实验一X射线衍射仪的结构与物相分析

合集下载

x射线物相分析实验报告

x射线物相分析实验报告

x射线物相分析实验报告X射线物相分析实验报告引言:X射线物相分析是一种常用的实验方法,用于研究材料的晶体结构和组成。

通过观察和分析X射线的衍射图案,我们可以得到材料的晶体结构、晶格参数以及晶体中原子的排列方式等重要信息。

本实验旨在通过X射线物相分析技术,对给定的材料样品进行结构分析,并探索其性质和应用。

实验方法:1. 样品制备:首先,我们选择了一种具有特定晶体结构的材料作为研究对象。

然后,将样品制备成粉末状,以便于进行X射线衍射实验。

制备过程中需要注意避免杂质的混入,以保证实验结果的准确性。

2. X射线衍射实验:将制备好的样品放置在X射线衍射仪器中,调整仪器参数,如入射角度、扫描范围等。

通过控制X射线的入射角度和扫描范围,我们可以获取不同角度下的衍射图案。

实验过程中需要保证仪器的稳定性和准确性,以获得可靠的实验结果。

结果与讨论:通过X射线衍射实验,我们获得了样品在不同角度下的衍射图案。

根据这些衍射图案,我们可以进行结构分析和晶格参数计算。

1. 结构分析:通过对衍射图案的观察和分析,我们可以确定样品的晶体结构。

根据布拉格方程和衍射峰的位置、强度等信息,我们可以推断出晶体中原子的排列方式和晶胞结构。

这对于研究材料的性质和应用具有重要意义。

2. 晶格参数计算:通过测量衍射图案中的衍射角度和计算相关的几何参数,我们可以得到样品的晶格参数。

晶格参数是描述晶体结构的重要参数,它们的大小和比例关系直接影响材料的性质和行为。

通过计算晶格参数,我们可以进一步了解样品的结构特征和晶体生长方式。

结论:通过X射线物相分析实验,我们成功地对给定的材料样品进行了结构分析和晶格参数计算。

通过观察和分析衍射图案,我们得到了样品的晶体结构和晶格参数等重要信息。

这些结果对于研究材料的性质和应用具有重要意义,为进一步深入研究和应用提供了基础。

总结:X射线物相分析是一种重要的实验方法,通过观察和分析X射线的衍射图案,可以获得材料的晶体结构和组成等关键信息。

X射线衍射仪实验报告(范文模版)

X射线衍射仪实验报告(范文模版)

X射线衍射仪实验报告(范文模版)第一篇:X射线衍射仪实验报告(范文模版)基本构造:(1)高稳定度X射线源提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。

(2)样品及样品位置取向的调整机构系统样品须是单晶、粉末、多晶或微晶的固体块。

(3)射线检测器检测衍射强度或同时检测衍射方向, 通过仪器测量记录系统或计算机处理系统可以得到多晶衍射图谱数据。

(4)衍射图的处理分析系统现代X射线衍射仪都附带安装有专用衍射图处理分析软件的计算机系统, 它们的特点是自动化和智能化。

操作:第一步:检查真空灯是否正常,左“黄”右“绿”为正常状态,如果“绿”灯闪或者灭的状态表明真空不正常;第二步:冷却水系统箱,打开其开关(冷却水的温度低于26℃为正常)。

如果“延时关机”为开的状态要关闭。

“曲轴加热”一般在寒冬才用,打开预热10min 后即可继续以下操作。

(此外,测试实验完成后,打开“延时关机”按钮,而冷却水的“关闭”按钮不关,30min后冷却水会自动关闭)第三步:打开机器后面“右下角”的“测角仪”(上开下关),而“左下角”的开关一般为“开”的状态,除有允许不要动;第四步:电脑操作,桌面“右下角”有“蓝色标示”说明电脑和机器已经连接,否则“左击”该标示选择“初始化”即可;第五步:装样品,载物台一般用“多功能”的,粉体或者块体装上后,使其平面与载物台面相平。

如果是粉体还要在滑道上铺层纸,避免掉料污染滑道;第六步:在机器中放样品前,按“Door”按键,听到“嘀嘀”声时,方可打开机器门;第七步:点击“standard measurement”中的运行按钮即可运行机器进行测试中。

第八步:实验完成后,先降电流后降电压,20mA/5min至10mA,5kV/5min至20kV;关闭各个软件,关闭“测角仪”开关。

冷却水箱上的开关可以直接打开“延时关机”开关,而冷却水“关闭”按钮不关,30min后自动关闭冷却水。

材料分析基础实验报告之X射线衍射(XRD)物相分析【范本模板】

材料分析基础实验报告之X射线衍射(XRD)物相分析【范本模板】

实验一 X射线衍射仪的结构与测试方法一、实验目的1、掌握X射线衍射的基本原理;2、了解X射线衍射仪的基本结构和操作步骤;3、掌握X射线衍射分析的样品制备方法;4、了解X射线的辐射及其防护方法二、实验原理根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。

每一种结晶物质都有各自独特的化学组成和晶体结构。

没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。

当X射线波长与晶体面间距值大致相当时就可以产生衍射。

因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I1来表征。

其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。

所以任何一种结晶物质的衍射数据d和I/I1是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。

三、实验设备丹东方圆仪器有限公司的D2700型X射线粉末衍射仪一台;玛瑙研体一个;化学药品或实际样品若干(Li4Ti5O12)。

四、实验内容1、采用玛瑙研体研磨样品,在玻璃样品架上制备一个合格试验样品;2、选择合适的试验参数,获得XRD图谱一张;3、理解样品、测试参数与XRD图谱特征的关系。

五、实验步骤1、开机1)打开总电源2)启动计算机3)将冷却水循环装置的机箱上的开关拨至运行位置,确认冷却水系统运行,水温正常(19—22℃);4)按下衍射仪ON绿色按键打开衍射仪主机开关5)启动高压部分(a)必须逐渐提升高压,稳定后再提高电流。

电压不超过40kV,管电流上限是40mA,一般为30mA。

(b)当超过4天未使用X光管时,必须进行光管的预热。

在25kV高压,预热10分钟;30kV,预热5分钟;35kV,预热5分钟。

(c)预热结束关机后,至少间隔30分钟以上方可再次开机实验。

6)将制备好的样品放入衍射仪样品台上;7)关好衍射仪门.2、样品测试1)在电脑上启动操作程序2)进入程序界面后,鼠标左键点击“测量”菜单,再点击“样品测量”命令,进入样品测量命令3)等待仪器自检完成后,设定好右边的控制参数;4)鼠标左键点击“开始测量”,保存输出文件;5)此时仪器立即开始采集数据,并在控制界面显示;(a)工作电压与电流:一般设为40kV,40mA;(b)扫描范围:起始角度>5°,终止角度<80°;(c)步进角度:推荐0.02°,一般在0.02—0。

X射线衍射实验报告

X射线衍射实验报告

X射线衍射实验报告摘要:本实验通过了解到X射线的产生、特点和应用;理解X射线管产生连续X 射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软件对测量样品进行定性的物相分析。

关键字:布拉格公式晶体结构,X射线衍射仪,物相分析引言:X射线最早由德国科学家W.C. Roentgen在1895年在研究阴极射线发现,具有很强的穿透性,又因x射线是不带电的粒子流,所以在电磁场中不偏转。

1912年劳厄等人发现了X射线在晶体中的衍射现象,证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。

物相分析中的衍射方法包括X射线衍射,电子衍射和中子衍射三种,其中X射线衍射方法使用最广,它包括德拜照相法,聚集照相法,和衍射仪法。

实验目的:1. 了解X射线衍射仪的结构及工作原理2. 熟悉X射线衍射仪的操作3. 掌握运用X射线衍射分析软件进行物相分析的方法实验原理:(1)X射线的产生和X射线的光谱实验中通常使用X光管来产生X射线。

在抽成真空的X光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。

发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。

这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。

对于特征X光谱分为(1)K系谱线:外层电子填K层空穴产生的特征X射线Kα、Kβ…(2)L系谱线:外层电子填L层空穴产生的特征X射线Lα、Lβ…如下图1图1 特征X射线X射线与物质的作用X射线与物质相互作用产生各种复杂过程。

就其能量转换而言,一束X射线通过物质分为三部分:散射,吸收,透过物质沿原来的方向传播,如下图2,其中相干散射是产生衍射花样原因。

实验:X射线衍射法进行物相定性分析1

实验:X射线衍射法进行物相定性分析1

X射线衍射法进行物相定性分析实验目的及要求⏹了解X射线衍射仪的结构和工作原理;⏹掌握无机非金属材料X射线衍射分析的制样方法;⏹掌握X射线衍射物相定性分析的方法和步骤。

物相定性分析的基本原理2dsinθ=λ晶胞中原子种类、数量、排列方式(1) 任何一种物相都有其特征的衍射谱;任何两种物相的衍射谱不可能完全相同;多相样品的衍射峰是各物相衍射峰的机械叠加。

(2)制备标准单相物质的衍射花样:PDF卡片待分析物质(样品)的衍射花样与之对照,从而确定物质的组成相实验设备与结构D/max-RB型X射线衍射仪D/Max-RB型X射线衍射仪构造示意图主要组成部分有X射线发生器、测角仪、探测器、计算机控制处理系统等。

一、X射线管1、X-ray产生原理凡是高速运动的电子流或其它高能辐射流(如γ射线,X射线,中子流等)被突然减速时均能产生X射线。

热能 + 电磁波2、X射线机X射线管是X射线机的核心部件。

封闭式热阴极X射线管:热阴极、阳极、窗口、聚焦座、管座等滤波片可以获得近似的纯的kα辐射源为避免样品强烈吸收入射X射线产生荧光幅射,对分析结果产生干扰。

必须根据所测样品的化学成分选用不同靶材的X 射线管。

原则是:靶材的Kα谱应位于试样元素K吸收限的右近邻或左面远离试样元素K吸收限的低质量吸收系数处。

二、测角仪测角仪是X射线衍射仪的核心部件梭拉光栏梭拉光栏防散射光栏衍射仪的光路图X射线经线状焦点S发出,经发散狭缝DS后,成为扇形光束照射在平板试样上,产生衍射,衍射线经接收狭缝RS进入探测器(即计数管)后被转换成电信号记录下来。

为了限制X射线的发散,在照射路径中加入S1梭拉光栏限制X射线在高度方向的发散,加入DS发散狭缝光栏限制X射线的照射宽度。

试样产生的衍射线也会发散,同样在试样到探测器的光路中也设置防散射光栏SS、梭拉光栏S2和接收狭缝光栏RS,这样限制后仅让聚焦照向探测器的衍射线进入探测器,其余杂散射线均被光栏遮挡。

◆工作时,试样与探测器同时转动,但转动的角速度为1 : 2的比例关系。

X射线衍射结构分析实验报告

X射线衍射结构分析实验报告

X 射线衍射结构分析实验【摘要】在一定条件下,每一种物质在被电子流轰击时都会产生特定的X 射线。

而X 射线的波长很小,可利用晶体这个天然的光栅使X 射线发生衍射。

本实验通过轰击钼靶产生一定波长的X 射线,并将NaCl 晶体作为光栅使其发生衍射。

通过一级衍射峰θ的值的测量,可测定NaCl 晶体的晶格结构。

【关键词】X 射线 衍射 布拉格方程 晶格常树引言:X 射线是波长介于紫外线和γ射线之间的电磁辐射,是一种波长很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。

X 射线最早是由德国科学家伦琴在1895年在研究阴极射线发现,它具有很强的穿透性,又因为X 射线是不带电的粒子流,所以在电磁场中不偏转。

1912年劳厄等人发现了X 射线在晶体中的衍射现象,证实了X 射线本质上是一种波长很短的电磁辐射,其波长约为10nm 到10–2nm 之间,与晶体中原子间的距离为同一数量级,用已知的X 射线可测定各种晶体的晶格结构。

也可以用已知晶体结构的晶体来测定未知X 射线的波长,从而确定未知物质的成分。

正文: 1、实验目的:1. 了解X 射线的产生、特点和应用;2. 了解X 射线衍射仪的结构和工作原理3. 掌握X 射线衍射物相定性分析的方法和步骤2、实验原理:1、由于X 光的波长与一般物质中原子的间距同数量级,因此X 光成为研究物质微观结构的有力工具。

当X 光射入原子有序排列的晶体时,会发生类似于可见光入射到光栅时的衍射现象。

1913年英国科学家布拉格父子(W.H.Bragg 和W.L.Bragg )证明了X 光在晶体上衍射的基本规律为(如图2所示):λθn d =sin 2 (1)根据布拉格公式,既可以利用已知的晶体(d 已知)通过测量θ角来研究未知X 光的波长,也可以利用已知的X 光(λ已知)来测量未知晶体的晶面间距。

本实验利用已知钼的X 光特征谱线来测量氯化钠(NaCl )晶体的晶面间距,从而得到其晶体结构。

X-射线衍射法进行物相分析..

X-射线衍射法进行物相分析..

X-射线衍射法进行物相分析一. 实验题目X射线衍射物相定性分析二. 实验目的及要求学习了解X射线衍射仪的结构和工作原理;掌握X射线衍射物相定性分析的方法和步骤;给定实验样品,设计实验方案,做出正确分析鉴定结果。

三. 实验原理根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。

每一种结晶物质都有各自独特的化学组成和晶体结构。

没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。

因此,当X 射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I0来表征。

其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。

所以任何一种结晶物质的衍射数据d和I/I0是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。

四. 实验仪器图一X射线衍射仪本实验使用的仪器是Y-2000射线衍射仪( 丹东制造)。

X射线衍射仪主要由X射线发生器(X射线管)、测角仪、X射线探测器、计算机控制处理系统等组成。

衍射仪如图一所示。

1.X射线管X射线管主要分密闭式和可拆卸式两种。

广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。

可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。

常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。

X射线管线焦点为1×10平方毫米,取出角为3~6度。

选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。

测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。

(1)衍射仪一般利用线焦点作为X射线源S。

如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为0.1毫米,成为0.1×10平方毫米的线状X射线源。

X射线衍射实验方法和数据分析

X射线衍射实验方法和数据分析

X射线衍射实验报告摘要:本实验通过了解到X射线的产生、特点和应用;理解X射线管产生连续X 射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软件对测量样品进行定性的物相分析。

关键字:布拉格公式晶体结构,X射线衍射仪,物相分析引言:X射线最早由德国科学家W.C. Roentgen在1895年在研究阴极射线发现,具有很强的穿透性,又因x射线是不带电的粒子流,所以在电磁场中不偏转。

1912年劳厄等人发现了X射线在晶体中的衍射现象,证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。

物相分析中的衍射方法包括X射线衍射,电子衍射和中子衍射三种,其中X射线衍射方法使用最广,它包括德拜照相法,聚集照相法,和衍射仪法。

实验目的:1. 了解X射线衍射仪的结构及工作原理2. 熟悉X射线衍射仪的操作3. 掌握运用X射线衍射分析软件进行物相分析的方法实验原理:(1)X射线的产生和X射线的光谱实验中通常使用X光管来产生X射线。

在抽成真空的X光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。

发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。

这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。

对于特征X光谱分为(1)K系谱线:外层电子填K层空穴产生的特征X射线Kα、Kβ…(2)L系谱线:外层电子填L层空穴产生的特征X射线Lα、Lβ…如下图1图1 特征X射线X射线与物质的作用X射线与物质相互作用产生各种复杂过程。

就其能量转换而言,一束X射线通过物质分为三部分:散射,吸收,透过物质沿原来的方向传播,如下图2,其中相干散射是产生衍射花样原因。

仪器分析实验 X射线衍射物相分析

仪器分析实验 X射线衍射物相分析

X射线衍射物相分析开课实验室:环境资源楼105【实验目的】(1)了解Philips射线衍射仪的基本结构和工作原理;(2)基本掌握样品测试过程;(3)掌握利用衍射图进行物相分析的方法。

【基本原理】•原理概述:晶体晶面间距约为10-10m量级,与X射线波长范围(0.1-10埃)相符合,因此X射线在遇到晶体时,可能发生衍射现象,从而推测出其结构信息;•X射线与特征(或标识)X射线:X射线是一种波长很短的电磁波,穿透能力强;在用电子束轰击金属靶,如铜,产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线。

对铜靶来说,其中包含Kα1、Kα2及Kβ三种特征X射线;•X射线衍射:将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。

但并不是所有情况下X射线都发生衍射,其必须满足的条件是布拉格方程:2d sin θ=nλ即当λ确定且n=1(一次衍射)时,则只有当θ角满足:θ=arcsin!!!"时才可发生衍射。

故根据布拉格方程,通过合理地转动样品、X光管和接收器,调整θ角,扫描一张谱图,则可以得到这一晶体样品的结构信息;•晶体X射线衍射图谱:由于每种晶体其X光衍射都有一组特定的d值,粉末线的分布是一定的;每种晶体内原子排列也是一定的,因此衍射线的相对强度也是一定的,每一个晶体都有一套特征的粉末衍射数据d-I 值,并可把它作为定性鉴定物质和物相的依据。

对晶体微观结构精细的形象变换,每种晶体结构与其X射线衍射图之间有着一一对应的关系,任何一种晶态物质都有自己独特的X射线衍射图,而且不会因为与其它物质混合在一起而发生变化,是X射线衍射法进行物相分析的依据。

规模最庞大的多晶衍射数据库是由JCPDS编篡的《粉末衍射卡片集》(PDF)。

•粉末衍射卡片索引:包括:粉末衍射卡片哈氏索引(Hanawalt),芬克索引(Fink Index)和戴维字母索引(Alphabetical Index);1、哈氏数值索引:每一种的数据在索引中占一横行,依次有:八条强谱线晶面间距数值,化学式卡片顺序号,查阅时把晶体面间距按衍射峰强弱排列成d1,d2,d3----,找到d1再找d2值,一直顺序找到第八值,从而可查的对应八强线的卡片顺序号,但也可用前三强的d值,按下列排列方式查找:d1d2d3,d2d3d1, d3d1d2,在哈氏数值索引中出现三次;2、芬克索引:也属于数值索引,不过它是以每种物质的八条强线晶面间距d作为该物质特征,芬克索引的编制是按各种物质八条强线中第一个d值的递减次序划分成组。

x射线物相分析实验报告

x射线物相分析实验报告

x射线物相分析实验报告
X射线物相分析实验报告
摘要:
本实验利用X射线衍射技术对样品进行了物相分析。

通过对不同晶体结构的样品进行X射线衍射实验,得到了样品的晶格常数和晶体结构信息。

实验结果表明,X射线衍射技术是一种有效的物相分析方法,能够准确地确定样品的晶体结构和晶格常数。

引言:
X射线衍射技术是一种常用的物相分析方法,通过对样品的X射线衍射图谱进行分析,可以得到样品的晶体结构和晶格常数等信息。

本实验旨在通过X射线衍射实验,对不同晶体结构的样品进行物相分析,验证X射线衍射技术在物相分析中的应用价值。

实验方法:
1. 准备不同晶体结构的样品,包括金属、陶瓷和晶体材料。

2. 将样品固定在X射线衍射仪上,调整仪器参数,使得X射线能够与样品发生衍射。

3. 收集样品的X射线衍射图谱,记录衍射峰的位置和强度。

4. 通过对X射线衍射图谱的分析,得到样品的晶格常数和晶体结构信息。

实验结果:
通过对不同样品的X射线衍射图谱进行分析,得到了样品的晶格常数和晶体结构信息。

实验结果表明,X射线衍射技术能够准确地确定样品的晶体结构和晶格常数,为物相分析提供了重要的信息。

结论:
本实验通过X射线衍射技术对不同晶体结构的样品进行了物相分析,验证了X
射线衍射技术在物相分析中的应用价值。

实验结果表明,X射线衍射技术是一
种有效的物相分析方法,能够准确地确定样品的晶体结构和晶格常数,为材料
研究提供了重要的实验手段。

希望本实验结果对相关领域的研究工作有所帮助。

XRD实验物相定性分析

XRD实验物相定性分析

XRD实验物相定性分析一、实验目的1、学习了解X射线衍射仪的结构和工作原理。

2、掌握X射线衍射物相定性分析的原理和实验方法。

3、掌握X射线分析软件Jade5.0和图形分析软件OriginPro的基本操作。

二、实验仪器D8 Advance型X射线衍射仪组成:主要由X射线发生器、测角仪、辐射探测器、记录单元及附件(高温、低温、织构测定、应力测量、试样旋转等)等部分组成。

核心部件:测角仪(1)测角仪C-计数管;S1、S2-梭拉缝;D-样品;E-支架;K、L-狭缝光栏;F-接受光栏;G-测角仪圆;H-样品台;O-测角仪中心轴;S-X射线源;M-刻度盘;图1. 测角仪结构原理图图2. 测角仪的光路图X射线源S是由X 射线管靶面上的线状焦斑产生的线状光源。

线状光源首先通过梭拉缝S1,在高度方向上的发散受到限制。

随后通过狭缝光栅K,使入射X射线在宽度方向上的发散也受限制。

经过S1和K后,X射线将以一定的高度和宽度照射在样品表面,样品中满足布拉格衍射条件的某组晶面将发生衍射。

衍射线通过狭缝光栏L、S2和接受光栏F后,以线性进入计数管C,记录X射线的光子数,获得晶面衍射的相对强度,计数管与样品同时转动,且计数管的转动角速度为样品的两倍,这样可以保证入射线与衍射线始终保持2θ夹角,从而使计数管收集到的衍射线是那些与样品表面平行的晶面所产生的。

θ角从低到高,计数管从低到高逐一记录各衍射线的光子数,转化为电信号,记录下X射线的相对强度,从而形成 2—I的关系曲线,即X射线衍射花样。

相对(2)X射线发生器图3. X射线产生装置X 射线管实际上就是一只在高压下工作的真空二极管,它有两个电极:一个是用于发射电子的灯丝,作为阴极,另一个是用于接受电子轰击的靶材,作为阳极,它们被密封在高真空的玻璃或陶瓷外壳内。

X射线管提供电部分至少包含有一个使灯丝加热的低压电源和一个给两极施加高电压的高压发生器。

当钨丝通过足够的电流使其发生电子云,且有足够的电压(千伏等级)加在阳极和阴极间、使得电子云被拉往阳极。

衍射仪实验报告

衍射仪实验报告

衍射仪实验报告篇一:XRD 实验报告(一)XRD实验报告实验目的:了解X射线衍射仪的结构和工作原理;掌握X射线衍射物相定性分析的方法和步骤;了解X射线衍射物相定量分析的原理和方法;熟悉XRD的一些基本操作。

实验原理:X衍射原理:X射线在晶体中的衍射现象,实质上是大量的原子散射波互相干涉的结果。

晶体所产生的衍射花样都反映出晶体内部的原子分布规律。

概括地讲,一个衍射花样的特征,可以认为由两个方面的内容组成:一方面是衍射线在空间的分布规律,(称之为衍射几何),衍射线的分布规律是晶胞的大小、形状和位向决定。

另一方面是衍射线束的强度,衍射线的强度则取决于原子的品种和它们在晶胞中的位置。

对某物质的性质进行研究时,不仅需要知道它的元素组成,更为重要的是了解它的物相组成。

X射线衍射方法可以说是对晶态物质进行物相分析的最权威的方法。

每一种结晶物质都有各自独特的化学组成和晶体结构。

没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。

因此,当x射线被晶体衍射时,每一种结晶物质都有自己独特的衍射图谱,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I0来表征。

其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。

所以任何一种结晶物质的衍射数据d和I/I0是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。

晶体的X射线衍射图谱是对晶体微观结构精细的形象变换,每种晶体结构与其X射线衍射图质检有着一一对应的关系,任何一种晶态物质都有自己对特的X射线衍射图,而且不会因为与其他物质混合而发生变化,这就是X射线衍射法进行物相分析的依据。

根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。

实验仪器:XRD仪、橡皮泥、电脑及相关软件等实验步骤:开电脑,开循环水,安装试样,设置参数,运行XRD衍射仪,然后获得数据,利用Origin 软件生成XRay衍射图谱依次找出峰值的2θ,与PDF卡片中的标准图谱相比较,确定试样中的相。

实验:X射线衍射法进行物相定性分析1

实验:X射线衍射法进行物相定性分析1

实验:X射线衍射法进行物相定性分析1
X射线衍射法是物相分析的一种重要手段,通过衍射图谱的分析可以确定样品的晶体结构和物相组成。

本实验选用了Cu管作为X射线管,通过旋转样品和测量X射线衍射的强度来获取样品的衍射图谱,并对其进行分析。

实验步骤:
1.制备样品:选用了两种不同晶体结构的样品,分别是纯Fe和无序的Fe-10Ni合金。

将样品研磨成细粉末,用细铜网包裹成小束,保持紧密。

2.测量样品的X射线衍射图谱:将Cu管电压设置为40kV,电流为30mA,使其发射X 射线,并将样品放置在样品台上,保持样品细铜网与X射线的垂直方向。

利用物理学中的蒙蒂卡洛法,通过许多随机数据点在样品和探测器间隔中计算出每个角度的强度数据。

在一定角度范围内旋转样品,利用计算机将每个角度的数据转化为强度数据,并绘制出样品的X射线衍射图谱。

分析结果:
分析纯Fe的衍射图谱,可以发现其峰位与标准铁的衍射图谱一致,证明其组成为纯Fe的晶体结构。

分析Fe-10Ni的衍射图谱,发现其具有明显的衍射峰,但是衍射峰的位置与标准Fe和Ni的衍射图谱均不一致,说明该样品为Fe-10Ni的无序合金,其晶体结构无规则分布。

总结:
本实验选用X射线衍射法对纯Fe和Fe-10Ni的样品进行了物相分析,并成功地确定了它们的晶体结构和物相组分。

X射线衍射法具有非破坏性、精度高、可重复性好等优点,是物相分析中重要的手段之一。

实验一-X射线衍射技术及物相分析

实验一-X射线衍射技术及物相分析

一、实验目的与要求1.学习了解X射线衍射仪的结构和工作原理;2.掌握X射线衍射物相定性分析的方法和步骤;3.给定实验样品,设计实验方案,做出正确分析鉴定结果。

二、实验仪器本实验使用的仪器是Rigaku UltimaⅣX射线衍射仪。

主要由冷却循环水系统、X射线衍射仪和计算机控制处理系统三部分组成。

X射线衍射仪主要由X射线发生器即X射线管、测角仪、X射线探测器等构成。

射线管X射线管主要分密闭式和可拆卸式两种。

广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。

可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。

常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。

X射线管线焦点为1×10平方毫米,取出角为3~6度。

此X射线管为密闭式,功率为2千瓦。

X射线靶材为Cu。

选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。

2.测角仪测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。

(1)衍射仪一般利用线焦点作为X射线源S。

如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为毫米,成为×10平方毫米的线状X射线源。

(2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。

这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。

(3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为接收狭缝(RS).生产厂供给毫米、毫米、毫米宽的接收狭缝。

(4)第三个狭缝是防止空气散射等非试样散射X射线进入计数管,称为防散射狭缝(SS)。

SS和DS配对,生产厂供给与发散狭缝的发射角相同的防散射狭缝。

实验1 X射线衍射技术及单物相定性分析

实验1 X射线衍射技术及单物相定性分析

实验1 X 射线衍射技术及单物相定性分析一、实验目的要求1.了解衍射仪的结构与原理。

2.学习样品的制备方法和实验参量的选择等衍射实验技术。

3.熟悉JCPDS 卡片及其检索方法。

4.根据衍射图谱或数据,学会单物相鉴定方法。

二、衍射仪的结构及原理衍射仪是进行X 射线分析的重要设备,主要由X 射线发生器、测角仪、记录仪和水冷却系统组成。

新型的衍射仪还带有条件输入和数据处理系统。

图1示出了X 射线衍射仪框图。

X 射线发生器主要由高压控制系统和X 光管组成,它是产生X 射线的装置,由X 光管发射出的X 射线包括连续X 射线光谱和特征X 射线光谱。

测角仪是衍射仪的重要部分,其光路图如图2。

X 射线源焦点与计数管窗口分别位于测角仪圆周上,样品位于测角仪圆的正中心。

在入射光路上有固定式梭拉狭缝和可调式发射狭缝,在反射光路上也有固定式梭拉狭缝和可调式防散射狭缝与接收狭 缝。

在计数管前装有单色器。

当给X 光管加以高压,产生的X 射线经由发射狭缝射到样品上时,晶体中与样品表面平行的面网,在符合布拉格条件时即可产生衍射而被计数管接收。

当计数管在测角仪圆所在平面内扫射时,在某些角位置能满足布拉格条件的面网所产生的衍射线将被计数管依次记录并转换成电脉冲信号,经放大处理后通过记录仪描绘成衍射图。

图1 X 射线衍射仪框图 图2 测角仪光路示意图1、测角仪圆2、试样3、滤波片S 光源S 1、S 2梭拉狭缝K 发散狭缝L 防散射狭缝F 接收狭缝 C 计数管定性相分析的原理根据晶体对X射线的衍射特征——衍射线的方向及强度来鉴定结晶物质的物相的方法,就是X射线物相分析法。

每一种结晶物质都有各自独特的化学组成和晶体结构。

没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。

因此,当X 射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个反射面网的间距d和反射线的相对强度I/I0来表征。

其中面网间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。

xrd实验报告

xrd实验报告

X射线衍射分析实验一、【实验题目】X射线衍射物相定性分析二、【实验目的及要求】学习了解X射线衍射仪的结构与工作原理;掌握X射线衍射物相定性分析的方法与步骤;给定实验样品,设计实验方案,做出正确分析鉴定结果。

三、【实验原理】根据晶体对X 射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就就是X射线物相分析法。

每一种结晶物质都有各自独特的化学组成与晶体结构。

没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式就是完全一致的。

因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d与衍射线的相对强度I/I1来表征。

其中晶面间距d与晶胞的形状与大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。

所以任何一种结晶物质的衍射数据d 与I/I1就是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。

四、【实验仪器】本实验使用的仪器就是D8-Advance X射线衍射仪(德国布鲁克制造)。

X射线衍射仪主要由X射线发生器(X射线管)、测角仪、X射线探测器、计算机控制处理系统等组成。

衍射仪的结构如图所示。

X射线管 X射线管主要分密闭式与可拆卸式两种。

广泛使用的就是密闭式, 由阴极灯丝、阳极、聚焦罩等组成, 功率大部分在 1~2千瓦。

可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍, 一般为 12~60千瓦。

常用的X射线靶材有 W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。

X射线管线焦点为1×10平方毫米, 取出角为3~6度。

选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。

1、测角仪测角仪就是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。

(1)衍射仪一般利用线焦点作为X射线源S。

如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为0、1毫米,成为0、1×10平方毫米的线状X射线源。

2014级-X射线衍射实验指导书

2014级-X射线衍射实验指导书

水冷装置 冷却水
X 射线管 高压电缆 高压发生器
x 射线发生器(XG)
控制驱动装置 测角仪
探测器 样品
计数存储装置
扫描条 件设置
计算机 系统
光管电流、电压设置 图 1-2 X 射线多晶衍射仪构造示意图
衍射仪主机
水冷装置
计算机
测角仪 X 射线光管
样品
图 1-3 日本理学(Rigaku)Miniflex 600 衍射仪
槽,并用平整光滑的玻璃板将其压紧,将槽外或高出样品板面的多余粉末刮去,
重新将样品压平,使样品表面与样品板面一样平齐光滑,如图 1-7(b)所示。如果
样品容易发生取向,可以使用背压法或是撒样法制样。
(2)特殊样品的制备
对于金属、陶瓷、玻璃等一些不易研成粉末的样品,可先将其锯成窗孔大小,
磨平一面,再用橡皮泥或石蜡将其固定在窗孔内。
(a)垂直式(θ-θ)
(b)水平式(θ-2θ)
图 1-5 测角仪类型
3
2.2.2 测角仪光学系统 图 1-6 是测角仪的衍射几何光路图。S1 和 S2 为索拉(Sollar)狭缝,由一组
等间距平行的金属薄片(Ta 或 Mo)组成,可以将倾斜的 X 射线挡住。发散狭缝 (DS)用于限制 X 射线水平方向的发散度。防散狭缝(SS)用于防止空气散射 等 X 射线进入探测器。DS 和 SS 大小设置相同。接受狭缝(RS)用于控制进入 探测器的衍射线的宽度。如果衍射仪中使用滤波片进行单色化时,滤波片一般插 入至接收狭缝之前。
探测器
2.2.1 X 射线发生器 X 射线发生器主要由高压控制系统和 X 光管组成,它是产生 X 射线的装置。
衍射仪按 X 射线发生器的功率分为普通衍射仪(~3kW)和高功率旋转阳极衍射 仪两类。前者使用密封式 X 射线管,后者使用旋转阳极 X 射线管(12kW 以上)。 密封式 X 射线管又根据外壳的种类可以分为玻璃管和陶瓷管。图 1-4 是密封式 X 射线管的示意图。封闭式 X 射线管是一支高真空的二极管。当灯丝加上电压(低 电压)时,就会在产生热电子,这些电子在高电压的加速之下,以高速度撞击在 阳极靶上,运动电子的能量大约 1%转变为 X 射线,其余转化为热能,由冷却水 带走。靶材的种类有 Cr、Fe、Co、Cu 等,其中 Cu 靶为比较常用的靶材。X 射 线管上开有铍窗,让 X 射线射出,供衍射仪使用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一X射线衍射仪的结构与物相分析..一、实验目的
..1.了解X射线衍射仪的结构及工作原理。

..2.了解X射线衍射仪的性能特点
..3. 学习用X射线衍射仪进行物相的分析。

..二、实验原理(不拘格式与内容,自由写)
..1. X射线衍射仪简介
..2. 物相定性分析原理
..(可参考教材)
三、实验参数与数据
.实验参数自己了解
..四、撰写实验报告
..1. 简单描述X射线衍射仪的结构与工作原理。

..2. 简单说明X射线衍射仪的主要功能。

..3.简述物相分析的基本原理。

..4.对实验数据进行物相的定性分析。

..5.实验体会。

相关文档
最新文档