【精品】人教版六年级数学下册圆柱与圆锥知识点

合集下载

人教版六年级下册数学 圆柱与圆锥整理和复习

人教版六年级下册数学 圆柱与圆锥整理和复习

40
(单位:厘米)
增加两个长方形的面, 长等于圆柱的高,宽等 于底面直径。
滚、刷、切、削、熔……
切割前后的表面积 增加了,体积不变

滚、刷、切、削、熔……
把圆柱削成最大的圆锥,需要削去多少?
50
问题1:怎么削才算是最大的圆锥?
问题2:削成的圆锥与圆柱有什么关系?
2
3.14×(40÷2)2×50×
选择 一个有盖的圆柱形铁桶。 1、求这个铁桶的占地面积,是求( A. 容积 B. 底面积 C. 表面积
B) D. 体积
2、做这样一个铁桶用多少铁皮,是求( C ) A. 容积 B. 底面积 C. 表面积 D. 体积
3、这个铁桶能装多少水,是求( A ) A. 容积 B. 底面积 C. 表面积 D. 体积
0.5m 1m 4.5m ——
314dm3 2.198m3 6280cm3 10.048dm3 1.1775m3
3.妈妈给小雨的塑料壶做了一个布套(如图)小雨每天上学带一壶水。 (1)至少用了多少布料? (2)小雨在学校一天喝1.5L的水,这壶水够喝吗?(水壶的厚度忽略不 计。)
分析:求所用布料就是求水壶的表面积,求能装多少水 即求水壶的体积。
答:旋转一周后围成的立体图形的体积是301.44cm3。
3.一个圆柱形鱼缸,底面直径是40cm,高是25cm,里面盛了一 些水,把一个底面半径为10cm的圆锥放入鱼缸中(圆锥全部浸 入水中),鱼缸中的水面升高了2cm。这个圆锥的高是多少?
水面升高的那部分圆柱的体积就是
放入水中的圆锥的体积。
2cm
V 锥 = V 柱=3.14×(40÷2)2×2 =3.14×800 =2512(cm3)
3.一个圆柱形鱼缸,底面直径是40cm,高是25cm,里面盛了一 些水,把一个底面半径为10cm的圆锥放入鱼缸中(圆锥全部浸 入水中),鱼缸中的水面升高了2cm。这个圆锥的高是多少?

六年级下学期 圆柱与圆锥 详细知识点总结+重难点题型训练+详细答案 很全面

六年级下学期 圆柱与圆锥 详细知识点总结+重难点题型训练+详细答案 很全面

圆柱与圆锥【考点要求】1、认知圆柱与圆锥,掌握它们的各部分特征2、理解并掌握圆柱的侧面积和表面积的计算方法,并会正确计算3、理解并掌握圆柱与圆锥的体积的计算方法,会运用公式计算体积、容积,解决有关的简单的实际问题。

【基础知识回顾】考点一、圆柱的各部分名称,展开图一、圆柱的各部分名称,展开图1、底面、侧面、高:(1)圆柱的两个圆面叫做底面,圆柱的两个底面都是圆,并且大小一样;(2)周围的面叫做侧面,圆柱的侧面是曲面;(3)两个底面之间的距离叫做高,圆柱的高有无数条;拿一张长反省的硬纸,贴在木棒上,快速转动,转动起来的形状就是个一个圆柱。

2、圆柱的侧面展开图:圆柱的侧面展开图是一个长方形,长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

【练习一】1、点的运动可以形成(),线的运动可以形成一个(),面的运动可以形成()。

长方形绕一条边旋转一周可以形成()2、圆柱由()个面组成,分别是()()()组成,上下底面都是(),侧面的展开是一个()。

3、圆柱的侧面展开是一个长方形,长方形的长等于圆柱的(),长方形的宽等于圆柱的()4、如右图,以长方形的长为轴,旋转一周,得到的立体图形是(),那么,得到的这个立体图形的高是()厘米,底面周长是()厘米。

3厘米6厘米5、判断(1)长方体中最多有4个面可能是正方形()(2)一个圆柱,如果底面直径和高相等,则圆柱的侧面展开是正方形()(3)如果一个物体上、下底面是面积相等的两个圆,那么这个物体一定是圆柱()。

考点二、圆柱的表面积π+2πrh=2πr(r+h)二、圆柱的表面积=2个圆的面积+1个侧面积=2r21、圆柱的侧面积=底面周长×高=πdh=2πrh因为圆柱的侧面展开是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,所以长方形的面积就是圆柱的侧面积=底面周长×高π×22、圆柱的2个底面积:S=r2π+2πrh=2πr(r+h)3、圆柱的表面积:2个底面积+1个侧面积=2r2注意:有时题目计算表面积时,并不是三个面的面积都要计算,要结合具体题目具体分析,比如,通风管就只用计算侧面积即可,无盖的水桶就只用计算侧面积和1个底面积4、圆柱的截断与拼接:(1)把一个圆柱截成两个圆柱,增加的表面积是两个底面积;(2)把两个同样粗细的圆柱拼成一个圆柱,减少的表面积是两个底面积。

六年级数学下册圆柱与圆锥知识点总结(全面)

六年级数学下册圆柱与圆锥知识点总结(全面)

圆柱与圆锥一.圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。

2、圆柱各部分的名称:圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。

3、圆柱的侧面展开图:A、沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。

B、不沿着高展开,展开图形是平行四边形或不规则图形。

C、无论如何展开都得不到梯形.侧面积=底面周长×高S侧=Ch=πd×h=2πr×h4、圆柱的表面积:圆柱表面的面积,叫做这个圆柱的表面积。

圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2=2πr×h+2×πr2(实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,都要用进一法)圆柱的体积:圆柱所占空间的大小,叫做这个圆柱的体积。

圆柱切拼成近似的长方体,分的份数越多,拼成的图形越接近长方体。

长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

长方体的体积=底面积×高圆柱体积=底面积×高V柱=S h=πr2hh=V柱÷S=V柱÷(πr2)S=V柱÷h5、圆柱的切割:A.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2B.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh考试常见题型:A.已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长B.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积C.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积D.已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积E.已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。

人教版小学六年级数学下册第三单元《圆柱与圆锥》知识点梳理

人教版小学六年级数学下册第三单元《圆柱与圆锥》知识点梳理

第三单元《圆柱与圆锥》知识点梳理一、圆柱的认识1.圆柱的初步认识:像茶叶筒、罐头盒、木墩等物体的形状都是圆柱形。

2.圆柱各部分的名称及特征圆柱是由两个底面和一个侧面三部分组成的。

底面:圆柱的两个圆面,是完全相同的两个圆。

侧面:圆柱周围的面,是一个曲面。

高:圆柱两个底面之间的距离,一个圆柱有无数条高。

3.圆柱的侧面展开图①沿着高展开,展开图图是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高;如果底面周长和高相等,展开图是一个正方形。

②不沿着高展开,展开图是一个平行四边形或不规则图形。

③无论怎么展开,都不可能得到梯形。

二、圆柱的表面积1.圆柱侧面积的计算方法圆柱的侧面积=底面周长×高。

S表示侧面积,C表示底面周长,h表示高,S=Ch2.圆柱侧面积计算公式的应用①已知圆柱的底面直径和高:S=πdh②已知圆柱的底面半径和高:S=2πrh3.圆柱表面积的意义和计算方法圆柱表面积=圆柱的侧面积+底面积×24.圆柱表面积计算公式的应用①已知圆柱的底面半径和高:S=2πrh+2πr2)2②已知圆柱的底面直径和高:S=πdh+2π(d2)2③已知圆柱的底面周长和高:S=Ch+2π(c2π5.进一法在取近似值时,根据实际情况把一个数某位后面的数字(不管这个数字比5大还是比5小)舍去并把保留部分最后一位数字加上1,这种取近似值的方法叫做“进一法”。

三、圆柱的体积1.圆柱体积的意义和计算公式①一个圆柱所占空间的大小,叫做这个圆柱的体积。

②圆柱的体积=底面积×高,用字母表示为:V =Sh 。

2.圆柱的体积计算公式的应用①已知圆柱的底面半径和高:V =πr 2h②已知圆柱的底面直径和高:V =π(d 2)2h③已知圆柱的底面周长和高:V =π(c 2π)2h四、圆锥的认识1.圆锥的初步认识:像沙堆、陀螺等物体的形状都是圆锥2.圆锥各部分的名称及特征圆锥是由一个底面和一个侧面两部分组成的。

(完整版)六年级数学下册圆柱与圆锥知识点

(完整版)六年级数学下册圆柱与圆锥知识点

六年级数学下册《圆柱与圆锥》知识点六年级数学下册《圆柱与圆锥》知识点知识点1。

圆柱是由两个底面和一个侧面三部分组成的。

2.(1)圆柱的两个圆面叫做底面。

(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。

(3)底面的特征:圆柱底面是完全相同的两个圆.3。

(1)圆柱周围的面叫做侧面。

(2)特征:圆柱的侧面是曲面。

4.(1)圆柱两个底面之间的距离叫做圆柱的高。

(2)一个圆柱有无数条高。

5。

把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。

6。

圆柱的侧面展开图是一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。

7.在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个平行四边形.8。

温馨提示:圆柱的底面是圆形,面不是椭圆。

9.温馨提示:沿高剪开时,圆柱的侧面展开图是一个长方形。

10。

从圆柱的上下两个底面观察会得到圆;从圆柱的正面或侧面观察会得到长方形(或正方形).11。

如果圆柱的侧面展开图是个长方形,那么该圆柱的底面周长大约是其底面直径长度的3倍。

如果圆柱的侧面展开图是个正方形,那么该圆柱的高大约是其底面直径长度的3倍。

12。

圆柱的侧面积=底面周长×高.如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch13。

(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。

(2)已知圆柱的底面半径和高,可以根据公式:S=2πrh直接求出圆柱的侧面积。

14。

圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。

15.圆柱的表面积=圆柱的侧面积+底面积×2,用字母表示为S表=S侧+2S底。

16.(1)已知圆柱的底面半径和高,可以根据公式:S表=2πrh+2πr2直接求出圆柱的表面积。

完整版)六年级下册圆柱和圆锥知识点

完整版)六年级下册圆柱和圆锥知识点

完整版)六年级下册圆柱和圆锥知识点文章已经没有格式错误和明显有问题的段落了,但可以对每段话进行小幅度改写,如下:第一单元圆柱和圆锥知识点一、圆柱的特征:圆柱有两个底面、一个侧面和无数条高。

其底面为大小相同的圆形。

圆柱的侧面展开后可以得到长方形、正方形或平行四边形,与圆柱有密切关系。

例如,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,长方形的面积等于圆柱的侧面积。

当圆柱的底面周长和高相等时,其侧面展开图为正方形。

二、圆锥的特征:圆锥有一个圆形底面和一个扇形侧面,只有一条高。

圆锥的高是从圆锥顶点到底面圆心的距离。

三、基本公式:在求圆柱表面积、圆柱和圆锥的体积时,需要先复圆的半径计算公式。

已知直径求半径为r=d÷2,已知周长求半径为r=c÷π÷2.圆柱的底面积为πr²,侧面积为底面周长×高,即S侧=Ch=πdh=2πrh,圆柱的表面积为侧面积加上底面积的两倍。

圆柱的体积为底面积乘以高,即V圆柱=Sh=πr²h。

圆锥的体积为底面积乘以高再除以3,即V圆锥=1/3Sh=1/3πr²h。

四、单位换算:在长度单位换算中,相邻两个长度单位之间的进率是10,1千米等于1000米,1米等于10分米,1分米等于10厘米,1厘米等于10毫米。

在面积单位换算中,相邻两个面积单位之间的进率是100,1平方千米等于100公顷,1公顷等于平方米,1平方米等于100平方分米,1平方分米等于100平方厘米,1平方厘米等于100平方毫米。

在体积单位换算中,相邻两个体积单位之间的进率是1000,1立方米等于1000升,1升等于1立方分米,1立方分米等于1000立方厘米,1立方厘米等于1毫升。

在单位换算中,大单位化为小单位使用乘法,小单位化为大单位使用除法。

人教版六年级数学下册第三单元《圆柱和圆锥》知识点梳理

人教版六年级数学下册第三单元《圆柱和圆锥》知识点梳理

人教版六年级数学下册第三单元《圆柱和圆锥》知识点梳理一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。

圆柱也可以由长方形卷曲而得到。

(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

)2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类二、圆锥1、圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的圆锥也可以由扇形卷曲而得到2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。

【精品原创】人教版六年级下册数学期末复习专题讲义(知识点归纳 典例讲解 同步测试)-3.圆柱和圆锥

【精品原创】人教版六年级下册数学期末复习专题讲义(知识点归纳 典例讲解 同步测试)-3.圆柱和圆锥

人教版六年级下册数学期末复习专题讲义-3.圆柱和圆锥【知识点归纳】一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

圆柱也可以由长方形卷曲而得到。

两种方式:(1)以长方形的长为底面周长,宽为高;(2)以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S增=2πr²②竖切(过直径):切面是长方形(如果2r,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=2πr 侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh 体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积4、圆柱与圆锥等底等高 ,体积相差32 四、温馨提示: (1)已知圆锥的底面半径和高,可以直接利用公式:πr 2h ÷3来求圆锥的体积;(2)已知圆锥的底面直径和高,可以直接利用公式:π(d ÷2)2h ÷3求圆锥的V;(3)已知圆锥的底面周长和高,可以直接利用公式:π(C ÷2÷π)2h ÷3求出圆锥的体积。

六年级下册数学 圆柱与圆锥知识点整理【精编】

六年级下册数学 圆柱与圆锥知识点整理【精编】

圆柱与圆锥知识点整理学生学校年级小六次数科目数学教师日期时段课题圆柱与圆锥知识点整理教学重点熟练掌握圆柱的表面积公式,体积公式和圆锥的体积公式教学难点运用表面积和体积公式解决实际问题,并通过理解记忆各个公式教学目标熟练掌握并运用体积公式进行计算解决问题归纳出同类题目,进行比较,加深学生判断的能力体会一下列综合算式和最后算π值的简便之处教学步骤及教学内容一、作业检查检查作业并指点问题二、错题回顾三、教学内容:板块一:表面积与侧面积板块二:体积四、课堂小结:等底等高,圆柱体积是圆锥体积的3倍等积等高,圆锥高是圆柱高的3倍等积等底,圆锥底是圆柱底的3倍五、作业布置管理人员签字:日期:年月日课题:圆柱与圆锥知识点整理错题回顾:1.一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。

圆柱的体积是多少立方厘米,圆锥的体积是多少立方厘米。

(分别用解方程与和倍公式解答)2.一个圆柱和一个圆锥的体积相等,圆锥高是圆柱高的三分之二,求圆锥和圆柱的底面积比是多少?3.甲,乙两个圆柱体容器,底面积比为4:3,甲容器水深7厘米,以容器水深3厘米,再往两容器中各注入同样多的水,直到水深相等,这时水深多少厘米?4.一个底面直径是27厘米,高9厘米的圆锥体木块,分成形状大小完全相同的两个木块后,表面积比原来增加()平方厘米。

【教学内容】知识点整理(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?判断:圆柱和圆锥都有无数条高。

分析:板块一:圆柱的侧面积与表面积例1、一个圆柱,底面直径是5厘米,高是12厘米。

求它的侧面积。

例2、做一个圆柱形油桶,底面直径是0.6米,高是1米,至少需要多少平方米铁皮?(得数保留整数)圆 柱圆 锥底 面侧 面高体积表面积公式等体积等高等底模拟试题练习下面( )图形旋转会形成圆柱。

3、在下图中,以直线为轴旋转,可以得出圆锥的是()。

4、求下列圆柱体的侧面积(1)底面半径是3厘米,高是4厘米。

(2)底面直径是4厘米,高是5厘米。

六年级数学下册圆柱与圆锥知识点归纳

六年级数学下册圆柱与圆锥知识点归纳

六年级数学下册圆柱与圆锥知识点归纳一、面的旋转知识点1、体会“点、线、面”之间的关系。

点的运动形成(),线的运动形成(),面的旋转形成()知识点2、圆柱各部分名称及特征1、圆柱有3个特征(1),圆柱有()个底面和()个侧面;(2),底面是()的两个圆;(3),圆柱有()高,所有的高都()。

2、把圆柱平行于底面进行切割,切面是和底面大小完全一样的两个(),把圆柱沿底面直径进行切割,切面是两个完全相同的()。

知识点3、圆锥的各部分名称以及特征1、圆锥的底面是一个(),侧面是一个(),侧面展开是一个()。

2、圆锥的特征:1,圆锥的底面是一个圆;2,圆锥的侧面是一个曲面;3,圆锥只有()条高。

二、圆柱的表面积知识点1、圆柱侧面积的测量方法1、圆柱的侧面展开是一个(),长方形的长等于圆柱的(),宽等于圆柱的(),长方形的面积公式:()×();所以圆柱侧面积=()×(),用字母表示:S=()2、侧面积公式的几个推导公式,由于圆柱的底面是一个圆,由圆的周长公式:C=πd、C=2πr,可以推导出圆柱侧面积的公式还有:S=(),S=()。

3、圆柱的侧面展开可能是()、正方形或者()。

知识点2、圆柱侧面积公式的应用第一类,一只底面周长和高,求侧面积。

一个圆柱形纸筒,底面周长72cm,高8cm,它的侧面积是多少平方厘米?第二类,已知底面直径和高,求测面积。

一个圆柱,底面直径是0.5米,高1.8米,求它的侧面积(得数保留两位小数)第三类,已知底面半径和高,求侧面积。

一个圆柱的高是15厘米,底面半径是5厘米,它的侧面积是多少?知识点3、圆柱表面积的计算方法1、圆柱的组成部分:两个底面和一个侧面。

2、圆柱的表面积:S=侧面积+底面积×2.3、侧面积的公式有3个,相对应的圆柱的表面积公式有3个分别是:知识点4、圆柱表面积的应用(用分析法做题、用割补法做题)第一类、求一个底面积和侧面积(无盖的桶、茶杯、水池等)一个无盖的圆柱形铁桶,高24cm,底面直径是20cm,做这个铁桶大约要用铁皮多少平方厘米?(得数保留整百平方数)第二类、只求侧面积(压路机、排水管、烟囱、通风管等)一个圆柱形烟囱,底面半径是6厘米,高50厘米,做这样100个烟囱至少需要铁皮多少平方米?三、圆柱的体积知识点1、圆柱体积的意义和计算方法1、一个圆柱所占空间的大小叫做这个圆柱的()。

(2021年整理)六年级下册圆柱和圆锥知识点

(2021年整理)六年级下册圆柱和圆锥知识点

六年级下册圆柱和圆锥知识点编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(六年级下册圆柱和圆锥知识点)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为六年级下册圆柱和圆锥知识点的全部内容。

第一单元圆柱和圆锥知识点一、圆柱的特征:有2个底面,1个侧面,无数条高。

大小相同圆柱的侧面展开:长方形或正方形或平行四边形。

(说出与圆柱的关系)当圆柱的底面周长和高相等的时候,它的侧面展开图就是一个正方形。

二、圆锥的特征有1个是圆形的底面,1个是扇形的侧面,只有1条高。

圆锥的高:从圆锥的顶点到底面圆心的距离叫做高。

三、基本公式求圆柱表面积、圆柱、圆锥的体积的时候,先复习下圆的半径求法:已知直径求半径~~r=d÷2 已知周长求半径~~r=c÷π÷2字母公式S底=πr2字母公式S侧=Ch=πdh=2πrh字母公式V圆柱=Sh=πr2h字母公式V圆锥=1/3Sh=1/3πr2h四、单位换算:大单位化小单位用乘法(乘进率),小单位化大单位用除法(除以进率)长度单位换算:相邻两个长度单位之间的进率是101千米=1000米 1米=10分米1分米=10厘米 1米=100厘米1厘米=10毫米面积单位换算:相邻两个面积单位之间的进率是1001平方千米=100公顷1公顷=10000平方米1平方米=100平方分米=10000平方厘米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算:相邻两个体积单位之间的进率是10001立方米=1000立方分米=1000000立方厘米1立方分米=1000立方厘米1立方分米=1升 1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000千克 1千克=1000克。

小学数学六年级下册圆柱和圆锥锥(基础知识点提高)

小学数学六年级下册圆柱和圆锥锥(基础知识点提高)

小学数学六年级下册圆柱和圆锥锥(基础知识点提高)圆柱和圆锥第一部分基础部分一、圆柱和圆锥的认识1、图形的形成圆柱是以长方形的一边为轴旋转而得到的,也可以由长方形(或正方形)卷曲而得到;圆锥是以直角三角形的一直角边为轴旋转而得到的,圆锥也可以由扇形卷曲而得到。

2、高的条数:圆柱有无数条高;圆锥只有一条高3、侧面展开图圆柱:沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。

圆锥:侧面展开得到一个扇形4、图形的形成:(1)圆柱:卷曲:也可以由长方形(或正方形)卷曲而得到;旋转:圆柱是以长方形的一边为轴旋转而得到的2)圆锥:卷曲:也可以由扇形卷曲而得到;旋转:以直角三角形的一条直角边为轴旋转得到【例1】:下面()图形是圆柱的展开图。

(单位:cm)易错题】一个圆柱的侧面沿高展开是一个长12.56CM,宽6.28CM的长方形,求这个圆柱的底面半径。

例2】在下图中,以直线为轴旋转,可以得出圆柱体的是()【易错题】1、把长为5cm.宽为3cm的长方形旋转成一个圆柱,则这个圆柱的表面积是多少平方厘米?2、把两条直角边分别是5cm和3cm的直角三角形旋转成一个圆锥,这个圆锥的体积是多少立方厘米?练:】一、选择1、圆柱侧面积的大小是由()决定的。

A圆柱的底面周长B底面直径和高C圆柱的高。

2、下面的材料中,()能做成圆柱。

12cm6.28cmA.1号、2号和3号B.1号、4号和5号C.1号、2号和4号2cm2cm4cm4cm1号2号3号4号5号2、解答题一个长为8m,宽为6m的长方形扭转成一个圆柱,它的侧面积是几何平方米?2、圆柱表面积的计较方法①公式:圆柱的表面积=+S表=S侧+S底×2=2πrh + 2πr2②圆柱表面积计较公式的应用应用1:圆柱的底面半径和高,求圆柱的表面积;应用2:圆柱的底面直径和高,求圆柱的表面积;运用3:已知圆柱的底面周长和高求圆柱的表面积。

小学数学六年级下圆柱和圆锥知识点

小学数学六年级下圆柱和圆锥知识点

小学数学六年级下圆柱和圆锥知识点查字典数学网为大家提供了数学六年级下圆柱和圆锥知识点,希望同窗们多多积聚,不时提高!1、看法圆柱和圆锥,掌握它们的基本特征。

看法圆柱的底面、正面和高。

看法圆锥的底面和高。

2、探求并掌握圆柱的正面积、外表积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,处置有关的复杂实践效果。

3、经过观察、设计和制造圆柱、圆锥模型等活动,了解平面图形与平面图形之间的联络,开展先生的空间观念。

4、圆柱的两个圆面叫做底面,周围的面叫做正面,底面是平面,正面是曲面,。

5、圆柱的正面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,正面沿高展开后是一个正方形。

6、圆柱的外表积=圆柱的正面积+底面积×2即S表=S侧+S 底×2或2πr×h+2×π7、圆柱的正面积=底面周长×高即S侧=Ch或2πr×8、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×(进一法:实践中,运用的资料都要比计算的结果多一些,因此,要保管数的时分,省略的位上的是4或许比4小,都要向前一位进1。

这种取近似值的方法叫做进一法。

)9、圆锥只要一个底面,底面是个圆。

圆锥的正面是个曲面。

10、从圆锥的顶点究竟面圆心的距离是圆锥的高。

圆锥只要一条高。

(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点下面,竖直地量出平板和底面之间的距离。

)11、把圆锥的正面展开失掉一个扇形。

12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷13、罕见的圆柱圆锥处置效果:①、压路机压过路面面积(求正面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求正面积和一个底面积);④、厨师帽(求正面积和一个底面积);通风管(求正面积)。

查字典数学网精心为大家提供了数学六年级下圆柱和圆锥知识点,希望对大家有所协助。

人教版六年级数学下册第三单元 圆柱与圆锥 笔记

人教版六年级数学下册第三单元   圆柱与圆锥  笔记

第三单元圆柱与圆锥一、圆柱1、圆柱是立体图形,它是由两个底面和一个侧面围成的。

圆柱的上、下两个面叫做底面,它们是大小相同的两个圆;圆柱周围的面(上、下两个底面除外)叫做侧面,圆柱的侧面是曲面;圆柱两个底面圆心之间的距离叫做高,一个圆柱有无数条高。

2、把圆柱的侧面沿高剪开,展开后得到一个长方形。

长方形的长等于圆柱的底面周长,宽等于圆柱的高(当圆柱的底面周长和高相等时,侧面展开图是一个正方形)。

长方形的面积等于圆柱的侧面积。

圆柱的侧面积=底面周长×高s侧面积=ch=2πrh3、沿底面直径垂直于底面将圆柱切开,切面是长方形(或正方形),长方形(或正方形)的长和宽(或边长)分别等于圆柱的底面直径和高(或高和底面直径)。

二、圆柱的表面积1、圆柱的侧面积=底面周长×高:用字母表示:S侧面积=ch.如果已知底面直径:底面周长的计算公式是C=πd,圆柱的侧面积公式就是Sπdh;如果已知底面半径:底面周长的计算公式就是C=2πr,圆侧面积=柱的侧面积公式就是S侧面积=2πrh.(在实际生活中,不是所有的圆柱形物体都有两个底面,要具体问题具体分析)2、圆柱的表面积=侧面积+底面积×2,用字母表示为:S表=ch+2πr2例如:求一段排气管的表面积就是求圆柱的侧面积;求一个水桶的表面积就是求圆柱的侧面积和一个底面积的和。

三、圆柱的体积1、圆柱所占空间的大小,叫做这个圆柱的体积。

2、圆柱体积的推导过程:把一个圆柱的底面沿着半径分成若干个相等的扇形,按照等分线沿着圆柱的高把它切开后,可以拼成一个近似的长方体。

分成的扇形越多,拼成的立体图形越接近于长方体。

拼成的长方体与圆柱现状不同,但体积相等。

长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

因为长方体的体积=底面积×高所以圆柱的体积=底面积×高用字母表示:V圆柱=Sh要点:圆柱的高不变,底面半径、直径或周长扩大到原来的n倍,则体积扩大到原来的n2倍;若底面半径、直径或周长缩小到原来的,则体积缩小到原来的。

人教版六年级数学下册第三单元《圆柱与圆锥》第一讲讲义-含解析(知识精讲+典型例题+同步练习+进门考)

人教版六年级数学下册第三单元《圆柱与圆锥》第一讲讲义-含解析(知识精讲+典型例题+同步练习+进门考)

人教版六年级数学下册第三单元《圆柱与圆锥上》知识点1圆柱的表面积猫小咪和猫小喵发现了一大瓶鱼罐头,他们在密谋着如何解决掉这瓶罐头。

提问鱼罐头的包装盒属于哪种立体图形?认识圆柱总结:1.圆柱的上下两个底面面积相等。

2.周围的面(除底面外)叫做侧面。

思考:将圆柱沿侧面展开后得到什么图形?思考1.圆柱的侧面积=底面周长×高。

S侧=2πrh。

2.圆柱的表面积=圆柱的侧面积+两个底面圆的面积。

S表=2πrh+2πr²思考:一个圆柱体底面半径是1厘米,高是5厘米,那么它的侧面积和表面积分别是多少?(π取3.14)步骤:圆柱的表面积分为几个部分?三部分:两个底面积和一个侧面积。

两个底面积是多少?S底=3.14×1²×2=6.28平方厘米。

侧面积是多少?侧面积=底面周长×高。

S侧=3.14×1×2×5=31.4平方厘米。

圆柱体的表面积是多少?6.28+31.4=37.68平方厘米。

思考:如果把圆柱横着切一刀,它的表面积有什么变化?总结:切一刀表面积增加两个圆的面积。

思考:把一根长1米的圆柱分成3段,表面积增加了48平方厘米,原来圆柱的表面积是多少平方厘米?(π取3)步骤:分成三段增加几个面?(3-1)×2=4个。

圆柱的底面半径是多少厘米?48÷4=12平方厘米。

12÷3=4 4=2×2。

所以半径是2厘米。

原来圆柱的表面积是多少?1米=100厘米2×3×2×100=1200平方厘米1200+12×2=1224平方厘米思考:把一张长方形铁皮按图剪开,正好能制成一个圆柱形水桶(有盖),那么这个水桶的表面积是多少平方厘米?(π取3.14,接头处忽略不计)步骤:水桶的表面积包含哪几部分?两个底面圆的面积和侧面积。

圆柱的底面周长等于右侧小长方形的长还是宽?等于小长方形的长。

六年级下册数学第二单元圆柱和圆锥知识点总结,给孩子收藏!

六年级下册数学第二单元圆柱和圆锥知识点总结,给孩子收藏!

六年级下册数学第二单元圆柱和圆锥知识点总结,给孩子收藏!六年级下册数学第二单元知识点总结(圆柱和圆锥)一、圆柱01圆柱的定义以长方形ABcD的一边绕着另一条边旋转360°,所得到的空间几何体叫做圆柱,即AD长方形的一条边为轴,旋转360°所得的几何体就是圆柱。

其中AD叫做圆柱的轴,AD的长度叫做圆柱的高,Dc的长度是圆柱的底面半径。

圆柱的表面积圆柱体表面的面积,叫做这个圆柱的表面积.圆柱的表面积=2×底面积+侧面积圆柱的侧面展开以后是一个正方形(长方形),侧面展开以后的长是底面周长,宽是高,所以侧面积=底面周长×高设一个圆柱底面半径为r,高为h,则表面积S:S=2*S底+S侧=2*πr2+cH圆柱的体积圆柱所占空间的大小,叫做这个圆柱体的体积.圆柱的体积跟长方体、正方体一样,都是底面积×高:设一个圆柱底面半径为r,高为h,则体积V:V=πr2h如S为底面积,高为h,体积为V:v=sh圆柱的侧面积圆柱的侧面积=底面周长乘高S侧=ch注:c为πd圆柱各部分的名称圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条)。

二、圆锥02圆锥的体积一个圆锥所占空间的大小,叫做这个圆锥的体积.一个圆锥的体积等于与它等底等高的圆柱的体积的1/3根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:V=1/3Sh(V=1/3SH)圆锥的高:圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形;没展开时是一个曲面。

圆锥的母线:圆锥的侧面展开形成的扇形的半径、底面圆上到顶点的距离。

圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且侧面展开图是扇形。

圆柱与圆锥的关系与圆柱等底等高的圆锥体积是圆柱体积的三分之一。

体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。

体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。

人教版六年级数学下册圆柱与圆锥知识点归纳

人教版六年级数学下册圆柱与圆锥知识点归纳

《圆锥与圆锥》知识点归纳知识点一.圆柱与圆锥的概念1、圆柱的特点:由3个面围成。

其中互相平行且大小相等的两个面叫做圆柱的底面,形状都是圆。

另一个面叫做 圆柱的侧面。

两个底面之间的距离叫做圆柱的高。

圆柱有无数条高。

2、圆锥的特点:由2个面围成,一个圆形的底面,一个侧面。

圆锥的侧面上有1个顶点,从顶点到底面圆周上任 意一点的线段叫做圆锥的母线。

圆锥的母线有无数条,圆锥的高只有1条。

3、圆柱与圆锥的侧面都是曲面。

4、一般来说,圆柱的底面直径用字母d 表示,底面半径用字母r 表示,高用字母h 表示。

5、一般来说,圆锥的底面直径用字母d 表示,底面半径用字母r 表示,高用字母h 表示,母线用字母I 表示。

1、把一张长方形纸片的一边贴在硬棒上旋转一周,扫过的形状就是圆柱。

①以长方形的长为旋转轴,则长方形的长就是圆柱的高,长方形的竟就是圆柱的底面半径。

②以长方形的竞为旋转轴,则长方形的竟就是圆柱的高,长方形的长就是圆柱的底面半径。

2、把一张直角三角形纸片的直角边贴在硬棒上旋转一周,扫过的形状就是圆锥。

①以直角三角形的较长的直角边为旋转轴,则较长的直角边就是圆锥的高,较短的直角边就是圆锥底面半径。

②以直角三角形的较短的直角边为旋转轴,则较短的直角边就是圆锥的高,较长的直角边就是圆锥底面半径。

圆柱 知识点二、动态生成圆柱与圆锥 圆锥知识点三.圆柱与圆锥的侧面展开图1、圆柱的侧面展开图:①沿着高展开,圆柱的侧面展开图形是一个长方形。

这个长方形的一条边等于圆柱的高,另一条边等于圆柱的底面周长。

特殊地,如果圆柱的高和底面周长相等,则按这种方式展开的图形是一个正方形。

②沿着斜直线展开,圆柱的侧面展开图形是一个平行四边形。

这个平行四边形的底等于圆柱的底面周长,这平行四边形的高等于圆柱的高。

③不按以上方式,而是随意展开圆柱的侧面,则展开图是一个不规则图形。

④圆柱的侧面展开图不可能是梯形。

2、沿着母线展开,圆锥的侧面展开图是一个扇形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

② 已知圆柱的底面直径和高: ③ 已知圆柱的底面周长和高: 四、圆锥
V= ( d )2 h 2
V= ( C )2 h 2
1 、圆锥的初步认识
像沙堆、陀螺等物体的形状都是圆锥
2 、圆锥各部分的名称
圆锥是由一个底面和一个侧面两部分组成的。
底面:圆锥的圆面
侧面:圆锥周围的面
高:从圆锥的顶点到底面圆心的距离
① 已知圆柱的底面半径和高: S=2 rh+2 r 2
② 已知圆柱的底面直径和高: S= dh+2 ( d ) 2推导出 S= dh+ 1 d 2
2
2
③ 已知圆柱的底面周长和高: S=Ch+ ( C )2 =Ch+C 2
2
2
5 、进一法 在取近似值时,根据实际情况把一个数某位后面的数字(不管这个数字比
去并把保留部分最后一位数字加上 1,这种取近似值的方法叫做“进一法” 三、圆柱的体积
1 、圆柱体积的意义和计算公式 ① 一个圆柱所占空间的大小,叫做这个圆柱的体积。 ② 圆柱的体积 =底面积 高, V=Sh
2 、圆柱的体积计算公式的应用
5 大还是比 5 小)舍
① 已知圆柱的底面半径和高: V= r 2h
二、圆柱的表面积 1 、圆柱侧面积的计算方法 圆柱的侧面积 =底面周长 高。 S 表示侧面积, C表示底面周长, h 表示高, S=Ch 2 、圆柱侧面积计算公式的应用 ① 已知圆柱的底面直径和高: S= dh ② 已知圆柱的底面半径和高: S=2 rh 3、圆柱表面积的意义和计算方法 圆柱表面积 =圆柱的侧面积 +底面积 2 4 、圆柱表面积计算公式的应用
第二章 圆柱与圆锥
一、圆柱的认识 1 、圆柱的初步认识 像茶叶筒、罐头盒、木墩等物体的形状都是圆柱形。 2 、圆柱各部分的名称 圆柱是由两个底面和一个侧面三部分组成的。 底面:圆柱的两个圆面 侧面:圆柱周围的面 高:圆柱两个底面之间的距离 3 、圆柱的特征 底面:是完全相同的两个圆 侧面:是曲面 高:一个圆柱有无数条高 4 、圆柱的侧面、底面及其之间的关系 圆柱的侧面展开图是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高
3 、圆锥的高的测量方法
① 先把圆锥的底面放平
② 用一块平板水平地放在圆锥的顶点上面
③ 竖直地量出平板和底面之间的距离,就是圆锥的高
4 、圆锥的特征
底面:是一个圆
侧面:是一个曲面
高:只有一条高
五、圆锥的体积
1 、圆锥体积的计算公式
圆锥 V=1 圆柱 V=1 Sh
3
3
2 、圆锥的体积计算公式的应用
① 已知圆锥的底面半径和高,求圆锥体积: V=1 r 2 h 3
② 已知圆锥的底面直径和高,求圆锥体积: V=1 ( d )2 h= 1 d 2 h 3 2 12
③ 已知圆锥的底面周长和高,求圆锥的体积: V=1
相关文档
最新文档