李廉锟《结构力学》(第5版)(下册)课后习题-第14章 结构的极限荷载【圣才出品】
结构力学第五版 李廉锟版 14结构动力学
k11
yd y
F1 ( t )
质点在惯性力F1和恢复力Fc作用下维持平衡,则有:
将F1和Fc的表达式代入 或 令 有
my k11 y 0 my k11 y 0 k11 2 m 2 y 0 y
F1 Fc 0
(14-1) (14-2)
振动微分方程的建立方法:
(1)刚度法。即列动力平衡方程。设质点m在振动的任一时刻位移为y,取质点 m为隔离体,不考虑质点运动时受到的阻力,则作用于质点m上 的力有: (a) 弹簧恢复力
Fc k11 y
(b) 惯性力
该力有将质点拉回静力平衡位置的趋势,负号表示其方 向恒与位移y的方向相反,即永远指向静力平衡位置。
单自由度结构自由振动微分方程
中南大学
退出
返回
10:36
§14-3 单自由度结构的自由振动
结构力学
(2)柔度法。即列位移方程。当质点m振动时,把惯性力看作静力荷载作用在体 系的质量上,则在其作用下结构在质点处的位移y应当为:
y F111 my11
即
my k11 y 0
结构力学
结构静力计算的特点:结构的位移和内力只取决于静力荷载的大小及其分布 规律,与时间无关。
结构动力计算的特点:在动力荷载作用下,结构将产生振动,其位移和内力都 是随时间变化的。在运动过程中,结构的质量具有加速 度,必须考虑惯性力的作用。 考虑惯性力的作用是结构动力计算的最主要特征。
3. 结构动力计算可分为两大类:
ω的单位为弧度/秒(rad/s),亦常简写为1/s (s-1)。从圆周运动的角度来看 称它为圆频率,一般称ω为自振频率。
根据式(14-1),可给出结构自振频率ω的计算公式如下:
李廉锟《结构力学》(上册)配套题库【课后习题】(矩阵位移法)【圣才出品】
第10章矩阵位移法复习思考题1.矩阵位移法的基本思路是什么?答:矩阵位移法的基本思路:(1)单元分析单元分析是指将结构先分解为有限个较小的单元,即离散化,在较小的范围内分析单元的内力与位移之间的关系,建立单元刚度矩阵或单元柔度矩阵。
(2)整体分析整体分析将将单元分析中的各单元集合成原来的结构,要求各单元满足原结构的几何条件(包括支承条件、结点处的变形连续条件)和平衡条件,建立整个结构的刚度方程或柔度方程,以求解原结构的内力和位移。
(3)支承条件引入支承条件,修改结构原始刚度方程。
(4)求解解算结构刚度方程,求出结点位移,计算各单元杆端力。
2.试述矩阵位移法与传统位移法的异同。
答:矩阵位移法与传统位移法的异同点:(1)相同点传统位移法的基本原理,是以在小变形的基础的结构体系中,内力是可以叠加的,位移也是可以叠加的,而矩阵位移法是按传统位移法的基本原理运用矩阵计算内力和位移的方法。
因此矩阵位移法和传统位移法的基本原理在实质上是一致的。
(2)不同点①矩阵位移法中一般考虑杆件轴向变形的影响,传统位移法忽略杆件的轴向变形;②矩阵位移法一般在计算机上进行计算,可以解决大型复杂问题;传统位移法的计算手段一般是手算,只用来解决简单问题。
3.矩阵位移法中,杆端力、杆端位移和结点力、结点位移的正负号是如何规定的?答:杆端力沿局部坐标系的、的正方向为正,杆端弯矩逆时针为正;杆端位移的正负同杆端力和弯矩。
结点力沿整体坐标系x、y的正方向为正,结点力偶逆时针为正;结点位移的正负同结点力和力偶。
4.为何用矩阵位移法分析时,要建立两种坐标系?答:因为单元刚度矩阵是建立在杆件的局部坐标系上的,但对于整体结构,各单元的局部坐标系可能不尽相同,在研究结构的几何条件和平衡条件时,需要选定一个统一的坐标系即为整体坐标系,另外按局部坐标系建立的单元刚度矩阵可以通过坐标转换到整体坐标系中,从而得到整体坐标系中的单元刚度矩阵。
故建立两种坐标系使矩阵位移法的思路更清晰,物理意义更明确,且不会影响计算结果。
李廉锟《结构力学》笔记和课后习题(含考研真题)详解(12-15章)【圣才出品】
阶方阵)。
十、地震作用计算 ★★ 整节非考研初试重点,但为考研复试的考察重点,需重点掌握基本概念。地震作用的基 本概念见表 12-1-14。
表 12-1-14 地震作用的基本概念
十一、计算频率的近似法 ★★ 本节掌握集中质量位置选择的基本思路即可,其他的为非重点。具体内容见表 12-1-15。
表 12-1-15 计算频率的近似法
11 / 150
圣才电子书 十万种考研考证电子书、题库视频学习平台
••
•
简写为 MY+cY+KY=F(t)。
式中,cij 为质点 j 处的运动速度引起质点 i 处的阻力系数;Fi(t)为作用在质点 i 处的
任意荷载;Y 为速度列向量;F(t)为任意荷载列向量(n×1 阶列矩阵);c 为阻尼矩阵(n×n
12 / 150
圣才电子书 十万种考研考证电子书、题库视频学习平台
12.2 课后习题详解 复习思考题
1.怎样区别动力荷载与静力荷载?动力计算与静力计算的主要差别是什么? 答:(1)静力荷载:指施力过程缓慢,不致使结构产生显著的加速度,因而可以略去 惯性力影响的荷载; 动力荷载:指将使结构产生不容忽视的加速度,因而必须考虑惯性力的影响的荷载。 主要差别在于是否考虑惯性力的影响。
圣才电子书
第 12 章 结构动力学
十万种考研考证电子书、题库视频学习平台
12.1 复习笔记
【知识框架】
1 / 150
圣才电子书 十万种考研考证电子书、题库视频学习平台
【重点难点归纳】 一、基本概念 ★★★ 1.动力载荷与静力载荷(见表 12-1-1)
图 12-1-1 (1)刚度系数与柔度系数(见表 12-1-5)
表 12-1-5 刚度系数与柔度系数
李廉锟《结构力学》(第5版)(下册)章节题库-第14章 结构的极限荷载【圣才出品】
2.用试算法求图 14-5 所示刚架的极限荷载。
图 14-5 解:(1)确定基本机构 可能出现塑性铰的截面为 A、B、C、D、E、F,h=6,静不定次数 n=3,所以,基 本机构数 m=3。 图 14-6(a)~(c)分别为机构 1,机构 2 和机构 3。 (2)试算 对组合机构进行试算如下: ①组合机构 I=机构 1+机构 3(侧移机构),如图 14-6(d)所示,虚功方程为
3.超静定梁和刚架成为破坏机构时,塑性铰的数目 m 与结构超静定次数 n 之间的关 系为( )。
A.m=n B.m>n C.m<n
1/9
圣才电子书
十万种考研考证电子书、题库视频学习平
台
D.取决于体系构造和所受荷载的情况
【答案】D
【解析】塑性铰数目与超静定次数并无必然的关系。
二、填空题 1.在同向竖向荷载作用下,连续梁的极限状态通常是______。 【答案】在各跨独立形成破坏机构
2.如图 14-1 所示梁的极限荷载
为______。
图 14-1
【答案】 【解析】图示梁为静定,先作出其弯矩图,如图 14-1(a)所示。分析可知塑性铰产
2/9
圣才电子书
生在 C 处,即
十万种考研考证电子书、题库视频学习平 台
3.如图 14-2 所示阶梯状变截面梁的极限荷载 Pu=______。
图 14-2 【答案】 【解析】注意变截面处的极限弯矩为 Mu。
三、判断题 1.一个 n 次超静定梁必须出现,n+1 个塑性铰后才可能发生破坏。( ) 【答案】× 【解析】不一定必须如此。当塑性铰的出现使某构件或某局部的构件成为破坏机构, 就发生破坏。
机构 1 则
图 14-4
5/9
(NEW)李廉锟《结构力学》(第5版)(下册)笔记和课后习题(含考研真题)详解
目 录第12章 结构动力学12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 结构弹性稳定13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 结构的极限荷载14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第15章 悬索计算15.1 复习笔记15.2 课后习题详解15.3 名校考研真题详解第12章 结构动力学12.1 复习笔记【知识框架】动力荷载与静力荷载基本概念自由振动和强迫振动 结构动力计算的目的 振动自由度的定义结构振动的自由度 结构按自由度的数目分类:单自由度结构和多自由度结构 确定结构的振动自由度 无限自由度结构 自由振动的原因:初始位移、初始速度单自由度结构的自由振动 不考虑阻尼时的自由振动 考虑阻尼时的自由振动 简谐荷载作用下单自由度受迫振动单自由度结构在简谐荷载作用下的受迫振动 不考虑阻尼的纯受迫振动考虑阻尼的纯受迫振动 瞬时冲量作用于质点单自由度结构在任意荷载作用下的受迫振动 任意动力载荷作用下的质点位移公式 振动微分方程 两种特殊载荷作用下的质点位移公式 按柔度法求解多自由度结构的自由振动按刚度法求解主振型的正交性多自由度结构在筒谐荷载作用下的的受迫振动 按柔度法求解振型分解法的优点 按刚度法求解振型分解法振型分解法的步骤 振动微分方程组的建立多自由度结构在任意荷载作用下的受迫振动 振动微分方程组的解耦待定常数的确定求解的具体步骤 地震作用的基本概念 地震作用的定义地震作用的计算 地震作用的分类:水平地震和竖向地震地震作用的实质单自由度结构的地震作用计算 多自由度结构的地震作用计算 梁的自由振动无限自由度结构的振动简谐均布干扰力作用下的受迫振动计算频率的近似计算方法:能量法、集中质量法、用相当梁法计算桁架的最低频率【重点难点归纳】一、基本概念1.动力载荷与静力载荷(1)静力载荷静力荷载是指施力过程缓慢,不致使结构产生显著的加速度,因而可以略去惯性力影响的荷载。
李廉锟《结构力学》(第5版)(下册)课后习题-第12章 结构动力学【圣才出品】
第12章 结构动力学复习思考题1.怎样区别动力荷载与静力荷载?动力计算与静力计算的主要差别是什么?答:(1)静力荷载:指施力过程缓慢,不致使结构产生显著的加速度,因而可以略去惯性力影响的荷载;动力荷载:指将使结构产生不容忽视的加速度,因而必须考虑惯性力的影响的荷载。
主要差别在于是否考虑惯性力的影响。
(2)计算上的差别:①计算式中是否加入惯性力的数值;②静力计算时,结构处于平衡状态,荷载的大小、方向、作用点及由它引起的结构的内力、位移等各种量值都不随时间而变化;而动力计算时,结构将发生振动,各种量值均随时间而变化;③动力分析方法常与荷载类型有关,而静力分析方法与荷载类型无关。
2.何谓结构的振动自由度?它与机动分析中的自由度有何异同?如何确定结构的振动自由度?答:(1)结构振动的自由度是指结构在弹性变形过程中确定全部质点位置所需的独立参数的数目。
(2)机动分析中的自由度简称静力自由度(又称动力自由度)。
①两者相同点:在数学意义上是一致的,都是强调体系空间质量所需的几何参量的个数。
②不同点:静力自由度是机构移动即刚体位移,排除了各个组成部件的变形运动;而动力自由度是变形位移导致机构位置改变,即体系变形过程质量的运动自由度。
(3)确定结构振动自由度的两种方法:①直接由确定质点位置所需的独立参数数目来判定;②加入最少数量的链杆以限制刚架上所有质点的位置,则该刚架的振动自由度数目即等于所加入链杆的数目。
3.建立振动微分方程有哪两种基本方法?每种方法所建立的方程代表什么条件?答:(1)建立振动微分方程的两种基本方法:刚度法和柔度法。
(2)刚度法代表力的平衡条件,柔度法代表变形协调条件。
4.为什么说结构的自振频率和周期是结构的固有性质?怎样改变它们?答:(1)自振频率和周期是结构的固有性质的原因:结构的自振频率和周期只取决于结构自身的质量和刚度,反映着结构固有的动力特性,而外部干扰力只能影响振幅和初相角的大小并不能改变结构的自振频率。
李廉锟《结构力学》(第5版)(下册)-名校考研真题【圣才出品】
二、选择题
1.如图 12-3 所示结构,不计阻尼与杆件质量,若要发生共振,θ 应等于(
)。
[天津大学 2005 研]
2k
A.
3m
k
B.
3m
2 / 22
圣才电子书
2k
C.
5m
十万种考研考证电子书、题库视频学习平 台
k
D.
5m
图 12-3
【答案】B
【解析】当体系的自振频率与外部激励荷载的频率相同时,体系发生共振。首先求该
该结构的质量矩阵为
。
1 / 22
圣才电子书
十万种考研考证电子书、题库视频学习平
台
2.如图 12-2 所示结构的动力自由度为______(不计杆件质量)。[中南大学 2003 研]
图 12-2 【答案】3 【解析】一个自由质点的动力自由度为两个(不考虑转动自由度),本题所示结构中有 三个质点,第一层的两个质点只有一个水平自由度,第二层的质点有水平和竖向两个自由 度,故一共有三个动力自由度。
2.可用下述方法求如图 12-8(a)所示单自由度体系的频率;由图 12-8(b)可知 , 。( )[西南交通大学 2008 研]
7 / 22
圣才电子书
十万种考研考证电子书、题库视频学习平 台
图 12-8
【答案】错
【解析】设质点 m 处的位移为 u,则体系惯性力分别为 mu&&和 2mu&&,支座处的弹簧弹
圣才电子书
十万种考研考证电子书、题库视频学习平 台
名校考研真题
第 12 章 结构动力学
一、填空题 1.设直杆的轴向变形不计,则图 12-1 所示体系的质量矩阵[M]=______。[西南交通 大学 2007 研]
李廉锟《结构力学》(下册)笔记和课后习题(含考研真题)详解(结构弹性稳定)【圣才出品】
圣才电子书
b.F>Fcr
十万种考研考证电子书、题库视频学习平台
如图 13-1-2(b)所示,当 F 达到临界值 Fcr(比上述中心受压直杆的临界荷载小)时,
即使荷载丌增加甚至减小,挠度仍继续增加。
②特征
平衡形式并丌发生质变,变形按原有形式迅速增长,使结构丧失承载能力。
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 13 章 结构弹性稳定
13.1 复习笔记
【知识框架】
结构失稳形式 第一类失稳(分支点失稳)
结构失稳概述
第二类失稳(极值点失稳)
临界荷载的确定
结构稳定的自由度
静力法的描述
用静力法确定临界荷载 单自由度结构的丼例
多自由度结构的丼例
当 φ≠0 时,φ 不 F 的数值仍是一一对应的(图 13-1-3(c)中的曲线 AC)。 ③近似处理 若丌涉及失稳后的位秱计算而只要求临界荷载的数值。则可采用近似方程求解。 3.多自由度结构 对于具有 n 个自由度的结构 (1)对新的平衡形式列出 n 个平衡方程,它们是关于 n 个独立参数(丌全为 0)的齐次 方程; (2)由系数行列式 D=0 建立稳定方程; (3)求解稳定方程的 n 个特征荷载,其最小值便为临界荷载。
图 13-1-3 (1)平衡条件
Flsinφ-kφ=0 当位秱很微小时,sinφ=φ,式(13-1)可近似写为
(Fl-k)φ=0 (2)平衡二重性 ①对于原有的平衡形式,φ=0,上式成立; ②对于新的平衡形式,φ≠0,因而 φ 的系数应等于零,即
5 / 61
(13-1) (13-2)
圣才电子书
4 / 61
圣才电子书 十万种考研考证电子书、题库视频学习平台
李廉锟《结构力学》(上册)课后习题详解(1-4章)【圣才出品】
第1章绪论复习思考题1.结构力学的研究对象和具体任务是什么?答:(1)结构力学的研究对象结构力学研究的主要对象是杆系结构。
(2)结构力学的具体任务①研究结构在荷载等因素作用下的内力和位移的计算。
在此基础上,即可利用后续相关专业课程知识进行结构设计或结构验算;②研究结构的稳定计算,以及动力荷载作用下结构的动力反应;③研究结构的组成规则和合理形式等问题。
2.什么是荷载?结构主要承受哪些荷载?如何区分静力荷载和动力荷载?答:(1)荷载的定义荷载是指作用在结构上的主动力。
(2)荷载的分类①按作用时间分为:恒载和活载。
②按荷载的作用位置是否变化分为:固定荷载和移动荷载。
③按荷载对结构所产生的动力效应大小分为:静力荷载和动力荷载。
(3)静力荷载和动力荷载的主要区别荷载是否使结构产生不可忽略的加速度,即是否可以略去惯性力的影响。
若可忽略加速度(惯性力),则为静荷载;若不可忽略加速度(惯性力),则为动荷载。
3.什么是结构的计算简图?如何确定结构的计算简图?答:(1)计算简图的定义结构的计算简图是指略去次要因素,用一个简化图形来代替实际结构的图形。
(2)确定计算简图的方法①杆件的简化,常以其轴线代表。
②支座和结点的简化。
③荷载的简化,常简化为集中荷载及线分布荷载。
④体系的简化,将空间结构简化为平面结构。
4.结构的计算简图中有哪些常用的支座和结点?答:结构的计算简图中常用的支座和结点分别有:(1)常用的支座:活动铰支座、固定铰支座、固定支座、滑动支座。
(2)常用的结点:铰结点、刚结点、组合结点。
5.哪些结构属于杆系结构?它们有哪些受力特征?答:(1)杆系结构的定义杆系结构是指长度远大于其他两个尺度(即截面的高度和宽度)的杆件组成的结构。
杆系结构包括:梁、拱、刚架、桁架、组合结构、悬索结构。
(2)各种杆系结构的受力特征①梁。
梁是一种受弯杆件,其轴线通常为直线,当荷载垂直于梁轴线时,横截面上的内力只有弯矩和剪力,没有轴力。
李廉锟《结构力学》(下册)笔记和课后习题(含考研真题)详解(结构的极限荷载)
第14章 结构的极限荷载14.1 复习笔记【知识框架】结构分析方法 弹性分析方法 塑性分析方法的基本概念 塑性分析方法 塑性分析中力学性能的简化 塑性分析的注意事项塑性铰 塑性铰的定义 塑性铰与普通铰的区别 极限弯矩、塑性铰、破坏机构与静定梁的计算 极限弯矩的定义及求法 破坏机构超静定梁的特点 静定梁的极限荷载计算 单跨超静定梁的极限荷载 静力法求极限荷载极限荷载的计算 机动法求极限荷载 比例加载的定义 机构条件 结构处于极限状态时满足的条件 内力局限条件 比例加载时有关极限荷载的几个定理 破坏荷载与接受荷载 平衡条件 极小定理 比例加载时有关极限荷载的几个定理 极大定理结构的极限荷载穷举法的描述唯一性定理计算极限荷载的穷举法和试算法试算法的描述穷举法的计算步骤试算法的计算步骤连续梁的可能破坏机构形式连续梁的极限荷载计算方法连续梁的极限荷载的计算计算步骤刚架的可能破坏机构形式刚架的极限荷载计算方法刚架的极限荷载的计算计算步骤矩阵位移法求刚架极限荷载的概念【重点难点归纳】一、塑性分析方法的基本概念1.结构分析方法(1)弹性分析方法①定义弹性分析方法是指以结构在弹性阶段的最大应力达到极限应力作为结构破坏的标志的结构分析方法,又称为许用应力法。
②强度条件式中,σmax为结构的实际最大应力;[σ]为材料的许用应力;σu为材料的极限应力,对于脆性材料为其强度极限σb,对于塑性材料则为其屈服极限σs;k是安全因数。
③优点结构在设计荷载作用下,大多数仍处于弹性阶段,因此弹性分析对于研究结构的实际工作状态及其性能仍是很重要的。
④缺点按许用应力法以个别截面的局部应力来衡量整个结构的承载能力是不够经济合理的,而且以确定许用应力的安全因数k也不能反映整个结构的强度储备。
(2)塑性分析方法①定义塑性分析方法是指以结构进入塑性阶段并最后丧失承载能力时的极限状态作为结构破坏的标志的结构分析方法。
②极限载荷极限荷载是指结构在极限状态时所能承受的荷载。
李廉锟《结构力学》(上册)笔记和课后习题(含考研真题)详解(渐近法)【圣才出品】
第9章 渐近法9.1 复习笔记【知识框架】【重点难点归纳】 一、力矩分配法 1.定义 (1)劲度系数当杆件AB (图9-1-1)的A 端(又称近端)转动单位角时,A 端的弯矩称为该杆端的劲度系数,用表示。
它标志着该杆端抵抗转动能力的大小,故又称为转动刚度,其值不仅与杆件的线刚度有关,而且与杆件另一端(又称远端)的支承情况有关。
(2)传递系数当A 端转动时,B 端也产生一定的弯矩,将B 端弯矩与A 端弯矩之比称为由A 端向B力矩分配法的相关定义 劲度系数渐进法的概述 传递系数 力矩分配法的基本原理及举例分析应用力矩分配法计算无侧移刚架和连续梁 适用的对象无剪力分配法的举例分析 无剪力分配法 无剪力分配法的定义 无剪力分配法解多层无侧移刚架无剪力分配法应用于有侧移刚架 适用对象剪力分配法的举例分析 剪力分配法 剪力分配法的定义 剪力分配法的其他情况 剪力分配法的实用举例渐进法端的传递系数,用来表示,即。
图9-1-1等截面直杆的劲度系数和传递系数见表9-1-1。
当B端为自由或为一根轴向支承链杆时,A端转动时杆件将毫无抵抗,其劲度系数为零。
表9-1-1 等截面直杆的劲度系数和传递系数2.应用(单个结点转角)力矩分配法其结点角位移、杆端力的符号规定均与位移法相同,非常适用于连续梁和无结点线位移刚架的计算。
(1)举例①原结构如图9-1-2(a)所示刚架。
②典型方程只有一个基本未知量即结点转角,其典型方程为:。
图9-1-2③绘出M p、M1图如图9-1-2(b)、(c)所示。
④求自由项a.求(9-1)式中,为结点固定时附加刚臂上的反力偶,可称为刚臂反力偶,它等于汇交于结点1的各杆端固端弯矩的代数和,即各固端弯矩所不能平衡的差额,故又称结点上的不平衡力矩。
b.求(9-2)式中,为汇交于结点1的各杆端劲度系数的总和。
⑤解典型方程⑥最终弯矩图按叠加法计算各杆端的最后弯矩a.近端弯矩各杆汇交于结点1的一端为近端,另一端为远端。
李廉锟《结构力学》(上册)配套题库【课后习题】(平面体系的机动分析)【圣才出品】
第2章平面体系的机动分析复习思考题1.为什么计算自由度W≤0的体系不一定就是几何不变的?试举例说明。
答:因为W≤0只是体系为几何不变的必要条件并非充分条件。
一个体系尽管联系数目足够多甚至还有多余,但约束布置不当,体系便仍是几何可变的。
如图2-1所示。
图2-12.什么是刚片?什么是链杆?链杆能否作为刚片?刚片能否当作链杆?答:(1)刚片的定义刚片是指在平面体系中,由于不考虑材料的变形,可以看作刚体的一根杆件或已判明是几何不变的部分。
(2)链杆的定义链杆是指能使体系减少一个自由度的联结装置(约束)。
(3)链杆可以看作刚片。
一根链杆是几何不变的,在结构分析中可看做刚片。
(4)刚片不一定能看作链杆。
将刚片看作链杆后,结构可能无法保持几何不变。
3.何谓单铰、复铰、虚铰?体系中的任何两根链杆是否都相当于在其交点处的一个虚铰?答:(1)单铰、复铰、虚铰的定义分别是①单铰是指联结两个刚片的一个铰。
②复铰是指同时联结两个以上刚片的一个铰。
③虚铰是指联结两个刚片的两根链杆延长线的交点处的位置随链杆的转动而改变的铰。
(2)体系中不是任何两根链杆都相当于在其交点处的一个虚铰。
因为虚铰的位置随链杆的转动而改变,一般的实铰则没有这个特征,所以不是任何两根链杆都相当于虚铰。
4.试述几何不变体系的三个基本组成规则,为什么说它们实质上只是同一个规则?答:(1)几何不变体系的三个基本组成规则①三刚片规则三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。
②二元体规则在一个刚片上增加一个二元体,仍为几何不变体系,而且没有多余联系。
③两刚片规则两个刚片用一个铰和一根不通过此铰的链杆相联或两个刚片用三根不全平行也不交于同一点的链杆相联,为几何不变体系,而且没有多余联系。
(2)基本组成规则都可以看作三刚片规则因为链杆可以看作刚片,例如二元体规则中,二元体的两根链杆均可以看作刚片,即相当于三刚片规则。
同理,两刚片规则中链杆仍然可以看作一个刚片。
李廉锟《结构力学》(第5版)(下册)课后习题-第13章 结构弹性稳定【圣才出品】
第13章 结构弹性稳定复习思考题1.第一类失稳和第二类失稳有何异同?答:第一类失稳和第二类失稳的异同点:(1)相同点两类失稳的结果都是造成结构失去稳定性而破坏,分析这两种稳定的关键都是确定临界荷载。
(2)不同点①两类失稳的特征不同。
第一类失稳的特征是:结构的平衡形式即内力和变形的状态发生质的改变,原有平衡形式成为不稳定的,同时出现新的有质的区别的平衡形式;而第二类失稳的特征是平衡形式并不发生质的改变,变形按原有的形式迅速增长,使结构丧失承载能力。
②问题的复杂程度不同。
第二类稳定问题的分析比第一类稳定问题的分析更复杂,第二类稳定问题的分析需要以第一类稳定问题的分析为基础。
2.试述静力法求临界荷载的原理和步骤,对于单自由度、有限自由度和无限自由度体系有什么不同?答:(1)静力法求临界荷载的原理:以结构失稳时平衡的二重性为依据,应用静力平衡条件,寻求结构在新的形式下能维(2)静力法求解临界荷载的步骤:①假设结构已处于新的平衡形式,建立平衡方程;②平衡方程为齐次方程,利用齐次方程有非零解的条件,建立特征方程;③根据特征方程求解出临界荷载。
(3)静力法求临界荷载的原理和步骤,对于单自由度、有限自由度和无限自由度体系不同点:①对于单、多自由度体系,所建立的平衡方程是齐次方程(一个、多个),由有非零解的条件,建立特征方程,为一次、多次代数方程,进而求解;②对于无限自由度体系,所建立的平衡方程是齐次微分方程,由微分方程的解(连同边界条件)有非零解的条件,建立特征方程,一般为超越方程,通过试算法求解。
3.增大或减小杆端约束的刚度,对压杆的临界荷载数值有何影响?答:增大或减小杆端约束的刚度会对压杆的计算长度产生影响:①增大杆端约束刚度,则对压杆的计算长度减小,临界荷载值增大;②减小杆端约束刚度,则对压杆的计算长度增大,临界荷载值减小。
4.怎样根据各种刚性支承压杆的临界荷载值来估计弹性支承压杆临界荷载值的范围?答:弹性支承压杆的极限情况是刚性支承压杆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第14章 结构的极限荷载
复习思考题
1.什么叫极限状态和极限荷载?什么叫极限弯矩、塑性铰和破坏机构?
答:(1)极限状态和极限荷载的含义:
①极限状态是指整个结构或结构的一部分超过某一状态就不能满足设计规定的某一功能要求时所对应的特定状态;
②极限荷载是指结构在极限状态时所能承受的荷载。
(2)极限弯矩、塑性铰和破坏机构的含义:
①极限弯矩是指某一截面所能承受的弯矩的最大数值;
②塑性铰是指弯矩不能再增大,但弯曲变形则可任意增长的截面;
③破坏机构是指出现若干塑性铰而成为几何可变或瞬变体系的结构。
2.静定结构出现一个塑性铰时是否一定成为破坏机构?n次超静定结构是否必须出现n+1个塑性铰才能成为破坏机构?
答:(1)静定结构出现一个塑性铰时一定成为破坏机构。
因为根据几何组成分析,当静定结构出现一个塑性铰时,结构由几何不变变成几何可变或几何瞬变体系,此时该结构一定成为了破坏机构。
(2)n次超静定结构不必出现n+1个塑性铰才能成为破坏机构。
因为n次超静定结构出现n个塑性铰时,如果塑性铰的位置不合适,也可能使原结构变成几何瞬变的体系,此时的结构也成为了破坏机构。
3.结构处于极限状态时应满足哪些条件?
答:结构处于极限状态时应满足如下三个条件:
(1)机构条件
机构条件是指在极限状态中,结构必须出现足够数目的塑性铰而成为机构(几何可变或瞬变体系),可沿荷载作正功的方向发生单向运动。
(2)内力局限条件
内力局限条件是指在极限状态中,任一截面的弯矩绝对值都不超过其极限弯矩。
(3)平衡条件
平衡条件是指在极限状态中,结构的整体或任一局部仍维持平衡。
4.什么叫可破坏荷载和可接受荷载?它们与极限荷载的关系如何?
答:(1)可破坏荷载和可接受荷载的含义:
可破坏荷载是指满足机构条件和平衡条件的荷载(不一定满足内力局限条件);
可接受荷载是指满足内力局限条件和平衡条件的荷载(不一定满足机构条件)。
(2)与极限荷载的关系
极限荷载是所有可破坏荷载中的最小者,是所有可接受荷载中的最大者。
习题
14-1 已知材料的屈服极限σs=240MPa。
试求下列截面的极限弯矩值:(a)矩形截面b=50mm,h=100mm;(b)20a工字钢;(c)图示T形截面。
图14-1(题14-1)解:(a)由题意知
I s (b)查型钢表有,20a工字钢:I x=2370,/17.2
x x
故
(c)设x为T型截面的形心到翼缘板下边缘的距离,则
80×20+20x=20(100-x)解得
x=10mm
故
W s
=80×20×20+20×10×5+20×90×45=
114000mm 3
则
14 试求图示圆形截面及圆环形截面的极限弯矩。
设材料的屈服极限为σs 。
图14-2(题14)
解:直接代入公式得
(a )u s s s s D D D M W πσσσπ==⨯⨯⨯⨯=2
3
1222436
(b )()u s s D D D M D δδσσ⎡⎤⎡⎤
-⎛⎫=-=-
-⎢⎥⎢⎥ ⎪⎝⎭⎢⎥⎢⎥⎣⎦
⎣⎦33
33221166614-3 试求等截面静定梁的极限荷载。
已知a =2m ,M u =300kN·m 。
图14-3(题14-3)
图14-4
解:作出静定结构弯矩图,如图14-4所示。
由弯矩图知
则
14-4 试求阶梯形变截面梁的极限荷载。
图14-5(题14-4)
图14-6
解:作出变截面梁的弯矩图,如图14-6所示。
则由弯矩图可知,则。
14-5 试求等截面梁的极限荷载。