恒成立,则函数()f x 在D 上有下界,其中m 为函数()f x 的一个下界;若存在M ,使得()f x M ≤对任意x D ∈恒成立,则函数()f x 在D 上有上界,其中M 为函数()f x 的一个上界.如果一个函数既有上界又有下界,那么称该函数有界.下列说法正确的是( )A .1不是函数1()(0)f x x x x=+>的一个下界 B .函数()ln f x x x =有下界,无上界C .函数2()xe f x x=有上界,无下界D .函数2sin ()1xf x x =+有界 第Ⅱ卷二、 填空题:本题共4小题,每小题5分,共20分 13.已知函数()()()3211221032f x ax a x x a =+--+≠,若()f x 在3x =处取得极小值,则实数a 的值为______.14.为激发学生团结协作,敢于拼搏,不言放弃的精神,某校高三5个班进行班级间的拔河比赛.每两班之间只比赛1场,目前(—)班已赛了4场,(二)班已赛了3场,(三)班已赛了2场,(四)班已赛了1场.则目前(五)班已经参加比赛的场次为__________.15.椭圆与双曲线有相同的焦点12(,0),(,0)F c F c -,椭圆的一个短轴端点为B ,直线1F B 与双曲线的一条渐近线平行,若椭圆于双曲线的离心率分别为12,e e ,则22123e e +的最小值为__________.16.如图,在四棱锥C ABDE -中,四边形ABDE 为矩形,2,,,EA CA CB AC CB F G ===⊥分别为,AB AE 的中点,平面ABDE ⊥平面ABC ,则四面体CFDG 的体积为__________,若四面体CFDG 的各个顶点均在球O 的表面上,则球O 的体积为__________.四、解答题:本小题共6小题,共70分。
【解析版】2020年山东省高考数学(理)预测押题试题
由全国各地一线教师精心编制《高考终极预测押题卷》对近十年全国各地高考试题的全方位精确分析,把我命题规律,找出命题趋势。
全网首发!百位名师呕血专研,只为高考最后一搏!山东省高考数学(理)预测押题试题一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(•临沂三模)复数z满足方程z=(z﹣2)i(i为虚数单位),则z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点:复数代数形式的乘除运算.专题:计算题.分析:设复数z=a+bi(a,b∈R),则a+bi=((a+bi﹣2)i,利用复数相等即可得出.解答:解:设复数z=a+bi(a,b∈R),则a+bi=((a+bi﹣2)i,∴a+bi=(a﹣2)i﹣b,∴,解得.∴z=1﹣i.故选B.点评:熟练掌握复数的运算法则和复数相等是解题的关键.2.(5分)(•临沂三模)已知集合A={x|x2>1},B={x|log2x<1},则(∁RA)∩B=()A.(0,1] B.(0,1)C.[0,1] D.[﹣1,1]考点:交、并、补集的混合运算.专题:计算题.分析:通过求解一元二次不等式和对数不等式分别化简集合A与B,然后直接利用补集及交集运算求解.解答:解:由A={x|x2>1}={x|x<﹣1或x>1},所以∁RA={x|﹣1≤x≤1},又B={x|log2x<1}={x|0<x<2},所以(∁RA)∩B={x|﹣1≤x≤1}∩{x|0<x<2}=(0,1].故选A.点评:本题考查了补集及交集运算,考查了一元二次不等式与对数不等式的解法,是基础的运算题.3.(5分)(•临沂三模)甲、乙两名运动员在某项测试中的6次成绩如茎叶图所示,,分别表示甲乙两名运动员这项测试成绩的平均数,s1,s2分别表示甲乙两名运动员这项测试成绩的标准差,则有()A.B.C.D.考点:极差、方差与标准差;茎叶图;众数、中位数、平均数.分析:根据茎叶图看出两组数据,先求出两组数据的平均数,再求出两组数据的方差,比较两组数据的方差的大小就可以得到两组数据的标准差的大小.解答:解:由茎叶图可看出甲的平均数是,乙的平均数是,∴两组数据的平均数相等.甲的方差是(36+1+0+0+1+36)=,乙的方差是(49+4+0+0+4+49)=.∴甲的标准差小于乙的标准差,故选B.点评:本题考查两组数据的平均数和方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而标准差反映波动的大小,波动越小数据越稳定.4.(5分)(•临沂三模)下列选项中叙述错误的是()A.命题“若x=1,则x2﹣x=0”的逆否命题为真命题¬B.若p:∀x∈R,x2+x+1≠0,则p:∃x0∈R,x02+x0+1=0C.“x>1”是“x2﹣x>0”的充分不必要条件D.若“p∧q”为假命题,则“p∨q”为真命题考点:命题的真假判断与应用;四种命题间的逆否关系;全称命题;特称命题;命题的否定.专题:计算题.分析:利用四种命题的逆否关系判断A的正误;全称命题与特称命题的否定B的正误;通过充要条件的判定判断C的正确;复合命题的真假判断D的正误.解答:解:对于A,“若x=1,则x2﹣x=0”的逆否命题为真命题,因为原命题是真命题,所以A正确;对于B,若p:∀x∈R,x2+x+1≠0,则p:∃x0∈R,x02+x0+1=0,符合全称命题与特称命题的否定,所以B正确.对于C,“x>1”是“x2﹣x>0”的充分不必要条件,满足充分不必要条件的判断,所以C正确;对于D,若“p∧q”为假命题,可能p、q两个命题都是假命题,此时“p∨q”为假命题,所以D不正确.故选D.点评:本题考查命题的真假判断,四种命题的逆否关系,充要条件的判断等基本知识的应用.5.(5分)(2010•安徽)设,则a,b,c的大小关系是()A.a>c>b B.a>b>c C.c>a>b D.b>c>a考点:幂函数图象及其与指数的关系.分析:根据幂函数与指数函数的单调性直接可以判断出来.解答:解:∵在x>0时是增函数∴a>c又∵在x>0时是减函数,所以c>b故答案选A点评:本题主要考查幂函数与指数的关系.要充分利用函数图象、函数的单调性来解决问题.6.(5分)(•临沂三模)要得到函数的图象,只需将函数的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题;三角函数的图像与性质.分析:把化为,故把的图象向左平移个单位,即得函数y=cos2x的图象.解答:解:=,故把的图象向左平移个单位,即得函数的图象,即得到函数的图象.故选C.点评:本题考查诱导公式,以及y=Asin(ωx+∅)图象的变换,把两个函数化为同名函数是解题的关键.7.(5分)(•临沂三模)一个空间几何体的三视图如图,则该几何体的体积为()A.B.C.D.俯视图考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图可知:该几何体是一个棱长和底面边长都是2的正三棱锥砍去一个三棱锥得到的几何体.据此即可得到体积.解答:解:由三视图可知:该几何体是一个棱长和底面边长都是2的正三棱锥砍去一个三棱锥得到的几何体.=﹣==.故选B.点评:由三视图正确恢复原几何体是解题的关键.8.(5分)(•临沂三模)中俄联合军演在中国青岛海域举行,在某一项演练中,中方参加演习的有5艘军舰,4架飞机;俄方有3艘军舰,6架飞机.若从中、俄两方中各选出2个单位(1架飞机或一艘军舰都作为一个单位,所有的军舰两两不同,所有的飞机两两不同),且选出的四个单位中恰有一架飞机的不同选法共有()A.51种B.224种C.240种D.336种考点:排列、组合及简单计数问题.专题:计算题.分析:选出的四个单位中恰有一架飞机的不同选法,可以分为两类:一类是一架飞机来自于中方,一类是一架飞机来自于外方.分类计数可得.解答:解:由题意,可分类求解:一类是一架飞机来自于中方C41C51C32=60一类是一架飞机来自于外方C61C31C52=180,∴C41C51C32+C61C31C52=60+180=240,故选C点评:本题主要考查计数原理及组合知识的应用,涉及分类讨论思想,属中档题.9.(5分)(•临沂三模)如图是函数f(x)=x2+ax+b的部分图象,函数g(x)=ex﹣f'(x)的零点所在的区间是(k,k+1)(k∈z),则k的值为()A.﹣1或0 B.0C.﹣1或1 D.0或1考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:由二次函数图象的对称轴确定a的范围,由g(x)=ex﹣2x﹣a=0得ex=2x+a,分别作出函数y=ex和y=2x+a的图象,从而确定零点所在的区间,进而求得整数k.解答:解;∵二次函数f(x)图象的对称轴x=﹣∈(﹣1,﹣),∴1<a<2,由g(x)=ex﹣2x﹣a=0得ex=2x+a分别作出函数y=ex和y=2x+a的图象,如图所示.从而函数y=ex和y=2x+a的图象的两个交点的横坐标分别在区间(﹣1,0)和(1,2)上.∴函数g(x)=ex﹣f'(x)的零点所在的区间是(﹣1,0)和(1,2);∵函数g(x)=ex﹣f'(x)的零点所在的区间是(k,k+1)(k∈z),∴k=﹣1或1故选C.点评:此题是个中档题.考查函数的零点与方程根的关系以及函数零点的判定定理,同时考查学生识图能力.10.(5分)(•临沂三模)的展开式中各项系数的和为2,则该展开式中常数项为()A.﹣40 B.﹣20 C.20 D.40考点:二项式系数的性质.专题:计算题.分析:由于二项式展开式中各项的系数的和为2,故可以令x=1,建立a的方程,解出a的值,然后再由规律求出常数项.解答:解:令x=1则有1+a=2,得a=1,故二项式为(x+1)(2x﹣)5故其常数项为22×C53﹣23C52=﹣40.故选A.点评:本题考查二项式系数的性质,解题关键是掌握二项式系数的公式,以及根据二项式的形式判断出常数项的取法,理解题意,作出正确判断很重要.11.(5分)(•临沂三模)已知矩形ABCD的边AB⊥x轴,且矩形ABCD恰好能完全覆盖函数y=asin2ax(a>0)的一个完整周期的图象,则当a变化时,矩形ABCD的周长的最小值为()A.B.C.D.考点:正弦函数的图象;基本不等式.专题:计算题.分析:依题意,矩形ABCD的周长l=2T+2×2a,利用基本不等式即可求得矩形ABCD的周长的最小值.解答:解:依题意,作图如下:∵a>0,矩形ABCD恰好能完全覆盖函数y=asin2ax(a>0)的一个完整周期的图象,∴|AB|=2a,|BC|=T==,∴矩形ABCD的周长l=2T+2×2a=2×+4a≥2=4,即矩形ABCD的周长的最小值为:4.故选B.点评:本题考查正弦函数的图象与基本不等式,求得矩形ABCD的周长的表达式是关键,考查转化思想与数形结合思想,属于中档题.12.(5分)(•临沂三模)某农户计划种植黄瓜和西红柿,种植面积不超过50亩,投入资金不超过48万元,假设种植黄瓜和西红柿的产量成本和售价如下表:年产量/亩年种植成本/亩每吨售价黄瓜4吨 1.2万元0.55万元西红柿6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入﹣总种植成本)最大,那么黄瓜和西红柿的种植面积(单位:亩)分别为()A.10,40 B.20,30 C.30,20 D.40,10考点:简单线性规划.专题:应用题.分析:设种植黄瓜和韭菜的种植面积分别为x,y亩,种植总利润为z万元,然后根据题意建立关于x与y的约束条件,得到目标函数,利用线性规划的知识求出最值时的x和y的值即可.解答:解:设种植黄瓜和韭菜的种植面积分别为x,y亩,种植总利润为z万元由题意可知一年的种植总利润为z=0.55×4x+0.3×6y﹣1.2x﹣0.9x=x+0.9y作出约束条件如下图阴影部分平移直线x+0.9y=0,当过点A(10,40)时,一年的种植总利润为z取最大值.故选A.点评:本题主要考查了线性规划,解题的关键是得到约束条件和目标函数,同时考查了作图的能力,属于基础题.二、填空题:本大题共4小题,每小题4分,共16分.把正确答案填写在答题纸给定的横线上.13.(4分)(•临沂三模)若不等式|2x﹣a|+a≤4的解集为{x|﹣1≤x≤2},则实数a=1.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:解绝对值不等式|2x﹣a|+a≤4,求得它的解集.再根据它的解集为{x|﹣1≤x≤2},比较可得a的值.解答:解:由不等式|2x﹣a|+a≤4 可得|2x﹣a|≤4﹣a,即a﹣4≤2x﹣a≤4﹣a,化简可得a﹣2≤x≤2,故不等式|2x﹣a|+a≤4的解集为{x|a﹣2≤x≤2}.而已知不等式|2x﹣a|+a≤4的解集为{x|﹣1≤x≤2},∴a﹣2=﹣1,解得a=1,故答案为1.点评:本题主要考查绝对值不等式的解法,属于中档题.14.(4分)(•临沂三模)过双曲线=1的一个焦点F作一条渐近线的垂线,若垂足恰在线段OF(O为原点)的垂直平分线上,则双曲线的离心率为.考点:双曲线的简单性质.专题:计算题;压轴题.分析:先设垂足为D,根据双曲线方程可求得其中一个渐近线和焦点F的坐标,进而得到D 点坐标.表示直线DF的斜率与直线OD的斜率乘积为﹣1,进而得到a和b的关系,进而求得离心率.解答:解:设垂足为D,根据双曲线方程可知其中一个渐近线为y=x,焦点为F(,0)D点坐标(,)∴kDF==﹣∵OD⊥DF∴kDF•kOD=﹣1∴,即a=b∴e===故答案为点评:本题主要考查了双曲线的简单性质.要熟练掌握双曲线关于渐近线、焦点、标准方程等基本知识.15.(4分)(•临沂三模)已知三棱锥P﹣ABC,点P,A,B,C都在球面上,若PA,PB,PC两两垂直,且PA=PB=2,PC=3,则此球的表面积为17π.考点:球的体积和表面积;球内接多面体.专题:空间位置关系与距离.分析:三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的表面积.解答:解:三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长:=所以球的直径是,半径为,∴球的表面积:17π.故答案为:17π.点评:本题考查球的表面积,几何体的外接球,考查空间想象能力,计算能力,是基础题.16.(4分)(•临沂三模)如图放置的正方形ABCD,AB=1,A,D分别在x轴、y轴的正半轴(含原点)上滑动,则•的最大值是2.考点:平面向量数量积的运算.专题:平面向量及应用.分析:设∠DAO=θ,则∠BAx=﹣θ,OA=cosθ,OD=sinθ,求得点B(cosθ+sinθ,cosθ),点C(sinθ,cosθ+sinθ),计算等于1+sin2θ≤2,可得的最大值.解答:解:设∠DAO=θ,则∠BAx=﹣θ,∴OA=cosθ,OD=sinθ,∴点B(cosθ+sinθ,cosθ),过点C作y轴的垂线CE,E为垂足,则∠CDE=θ,由此可得点C(sinθ,cosθ+sinθ).∴=(cosθ+sinθ)sinθ+cosθ(cosθ+sinθ)=sin2θ+cos2θ+2sinθcosθ=1+sin2θ≤2,故的最大值为2,故答案为2.点评:本题主要考查两个向量的数量积的运算,求得点C(sinθ,cosθ+sinθ),是解题的难点和关键,属于中档题.三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(12分)(•临沂三模)已知的图象上两相邻对称轴间的距离为.(Ⅰ)求f(x)的单调减区间;(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若,△ABC的面积是,求a的值.考点:二倍角的余弦;两角和与差的正弦函数;正弦函数的单调性;余弦定理.专题:计算题;三角函数的图像与性质;解三角形.分析:(Ⅰ)利用三角变换与辅助角公式将f(x)化为f(x)=sin(ωx﹣)﹣,由T=π可求得ω,从而可得f(x)的解析式,再利用正弦函数的单调性即可求得f(x)的单调减区间;(Ⅱ)由f(A)=,结合题意可求得A,利用三角形的面积公式由S△ABC=bcsinA=3及c=3可求得b,再由余弦定理即可求得a.解答:解:(Ⅰ)由已知,函数f(x)周期为π.∵f(x)=﹣+sinωx=﹣+sinωx=sinωx﹣cosωx﹣=sin (ωx﹣)﹣,∴ω==2,∴f(x)=sin(2x﹣)﹣.由2kπ+≤2x﹣≤2kπ+得:2kπ+≤2x≤2kπ+,∴kπ+≤x≤kπ+(k∈Z).∴f(x)的单调减区间是[kπ+,kπ+](k∈Z).(Ⅱ)由f(A)=,得sin(2A﹣)﹣=,∴sin(2A﹣)=1.∵0<A<π,∴﹣<2A﹣<,∴2A﹣=,A=.由S△ABC=bcsinA=3,c=3,得b=4,∴a2=b2+c2﹣2bccosA=16+9﹣2×4×3×=13,故a=.点评:本题考查三角变换与辅助角公式,考查正弦函数的单调性,考查三角形的面积公式及余弦定理,考查分析解决问题的能力,属于中档题.18.(12分)(•临沂三模)如图,在三棱锥P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA=PC.(Ⅰ)求证:平面APB⊥平面ABC;(Ⅱ)求二面角B﹣AP﹣C的余弦值.考点:用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.专题:计算题;证明题;空间位置关系与距离.分析:(I)过P作PO⊥AB,垂足为O,连结OC.设AB=2,在△AOC中,根据余弦定理算出,从而得出PO2+OC2=4=PC2,证出PO⊥OC,结合线面垂直判定定理得到PO⊥平面ABC,再由PO⊂平面APB,证出平面APB⊥平面ABC;(II)以O为坐标原点,OB、OP所在直线为y轴、z轴,建立如图所示的空间直线坐标系,可得A、C、P各点的坐标,从而得到的坐标,利用垂直向量数量积为零的方法建立方程组是平面APC的一个法向量.再由平面APB的向量为=(1,0,0),算出夹角的余弦值等于,即可得到二面角B﹣AP﹣C的余弦值.解答:解(Ⅰ)过P作PO⊥AB,垂足为O,连结OC.设AB=2,则,在△AOC中,,由余弦定理得.在△POC中,,∴PO2+OC2=4=PC2,∴可得∠POC=90°,即PO⊥OC.又∵PO⊥AB,且AB∩OC=O,∴PO⊥平面ABC∵PO⊂平面APB,∴平面APB⊥平面ABC.(Ⅱ)以O为坐标原点,OB、OP所在直线为y轴、z轴,建立如图所示的空间直线坐标系,则可得.∴,设平面APC的一个法向量为=(x1,y1,z1),则,即令x1=1,得y1=﹣,z1=1,可得.而平面APB的一个法向量为=(1,0,0),设二面角B﹣AP﹣C的平面角为α,且α为锐角,∴.由此可得二面角B﹣AP﹣C的余弦值为.点评:本题在三棱锥中证明面面垂直,并且求二面角B﹣AP﹣C的余弦值.着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究平面与平面所成角的大小的方法,属于中档题.19.(12分)(•临沂三模)已知当x=5时,二次函数f(x)=ax2+bx+c取得最小值,等差数列{an}的前n项和Sn=f(n),a2=﹣7.(Ⅰ)求数列{an}的通项公式;(Ⅱ)数列{bn}的前n项和为Tn,且,证明.考点:数列的求和;等差数列的通项公式.专题:计算题.分析:(I)利用二次函数在对称轴处取得最小值列出关于a,b的等式;利用数列的通项与前n项和的关系得到通项的形式,利用已知条件a2=﹣7求出参数a的值,进一步得到数列{an}的通项公式.(II)求出数列{bn}的通项,根据其通项是一个等差数列与一个等比数列的积构成,所以利用错位相减法求出前n项和Tn,分n≤4和n>4进行证明.解答:解:(Ⅰ)当n=1时,a1=S1=a+b+c,当n≥2时,an=Sn﹣Sn﹣1=2an+b﹣a,又a1适合上式,得2a+b﹣a=a+b+c,∴c=0.由已知,解方程组得∴an=2n﹣11.(Ⅱ),∴①②①﹣②得==,∴.则,,,当n≥4时,,∴,综上,得.点评:求数列的前n项和应该先求出数列的通项,根据数列通项的特点选择合适的求和方法.常见的求和方法有:公式法、倒序相加法、错位相减法、裂项相消法、分组法.20.(12分)(•临沂三模)某市统计局就本地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示月收入在[1000,1500),单位:元).(Ⅰ)估计居民月收入在[1500,2000)的概率;(Ⅱ)根据频率分布直方图算出样本数据的中位数;(Ⅲ)若将频率视为概率,从本地随机抽取3位居民(看做有放回的抽样),求月收入在[1500,2000)的居民数X的分布列和数学期望.考点:离散型随机变量及其分布列;频率分布直方图;众数、中位数、平均数;离散型随机变量的期望与方差.专题:概率与统计.分析:(Ⅰ)根据直方图,可得居民月收入在[1500,2000)的概率;(Ⅱ)根据频率分布直方图知,中位数在[2000,2500),由此可算出样本数据的中位数;(Ⅲ)由题意知,X~B(3,0.3),求出相应的概率,可得X的分布列和数学期望.解答:解:(Ⅰ)由题意,居民月收入在[1500,2000)的概率约为1﹣(0.0002+0.0001+0.0003+0.0005×2)×500=1﹣0.0016×500=1﹣0.8=0.2.(Ⅱ)由频率分布直方图知,中位数在[2000,2500),设中位数为x,则0.0002×500+0.2+0.0005(x﹣2000)=0.5,解得x=2400.(Ⅲ)居民月收入在[1000,2000)的概率为0.0002×500+0.2=0.3,由题意知,X~B(3,0.3),因此,,,.故随机变量X的分布列为X 0 1 2 3P 0.343 0.441 0.189 0.027X的数学期望为3×0.3=0.9.点评:本题考查频率分布直方图,考查中位数的计算,考查随机变量X的分布列与数学期望,考查学生的计算能力,属于中档题.21.(13分)(•临沂三模)已知直线,圆O:x2+y2=5,椭圆的离心率,直线l被圆O截得的弦长与椭圆的短轴长相等.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆右焦点F的直线l与椭圆C交于A,B两点.(1)若=2求直线l的方程;(2)若动点P满足=+,问动点P的轨迹能否与椭圆C存在公共点?若存在,求出点P的坐标;若不存在,请说明理由.考点:直线与圆锥曲线的关系;平行向量与共线向量;椭圆的标准方程;椭圆的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设椭圆的半焦距为c,由点到直线的距离公式可得圆心O到直线l的距离为d=,利用勾股定理可求得b值,根据b值,,a2=b2+c2可求得a;(Ⅱ)(1)易判断l斜率不为0,设A(x1,y1),B(x2,y2),由,可得y1=﹣2y2①,设直线l:x=my+1,代入椭圆消掉x得y的二次方程,由韦达定理及①可用m表示y1,y2,代入,得×,解(2)问题等价于在椭圆上是否存在点P,使得出m,从而得到直线l的方程;成立.易判断直线斜率不为0,设直线l的方程为x=my+1,由(1)的设法可得P(x1+x2,y1+y2),若点P在椭圆C上,可得,再由点A,B在椭圆上,可得2x1x2+3y1y2+3=0②,代入韦达定理可得m的方程,解出m,进而可求出点P的坐标,得到结论;解答:解:(Ⅰ)设椭圆的半焦距为c,圆心O到直线l的距离为,∴.由题意得,解得a2=3,b2=2.故椭圆C的方程为.(Ⅱ)(1)当直线l的斜率为0时,检验知.设A(x1,y1),B(x2,y2),由,得(1﹣x1,﹣y1)=2(x2﹣1,y2),则有y1=﹣2y2①,设直线l:x=my+1,联立消去x,整理得(2m2+3)y2+4my﹣4=0.∴.结合①,得.代入,得×,即,解得,故直线l的方程是.(2)问题等价于在椭圆上是否存在点P,使得成立.当直线l的斜率为0时,可以验证不存在这样的点,故设直线l的方程为x=my+1,用(1)的设法,可得P(x1+x2,y1+y2).若点P在椭圆C上,则,即.又点A,B在椭圆上,有,则,即2x1x2+3y1y2+3=0②,由(1)知x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1=,代入②式得,解得,即.当时,,;当时,,.故椭圆C上存在点P,使得成立,即动点P的轨迹与椭圆C存在公共点,公共点的坐标是.点评:本题考查直线方程、椭圆方程及性质、直线与椭圆的位置关系、平面向量等知识,考查学生分析解决问题的能力,综合性强,能力要求较高.22.(13分)(•太原一模)已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)=xe1﹣x (a∈R,e为自然对数的底数).(Ⅰ)若不等式f(x)>0对于一切恒成立,求a的最小值;(Ⅱ)若对任意的x0∈(0,e],在(0,e]上总存在两个不同的xi(i=1,2),使f(xi)=g(x0)成立,求a的取值范围.考点:函数恒成立问题;函数的零点;利用导数研究函数的单调性.专题:综合题;导数的综合应用.分析:(Ⅰ)不等式f(x)>0对于一切恒成立,分离参数后即在内恒成立,构造函数h(x)=2﹣(x),则问题转化为a>h(x)max,利用导数即可求得函数h(x)的最大值;(Ⅱ)求出g′(x),根据导函数的正负得到函数的单调区间,即可求出g(x)的值域,而当a等于2时不合题意,当a不等于2时,求出f′(x)=0时x的值,根据x属于(0,e]列出关于a的不等式得到①,并根据此时的x的值讨论导函数的正负得到函数f(x)的单调区间,根据单调区间得到②和③,令②中不等式的坐标为一个函数,求出此函数的导函数,讨论导函数的正负得到函数的单调区间,根据函数的增减性得到此函数的最大值,即可解出②恒成立和解出③得到④,联立①和④即可解出满足题意a的取值范围.解答:解:(Ⅰ)由题意得(2﹣a)(x﹣1)﹣2lnx>0在内恒成立,即在内恒成立,设,则,设,则,∴φ(x)在内是减函数,∴,∴h'(x)>0,h(x)在内为增函数,则,∴a≥2﹣4ln2,故a的最小值为2﹣4ln2.(Ⅱ)g'(x)=e1﹣x﹣xe1﹣x=(1﹣x)e1﹣x,当x∈(0,1)时,g'(x)>0,函数g(x)单调递增;当x∈(1,e]时,g'(x)<0,函数g(x)单调递减.又因为g(0)=0,g(1)=1,g(e)=e•e1﹣e>0,所以,函数g(x)在(0,e]上的值域为(0,1].当a=2时,不合题意;当a≠2时,f'(x)=2﹣a﹣==,x∈(0,e]当x=时,f'(x)=0.由题意得,f(x)在(0,e]上不单调,故0<<e,即a<2﹣①此时,当x变化时,f'(x),f(x)的变化情况如下:又因为,当x→0时,f(x)→+∞,f()=a﹣2ln,f(e)=(2﹣a)(e﹣1)﹣2,所以,对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,当且仅当a满足下列条件:即令h(a)=a﹣2ln,a∈(﹣∞,2﹣),则h′(a)=1﹣2[ln2﹣ln(2﹣a)]′=1﹣=,令h'(a)=0,得a=0或a=2,故当a∈(﹣∞,0)时,h'(a)>0,函数h(a)单调递增;当a∈(0,2﹣)时,h'(a)<0,函数h(a)单调递减.所以,对任意a∈(﹣∞,2﹣),有h(a)≤h(0)=0,即②对任意a∈(﹣∞,2﹣)恒成立.由③式解得:a≤2﹣.④综合①④可知,当a∈(﹣∞,2﹣]时,对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的xi(i=1,2),使f(xi)=g(x0)成立.点评:此题考查学生会利用导函数研究函数的恒成立问题、最值问题,考查学生分析解决问题的能力.。
山东省2020届高三预测金卷(数学理)及答案解析
高三预测金卷数学理一. 选择题(每小题 5分,共 50分)1.若复数()211i x x -++ 是纯虚数(i 是虚数单位,x R ∈ ),则x = ( ) A .1 B .-1C .1±D .0【答案】A 【解析】试题分析:若复数是纯虚数,则21010x x ⎧-=⎨+≠⎩,即11x x =±⎧⎨≠-⎩,即1x =,故选A .考点:复数的概念及运算.2.已知集合}3,2,1,0{},0|{2=>-=N x x x M ,则N M C U I )(=( ) A .}10|{≤≤x x B .}1,0{ C .}3,2{ D .}3,2,1{ 【答案】B 【解析】试题分析:求出M 中不等式的解集确定出M ,确定出M 的补角,求出M 补集与N 的交集即可; 由M 中不等式变形得:(1)0x x ->,解得:0x <或1x >,即M={x |0x <或1x > },∴{}U M x |0x 1=≤≤ð,∵{0,1,2,3}N =,∴U M N {01}=I (),ð,故选:B . 考点:交、并、补集的混合运算3.下列函数中,在区间(0,)+∞上为增函数的是( ) A .)2(log 3.0+=x y B .xy -=3 C .1+=x y D .2y x =﹣【答案】C 【解析】试题分析:根据二次函数、指数函数、对数函数的单调性,再由复合函数的单调性对各个选项的正确性进行判断,从而得到结论.由于二次函数2y x =﹣在区间()0,+∞上是减函数,故排除D .A 、由于函数0.3y log x 2=+()由于函数0.3y log u =与2u x =+复合而成,由复合函数的单调性知函数0.3y log x 2=+()为减函数;B 、由于函数xy 3=﹣由于函数uy 3=与u x =-复合而成,由复合函数的单调性知函数xy 3=﹣为减函数; 故选:C .考点:函数单调性的判断.4.阅读如图所示的程序框图,运行相应的程序. 若输出的S 为1112,则判断框中填写的内容可以是 ( )A .6n =B. 6n <C. 6n ≤D. 8n ≤【答案】C【解析】试题分析:模拟执行程序框图,可得 S=0,n=2满足条件,S=12,n=4 满足条件,S=113244+=,n=6满足条件,S=1111124612++=,n=8 由题意,此时应该不满足条件,退出循环,输出S 的值为1112, 故判断框中填写的内容可以是n≤6, 故选C .考点:程序框图和算法.5.如图,网格纸上小正方形的边长为1,粗线画出的 是某多面体的三视图,则该多面体的表面积为( )A .4882+B .64C .48D .3282+【答案】D 【解析】试题分析:由题意可知三视图复原的几何体是底面为边长为4的正方形, 一条侧棱垂直底面正方形的顶点的四棱锥,并且棱锥的高为4, 所以几何体的表面积为:11442442422328222⎛⎫⎛⨯+⨯⨯⨯+⨯⨯⨯=+ ⎪ ⎝⎭⎝ 故选:D 学优高考网考点:本题旨在考查三视图与几何体的直观图的关系,考查空间想象能力与计算能力.6.已知,1=a ρb ρ=2,且a ρ()a b ⊥+r r ,则则向量a ρ与向量b ρ的夹角为( )A .6πB .34π C .3π D .23π 【答案】B 【解析】试题分析:()2112,0,a a b a a b a b +=+⋅=+=r r r r r r r r 23cos ,,24a b a b π=-=r r r r .故选B .考点:向量的数量积的应用.7.已知△ABC 中,内角A ,B ,C 的对边分别为,,a b c ,222a b c bc =+-,4bc =,则△ABC 的面积为( ) A .12B .1C .3D .2【答案】C 【解析】试题分析:22222211,,cos 222b c a a b c bc A bc +-=+-∴=∴=Q , 113,sin 433222ABC A S bc A π==⋅=⨯⨯=V . 故选:C .考点:正余弦定理的运用.8.已知函数x x x f cos 2)(=,则函数)(x f 的部分图象可以为 ( )【答案】A考点:函数的图象.9. 已知双曲线22221(0,0)x ya ba b-=>>与函数的图象交于0)y x=≥点P.若函数y=P处的切线过双曲线左焦点(1,0)F-,则双曲线的离心率是()A.12+B.22C.12D.32【答案】A【解析】试题分析:设P(x0,函数的导数为:y′=,∴切线的斜率为又∵在点P处的切线过双曲线左焦点F(-1,0),∴,解得x0=1,∴P(1,-1),可得22111a b-=,c2=a2+b2.c=1,解得,因此2c=2,2a1,,故选A.考点:导数的几何意义,双曲线的标准方程与离心率.10.若对,[0,)x y∀∈+∞,不等式2242x y x yax e e+---≤++恒成立,则实数a的最大值是()A.14B.1C.2D.12【答案】D【解析】试题分析:因为()2222222x y x y x y y x y y x ee e e e e e e e +--------+=+≥⋅⋅=,由题意知2422x ax e -≤+,即221x ax e -≤+对[0,)x ∀∈+∞恒成立,如图y=2ax 与y=21x e -+相切时,a 取到最大值,设切点坐标为00(,)x y ,则0000202212x x y ax y e a e --=⎧⎪=+⎨⎪=⎩,解得002212y x a ⎧⎪=⎪=⎨⎪⎪=⎩,所以a 的最大值为12,故选D.考点:基本不等式,函数单调性.第II 卷(非选择题)二、填空题(每小题5分,共25分) 11. 函数13sin 2y x x =+([,2]x ππ∈)的单调递增区间是__________. 【答案】7[,2]6ππ 【解析】试题分析:∵函数y=12(x+3π),由 2kπ-2π≤x+3π≤2kπ+2π,k ∈z ,可得 2kπ-56π≤x≤2kπ+6π,k ∈z .学优高考网故函数y=12(x+3π)的单调增区间是[2kπ-56π,2kπ+6π](k ∈Z ),又因为[,2]x ππ∈,所以y=12sinx+2cosx=sin (x+3π)的单调增区间是7[,2]6ππ,故答案为:7[,2]6ππ. 考点:两角和的正弦公式,正弦函数的图像及性质.12.在平面直角坐标系xOy 中,已知A 、B 分别是双曲线2213x y -=的左、右焦点,△ABC 的顶点C 在双曲线的右支上,则sin sin sin A BC-的值是【答案】-【解析】试题分析:a-b=CB-CA=-2,c=AB=4,所以sin sin sin 42A B a b C c ---===-.考点:双曲线的几何性质,正弦定理.13.已知等比数列}{n a 的前n 项和13-=nn s ,则}{n a 的通项公式是 .【答案】132-⨯=n n a【解析】解:因为等比数列}{n a 的前n 项和13-=nn s ,可见公比为3,首项为2,因此可知通项公式是132-⨯=n n a考点:等比数列通项和前n 项和的关系.14.设0,0>>b a ,4222=-+b a b a ,则ba 11+的最小值是 .【答案】 【解析】试题分析:先根据条件2242a b a b +=+ ,原式转化为1142a b ab a b ab ab++==+ , 利用基本不等式即可求出最小值.22222442a b a b a b a b +-=\+=+Q ,,22114242a b a b ab a b ab ab ab ++\+===+炒=,当且仅当ab = 取等号; 考点:基本的不等式.15. 同底的两个正三棱锥内接于同一个球.已知两个正三棱锥的底面边长为a ,球的半径为R .设两个正三棱锥的侧面与底面所成的角分别为α、β,则tan()αβ+的值是 .【答案】考点:两角和与差的正切函数;球内接多面体.三、解答题(共6小题,75分) 16.(本小题满分12分) 已知函数)sin()23sin(22cos 3)(x x x x f -++=ππ,其中R x ∈.(Ⅰ)求)(x f 最小正周期及对称轴方程;(Ⅱ)在锐角ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知()f A =3a =,求BC 边上的高h 的最大值.【答案】(Ⅰ)p ;5,212k x k Z ππ=+∈;【解析】试题分析:(Ⅰ)由题()2sin 22sin 23f x x x x π⎛⎫=-=-- ⎪⎝⎭, 所以f (x )的最小正周期为p , 令2,32x k πππ-=+得对称轴方程为5,212k x k Z ππ=+∈ ;(Ⅱ)由题可得sin 20=3223A A Q A ,,πππ⎛⎫⎛⎫-=∈∴ ⎪ ⎪⎝⎭⎝⎭由余弦定理得222222cos 9=a b c bc A b c bc bc ,=+-∴+-≥ 即9bc ≤ (当且仅当b=c 时取等号) 设BC 边上的高为h ,由三角形等面积法得11sin ,32222ah bc A h bc =∴=≤2h ≤.即h 的最大值为2. 考点:三角函数中的恒等变换应用;三角函数的周期性及其求法. 17.(本小题满分12分)已知ABC ∆的三个角,,A B C 的对边分别为,,a b c ,且,,A B C 成等差数列,且b ={}n a 是等比数列,且首项112a =,公比为sin sin A C a c++。
2020年6月山东省实验中学高考预测押题卷理科数学(解析版)
(满分:150 分 考试时间:120 分钟) 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一个选项是符合题目 要求的)
1.已知集合 A 0,1, 2,3, 4,5 , B x x 2n,n N * ,则 A B ( )
珠和一颗下珠,个位档拨上一颗上珠,则表示数字 65.若在个、十、百、千位档中随机选择一档拨一颗上 珠,再随机选择两个档位各拨一颗下珠,则所拨数字大于 200 的概率为( ).
A.
3 8
【答案】D
1
B.
2
2
C.
3
3
D.
4
【解析】依题意得所拨数字共有 C41C42 24 种可能,要使所拨数字大于 200,
DE AB
BD AB
3 2 cos180
6
5.函数
f
(x)
2 1 ex
1 sin
x
图象的大致形状是(
)
A.
B.
C.
D.
【答案】C
【解析】
f
(x)
( 1
2 e
x
1) sin
x 的定义域为 R ,
f
(
x)
( 1
2 1
ex
1) sin( x)
(
2 ex
1
ex
1)sin x
(
2ex ex 1
1)
sin
x
[
2(ex 1) ex 1
2
1]sin
x
(2
e
x
2
1
1)
sin
x
山东省2020年高考理科数学预测试题及答案
山东省2020年高考理科数学预测试题及答案(满分150分,考试时间120分钟)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知集合A=2{|lg },{|230}A x y x B x x x ===--<,则AB =A.(0,3)B.(-1,0)C.(,0)(3,)-∞+∞ D.(-1,3)2. 若(x-i)i=y+2i,其中x,y 是实数,i 为虚数单位,则复数x+yi= A.-2+i B.2+i3.1-2i D.1+2i 3. 设函数2sin cos ()(,0)x x xf x a R a ax+=∈≠,若(2019)2f -=,(2019)f = A. 2 B. -2C. 2019D. -20194. 等差数列{n a }的前n 项和为n S ,若82a =,798S =,则 A. 16B. 14C. 12D. 105. 已知,m n 是两条不重合的直线,,αβ是两个不重合的平面,下列命题正确的是 A. 若m α,m β,n α∥,n β∥,则αβ B. 若m n ∥,m α⊥,n β⊥,则αβC. 若m n ⊥,m α⊂,n β⊂,则αβ⊥D. 若m n ⊥,m α,n β⊥,则αβ⊥6. 已知平面区域1Ω:220,0,20,x y x y y -+≥⎧⎪+≤⎨⎪+≥⎩,2Ω:229x y +≤,则点1(,)P x y ∈Ω是2(,)P x y ∈Ω的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 已知函数()lg(1)f x x =+,记0.2(5)a f =,0.2(log 3)b f =,(1)c f =,则,,a b c 的大小关系为 A. a c b << B. c b a <<C. c a b <<D. c b a <<8.展开式中倒数第二项与倒数第三项的系数互为相反数,则展开式中各项的二项式系数之和等于A. 16B. 32C. 64D. 1289. 已知四棱锥P ABCD -的三视图如图所示,则四棱锥P ABCD -外接球的表面积是A. 20πB.1015πC. 25πD. 22π10. 已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若3AF FB =,则该双曲线的离心率为C.332 D. 311. 设12,F F 分别是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,双曲线上存在一点P 使得1260F PF ∠=,3OP b =(O 为坐标原点),则该双曲线的离心率为A.43C.7612. 已知定义在R 上的奇函数()f x 满足当BC AP λ=时,()()[)[)12log 1,0,113,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,则关于x 的函数()y f x a =-,(10a -<<)的所有零点之和为 A. 21a - B. 21a --C. 12a --D. 12a -二、填空题(本题共4小题,每小题5分,共20分。