离子浓度关系判断

合集下载

溶液中离子浓度大小的比较

溶液中离子浓度大小的比较
③Na3PO4溶液 : 3 2 + + c(Na )+c(H )=3c(PO 4 )+2c(HPO 4 )+c(H2PO 4 )+c(OH-) ④ Na2S溶液: c(Na+)+c(H+)=2c(S2-)+c(HS-)+c(OH-)
2.物料守恒
原理:溶液中某一组分的原始浓度应该等于它在溶 液中各种存在形式的浓度之和。 即加入的溶质组成中存在的某些元素之间的特定比 例关系,由于水溶液中一定存在水的H、O元素,所以 物料守恒中的等式一定是非H、O元素的关系。 例:NH4Cl溶液:
得到H+
得到H
HS-
得到H+
H 2S
+
H2O
+
H3O+( H+)
即c(OH-)=c(H+)+c(HS-)+2c(H2S)
方法② :利用物料守恒和电荷守恒推出
质子守恒式没有必要死记硬背,可通过前面学的 物料守恒和电荷守恒推出 。 如NaHCO3溶液 中的质子守恒: 2 + 先写出物料守恒式: c(Na ) = c(CO 3 +HCO 3 +H2CO3) 再写出电荷守恒式: 2 + + c(Na )+ c(H )= 2c(CO3 )+ c(HCO 3 )+ c(OH-)
如碳酸氢钠溶液(NaHCO3):溶液显碱性,所以把氢氧根离子 浓度写在左边,其次。判断出该溶液直接电离出的离子是钠离子 和碳酸氢根,而能结合氢离子或电离氢离子的是碳酸氢根。其次 以碳酸氢根为基准离子(因为碳酸氢钠直接电离产生碳酸根和钠 离子,而钠离子不电离也不水解) 。减去它电离之后的离子浓度, 加上它水解生成的离子浓度。便是: 2 c(OH-)=c(H2CO3)-c(CO 3 )+c(H+)

化学平衡的离子浓度与溶液浓度的关系

化学平衡的离子浓度与溶液浓度的关系

化学平衡的离子浓度与溶液浓度的关系在化学反应中,离子浓度和溶液浓度是非常重要的物理参数。

平衡态下,离子浓度与溶液浓度之间存在着一定的关系。

本文将探讨离子浓度与溶液浓度的关系,以及如何通过调节溶液浓度来影响化学平衡。

一、离子浓度与溶液浓度的定义在讨论离子浓度与溶液浓度之间的关系之前,我们首先需要了解离子浓度和溶液浓度的定义。

离子浓度指的是溶液中特定离子的摩尔浓度,通常使用单位体积溶液中的离子数目来表示。

例如,对于溶液中的Na+离子来说,它的离子浓度可以用单位体积溶液中Na+离子的摩尔数目来表示。

溶液浓度是指溶液中溶质溶解在溶剂中的浓度,常用的表示方式有质量浓度、摩尔浓度和体积分数等。

例如,质量浓度指的是溶质质量与溶液总体积之比。

二、离子浓度与溶液浓度的关系离子浓度与溶液浓度之间存在着一定的关系。

根据溶剂的不同,离子浓度与溶液浓度的计算方式也会有所不同。

1. 对于水溶液而言,由于水是溶剂,可以将溶质的浓度转化为摩尔浓度。

在水溶液中,离子浓度通常用摩尔浓度来表示。

离子浓度与溶液浓度之间的关系可以通过溶解度等数据来确定。

2. 对于非水溶液而言,离子浓度与溶液浓度之间的关系还与离子的活度有关。

在非水溶液中,离子活度可以通过离子活度系数来计算。

离子活度系数是指溶液中离子的实际活度与理想溶液中离子理论活度之比。

根据溶液的离子强度以及离子间的相互作用力,离子活度系数可以大于1、等于1或小于1。

当离子活度系数等于1时,离子浓度与溶液浓度之间的关系就是一一对应的。

三、溶液浓度对化学平衡的影响溶液浓度的变化可以对化学平衡产生影响。

通过调节溶液浓度,我们可以改变平衡反应的位置,进而影响反应速率以及离子浓度。

1. 影响平衡位置根据Le Chatelier原理,当我们改变了溶液浓度时,平衡体系会倾向于减少或增加反应物或生成物的浓度,以维持平衡。

这意味着通过增加或减少溶液浓度,我们可以改变平衡反应的位置。

例如,在酸碱中和反应中,通过增加酸或碱的浓度,我们可以驱使反应向右移动,进而增加产物浓度。

专题溶液中离子浓度大小的判断

专题溶液中离子浓度大小的判断

【作业】 1、整理本节所学的几个守恒式 2、完成本节学案相关练习
含C元素的粒子有:CO32-、HCO3-、 H2CO3 c(CO32- )+c(HCO3-)+c(H2CO3 )=0.1mol/L (2)根据Na元素和C元素守恒来理解
C(Na+)=2[c(CO32- )+c(HCO3-)+c(H2CO3 ] =0.2mol/L
【练习】 写出CH3COONa、NaHCO3溶液中的物料守恒式。
1、单一溶质溶液中离子浓度大小关系: (1)酸溶液或碱溶液 解题关键:抓弱酸(碱)的电离平衡。 例1:H2SO3溶液中,各离子浓度大小关系为:
c(H+)>c(HSO3—)>c(SO32—)>c(OH—) 弱酸: 酸>H+>酸式酸根离子>酸根离子>OH-
在0.1 mol/L的NH3·H2O溶液中,NH3·H2O、 NH4+、OH-、H+的浓度由大到小的顺序是:
(3)质子守恒(水电离守恒): 规律:由水电离H2O=H++OH—可知,水电离产 生的H+和OH—的物质的量总是相等的。 例: Na2CO3 溶液中: n(H+)+n(HCO3-)+2n(H2CO3)=n(OH-)
c(H+)+c(HCO3-)+2c(H2CO3)=c(OH-)
质子守恒可由物料守恒和电荷守恒联合求得
2、在0.1 mol/LNaHSO3溶液中存在着微粒浓度的关系
式,正确的是( CD )
A、c(Na+)>c(HSO3-)> c(SO32-)> c(H+)>c(OH-) B、c(Na+)+c(H+)= c(HSO3-)+ c(SO32-)+c(OH-) C、c(Na+)+c(H+)=c(HSO3-)+2c(SO32-)+ c(OH-) D、c(Na+)= c(HSO3-)+c(SO32-)+ c(H2SO3)

离子浓度大小的比较及守恒关系091205

离子浓度大小的比较及守恒关系091205

溶液中离子浓度大小的比较及守恒关系一、单一溶液:(一种溶质的溶液)1、一元弱酸盐或弱碱盐溶液:弱酸盐或弱碱盐中存在着弱酸根或弱碱根的水解,水解程度是微弱的,发生水解的离子的浓度要减小,但不会减小很多,同时溶液中的H+或OH-的浓度会相应增加和减小。

如:在NH4Cl溶液中:NH4++H2O NH3·H2O+H+电荷守恒关系:1·[NH41+]+1·[H1+]=1·[OH1-]+1·[Cl1-][NH4+]+[H+]=[OH-]+[Cl-]离子浓度大小关系:(大量离子浓度>微量离子浓度)[Cl-]>[NH4+] > [H+]>[OH-]物料守恒(原子守恒):Cl-的总量=NH4+的总量=未水解的NH4++已经水解的NH4+[Cl-]=[NH4+] +[NH3·H2O]质子守恒(或氢离子守恒)关系:由水电离产生的H+与OH-的量相等。

H+=溶液中的OH-+结合NH4+的OH-[H+]=[OH-]+[NH3·H2O]在CH3COONa溶液中:CH3COO-+H2O CH3COOH+OH-电荷守恒关系:[Na+]+[H+]=[OH-]+[CH3COO-]离子浓度大小关系:[Na+]>[CH3COO-]>[OH-]>[H+]物料守恒(原子守恒):[Na+]=[CH3COO-]+[CH3COOH]质子守恒(或氢离子守恒)关系:[OH-]= [H+]+[CH3COO H]2、多元弱酸强碱盐溶液:多元弱酸盐溶液中的弱酸根离子存在着分步水解,并且越向后水解越困难。

如:在Na2CO3溶液中:第一步水解:CO32-+H2O HCO3-+OH-第二步水解:HCO3-+H2O H2CO3+OH-①离子浓度大小关系:[Na+] > [CO32-] > [ OH-] > [ H+][Na+] > [CO32-] > [ OH-] > [ HCO3-][Na+] > [CO32-] > [ OH-] > [ HCO3-] > [ H+]②由于Na+的物质的量与碳酸根离子物质的量的2倍相等。

离子浓度大小的判断

离子浓度大小的判断
2.同浓度的NH4C1和NH3•H2O的混合溶液中,因为NH3•H2O的电离能力大于NH4+的水解能力,所以溶液呈碱性。
期刊文章分类查询,尽在期刊图书馆
溶液中离子浓度的大小为:[NH4+]>[C1-]>[OH-]>[H+](同上)。
3.HCO3-的电离能力弱于水解能力,溶液呈碱性。
3.质子守恒
所谓质子,实际上就是H+。根据得到的H+和失去的H+相等,找出恒等式。例如H2O,得到一个H+,就是H3O+ (而我们经常简写为H+),失去一个H+就是OH-。
再例如:CO32-不能在失去H+,但得到一个H+为HCO3-,得到两个H+为H2CO3。
据NaH2PO4组成,P和Na形成的微粒关系为1:1,
所以,[Na+]=[PO43-]+[HPO42-]+[H2PO4-]+[H3PO4]=amol•L-1
例2:amol•L-1Na2HPO4溶液中Na和P形成的微粒关系为2:1
[Na+]=2{[PO43-]+[HPO42-]+[H2OP42-]+[H3PO4]}=2amol•L-1
做题时通常选择溶液中参与质子转移的能水解的离子和溶剂分子(即:H2O),作为质子得失数目的参考标准,找出得、失的质子数,即得质子恒等式。
例1:Na2CO3溶液的质子恒等式。
参考标准:CO32-、H2O
析:CO32-不能在失去H+,而得到一个H+为HCO3-,得到两个H+为H2CO3。H2O得到一个H+,就是H3O+ (而我们经常简写为H+),失去一个H+就是OH-。

溶液中离子浓度守恒关系

溶液中离子浓度守恒关系

电荷守恒:
物料守恒:
c(Na+)+c(H+)=c(HCO3-)+2c(CO32-)+c(OH-)
质子守恒:
c(Na+)=c(HCO3-)+c(CO32-)+c(H2CO3)
c(OH-)=c(H+)-c(CO32-)+c(H2CO3)
.
10
有关溶液中离子浓度大小比较的问题是中学化学中常见问题,也是高考的“热点” 之一, 多年以来全国高考化学试卷常有涉及这种题型。这种题型能有效地测试出学生 对强弱电解质、电离平衡、电离度、水的电离、pH值、离子反应、盐类水解等基本概 念的掌握程度及对这些知识的综合运用能力。如何用简捷的方法准确寻找这类问题的 答案呢?首先要明确盐的电离是强烈的,水解是微弱的,其次要明确多元弱酸盐的水 解是分步进行的,主要是第一步水解,因电解质溶液中常存在多个平衡关系,分析时 应抓住主要矛盾(起主要作用的平衡关系),利用三种守恒关系——电荷守恒、物料 守恒、水的电离守恒(质子守恒)来判断离子浓度。
.
3
注意点:①准确判断溶液中的离子种类; ②弄清离子浓度与电荷浓度的关系,即 Rn+ 的电荷浓度为 nc(Rn+)
.
4
物料守恒 电解质溶液中由于电离或水解因素,离子会发生变化变成 其它离子或分子等,但离子或分子中某种特定元素的原子总数是不会 改变的,即为物料守恒,实质是原子守恒。在具体应用时即表示为: 某元素原子(或离子)的起始浓度等于它在该溶液中各种存在形式的 浓度之和。
.
6
质子守恒(水的电离守恒) 由水电离出的OH- 和H+ 的量始终守恒。
H2O
OH- + H+

离子与溶液浓度之间的关系与计算

离子与溶液浓度之间的关系与计算

离子与溶液浓度之间的关系与计算一、离子的溶解与电离1.离子:带电的原子或原子团。

2.电离:物质在水中或其他溶剂中分解成带电粒子的过程。

3.强电解质:在水溶液中完全电离的化合物。

4.弱电解质:在水溶液中部分电离的化合物。

二、溶液的浓度1.溶质的质量分数:溶质的质量与溶液总质量之比。

2.物质的量浓度:单位体积(或单位容积)溶液中溶质的物质的量。

3.摩尔质量:物质的量的质量单位,以g/mol表示。

三、离子浓度之间的关系1.电荷守恒:溶液中阳离子所带的正电荷总数等于阴离子所带的负电荷总数。

2.物料守恒:溶液中溶质的质量不变。

四、溶液浓度的计算1.稀释定律:溶液在稀释过程中,溶质的物质的量不变。

2.溶质质量分数的计算:根据溶液的质量和溶质的质量分数计算溶质的质量。

3.物质的量浓度的计算:根据溶液的体积和溶质的物质的量计算溶液的物质的量浓度。

五、离子反应1.离子反应的条件:有沉淀生成、有气体放出、有水生成。

2.离子反应的实质:离子的浓度发生变化。

六、溶液的酸碱性1.酸:电离时产生的阳离子全部是H+的化合物。

2.碱:电离时产生的阴离子全部是OH-的化合物。

3.盐:由金属离子(或铵根离子)与酸根离子组成的化合物。

七、pH值的计算1.pH值:表示溶液酸碱程度的数值,pH=-lg[H+]。

2.pH值的调整:通过加入酸或碱来改变溶液的pH值。

八、中和反应1.中和反应:酸与碱作用生成盐和水的反应。

2.中和反应的计算:根据反应物的物质的量计算生成物的物质的量。

以上是关于离子与溶液浓度之间的关系与计算的知识点介绍,希望对您有所帮助。

习题及方法:已知HClO是一种弱酸,其电离方程式为:HClO ⇌ H+ + ClO-现有100mL 0.1mol/L的HClO溶液,求该溶液中H+和ClO-的物质的量浓度。

由于HClO是弱酸,其电离程度较小,可以认为[H+] ≈ [HClO],[ClO-] ≈ [HClO]。

根据物质的量浓度的定义,物质的量浓度 = 物质的量 / 溶液体积。

高中化学(4)最困难考点系列考点8 离子浓度的大小比较 含解析

高中化学(4)最困难考点系列考点8 离子浓度的大小比较 含解析

【考点定位】本考点考查离子浓度的大小比较,根据溶液中存在的电离平衡、水解平衡准确确定溶液中存在的微粒,灵活运用电荷守恒、物料守恒及质子守恒分析。

【精确解读】一、单一溶液中离子浓度大小的比较:1.多元弱酸溶液,根据多步电离分析,如0.1mol/L的H3PO4的溶液中:c(H+)>c(H2PO4—)>c(HPO42—)>c(PO43-)点拨:判断多元弱酸溶液中离子浓度大小的一般规律是:(显性离子)>(一级电离离子)>(二级电离离子)>(水电离出的另一离子)2.一元弱酸的正盐溶液,如0。

1mol/L的CH3COONa溶液中:c(Na+)>c(CH3COO—)>c(OH-)>c(H+)点拨:判断一元弱酸的正盐溶液中离子浓度大小的一般规律是:(不水解离子)>(水解离子)>(显性离子)>(水电离出的另一离子)3.多元弱酸正盐根据多元弱酸根的分步水解分析:如0。

1mol/L 的Na2CO3溶液中:c(Na+)>c(CO32-)>c(OH-)>c(HCO3—)点拨:判断二元弱酸的正盐溶液中离子浓度大小的一般规律是:(不水解离子)>(水解离子)>(显性离子)>(二级水解离子)>(水电离出的另一离子)4.二元弱酸的酸式盐溶液,如0.1mol/L的NaHCO3溶液:c (Na+)>c(HCO3-)>c(OH—)>c(H+)>c(CO32—)点拨:判断二元弱酸的酸式盐溶液中离子浓度大小的一般规律是:(不水解离子)>(水解离子)>(显性离子)>(水电离出的另一离子)>(电离得到的酸根离子)5.不同溶液中同一离子浓度的比较,要看溶液中其它离子对其影响的因素.如在相同物质的量的浓度的下列溶液:①NH4Cl②CH3COONH4③NH4HSO4中c(NH4+)浓度由大到小的顺序是:③>①>②.点拨:该类型题要看溶液中其它离子对的其影响.二、混合溶液中离子浓度大小的比较:1.两种物质混合不反应:如①等物质的量的CH3COOH和CH3COONa混合:CH3COOH的电离作用大于CH3COONa的水解作用,混合后溶液呈酸性,c (CH3COO—)>c(Na+)>c(H+)>c(OH—)②等物质的量的NH4Cl和NH3•H2O混合:和NH3•H2O的电离作用大于NH4Cl的水解作用,混合后溶液呈碱性,c(NH4+)>c(Cl-)>c(OH-)>c(H+)2.两种物质其恰好完全反应:如①10ml 0.1 mol/L NaOH溶液中加入同体积、同浓度HAc溶液混合②100 mL 0.1 mol/L 醋酸与50 mL 0。

判断溶液离子浓度的方法

判断溶液离子浓度的方法

判断溶液离子浓度的方法溶液的离子浓度,听起来是不是有点吓人?别担心,今天就让我们用最简单、最接地气的方式,聊聊怎么判断溶液的离子浓度,没那么复杂,保证让你听了后点点头,心里想:“原来如此!”你得知道,溶液中的离子浓度,简单说就是溶液里溶解了多少带电的离子。

这些离子就像是溶液里的小小“小伙伴”,有的是正电的,有的是负电的,它们在溶液里来来回回地“打卡”,你想知道它们有多少,怎么找出个数呢?好啦,别急!判断溶液里离子浓度的方法其实可以分几种,今天我们就聊聊几个最常用的。

最直接的一招儿,当然就是用“摩尔浓度”啦。

你把溶质的量(也就是溶解的物质的质量)除以溶液的体积,再除以溶质的分子量,这样就能算出溶液的摩尔浓度。

别看这么简单,实际上它是一种非常准确的方法,数学计算一下,离子浓度就出来了。

不过,可能有人会觉得,哎呀,这个算式一看就让人想打瞌睡,是吧?放心,咱们不一定都要手动计算,可以直接用计算器或者一些分析仪器,跟着它的指引走就行,轻松搞定。

再说了,除了用摩尔浓度,化学里还有一种更“豪气”的方法,就是使用“电导率”来判断溶液的离子浓度。

听起来是不是挺高大上的?其实就是用一个电导仪,测量溶液中离子的“电传导能力”。

简单说,溶液中离子的数量越多,它的电导率就越高。

就好像你在一个水塘里丢石头,水面上的波纹越多,说明水塘里有更多的“活动分子”。

所以,你只要用电导仪把溶液测试一下,电导率一出来,基本上就能知道它的离子浓度大概是多少。

是不是很酷?像极了化学世界里的侦探破案!再往下讲,有一种“老办法”,就是通过酸碱滴定来推算离子浓度。

这个方法可是被“前辈们”广泛使用过的,听起来有点像是做实验室里的魔法。

咋回事呢?就是用已知浓度的酸或者碱,滴入溶液中,看看反应时发生了什么,然后根据反应情况来推算溶液中离子的数量。

比方说,滴定的过程中,你可能会加一些指示剂,它会告诉你反应什么时候完成。

通过这个反应完成的点,你就能算出溶液的离子浓度了。

溶液中离子浓度计算技巧

溶液中离子浓度计算技巧

溶液中离子浓度计算技巧在化学实验和分析中,计算溶液中离子浓度是非常重要的一项技能。

离子浓度的准确计算可以帮助我们理解溶液的性质,进行定量分析以及预测反应的进行情况。

本文将介绍一些常用的计算溶液中离子浓度的技巧和方法。

1. 溶液中离子浓度的定义和计算公式溶液中离子浓度指的是在单位体积的溶液中的离子数量。

以溶液中的阳离子为例,假设溶液中阳离子的摩尔浓度为c,该离子的电离度(即电离成分)为α,则溶液中的阳离子浓度可以表示为:[X+] = c × α其中,[X+]表示溶液中的阳离子浓度。

2. 离子电离度的确定离子的电离度是指在溶液中的离子生成的比例。

对于完全离解的电离产物来说,其电离度等于1;而对于部分电离的物质来说,其电离度则小于1。

确定离子的电离度可以通过实验测定,也可以参考文献或化学手册的数据。

3. 离子浓度计算示例(1)计算强酸溶液中的H+离子浓度:以1mol/L的HCl溶液为例,由于HCl是完全离解的强酸,其电离度α为1。

[H+] = c × α = 1mol/L × 1 = 1mol/L所以,强酸溶液中H+离子的浓度为1mol/L。

(2)计算弱酸溶液中的H+离子浓度:以0.1mol/L的乙酸(CH3COOH)溶液为例,假设乙酸的电离度为α。

[H+] = c × α由于乙酸是弱酸,只有一部分会电离,因此电离度小于1,假设电离度为0.05。

[H+] = 0.1mol/L × 0.05 = 0.005mol/L所以,在0.1mol/L的乙酸溶液中,H+离子的浓度为0.005mol/L。

4. 离子浓度的变化与稀释法则稀释法则是指在溶液的稀释过程中,离子浓度的变化关系。

根据稀释法则,溶液的体积增加时,离子的浓度会减少;溶液的体积减少时,离子的浓度会增加。

利用稀释法则,可以计算出溶液的浓度变化以及稀释后的离子浓度。

5. 离子浓度与溶液浓度的关系离子浓度与溶液浓度之间存在一定的关系。

19:离子浓度比较解题规律和方法

19:离子浓度比较解题规律和方法

离子浓度比较解题规律和方法一、思维模型:离子浓度比较中的1,2,31、1 条正确思路2、2 个“微弱”①弱电解质的电离是微弱:对于弱酸、弱碱,其电离程度小,产生的离子浓度远远小于弱电解质分子的浓度。

②弱酸(或弱碱)根离子的水解是微弱的(完全双水解除外):弱酸(或弱碱)根离子的单水解程度很小,水解产生的离子或分子浓度远远小于弱离子的浓度。

3、3 个守恒①电荷守恒:电解质溶液中阳离子所带的正电荷的总数等于阴离子所带负电荷的总数。

②物料守恒:不论元素以何种形式存在,其原子的总量不变。

③质子守恒:即H+(或OH-)的来源守恒,包括酸(或碱)的电离、水的电离以及盐类水解的影响等。

二、典型例题:【例】室温下,下列混合溶液中,各离子浓度的关系正确的是A. pH=12的氨水与pH=2的盐酸等体积混合:c (Cl -)> c ( NH 4+)> c (OH -)> c ( H +)B.浓度均为 0.1 mol⋅L-1的硫酸氢铵溶液与氢氧化钠溶液等体积混合:c ( SO42-)> c ( Na +)> c ( NH 4+)> c ( H +)> c ( OH -)C.浓度均为 0.1 mol⋅L-1的小苏打溶液与烧碱溶液等体积混合:2 c(CO32-)+c(OH-)+c(HCO3-)-c(H+)= 0.1mol ⋅ L-1D.浓度均为 0.1 mol⋅L-1的醋酸溶液与氢氧化钠溶液等体积混合:c ( Na +)= c ( CH 3COO -)> c ( OH -)= c ( H +)【解题过程分析】A、因一水合氨为弱碱,pH=12 的氨水与 pH=2 的盐酸等体积混合,反应后为氨水和氯化铵的混合溶液,该溶液显碱性,弱电解质的电离大于铵根离子的水解,则c(NH4+)>(cCl-),故A错误;B 、浓度均为 0.1mol/L 的硫酸氢铵溶液与氢氧化钠溶液等体积混合,二者的物质的量相同,则(c SO42-)=(c Na+),生成等物质的量的硫酸钠和硫酸铵,则(cNH4+)>(cH+)>(c OH-),故 B 错误;C、浓度均为 0.1mol/L 的小苏打溶液与烧碱溶液等体积混合,恰好生成碳酸钠,由电荷守恒可知2(cCO32-)+(cOH-)+(cHCO3-)=(c H+)+(cNa+),则2(cCO32-)+(cOH-)+(cHCO3-)-(cH+)=(cNa+)=0.1mol/L´V+0.1mol/L´V= 0.1mol/L2V,故C正确;D、浓度均为 0.1mol/L 的醋酸溶液与氢氧化钠溶液等体积混合恰好生成醋酸钠,因醋酸根离子水解,则(cNa+)>(cCH3COO-)>(cOH-)>(cH+),故D错误。

离子浓度大小的比较方法及规律

离子浓度大小的比较方法及规律

离子浓度大小的比较方法及规律-CAL-FENGHAI.-(YICAI)-Company One1离子浓度大小比较的方法和规律一、离子浓度大小比较的方法和规律1、紧抓住两个“微弱”:a弱电解质的电离是微弱的 b弱根离子的水解是微弱的。

2、酸式酸根离子既能电离又能水解,若电离能力大于水解能力则酸式盐溶液呈酸性,否则呈碱性。

常见呈酸性的是H2PO42-、、HSO3-对应的可溶盐的溶液。

3、不同溶液中同一离子浓度大小的比较,要看溶液中其它离子对其产生的影响。

如在相同物质的量浓度的下列溶液中:①NH4Cl②NH4HSO4③CH3COONH4④NH3H2O。

c(NH4+)由大到小的顺序为②>①>③>④4、混合溶液中离子浓度大小的比较,首先要分析混合过程中是否发生化学反应,若发生反应,则要进行过量判断(注意混合后溶液体积的变化);然后再结合电离、水解等因素进行分析。

5、对于等体积、等物质的量浓度的NaX和弱酸HX混合求各微粒的浓度关系题,要由混合后溶液的PH大小判断电离和水解的关系。

常见的CH3COOH与CH3COONa等体积、等物质的量浓度混合、NH3H2O 与NH4Cl等体积、等物质的量浓度的混合都是电离大于水解。

6、三个重要的守恒关系①电荷守恒电解质溶液中,无论存在多少种离子,溶液总呈电中性,即阳离子所带的正电荷总数一定等于阴离子所带的负电荷总数。

如Na2CO3溶液: c(Na+)+ c(H+)=cC( HCO3-) +2c( CO32-)+c( OH-)②物料守恒如Na2CO3溶液,虽CO32-水解生成HCO3-,HCO3-进一步水解成H2CO3,但溶液中n(Na): n(C)=2:1 ,所以有如下关系:c(Na+)=2{c( HCO3-)+c( CO32-)+c( H2CO3)}③质子守恒即水电离出的OH-的量始终等于水电离出的H+的量。

如Na2CO3溶液,水电离出的H+一部分与CO32-结合成HCO3-,一部分与CO32-结合成H2CO3,一部分剩余在溶液中,根据c(H+)水=c (OH-)水,有如下关系:c(OH-)=c( HCO3-)+ 2c(H2CO3)+ c(H+)二、技巧1、在解题过程中,若看到选项中有“=”,则要考虑3个守恒关系:2、若守恒关系中只有离子,则考虑电荷守恒关系,若守恒关系中同时出现分子和离子,则考虑物料守恒和质子守恒;3、若选项中离子浓度关系以“>”连接,则主要考虑弱电解质的电离、弱根离子的水解以及各离子之间的相互影响等。

溶液中离子浓度大小关系和等量关系

溶液中离子浓度大小关系和等量关系

溶液中离子浓度大小关系和等量关系溶液中离子浓度大小的比较和等量关系是高考的热点,是我们学生学习的重点和难点。

大多数学生在刚学这部分内容时觉得非常抽象,处理起来非常棘手。

从教学实践中我们知道,要做好这类问题的分析,首先要有较好的电离平衡知识和盐类水解知识作为基础。

在解决离子浓度的等量关系这类问题时我们常从物料守恒、电何守恒及质子守恒三个方面来分析。

一、溶液中离子浓度大小关系1.电离理论(1)弱电解质的电离是微弱的,电离消耗的弱电解质及产生的离子是微量的,同时也要考虑溶液中水的电离。

例如在25℃时,0.1mol/L的如CH3COOH溶液中,CH3COOH的电离度只有1.32%,溶液中存在较大量的H2O和CH3COOH分子,少量的H+、CH3COO-和极少量的OH-离子。

(2)多元弱酸的电离是分步进行的,主要是以第一步为主。

例如H2S溶液中存在下列平衡:H2S HS-+H+,HS-S2-+H+,H2O H++OH-,所以溶液中微粒浓度关系为:c(H2S)>c(H+)>c(HS-)>c (OH-)。

2.水解理论⑴弱酸的阴离子和弱碱的阳离子因水解而损耗。

如NaHCO3溶液中:c(Na+)>c(HCO3-)⑵水解是微弱的,水解消耗的弱离子及产生的微粒也是微量的。

如(NH4)2SO4溶液中:c(NH4+)> c(SO42-)> c(NH3·H2O)⑶多元弱离子的水解是分步进行的,主要是以第一步为主。

如Na2CO3溶液中:c(Na+)> c(CO32-)> c(OH-) > c(HCO3-)> c(H2CO3) > c(H+)⑷混合溶液中各离子浓度的比较,要进行综合分析,如电离因素、水解因素等。

如等浓度的NH4Cl溶液和氨水等体积混合后,由于氨水的电离程度大于NH4+的水解程度,所以溶液中离子浓度顺序为:c(NH4+)>c(Cl-)>c(OH-)>c(H+)[练习1]在氯化铵溶液中,下列关系式正确的是( ) A.c(Cl-)>c(NH4+)>c(H+)>c(OH-)B.c(NH4+)>c(Cl-)>c(H+)>c(OH-)C.c(Cl-)=c(NH4+)>c(H+)=c(OH-)D.c(NH4+)=c(Cl-)>c(H+)>c(OH-)[练习2]在0.1 mol / L Na2CO3溶液中,下列关系正确的是() A.c(Na+) =2c(-23CO) B.c(OH-) =2 c(H+)C.c(-3HCO)>c(H2CO3) D.c(Na+)<[c(-23CO)+c(-3HCO)][练习3]将20mL 0.4mol/L硝酸铵溶液跟50 mL 0.1mol / L氢氧化钡溶液混合,则混合溶液中各离子浓度的大小顺序是()A.c(-3NO)>c(OH-)>c(NH4+)>c(Ba2+)B.c(-3NO)>c(Ba2+)>c(OH-)>c(NH4+) C.c(Ba2+)>c(-3NO)>c(OH-)>c(NH4+) D.c(-3NO)>c(Ba2+)>c(NH4+)>c(OH-)[练习4]0.1 mol·L-1 NaOH和0.1mol·L-1 NH4Cl溶液等体积混合后,离子浓度大小正确的次序是( ) A.c(Na+)>c(Cl-)>c(OH-)>c(H+)B.c(Na+)=c(Cl-)>c(OH-)>c(H+)C.c(Na+)=c(Cl-)>c(H+)>c(OH-)D.c(Cl-)>c(Na+)>c(OH-)>c(H+)[练习5].将pH=3的盐酸溶液和pH=11的氨水等体积混合后,溶液中离子浓度关系正确的是( )A.c(NH4+)>c(Cl-)>c(H+)>c(OH-)B.c(NH4+)>c(Cl-)>c(OH-)>c(H+)C.c(Cl-)>c(NH4+)>c(H+)>c(OH-)D.c(Cl-)>c(NH4+)>c(OH-)>c(H+)二、溶液中离子浓度等量关系⑴电荷守恒:电解质溶液中阴、阳离子所带正、负电荷数相等,如Na2CO3溶液中:c(Na+)+ c(H+)=c(HCO3-)+2 c(CO32-)+ c(OH-)⑵物料守恒:就是电解质溶液中某一组分的原始浓度(起始浓度)应该等于它在溶液中各种存在形式的浓度之和。

命题区间十 角度二 结合图像判断溶液中离子浓度的大小关系

命题区间十 角度二 结合图像判断溶液中离子浓度的大小关系
√B.NaA的水解平衡常数Kh=K1a
C.当该溶液的pH=7.0时,c(HA) <c(A-)
D.某c(HA)∶c(A-)=4∶1的缓冲 溶液,pH≈4
12 34 5 67 8
解析 观察曲线的交点为c(HA)= c(A-)时,此时溶液的pH≈4.7, 该酸的 Ka=cHc+H·cAA-=c(H+)≈ 10-4.7,故-lg Ka≈4.7,A 说法正确;
12 34 5 67 8
H2A
HA-+H+,Ka1=cHc+H·c2AHA-,由于 W 点 c(HA-)=c(H2A),故 Ka1
=c(H+)=1.0×10-2.3,HA-
A2-+H+,Ka2=cHc+H·Ac-A2-,由于 Y 点对应
的溶液中 c(HA-)=c(A2-),故 Ka2=c(H+)=1.0×10-9.7,H2A HA-+H+与
cX-
cX-
弱酸(HX):pKa=pH-lg cH+
cHX
,lg
cHX
越大,HX的电离程度越大。
③AG= lg cOH- ,氢离子浓度与氢氧根离子浓度比的对数,规律是:
AG越大,酸性越强,中性时AG=0。
(2)常考有关图像举例 ①pOH—pH曲线:
a.表示一元酸与一元碱中和过程中H+与OH-浓度的关系。 b.Q点代表中性。 c.M点显酸性,N点显碱性,两点水的电离程度相同。
入的水多
(3)pH与稀释倍数的线性关系
lg VV0=0,代表没稀释;lg VV0=1,代表稀释 10 倍
①HY为强酸、HX为弱酸
①MOH为强碱、ROH为弱碱
②a、b两点的溶液中:c(X-)=c(Y-) ②lg V =0时,c(ROH)>c(MOH)
V0
③水的电离程度:d>c>a=b

离子浓度大小比较

离子浓度大小比较

溶液中离子浓度大小比较一、单一溶液1、弱酸溶液中离子浓度大小判断例1:在0.1mol/L的H2S溶液中存在以下二个电离平衡:H2S HS-+H+、HS-S2-+ H+,由于多元弱酸的电离以第一步为主,第二步比第一步弱的多,所以有:C H+>C HS->C HS- >C OH-弱酸、弱碱溶液中离子浓度大小的一般规律为:C(显性离子H+)> C(一级电离离子H+)> C(二级电离离子H+)> C(水电离出的另一离子OH-)2、能水解的盐溶液中离子浓度大小判断例2:在0.1mol/L的NH4Cl溶液中,有NH4Cl==NH4+ + Cl–-、NH4+ + H2O NH4+ +OH –而使NH4+浓度降低且溶液显酸性,则C Cl->C NH4+ 、C H+>C OH- 又因水解程度较小,故C NH4+ >C H+,有C Cl->C NH4+>C H+>C OH-。

再如:在0.1mol/L的CH3COONa溶液中,有C Na+>C CH3COO->C OH- >C H+所以在一元弱酸(碱)盐中,离子浓度大小的一般规律为:C(不水解离子)> C(水解离子)> C(显性离子)> C(水电离出的另一离子OH-)例3:在Na2CO3溶液中, Na2CO3 ==2 Na+ + CO32- 、CO32- +H2O HCO3–+OH–、HCO3- +H2OH2CO3+OH–,CO32-水解使溶液呈现碱性,则C OH->C H+,由于CO32-少部分水解,则C CO32->C HCO3-,HCO3–又发生第二步水解,则C OH->C HCO3-,第二步水解较第一步弱得多,则C HCO3- 与C OH-相差不大,但C H+比C OH-小得多,因此C HCO3->C H+。

则有:C Na+> C CO32- >C OH->C HCO3->C H+ 所以二元弱酸盐溶液中离子浓度的一般关系是:C(不水解离子)> C(水解离子)> C(显性离子OH-)> C(二级水解离子)> C(水电离出的另一离子H+)。

【高中化学】溶液中离子浓度大小的判断

【高中化学】溶液中离子浓度大小的判断

【高中化学】溶液中离子浓度大小的判断一.教学内容:溶液中离子浓度大小的判断二、教学目标能用盐类水解的原理分析一些具体现象它可以从电离和水解的角度比较溶液中的离子浓度能从原子守恒、电荷守恒和物料守恒的角度判断溶液中离子浓度之间的关系三、教学重点和难点溶液中离子浓度的大小比较以及从守恒的角度分析离子浓度之间的关系四、教学过程:(一)盐类水解的应用:盐的水解是盐电离产生的弱酸阴离子(或弱碱阳离子)与水电离产生的H+(OH-)反应生成相应的弱酸(或弱碱)。

利用盐水解原理,可以判断溶液的酸碱性质。

它可用于确定盐的储存和制备。

它可用于分析和确定肥料的合理使用、分析和判断某些盐溶液蒸发所得的产品、加强热碱液的去除、泡沫灭火器的使用、金的除锈和离子共存。

盐的水解与我们的生活和生产密切相关。

说明:2.由于某些盐溶液在储存期间容易水解,因此在储存期间通常会添加抑制其水解的酸(或碱)等物质。

如:保存fecl3溶液时,向溶液中加入少量的盐酸,抑制fe3+的水解等。

3.某些盐的制备:例如,AlCl 3(HCl)和FeCl 3(HCl)通常需要在制备过程中添加少量相应的酸来抑制盐的水解。

有些盐完全水解,不能在溶液中制备。

它们只能通过简单物质(如Al2S3、Mg3N2、CaC2)的直接反应制备。

4.蒸发某些盐溶液时,必须考虑水解因素的作用,如蒸发alcl3、fecl3溶液时,我们往往得不到固体alcl3和fecl3,而是相应的氧化物,主要是al3+、fe3+极易水解,而加热有利于al3+和fe3+水解的进行,同时水解生成的hcl易挥发,降低生成物浓度,促进水解正向进行,因此,在加热蒸发过程后只能得到氧化物,而得不到固体alcl3和fecl3。

若想得到alcl3和fecl3固体,则必须抑制其水解,可在hcl气流中蒸发结晶。

5.由于Al3+和Fe3+容易水解,水解产生的Al(OH)3和Fe(OH)3具有较大的表面积和较强的吸附性。

离子浓度大小的比较及守恒关系1

离子浓度大小的比较及守恒关系1

溶液中离子浓度大小的比较及守恒关系一、单一溶液:1、多元弱酸或中强酸溶液H3PO4H++H2PO4-一级电离H2PO4-H++HPO42-二级电离HPO42-H++PO43-三级电离多元弱酸或中强酸分步电离,并且越向后电离越困难,即:一级电离>二级电离>三级电离,因此存在以下的大小关系。

[H+]>[H2PO4-]>[HPO42-]>[PO43-]电荷守恒关系:[H+]=[H2PO4-]+2[HPO42-]+3[PO43-]+[OH-]原子守恒关系:H3PO4溶质物质的量浓度=[H2PO4-]+[HPO42-]+[PO43-]+[H3PO4]2、一元弱酸盐或弱碱盐溶液:弱酸盐或弱碱盐中存在着弱酸根或弱碱根的水解,水解程度是微弱的,发生水解的离子的浓度要减小,但不会减小很多,同时溶液中的H+或OH-的浓度会相应增加和减小。

如:在NH4Cl溶液中:NH4++H2O NH3·H2O+H+离子浓度大小关系:[Cl-]>[NH4+]>[H+]>[OH-]电荷守恒关系:[NH4+]+[H+]=[OH-]+[Cl-]质子守恒(或氢离子守恒)关系:[H+]=[OH-]+[NH3·H2O]物料守恒(原子守恒)[Cl-]=NH4+的总量=未水解的+已经水解的=[NH4+] +[NH3·H2O]在NaAc溶液中:Ac-+H2O HAc+OH-离子浓度大小关系:[Na+]>[Ac-]>[OH-]>[H+]电荷守恒关系:[Na+]+[H+]=[OH-]+[Ac-]质子守恒(或氢离子守恒)关系:[OH-]= [H+]+[HAc]3、多元弱酸盐溶液:多元弱酸盐溶液中的弱酸根离子存在着分步水解,并且越向后水解越困难。

如:在Na2CO3溶液中:CO32-+H2O HCO3-+OH-HCO3-+H2O H2CO3+OH-①离子浓度大小关系:[Na+]> [CO32-]>[ OH-]>[ HCO3-] >[ H+]②由于Na+的物质的量与碳元素的物质的量的2倍相等。

专题二:溶液中离子浓度的大小的判断

专题二:溶液中离子浓度的大小的判断

第 三 章 电 离 平 衡专题二 溶液中离子浓度的大小的判断专项练习(5)一、知识要点:盐溶液中离子浓度的关系,是本节的重点之一,也是高考命题的热点。

几乎每年是高考试卷的常客,所以同学们要引起重视。

在分析时因考虑方面较多,综合了电离平衡、水解平衡,使问题比较复杂,难以解决。

突破方法是掌握判断规律,全面分析得出正确结论。

1、溶液中离子浓度大小比较规律(1)多元弱酸正盐溶液中,可溶性盐完全电离,多元弱酸根离子分步水解且第一步水解远大于第二步水解:如Na 2CO 3溶液中,[Na +]>[CO 32-]>[OH -]>[HCO 3-]>[H +]练习:Na 2S 溶液中的各离子浓度大小的顺序: 。

(2)多元弱酸的酸式盐中,盐完全电离出的酸式酸根离子既有电离平衡,又有水解平衡。

此时要综合分析,看酸式酸根离子是以电离为主还是以水解为主。

若以电离为主则溶液显酸性,反之显碱性。

以电离为主的弱酸酸式盐有NaHSO 3、NaH 2PO 4;以水解为主的有NaHS 、NaHCO 3、Na 2HPO 4,例如;Na 2HPO 4溶液中:[Na +]>[HPO 42-]>[OH -]>[H 2PO 4-]>[H +]练习:NaHS 溶液中的各离子浓度大小的顺序: 。

NaHSO 3溶液中的各离子浓度大小的顺序: 。

(3)混合溶液中各离子浓度的比较,要进行综合分析。

溶液中反应物是否过量,反应后溶液是酸性,还是碱性,是电离为主,还是水解为主等问题要全面分析后再下结论。

2、电解质溶液中三种守恒关系 先要分析溶液中含有哪些粒子,存在哪些物质的电离平衡,哪些物质的水解平衡,然后从以下三种守恒关系分析:(1)电荷守恒:电解质溶液中,不论存在多少种离子,电解质溶液总是呈中性,即阳离子所带正电荷总数等于阴离子所带负电荷总数。

如NaHCO 3溶液中:[Na +] + [H +] = [HCO 3-] + [OH -] + 2[CO 32-]如Na 2HPO 4溶液中:[Na +] + [H +] = [H 2PO 4-] + 2[HPO 42-] + 3[PO 43-] + [OH -]练习:Na 2S 溶液中的电荷守恒关系式: 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题讲座:离子浓度大小关系判断一、熟悉两论,构建思维基点1.电离理论(1)弱电解质的电离是微弱的,电离产生的微粒都非常少,同时还要考虑水的电离,如氨水溶液中:NH3·H2O、NH+4、OH-浓度的大小关系是c(NH3·H2O)>c(OH-)>c(NH+4)。

(2)多元弱酸的电离是分步进行的,其主要是第一级电离(第一步电离程度远大于第二步电离)。

如在H2S溶液中:H2S、HS-、S2-、H+的浓度大小关系是c(H2S)>c(H+)>c(HS-)>c(S2-)。

2.水解理论(1)弱电解质离子的水解损失是微量的(双水解除外),但由于水的电离,故水解后酸性溶液中c(H+)或碱性溶液中c(OH-)总是大于水解产生的弱电解质的浓度。

如NH4Cl溶液中:NH+4、Cl -、NH+的浓度大小关系是c(Cl-)>c(NH+4)>c(H+)>c(NH3·H2O)。

3·H2O、H(2)多元弱酸酸根离子的水解是分步进行的,其主要是第一步水解,如在Na2CO3溶液中:CO2-3、HCO-3、H2CO3的浓度大小关系应是c(CO2-3)>c(HCO-3)>c(H2CO3)。

二、把握三种守恒,明确等量关系1.电荷守恒规律电解质溶液中,无论存在多少种离子,溶液都是呈电中性,即阴离子所带负电荷总数一定等于阳离子所带正电荷总数。

如NaHCO3溶液中存在着Na+、H+、HCO-3、CO2-3、OH-,存在如下关系:c(Na+)+c(H+)=c(HCO-3)+c(OH-)+2c(CO2-3)。

2.物料守恒规律电解质溶液中,由于某些离子能够水解,离子种类增多,但元素总是守恒的。

如K2S溶液中S2-、HS-都能水解,故S元素以S2-、HS-、H2S三种形式存在,它们之间有如下守恒关系:c(K +)=2c(S2-)+2c(HS-)+2c(H2S)。

3.质子守恒规律如Na2S水溶液中的质子转移情况图示如下:由图可得Na2S水溶液中质子守恒式可表示:c(H3O+)+2c(H2S)+c(HS-)=c(OH-)或c(H+)+2c (H 2S)+c (HS -)=c (OH -)。

质子守恒的关系式也可以由电荷守恒式与物料守恒式推导得到。

三、典例导悟,分类突破(一)粒子种类的判断[例1] (1)NaHCO 3溶液中:__________________________________________________。

(2)Na 2CO 3溶液中:_____________________________________________________。

(3)NaHCO 3和Na 2CO 3的混合溶液中:_____________________________________________。

(4)向NaOH 溶液入CO 2气体(任意量):_______________________________。

答案 (1)(2)(3)(4)粒子种类都是离子:Na +、CO 2-3、HCO -3、OH -、H +;分子:H 2CO 3、H 2O判断盐溶液中粒子种类时,首先要清楚盐溶液中的电离、水解情况,特别是多步电离和多步水解。

如:(1)NaHCO 3溶液中,因NaHCO 3===Na ++HCO -3,HCO -3CO 2-3+H +,HCO -3+H 2O H 2CO 3+OH -,H 2O H ++OH -。

故溶液中的离子有:Na +、CO 2-3、HCO -3、OH -、H +;分子有:H 2CO 3、H 2O 。

(二)单一溶液中离子浓度的关系[例2] 0.1 mol·L -1的NH 4Cl 溶液(1)粒子种类:_________________________________________________________。

(2)离子浓度大小关系:__________________________________________________。

(3)物料守恒:_________________________________________________________。

解析 NH 4Cl===NH +4+Cl -(完全电离)NH +4+H 2ONH 3·H 2O +H +(微弱) H 2O H ++OH -(极微弱)答案 (1)Cl -、NH +4、H +、OH -、NH 3·H 2O 、H 2O(2)c (Cl -)>c (NH +4)>c (H +)>c (OH -)(3)c (Cl -)=c (NH +4)+c (NH 3·H 2O)[例3] 0.1 mol·L -1的NaHCO 3溶液中各离子浓度的关系(1)大小关系:________________________________________________________________。

(2)物料守恒:________________________________________________________________。

(3)电荷守恒:________________________________________________________________。

(4)质子守恒:_________________________________________________________________。

解析NaHCO3===Na++HCO-3(完全电离),HCO-3+H2O H2CO3+OH-(主要),HCO-3H++CO2-3(次要),H2O H++OH-(极微弱)。

答案(1)c(Na+)>c(HCO-3)>c(OH-)>c(H+)>c(CO2-3)(2)c(Na+)=c(HCO-3)+c(CO2-3)+c(H2CO3)(3)c(Na+)+c(H+)=c(HCO-3)+2c(CO2-3)+c(OH-)(4)c(OH-)=c(H2CO3)+c(H+)-c(CO2-3)[例4] 0.1 mol·L-1的Na2CO3溶液中各离子浓度的关系(1)大小关系:_________________________________________________________________。

(2)物料守恒:_________________________________________________________________。

(3)电荷守恒:_________________________________________________________________。

(4)质子守恒:_________________________________________________________________。

解析Na2CO3===2Na++CO2-3(完全电离),CO2-3+H2O HCO-3+OH-(主要),HCO-3+H2O H2CO3+OH-(次要),H2O H++OH-(极微弱)。

答案(1)c(Na+)>c(CO2-3)>c(OH-)>c(HCO-3)>c(H+)(2)c(Na+)=2[c(CO2-3)+c(HCO-3)+c(H2CO3)](3)c(Na+)+c(H+)=c(HCO-3)+c(OH-)+2c(CO2-3)(4)c(OH-)=c(H+)+2c(H2CO3)+c(HCO-3)1.比较时紧扣两个微弱(1)弱电解质(弱酸、弱碱、水)的电离是微弱的,且水的电离能力远远小于弱酸和弱碱的电离能力。

如在稀醋酸溶液中:CH3COOH CH3COO-+H+,H2O OH-+H+,在溶液中微粒浓度由大到小的顺序:c(CH3COOH)>c(H+)>c(CH3COO-)>c(OH-)。

(2)弱酸根离子或弱碱阳离子的水解是微弱的,但水的电离程度远远小于盐的水解程度。

如稀的CH3COONa溶液中:CH3COONa===CH3COO-+Na+,CH3COO-+H2O CH3COOH+OH-,H2O H++OH-,所以CH3COONa溶液中:c(Na+)>c(CH3COO-)>c(OH-)>c(CH3COOH)>c(H+)。

2.酸式盐与多元弱酸的强碱正盐溶液酸碱性比较(1)酸式盐溶液的酸碱性主要取决于酸式盐中酸式酸根离子的电离能力和水解能力哪一个更强,如NaHCO3溶液中HCO-3的水解能力大于其电离能力,故溶液显碱性。

(2)多元弱酸的强碱正盐溶液:多元弱酸根离子水解以第一步为主。

例如,Na2S溶液中:c(Na +)>c(S2-)>c(OH-)>c(HS-)>c(H+)。

3.质子守恒式可以由电荷守恒式和物料守恒式推导出来以KHS溶液为例,电荷守恒式为c(K+)+c(H+)=c(OH-)+c(HS-)+2c(S2-)①,物料守恒式为c(K+)=c(HS-)+c(S2-)+c(H2S)②,由①-②得质子守恒式,消去没有参与变化的K+等。

4.规避等量关系中的2个易失分点(1)电荷守恒式中不只是各离子浓度的简单相加。

如2c(CO2-3)的化学计量数2代表一个CO2-3带2个负电荷,不可漏掉。

(2)物料守恒式中,离子浓度系数不能漏写或颠倒。

如Na2S溶液中的物料守恒式中,“2”表示c(Na+)是溶液中各种硫元素存在形式的硫原子总浓度的2倍。

(三)酸、碱中和型离子浓度的关系[例5] 比较下列几种溶液混合后各离子浓度的大小。

(1)CH3COOH和NaOH等浓度等体积混合,离子浓度大小顺序为________________________________________________________________________。

(2)NaOH和CH3COOH等浓度按1∶2体积比混合后pH<7,离子浓度大小顺序为________________________________________________________________________。

(3)pH=2的CH3COOH与pH=12的NaOH等体积混合,其离子浓度大小顺序为________________________________________________________________________。

解析(1)恰好反应后,溶质为CH3COONa。

(2)中和反应后,溶质为等量的CH3COONa、CH3COOH,且CH3COOH的电离程度大于CH3COONa的水解程度。

相关文档
最新文档