第1章噪声与干扰
3-移动通信的噪声和干扰

作业
1、移动通信系统中主要干扰有哪些?
2、互调产物产生的原因是什么? 3、减小发射机和接收机互调干扰的措施是什么? 4、已知发射机T1T2输出功率为10W,发射机互调转效损耗为15dB, 已知单向器正向损耗(插入损耗)为1dB,反向隔离度为20dB, 混合电器正向损耗为3dB,隔离度为25dB,试求到达天线上的互调 产物的功率(dBw)。 5、给出一组工作频率:150.050MHz,150.275MHz,150.350MHz, 150.375MHz,150.525MHz,150.950MHz,试判断这组频率是否有 3阶互调分量落入有用频道之内?给出判断的方法。
3.1噪声和干扰的基本概念
噪声的来源及分类:
噪声是指使通信质量受到损害的,且与所传输的信号无关 的各种形式的寄生干扰的总称。
大气 噪声 自然 噪声 外部 噪声 人为 噪声 噪声 热噪 声 内部 噪声 散弹 噪声 电源 噪声 宇宙 噪声 热噪 声
3.1噪声和干扰的基本概念
噪声的来源及分类:
依据特征不同,噪声可分为单频噪声,脉冲噪声和起伏噪声三种。
耦合损耗Lc:发射机1的输出功率与进入发射机2的输出端的功率之 比,分用天线时垂直分离隔离度较大。一般大于30dB
互调转换损耗Li:在发射机2输出端上,来自发射机1的功率与来自 发射机 2 的信号产生的互调产物的功率之比,一般为 5~20dB ,典型值 为15dB,且与频距有关。
传输损耗Lp:发射机2输出端到被干扰接收机输入端间互调干扰信 号的传输损耗。
3.4互调干扰
1、互调干扰的产生原因
互调干扰:当两个或多个不同频率的信号同时输入到非线性电路时,
由于非线性的作用,会产生许多谐波和组合频率分量(互调产物),当
传感器中的噪声和干扰抑制技术

传感器中的噪声和干扰抑制技术传感器是现代科技领域中的重要组成部分,被广泛应用于各个领域。
然而,传感器在工作过程中常常会受到噪声和干扰的干扰,降低了其性能和准确性。
为了解决这一问题,人们提出了各种噪声和干扰抑制技术,本文将从几个方面详细介绍这些技术的原理和应用。
一、噪声来源与分类在了解噪声和干扰抑制技术之前,我们首先需要了解噪声的来源和分类。
噪声主要可以分为外部噪声和内部噪声。
外部噪声主要来自于环境,如电磁辐射、震动、温度变化等。
内部噪声则是由于传感器本身的结构和电路等因素引起的,如放大器电路噪声、电源噪声等。
根据频率范围的不同,噪声可以进一步分为低频噪声、中频噪声和高频噪声。
低频噪声一般在1Hz以下,主要来源于环境震动和温度变化等;中频噪声在几百Hz至几百kHz范围内,主要由电磁干扰引起;高频噪声则在几百kHz以上,如来自于放大器电路的噪声。
二、噪声抑制技术1. 信号滤波技术信号滤波技术是最常用的噪声抑制技术之一。
滤波器可以根据噪声的频率范围进行选择。
常见的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
低通滤波器用于滤除高频噪声,高通滤波器则用于滤除低频噪声,带通滤波器和带阻滤波器可以根据实际噪声频谱的分布来选择。
2. 系统抗干扰技术系统抗干扰技术主要包括防电磁干扰和防震动技术。
防电磁干扰主要通过合理设计传感器的结构和电路布局以及屏蔽等手段来降低外界电磁信号对传感器的干扰。
防震动技术则通过采用减振材料、调整传感器的安装方式等方式来降低震动对传感器的影响。
3. 信号处理技术信号处理技术是一种较为复杂的噪声抑制技术,它可以通过对传感器采集到的信号进行处理,提取有用的信息并滤除噪声。
常见的信号处理技术包括数字滤波、小波变换、自适应滤波等。
这些技术可以对传感器信号进行干扰抑制、特征提取和信号重建等处理,从而提高传感器的性能。
三、干扰抑制技术的应用噪声和干扰抑制技术在各个领域都有广泛的应用。
例如,在无线通信领域,通过采用合适的信道编码和解码技术,可以降低信道噪声对通信质量的影响,提高通信的可靠性和性能。
干扰与噪声

串连电压源 形式
并连电流源
形式
4 从干扰对电路作用的形式分类 (续)
共模干扰:共模干扰又称共态干扰、同 相干扰、对地干扰及纵向干扰。
它是相对于公共的电位基准点(通常为接 地点),在检测系统的两个输入端子上同时出 现干扰。它虽不直接对测量结果造成影响, 但当信号输入电路不对称时,它会转化为差 模干扰,进而对测量产生影响。
共模干扰等效电路
4 从干扰对电路作用的形式分类 (续)
共模干扰抑制比:
式中: Kd——差增益;
Km——共模增益。
5.1.3 噪声形成干扰的三要素
噪声形成干扰必需具备三个条件,噪声 源、对噪声敏感的接收电路和噪声源到 接收电路之间的耦合通道。 噪声源 耦合通道 接收电路
差模干扰进入电路后使检测系统的一个信号输入端子相对于另一个信号输入端子的电位发生变化即干扰信号与有用信号按电势源串联起来作一起进入输入端
5.1 干扰与噪声
(1)噪声指在信号检测的领域内,检测 系统检测和传输的有用信号以外的一切 信号均被称为噪声。
(2)干扰指具有一定幅值和一定强度、 能够影响检测系统正常工作的噪声被称 为干扰。
差模干扰:差模干扰又称串模干扰、串 联干扰、正态干扰、常模干扰及横向干扰等。
差模干扰进入电路后,使检测系统的一 个信号输入端子相对于另一个信号输入端子 的电位发生变化,即干扰信号与有用信号按 电势源串联起来作一起进入输入端。因为这 种干扰和有用信号迭加起来直接作用于输入 端,所以它直接影响到测量结果。
3 从干扰出现的区域分类
(1) 内部干扰:来自检测系统内部的干 扰称为内部干扰。如电路的过渡过程、 寄生反馈、内部电磁场等引起的干扰, 都属于内部干扰。
(2)外部干扰。来自检测系统外部的 干扰称为外部干扰。如电网电压波动、 电磁辐射、高压电源漏电等,都属于 外部干扰。
噪声的基本知识

式中:R为电阻或阻抗元件的实部(单位为欧姆);
K为玻耳兹曼常数:1.38×10-23 J / K;
T为导体的绝对温度(K);
f 为测量带宽。
如用噪声电流表示则为:
in2J
4k Tf R
●例如:若一个1KΩ 的电阻,在1Hz带宽内,室温 T=290K,则可求得均方根热噪声电压为4nV。
为了简化符号,常记 En2 et2 或 En et2
●热噪声属于白噪声频谱, 一般说来,高端极限额率为:
fH =0.15kT×1034Hz=2.07T×1010Hz 由上式可知,fH 与电阻的温度T有关。 在室温下(T=290k), fH =6×1012Hz, 一般电子学系统工作频率远低于该值, 故可认为热噪声为白噪声频谱。
●研究信号时,通常在频率域中(简称频 域)进行研究,定义功率谱密度 :
(2)当r=1时,表示两噪声电压完全相关,则:
E2
E12
E
2 2
2E1E2
(E1
E2 )2
即完全相关,噪声电压的合成应当是瞬时值
或均方根值的线性相加,
例如:同频同相的正弦波。
(3)当r= -1时,表示两噪声电压完全相关, 但相位相反,则
E 2 E12 E22 2E1E2 (E1 E2 )2
●从涨落的均方偏差可求出散粒噪声功率为:
in2 2eIf
式中e为电子电荷, Δ f 为探测器工作带宽。 如果I是探测器的暗电流Id,则探测器在无光照 时的暗电流噪声功率为: in2d 2eId f ●对于由光场作用的光辐射散粒噪声 也可直接写为:
in2p 2eI pf
IP为光辐射场作用于探测器产生的平均光电流。
振荡器的干扰和相位噪声讲解

精品资料
1 振荡器的干扰(gānrǎo)
振荡器的工作状态会受到外部干扰、负载变 化(biànhuà)和电源变化(biànhuà)的影响而 偏离正常工作状 态。当外部干扰信号注人振 荡器的信号通路中时,如果干扰信号频率接 近载波频率,且干 扰信号幅度与载波幅度可 以比拟,这时载波频率会向干扰信号频率方 向偏移,并随着干扰 信号幅度的增大更接近 干扰信号频率•直至锁定在干扰信号频率上, 这种现象称为“注入 锁定"或“注入牵引"如 图 10-22
精品资料
精品资料
对收发机来说,有多种干扰源会导致“注入牵引”, 如发射机的功率放大器输出会耦合 到本振。又如接 收机的接收信号中伴随着很大的千扰信号,当干扰 频率接近本振频率且 耦合到混频器的本振口时,本 振频率可能被牵引至干扰频率上。因此vco输出端应 有 一个高反向隔离的缓冲级。
若vco频率与负载阻抗有关,负载变化时会导致vco频 率发生变化,这种现象称 为“负载牵引.为了避免负 载牵引vco输出端应有一个输出缓冲级。
精品资料
精品资料
精品资料
精品资料
精品资料
精品资料
精品资料
精品资料
精品资料
精品资料
其中W0为LC谐振电路谐振频率(pínlǜ),为 开环传递函数的相位。振荡器开环传递函数 的幅 频和相频特性曲线如图10-25所示。在 相频特性曲线上w。处的相位斜率决定了振 荡器 相位的稳定性,这是因为产生振荡必须 满足360°的环路相位条件,
越大则偏离W0后的环路相移离振荡条件越 远。
射频振荡器通常对电源的变化比较敏感,当振荡器的 电源发生变化时,其振荡频率和 幅度都可能发生变 化,这种现象称为“电源推进”例如,在便携式收 发机中,功率放大器的开和关会造成几百毫伏的电 源电压波动,从而影响振荡器的正常工作。
无线噪声和干扰

衰落
(差)2 烦人噪声
(劣)1 话音不可懂
S/N(dB)20源自304050
第6页/共20页
第7.1节、噪声
发射机的噪声及寄生辐射 除了接收机的内部噪声以外,发射机产生的噪声及寄生辐射也会直接 影响到通信质量,尤其是在移动通信系统中,大量移动台发射的含有噪声 的信号势必造成相互之间的干扰,因此必须严格控制发射机产生的噪声及 各种寄生辐射。 发射机的相位噪声:发射机工作时,会存在以载频为中心、分布频率 范围相当宽的噪声,这种噪声称为发射机的相位噪声。它不仅在相邻 的频道内形成干扰.而且会在几MHz的频带内产生影响。 发射机的寄生辐射:目前使用的移动台,为获得较高的频率稳定度, 大多采用晶体振荡器或温补晶体振荡器,然后通过多级倍频器倍频到 所需载频。如果各级倍频器的滤波特性不良,在发射机的输出端便会 产生寄生辐射波,它会干扰正好工作在寄生频率附近的接收机。
邻频干扰是一种来自相邻或相近的频率的干扰,相近频率可以是相 隔一个或几个载频或信道。邻频干扰主要有两个方面:一是由于工作频带 相邻的若干信道的寄生边带功率、宽带噪声、杂散辐射等产生的干扰;二 是移动通信网内一组空间离散的邻近工作信道引入的干扰。
第10页/共20页
第7.3节、邻频干扰
邻频干扰的主要原因: 发信机的边带扩展:发信机边带扩展是指发射信号的频谱超出 了限定的宽度,落到了相邻频道内成为带外辐射干扰。边带扩 展辐射跟系统设计参数及调制器和功率放大器的非线性有关, 主要决定于发信机信道滤波器的带外抑制能力。 发信机的边带噪声:发信机边带噪声存在于发射信号载频的两 侧,而且噪声频谱很宽,可能在几MHz范围内对接收机产生干 扰,成为邻频干扰的一个主要来源。 发信机的杂散辐射:发信机的杂散辐射指的是在有用带宽以外 的某些频率点上的寄生辐射,它包括发信机内部频率源的寄生 辐射和谐波辐射等。非线性器件是产生杂散辐射的重要原因。
环境工程概论 噪声污染与控制

•
•
具体的控制方法 (1)吸声降噪。吸声降噪是一种在传播途径上控制噪声强度的方法。物体的吸 声作用是普遍存在的,吸声的效果不仅与吸声材料有关,还与所选的吸声结构有 关。这种技术主要用于室内空间。 (2)消声降噪。消声器是一种既能使气流通过又能有效地降低噪声的设备。通 常可用消声器降低各种空气动力设备的进出口或沿管道传递的噪声。例如在内燃 机、通风机、鼓风机、压缩机、燃气轮机以及各种高压、高气流排放的噪声控制 中广泛使用消声器。不同消声器的降噪原理不同。常用的消声技术有阻性消声、 抗性消声、损耗型消声、扩散消声等。 (3)隔声降噪。 把产生噪声的机器设备封闭在一个小的空间,使它与周围环境 隔开,以减少噪声对环境的影响,这种做法叫做隔声。隔声屏障和隔声罩是主要 的两种设计,其他隔声结构还有:隔声室、隔声墙、隔声幕、隔声门等。
2. 噪声的来源
• 噪声污染主要来源于交通运输、车辆鸣笛、 • 工业噪音、建筑施工、社会噪音如音乐厅、 • 高音喇叭、早市和人的大声说话等。
3. 噪声的危害
•
噪音对人体的主要危害是损伤听觉系统。当噪音强度超过
100分贝时,即能造成听觉损伤。轻度听觉损伤主要表现为轻 度耳鸣,若进一步发展,可在一定程度上影响语言听力,致使 工作、学习、生活中感到听觉困难。有时一次强烈的噪音可致 暂时性的两耳全聋,同时感到剧烈耳鸣并有眩晕。此外,噪音 对人体其他系统也有影响,主要表现为头痛、头晕、失眠、多 梦、记忆力减退,甚至出现血压不稳定或肢端供血不足,发生 营养障碍性疾病,心律不齐等。噪音对婴幼儿、青少年和孕妇 的不良影响更为严重。
THE END
第五章
噪声污染与控制
2016ቤተ መጻሕፍቲ ባይዱ
• 1.噪声的定义 • 2.噪声的来源 • 3.噪声的危害 • 4.噪声的控制方法 • 5.振动防治技术
噪声基础

常见噪声的频谱图
5.频程和频谱:
b. 频程:两个声或其他信号的频率间的距离,是频
率的相对尺度。为方便起见,通常将宽广的音
频变化范围划分为若干个较小的频段,称为 频段或频程。
f2 n 2 f1
f
n
f 2 f1
1 2
n
f ( 2
)f
**声级的运算
a.级的叠加(公式法)(能量的叠加) 当n个声源互不干涉时:
高、中、低频噪声: 1. 高频噪声:它们辐射的主要噪声成分在 1000Hz以上,如电锯、铆钉枪等听起来高亢刺 耳的。 2. 低频噪声:其主要噪声频率多在500Hz以下, 如空压机、汽车等辐射的噪声低沉有力的。 3. 中频噪声:噪声主要频率成分在500-1000Hz 范围内,如高压风机等。 4. 宽频带噪声:较为均匀地辐射从低频到高频 的噪声,如纺织机噪声等。
彩色聚合物混凝土透水降噪路
利用声学手段降噪实例(隔声)
北京轻轨铁路两侧的声屏障
利用声学手段降噪实例(隔声)
隔声窗
利用声学手段降噪实例(消声)
利用声学手段降噪(吸声)
噪声控制技术手段三: 接 收器的保护措施
耳塞
防声棉
耳罩、头盔
隔声岗亭
耳罩、头盔
耳罩、头盔
隔声岗亭
第二节
a.级的叠加(查表、图法):
令: 则:
Lp Lp1 Lp2
Lp2 Lp1 Lp
代入下式中:
L pT 10 lg 10
0.1L p1
10
0.1L p2
可得:
L pT 10 lg 10
0.1L p1
电路噪声讲解--噪声第一章

电路噪声讲解—噪声第一章一、电磁噪声干扰定义外部电磁波造成的干扰称为电磁噪声干扰,而造成干扰的电磁波称为电磁噪声(噪声)。
如果一台电子设备视为噪声源,则噪声的产生称为发射(噪声发射)。
相应地,如果一台电子设备视为噪声受体,则噪声容忍度称为抗扰度(噪声容忍度)。
噪声规定指定了电子设备的发射和抗扰度。
(抗扰度也称为EMS: 电磁敏感度)二、电磁噪声分类根据电磁噪声的来源,可分为自然噪声和人为噪声。
随着电子设备进一步的高密集化、高性能化及小型化,噪声干扰问题会更加严重。
EMC=EMI+EMS内EMC。
四、噪声抑制讲解1.噪声传导:噪声传导有空间传导和导体传导1)空间传导噪声处理:增加屏蔽屏蔽指用金属板或其他保护装置封闭目标物体,把周围的电磁场排除在外。
尽管屏蔽的效果通常取决于所用材料的传导性、导磁率和厚度,但用铝箔等极薄的金属板会令常规电子设备的噪声抑制更有效果。
电子设备的噪声抑制效果会因形成外壳的连接方法(间隙、接触阻抗等)而异,而与材料规格无关。
在散热所用的屏蔽罩上制作开口时,限制每个开口的超大尺寸比限制开口的总面积更加重要。
如果存在细长的开口或狭缝,这个部分可以起到狭缝天线的作用(特别是图中的长度l超过了波长1/2时的高频范围),且无线电波可以进出屏蔽罩。
为了避免这样,应保持每个开口较小。
由此看来,带许多小孔的板材(例如冲孔的金属和延展的金属)是很好的材料,既有利于通风,又有利于屏蔽。
2)导体传导噪声处理:增加滤波电路因为噪声往往分布在相对较高的频率范围内,所以电子设备的噪声抑制通常使用低通滤波器来消除高频成分。
可以把电感器(线圈)、电阻和电容等通用元件用作低通滤波器。
但是为了完全隔离噪声,可以使用EMI静噪滤波器等专用的元件。
除了这些利用噪声不均匀频率分布的滤波器以外,还有些滤波器是利用压差(变阻器等)或利用传导模式差异(共模扼流线圈等)。
除了这些滤波器,变压器、光缆或光隔离器均可用作一种滤波器。
4-3 信道中的噪声与干扰

信道中的噪声和干扰 (二)复杂电磁环境下战场通信面临的主要问题
二、信道中的干扰
② 敌方施放的恶意干扰 包括: z 定频式干扰 z 瞄准式干扰 z 阻塞式干扰 z 扫频式干扰
8
信道中的噪声和干扰
通常将加性噪声Ν (t)分为自然噪声和人为干扰两类 信道噪声和干扰降低了接收信号的信干比,从而影响了 接收机的正常工作,导致模拟通信产生失真、数字通信产生 误码
3
信道中的噪声和干扰
一、信道中的噪声
① 自然噪声包括自然界辐射的噪声和接收机内部的热噪 声
② 热噪声是任何温度高于绝对零度的电子设备所固有 的。热噪声来自电阻性元器件中电子的热运动。
自然噪声的影响
大气噪声
太阳噪声
银河噪声
影响频段
主要对超短波低端的 是一个宽带噪声,辐射强 频率较高,是超短波波段
无线电通信系统产生 干 扰 , 30 ~ 100MHz
度随频率升高而增大,宽 带通信系统比窄带Байду номын сангаас信系
干扰的重要来源,据测 量,在18~160 MHz波段
内的干扰电平和频率的立
频段,干扰强度有限 统受太阳噪声影响严重
方成正比
6
_《__通__信__原__理__》____国__防__科__技__大__学__电__子__科__学__与__工__程__学__院_____马__东__堂___
信道中的噪声和干扰 (二)复杂电磁环境下战场通信面临的主要问题
二、信道中的干扰
① 己方和民用设备造成的干扰 包括: z 同频干扰;邻频干扰 z 互调干扰;杂散辐射干扰 z 谐波辐射干扰
4
_《__通__信__原__理__》____国__防__科__技__大__学__电__子__科__学__与__工__程__学__院_____马__东__堂___
什么是电路的噪声和干扰

什么是电路的噪声和干扰电路的噪声和干扰是在电子设备和电路中常见的问题,它们可能会对信号传输和设备性能产生负面影响。
了解噪声和干扰的类型、来源以及如何减少它们对电路的影响是电子工程师和电路设计师的重要任务之一。
一、噪声的定义和分类噪声是指在电子设备和电路中引入的非期望的信号,它包含了各种频率和振幅的信号成分。
噪声可以来自内部和外部的源头。
内部噪声是由电子元件和电路中的电流、电压以及其他物理过程产生的。
外部噪声则是来自设备周围的各种信号源。
根据噪声的统计特性,我们可以将其分为两类:分布均匀的白噪声和频率相关性的有色噪声。
白噪声是指所有频率上的噪声功率谱密度相等,而有色噪声则具有频率相关性,不同频率成分的功率不同。
二、噪声的来源1. 热噪声(热涨落噪声):热噪声是由于温度引起的原子和电子的热运动所导致的噪声。
在电子元器件中,例如电阻器、晶体管等,由于内部电阻和电流的存在,会产生热噪声。
2. 亚原子干扰:亚原子干扰是由于电子的原子与原子之间的运动和相互作用引起的。
3. 辐射噪声:辐射噪声是指由电子装置或电子器件辐射而来的非期望信号。
4. 交流电源干扰:由于电源的电压和电流的不稳定性,交流电源本身也会引入噪声。
5. 信号线串扰:信号线之间的接近会导致相互耦合,引起信号传输中的串扰。
三、干扰的定义和分类干扰是指在电子设备和电路中的不相关信号,它可能会使电路、传感器或通信系统产生误差或性能下降。
干扰可以来自内部设备或外部环境。
根据干扰的特征,我们可以将其分为以下几类:1. 电磁干扰(EMI):电磁干扰是指由电磁辐射或电磁感应引起的干扰。
例如,无线电发射器、电视机、雷达等设备都会发出电磁辐射信号,这些信号可能会干扰周围的电子设备。
2. 电源杂散:电源本身可能会产生不稳定的电压或电流,这些电气杂散信号可能会对其他电子设备或电路产生干扰。
3. 瞬态干扰:瞬态干扰是指非持续性的干扰信号,通常是由突发事件引起的。
例如,电源开关的切换、电气设备的启动和停止等都可能会产生瞬态干扰。
电磁兼容原理及应用第1章 电磁环境与电磁兼容

(4)电磁环境基本概念
• 电子设备发射出来的电磁干扰具有一定的危害性
——降低电子元件的工作寿命,强度较大的电磁干扰可以击穿电子设备, 导致元件及整个系统的损坏;静电导致计算机及其元器件的损坏造 成的经济损失每年就高达数亿美元,还可以损坏医院里病人的导管 泵而导致病人生命危险。
上世纪50年代开始,随着自动化技术和电力电子器件的快速发展,电力电子技术 的兴起和微电子技术发展迅速向电气设备领域渗透,形成电气设备和电子设备 结合、强电和弱电结合、机械和电气结合、仪表和装置结合、硬件和软件结合 的各种复杂控制系统,而且在结构上也往往融为一体,同一电网中的用电设备 越来越多,产生日趋复杂和严重的电磁环境和电磁干扰问题。
频域:工频(较低频率)噪声和瞬变噪声的频率范围直接关系到所采取的抗干 扰措施:工频噪声的频率较低,对数字电路无严重影响,但对低电平模拟 电路的危害却很大;瞬变噪声的频率范围超过0.5MHz时,将引起一系列问 题。
电磁干扰产生的原因很多,噪声互相交织,传递途径多样,电磁环境错综复杂, 很多情况下是在系统出现异常后人们才意识到所处电磁环境的严峻程度。仅 对电磁环境有定性认识是不够的,应通过测量对电磁环境做出定量描述,如: 用电场强度和磁场强度表示稳定电场和磁场;用电压和电流表示局部电路与 整体的关系;用统计量和振幅概率分布函数表示随机变化的干扰特性;用脉 冲峰值分布、能量分布、发生频度分布等参数表示脉冲噪声等。
(4)电磁环境基本概念
• 随着自动化程度越来越高,人们越来越依赖电气电子设备,科学家和 工程师们一直朝一个共同的目标而努力奋斗者——研究、探索直至打 造新一代经济而卓越的电气与电子产品。然而,然而由电子和电气产 品带来的电磁干扰问题,使得人类和设备本身依赖的这个电磁环境越 来越恶劣,不论怎么精心策划,设计中的缺陷始终象噩梦般挥之不去。 补救的药方就是电磁兼容技术——确保设备或系统不产生电磁干扰的 技术。着力解决电磁干扰问题已成为电气和信息化建设中的重要内容 之一。
硬件测试中的噪声与干扰测试方法

硬件测试中的噪声与干扰测试方法硬件测试在现代科技领域中具有重要的意义,它能够有效地评估硬件设备的性能和可靠性。
然而,在测试过程中,噪声和干扰问题经常成为阻碍测试准确性的主要因素。
本文将介绍硬件测试中噪声和干扰的定义,以及有效的测试方法,旨在帮助读者更好地理解和解决这些问题。
第一部分:噪声和干扰的定义在硬件测试中,噪声和干扰是指来自内外部环境的不期望的信号或电磁波,对被测试设备的正常运行产生负面影响。
噪声和干扰可以来自多个来源,例如电源线、电磁辐射、其他设备等。
而对噪声和干扰进行有效的测试成为保障硬件设备可靠性的关键。
第二部分:噪声与干扰测试方法在硬件测试中,噪声与干扰测试方法的选择和应用都需要根据具体的硬件设备和测试目的来确定。
以下是几种常见的噪声与干扰测试方法。
1. 功率干扰测试:该测试方法主要应用于无线通信设备等需要进行功率传输的硬件设备。
通过在特定频率范围内植入合成信号,可以评估设备在不同干扰条件下的性能。
2. 电磁兼容性测试:该测试方法主要用于评估硬件设备的抗干扰能力以及电磁辐射水平。
通过将设备暴露在特定的电磁场中,可以测量设备的辐射和敏感性水平,并评估其对外界干扰的抵抗能力。
3. 噪声抑制测试:该测试方法主要应用于音频和视频设备等需要进行信号处理的硬件设备。
通过注入不同程度的噪声信号,可以评估设备对噪声的抑制能力,以及对正常信号的保真度。
4. 瞬态电磁干扰测试:该测试方法主要应用于评估硬件设备对瞬态电磁干扰的抵抗能力。
通过在设备周围产生突发电磁波,可以观察设备在不同干扰强度下的工作状态,并评估其稳定性和可靠性。
第三部分:测试结果分析与优化噪声与干扰测试的结果分析是测试过程中的关键环节,必须根据具体的测试目的和硬件设备特点进行合理的评估和优化。
以下是几种常见的测试结果分析与优化方法。
1. 信噪比分析:通过测量设备在不同信号强度下的信号与噪声比,可以评估设备的接收能力和信号处理能力,并找出可能的改进方案。
如何规避实验中的电路噪声与干扰

如何规避实验中的电路噪声与干扰在进行实验时,电路噪声与干扰是我们常常面临的问题。
这些噪声和干扰的存在会影响我们实验的结果,降低实验的准确性和可靠性。
因此,为了保证实验结果的准确性,我们有必要规避电路噪声与干扰。
下面,我将介绍一些方法来规避实验中的电路噪声与干扰。
1. 清洁电路环境在进行实验之前,我们应该确保电路环境的清洁。
清除电路周围的杂乱物品,将电路放置在干净的工作台上。
避免电路与其他设备或杂散电磁场的直接接触,以减少干扰。
2. 使用屏蔽材料在设计电路时,可以使用屏蔽材料来减少外部干扰对电路的影响。
屏蔽材料可以有效地阻挡电磁波传播,减少干扰。
例如,在设计放大器电路时,可以采用金属壳体来包裹电路板,起到屏蔽的效果。
3. 优化电路布局电路布局的合理优化可以减少电路噪声和干扰。
合理地安排各个元件的位置,减少信号线的长度和交叉。
将输入和输出信号线分开布置,避免相互干扰。
此外,注意地线和信号线的分离,以减少接地环路带来的干扰。
4. 选择低噪声元件在电路设计中,选择低噪声的元件是减少电路噪声与干扰的重要手段。
例如,在放大器电路中,选用低噪声的运放和电阻,可以降低噪声的引入。
此外,合理选择元件的工作点,减小元件本身的非线性失真,也可以减少干扰。
5. 使用滤波器如果电路噪声和干扰主要来自输入信号中的高频成分,可以在电路中加入滤波器来将高频噪声滤除。
滤波器可以选择合适的截止频率,通过滤波器的作用,将高频噪声滤掉。
6. 地线处理在电路设计中,地线处理是非常重要的一环。
良好的接地能够减少电路噪声和干扰。
要注意避免接地回路带来的干扰,尽量将地线与信号线分开。
7. 使用屏蔽电缆在信号传输过程中,可以使用屏蔽电缆来减少传输过程中的噪声和干扰。
屏蔽电缆内部带有金属屏蔽层,可以有效地阻挡外部电磁波对信号的干扰。
总结起来,规避实验中的电路噪声与干扰是我们进行实验的重要环节。
通过保持电路环境的清洁,使用屏蔽材料,优化电路布局,选择低噪声元件,使用滤波器,合理处理地线以及使用屏蔽电缆等方法,我们可以有效地减少电路中的噪声和干扰,提高实验结果的准确性和可靠性。
移动通信中的噪声和干扰

29
整理课件
3.2互调干扰
现假设输入信号为两个标准正弦信号的叠加:
Vin=A0sinf0t+A1sinf1t
(3)
泰勒展式(2)展开后的3次幂项变为:
K3Vin3=K3(A0sinf0t+A1sinf1t)3
=K2(A03sin3f0t+3A02A1sin2f0tsinf1t+
整理课件
3.1移动通信中的噪声
低噪声放大器
什么是低噪声放大器? 答:放大器是放大电信号的装置,噪声系数很低的放大器称为低
噪声放大器。噪声系数通常用NF表示。 – 多级的级联放大器中,每一级放大器都会产生内部噪声,但
噪声源在第一级时影响最大
➢ 对高增益放大器的设计,必须着重于使第一级放大器设计 最佳
✓ 噪声强度与接收天线的高度及天线离道路的距离有关
11
整理课件
3.1移动通信中的噪声
➢ 为了抑制人为噪声,应采取必要的屏蔽和滤波措施,也可 在接收机上采取相应的措施
➢ 基准人为噪声功率N0=KT0Bi ✓ 玻尔兹曼常数K=1.38×10-23W/(K°Hz-1) ✓ 参考绝对温度T0=290K°;KT0=-204dBW/Hz ✓ Bi为接收机带宽
27
整理课件
3.2互调干扰
什么是谐波? 谐波产生的根本原因是由于非线性负载所致。当电
流流经负载时,与所加的电压不呈线性关系,就形成 非正弦电流,从而产生谐波。谐波频率是基波(一次 谐波)频率的整倍数,根据法国数学家傅立叶证明, 任何重复的波形都可以分解为含有基波频率和一系列 为基波倍数的谐波的正弦波分量。谐波是正弦波,每 个谐波都具有不同的频率,幅度与相角。谐波可以区 分为偶次与奇次性,第3、5、7次编号的为奇次谐波, 而2、4,6、8等为偶次谐波;
第1章噪声与干扰习题及解答

所以
Pso P = Pni ⋅ so Pno Pno
= 3.51 × 10 −15 × 100 = 3.51 × 10 −13 W
第一章
噪声与干扰习题
1.1.1 一个 1KΩ 的电阻,其工作温度为 17oC,工作带宽为 10MHZ,试计算 它两端产生的噪声电压和噪声电流的均方根值。 解:k =273+17=290K 电阻热噪声电压的均方根值为
2 En = en = 4kTR∆f = 4 ×1.38 × 10−23 × 290 × 103 × 107 ≈ 12.6 µ V
图题 1.2.4 解:
F1 = 1 +
Te1 20 = 1+ = 1.07 To 290
A pm1 = lg −1 F2 = lg −1
25 = 316.2 10
6 = 3.98 10
Te 2 = ( F2 − 1)To = (3.98 − 1) × 290 = 864.5
A pm 2 = lg −1
因为输入和输出信号的额定功率分别为
Ps i m =
VS2 , 4 RS
Ps o m =
V S′ 2 RVS2 = 4 Ro 4 RS (RS + R )
对于输入、 输出端均匹配的无源有耗网络, 其 所以
Pn o m = Pn im = k T ∆ f ,
F =
Ps i m R + R R = S =1+ S Ps o m R R
10 lg
Psim = 30 , 所以 Psim = 1000 Pnim Pnim
Vs =
4 R A Psim =
4 × 300 × 1000 × 6.9 × 10 −14 ≈ 2.9 × 10 −4 V
无线通信技术基础_03 噪声和干扰

频率(MHz)
第3.3节、邻频干扰
3、接收机的邻频选择性。 可以从两个不同的方面来减小邻频干扰的影响:减小发射机的邻频辐射
和提高接收机的邻频选择性,得到的实际效果是相同的。
接收机邻频选择性是指接收机抑制邻频干扰的能力,它主要由接收机中 频滤波器的带外抑制度决定。 如果接收机具有良好的邻频选择性,能够最大程度地衰减发信机边带扩 展落到被干扰接收机阻带区域的干扰,就可以有效减轻邻频干扰的影响。 接收机中频滤波器的阻带衰减对远离接收机通带的干扰也要进行抑制, 这种带外干扰往往比较强,滤波器的阻带衰减必须可以提供足够的隔离 度,来抑制带外干扰。
第3.1节、噪声
Ta(ºK) 3×108 3×107 3×106 3×105 3×104 3×103 60 Fa(dB) 大气噪声 夏天 冬天 郊区人为噪声
50
40
市区人为噪声
30 典型的接收机热噪声 银河噪声
20
10 太阳噪声 (安静期) f(MHz) 50 100 1000 10000
To=290 3×10
人为噪声可以忽略不计。。
Fa( dB),相对于kT0BN 100 城市商业区
80
城市居民区
60
郊区
40 农村 银河噪声
20
0
0.1
1
10
100
1000
频率(MHz
第3.1节、噪声
3、发射机的噪声辐射 人为噪声可能来自通信系统的外部,也可能来自通信系统的内部。在通
信系统内部,除了接收机的内部噪声以外,发射机的噪声辐射也会直接
的关系是相加,不管有没有信号,噪声都存在。加性噪声(简称噪声)的来
源是多方面的,一般分为:内部噪声和外部噪声(也称环境噪声)。 内部噪声是系统设备本身产生的各种噪声,例如,电阻类导体中电子的 热运动所引起的热噪声,半导体中载流子的起伏变化所引起的散弹噪声, 还有电源噪声和自激振荡产生的噪声等等。电源噪声等可以采取技术手 段消除,但热噪声和散弹噪声一般无法避免,而且它们的准确波形不能 预测,这种不能预测的噪声统称为随机噪声。 外部噪声包括自然噪声和人为噪声,它们也属于随机噪声。在无线通信 系统中,无线信号是在空间开放传输的,因此外部噪声的影响较大。在 实际的通信工程中,我们最关心外部噪声主要是人为噪声。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
噪声、干扰:泛指有用信号以外的其他一切无用信号
噪声:通常指内部噪声,由电路内部产生的无用信号 干扰:通常指外部噪声,来自电路外部产生的无用信号
第一章噪声与干扰1. 什么是噪声、干扰,对系统有什么影响?2. 噪声和干扰从那里来,有什么特点?3. 如何度量噪声和干扰对系统的影响?4. 如何降低噪声和干扰对系统的影响?
2
内部噪声
自然噪声:热噪声、散粒噪声、闪烁噪声等
人为噪声:交流噪声、感应噪声、接触不良等
外部噪声(干扰)
自然干扰:天电干扰、宇宙干扰等
人为噪声:工业干扰、无线电干扰等噪声和干扰主要特性:随机性
说明:1.噪声和干扰问题涉及范围广、计算复杂、详细理论分析不属于本课程范围2.只需要掌握噪声和干扰问题的基本概念和简要分析,主要是自然噪声中的热噪声2. 噪声和干扰从那里来,有什么特点?
1.1 噪声的来源和特点
无噪声电阻的串联(或并联)。
5
为波尔的功率谱密度在所讨论的频带范围内与频率无关,即热噪声具。
把在所讨论频带内功率谱分布不均匀R
若系统工作带宽为,则电阻热噪声电压的均方值
f
当网络与前端匹配时,输入噪声的额kT f
6
9
耗电容,求输出端噪声电压的均方值。
网络的传递函数为输出端噪声均方电压谱密度220()()n kT v S f H f df C 2()()()o S f S f H f 14n BW RC 132dB BW RC 带宽:
()i S f 等效噪声带宽
11
小结:电阻、电感和电容的噪声 电阻:电阻热噪声
电感:等效于理想电感与损耗电阻的串联,主要是损耗电阻产生的热噪声 电容:等效于理想电容与损耗电阻的串联,但是电容损耗电阻非常小,频率很高时才考虑,因此损耗电阻热噪声因损耗电阻非常小而通常忽略不计。
噪声的主要来源:构成系统的电路元器件 电阻、电感、电容、BJTs 、FETs 、二极管等2. 噪声和干扰从那里来,有什么特点?
1.1.2 晶体管的噪声
晶体管的噪声通常比电阻的热噪声大得多,来源有 基区体电阻热噪声
散粒噪声(散弹噪声)
分配噪声
低频噪声(闪烁噪声,爆裂噪声)
12
1.1.3 场效应管的噪声
来源:沟道热噪声,栅极感应噪声,闪烁噪声,散粒噪声等
沟道热噪声
栅极感应噪声
闪烁噪声(1/f 噪声)
栅极散粒噪声
通常:在频率不是很高时,FET的噪声比BJT的噪声低
13
1.1.4 二极管的噪声
正偏工作状态
散粒噪声
闪烁噪声
反偏工作状态
由于反相饱和电流小,故引起的散粒噪
声较小
对于稳压二极管
齐纳击穿型:主要是散粒噪声,也有1/f噪声
雪崩击穿型:噪声较大,主要是散粒噪声和
多态噪声
14
1.1.5 天线噪声
1.1.6 多个噪声源作用于电路时的计算
1.2 噪声的表示和计算
根据P si,P so ,P ni,P no的概念,定义
19
例对于一个晶体管放大器,假如测量到其输入端的信噪比S/N 为10,输出端信噪比为5,则其F=2,NF=3dB 。
这是较典型的晶体管NF 。
低噪声晶体管放大器的NF 可以低于1dB 。
NF 频率特性曲线低噪声器件:噪声系数等值线图说明:1.设备制造商通常提供NF 频率特性曲线或者NF 等值线图来表示器件的NF 特性。
2.器件的NF 不仅与制造有关,还与工作频率和工作条件(如集电极电流,信号源内阻等)有关。
多级级联放大电路的总噪声系数
电路中某一点处信噪比与该点处的负载大小无关因此,根据噪声系数的定义,其值与输出端所接负载大小也无关,所以可以用额定功率表示实际功率naom Pm n im P P
等于网络额定功率增益的倒数,
噪声系数与以下因素有关
噪声系数与网络内部噪声大小有关。
噪声系数与输入噪声P ni的大小或者说与信号源噪声温度T有关,因此测量网络的噪声系数时,
规定信号源内阻取标准噪声温度,即T=290K。
噪声系数还与信号源内阻R s0有关,因此存在使网络噪声系数最小的最佳源阻抗。
噪声系数只适用于线性电路(或准线性电路)
23
所示电路中点画线框内电路的噪声)额定功率法,对于输入、输出端均匹配的无源有耗网络nom nim P P kT f
1.2.2 等效噪声温度
e 说明:1.噪声系数和等效噪声温度是描述同一网络噪声的两中不同方法。
2.
用等效噪声温度的好处:可以将网络噪声与等效噪声温度为相加,作为总的输入噪声,而把网络看做是无噪声的,处理比较方便。
3.等效噪声温度适合描述噪声系数接近于阻抗匹T
261.2.3 放大器的通用噪声等效电路*BJT,FET 放大器的噪声非常复杂,难以获取精确的等效电路。
假设:所有噪声具有相同的频谱,而且无相关性
将放大器的噪声等效到
输入端,形成串联噪声
电压源和并联噪声电流
源,而放大器等效为一
个无噪声放大器。
放大器的噪声系数=信
号源到Z i 两端的噪声系数a b c
,,a c a b F F 无噪声放大器,1b c F
1.2.4 噪声系数与灵敏度
SNR min min ()S ni a e o P P SNR k T T BW SNR
28小结
信噪比适合于描述网络中某一处信号质量的好坏
噪声系数适合于描述一般线性(或准线性)网络的噪声性能,例如高频放大、变频、中频放大
等效噪声温度适合在噪声较低的场合描述噪声性能,如卫星通信的地面接收机,接收机的天线和前端低噪声放大器 接收机灵敏度适合于描述一定条件下整个接收机接收信号的微弱程度
29
1.3 降低噪声系数的措施 常用减小内部噪声的方法1.选用低噪声元器件
2.正确选择晶体管的直流工作点
3.选择合适的信号源内阻
4.选择合适的工作频带,不应过宽
5.选用合适的放大电路
6.降低器件的工作温度
4. 如何降低噪声和干扰对系统的影响?
301.4 干扰*1.4.1 工业干扰
1.4.2 天电干扰外部干扰自然干扰:天电干扰、宇宙干扰等
人为噪声:工业干扰、无线电干扰等工业干扰主要由产生电火花的电器装置引发。
可通过直接电磁辐射、沿电力线传输进入交流电源、或者耦合进入接收机形成干扰。
属于脉冲干扰。
天电干扰主要由雷电现象引发。
对低频段影响较大。
强度与地理位置、季节等因素有关。
31
1.5 低噪声放大器* 低噪声放大器(LNA )是射频接收机前端的主要部件,主要特点:
位于接收机的最前端,噪声系数越小越好,具有一定增益但不宜过大; 是线性范围大、增益最好可调节的小信号线性放大器; 放大器输入端通过传输线与天线或天线滤波器相连,需要阻抗匹配;
具有一定的选频功能,通常为频带放大器。
LNA 的主要性能指标: 低的噪声系数 足够的线性范围 合适的增益 输入/输出阻抗的匹配 输入/输出间的良好隔离 低电源电压和低功耗
第一章小结
噪声和干扰的基本概念
来源、特性等
热噪声的定量分析
噪声电压均方谱密度、噪声电压均方值、噪声电压有效值、额定噪声功率
信噪比、噪声系数、等效噪声温度、灵敏度 低噪放*
33
习题
1.1.1 , 1.
2.1 , 1.2.2 , 1.2.3, 1.2.4
基础知识回顾
基础知识回顾
()()()e t e t h t )f ()()S f S f H。