从课本到奥数
从课本到奥数ppt课件

乙
丙
16
16
16÷2=8 8+4+16=28 28÷2=14
16+8+8=32 32÷2=16 16÷2=8
消去问题
• 李阿姨买了3盒巧克力和5千克果冻,一共 花了195元,沈叔叔买了同样的3盒巧克力 和3千克果冻,一共花了159元,问每盒巧 克力和每千克果冻各多少元?
3盒巧克力的价钱+5千克果冻的价钱=195元
• 甲、乙和丙各有球若干个,甲给乙的球和乙现有的 球一样多,甲给丙的球也和丙现有的球一样多;然 后乙也按甲和丙手中的球数分别给甲、丙添球;最 后丙也按甲、乙现有的球数分别给甲、丙添球,此 时三人都各有16个球。问原来三人各有多少个球?
甲 最后 16 第三次 16÷2=8 第二次 8÷2=4 第一次 4+14+8=26
• 春节快到了,妈妈到菜市场买了些鱼和肉, 准备过年。如果买6千克鱼和8千克肉需要 320元,买4千克鱼和12千克肉需要400元。 那么买一千克鱼和1千克肉分别需要多少元?
• 军军用一根绳子测量一口井的深度,他把 绳子的一端垂入井底,井口外绳子长8米; 他把这根绳子对折后,将一端垂入井底, 这时在井口外的绳子还有1米,这口井有多 深?
• 某服装店销售一种服装,当销售困难时, 就按原定售价打对折销售。当生意红火起 来,有悄悄地加价14.5元出售,见买的顾 客少了,又降价2.5元按现价96.4元出售。 当初定价时是在进货价上加40.5元作为售 价。问这种服装进货价是多少元?
SUCCESS
THANK YOU
2019/6/3
• 某人买6瓶饮料,每瓶付款2.50元,喝完全 部饮料可退空瓶,每只空瓶退得的钱比瓶 中饮料的钱少2.30元。这人可退得多少钱?
三年级上册数学竞赛课件 《从课本到奥数》 全国通用 141

你能用不同的方法求出方格纸上这个图形的周长吗? (每小格表示边长为1厘米的正方形)
三年级上册数学竞赛课件 《从课本到奥数》 全国通用 (225份打包)141
三年级上册数学竞赛课件 《从课本到奥数》 全国通用 (225份打包)141
你能用不同的方法求出方格纸上这个图形的周长吗? (每小格表示边长为1厘米的正方形)
1
1212来自51211
1
8
5+8+7×1+3×2=26(厘米) 分步展示
三年级上册数学竞赛课件 《从课本到奥数》 全国通用 (225份打包)141
三年级上册数学竞赛课件 《从课本到奥数》 全国通用 (225份打包)141
你能用不同的方法求出方格纸上这个图形的周长吗? (每小格表示边长为1厘米的正方形)
答:我能用不同的 方法求出这个图形 的周长是26厘米。
5
三年级上册数学竞赛课件 《从课本到奥数》 全国通用 (225份打包)141
8 (5+8)×2=26(厘米)
四年级上册数学竞赛课件 《从课本到奥数》 全国通用 85

四年级上册数学竞赛课件 《从课本到奥数》 全国通用 (223份打包)85
四年级上册数学竞赛课件 《从课本到奥数》 全国通用 (223份打包)85
四年上册数学竞赛课件 《从课本到奥数》 全国通用 (223份打包)85
小胖的手表停了,显示的时间为9:00。于是他赶紧上足发条,将分针 顺时针旋转了420°,恰好调准到了标准时间,这时的标准时间是多 少?时针与分针的夹角是多少度?
四年级上册数学竞赛课件 《从课本到奥数》 全国通用 (223份打包)85
小胖的手表停了,显示的时间为9:00。于是他赶紧上足发条,将分针 顺时针旋转了420°,恰好调准到了标准时间,这时的标准时间是多 少?时针与分针的夹角是多少度?
分针1分钟转360°÷60=6°
四年级上册数学竞赛课件 《从课本到奥数》 全国通用 (223份打包)85
四年级上册数学竞赛课件 《从课本到奥数》 全国通用 (223份打包)85
小胖的手表停了,显示的时间为9:00。于是他赶紧上足发条,将分针 顺时针旋转了420°,恰好调准到了标准时间,这时的标准时间是多 少?时针与分针的夹角是多少度?
分针1分钟转360°÷60=6° 分针顺时针旋转了420°需要420°÷6°=70(分钟) 这时的标准时间是10点10分。
小学六年级奥数课件:从课本到奥数

每个盒子先放一个球,还剩3个球 把三个球放入三个不同盒子里有4种方法; 把他们都放入一个盒子有4种方法; 把两个放入一个盒子,一个放入另一个盒子有4X3=12种方法, 加起来共4+4+12=20种方法.
14 4 32
蓝色一圈可以旋转 一周,有6种方法。
3 2 43
34 4 23 2314
蓝色一圈可以旋转 一周,有6种方法, 2可以在左下角也
-0.4
+4500米 顺
-1
180
5 +2
西
+3
西
6
-3
先向西爬行4厘米,接着向东爬行7厘米
-1500
支取2000元 +3000
存入3552元
(600+2650+3900)-(220+150+580+8+1200)=+4732(元)
-7<-二又五分之一<-1.8<-1/4<0.35<8/5<5.1
8角的2本.
第四位,42角=5X2+8X4,
8角的4本.
第五位,43角=5X7+8,
8角的1本.
第六位,只比第一位多买一本5角的,8角的相同,依次类推.
总共(3+0+2+4+1)X(100÷5)=200(本)
甲第1秒钟6.6米,第2秒钟13.2米,第3秒钟26.4米,第4秒钟52.8米, 乙第1秒钟2.9米,第2秒钟8.7米,第3秒钟26.1米,第4秒钟78.3米, 前3秒钟甲比乙多 (6.6-2.9)+(13.2-8.7)+(26.4-26.1)=8.5米 8.5÷(78.3-52.8)=1/3分 出发后经过3又1/3分乙追上甲.也就是200秒
最新小学五年级奥数从课本到奥数

最新小学五年级奥数从课本到奥数一、拓展提优试题1.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.2.(7分)对于a、b,定义运算“@”为:a@b=(a+5)×b,若x@1.3=11.05,则x=.3.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.4.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)5.某商店的同种点心有大小两种包装礼盒,大盒85.6元一盒,内有点心32块,小盒46.8元一盒,内有点心15块,若王雷用654元买了9盒点心,则他可得点心块.6.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.7.如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四边=平方米.形EFGH8.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.9.对于自然数N,如果在1﹣9这九个自然数中至少有七个数是N的因数,则称N是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是.10.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.11.(8分)有四个人甲、乙、丙、丁,乙欠甲1元,丙欠乙2元,丁欠丙3元,甲欠丁4元.要想把他们之间的欠款结清,只因要甲拿出元.12.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.13.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?14.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.15.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.16.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了千克面粉.17.如图是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a﹣b×c的值是.18.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗.19.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:①有几道题的答案是4?②有几道题的答案不是2也不是3?③第⑤题和第⑥题的答案的平均数是多少?④第①题和第②题的答案的差是多少?⑤第①题和第⑦题的答案的和是多少?⑥第几题是第一个答案为2的?⑦有几种答案只是一道题的答案?那么,7道题的答案的总和是.20.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.21.商店对某饮料推出“第二杯半价”的促销办法.那么,若购买两杯这种饮料,相当于在原价的基础上打折.22.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.23.甲乙两人分别从AB两地同时出发相向而行,当甲走到一半时,乙将速度提高一倍,结果两人在距离B地1200米处相遇,并且最后同时到达,那么两地相距米24.先将从1开始的自然数排成一列:123456789101112131415…然后按一定规律分组:1,23,456,7891,01112,131415,…在分组后的数中,有一个十位数,这个十位数是.25.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是.26.将等边三角形纸片按图1所示步骤折叠3次(图1中的虚线是三边的中点的连线),然后沿两边的重点的边减去一角(如图2).将剩下的纸片展开、平铺,得到的图形是A27.如图,甲、乙两人按箭头方向从A点同时出发,沿正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E 点第一次相遇,则三角形ADE的面积比三角形BCE的面积大1000平方米.28.星期天早晨,哥哥和弟弟去练习跑步,哥哥每分钟跑110米,弟弟每分钟跑80米,弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米,那么,哥哥跑了米.29.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是.30.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了个松果.31.如图,在等腰直角三角形ABC中,斜边AB上有一点D,已知CD=5,BD 比AD长2,那么三角形ABC的面积是.32.(8分)小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.33.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;34.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市千米处追上乙车.35.某次入学考试有1000人参加,平均分是55分,录取了200人,录取者的平均分与未录取的平均分相差60分,录取分数线比录取者的平均分少4分.录取分数线是分.36.甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10分,共得208分,最后甲比乙多得64分,乙打中发.37.如图:平行四边形ABCD中,OE=EF=FD.平行四边形面积是240平方厘米,阴影部分的面积是平方厘米.38.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.39.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.40.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年岁,(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)【参考答案】一、拓展提优试题1.解:665=19×7×5,因为长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,所以长、宽、高分别是19、7、5,(19×7+19×5+7×5)×2=(133+95+35)×2=263×2=526,答:它的表面积是526.故答案为:526.2.解:由定义可知:x@1.3=11.05,(x+5)1.3=11.05,x+5=8.5,x=8.5﹣5=3.5故答案为:3.53.解:共有6只小猫咪,每发6条鱼重复出现,而278÷6=46…2,余数是2,则最后一个领到鱼干的小猫咪是B.故答案为:B.4.解:每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,所以,100+6×8+15﹣12=100+48+3=151答:得到的结果是 151.故答案为:151.5.设大合x 盒,小盒y 盒,依题意有方程:85.6x +46.8(9﹣x )=654解方程得x =6,9﹣6=3.所以大合6盒,小盒3盒,共有32×6+15×3=237块.答:可得点心237块.6.解:△ADM 、△BCM 、△ABM 都等高,所以S △ABM :(S △ADM +S △BCM )=8:10=4:5,已知S △AMD =10,S △BCM =15,所以S △ABM 的面积是:(10+15)×=20,梯形ABCD 的面积是:10+15+20=45;答:梯形ABCD 的面积是45.故答案为:45.7.解:根据分析,如下图所示:长方形S 长方形ABCD =S 长方形XYZR +△AEF +△EFR +△FBG +△FGX +△HCG +△HGY +△DHE +△HEZ=S 长方形XYZR +2×(a +b +c +d )⇒60=4+2×(a +b +c +d )⇒a +b +c +d =28四边形S 四边形EFGH =△EFR +△FGX +△HGY +△HEZ +S 长方形XYZR=a +b +c +d +S 长方形XYZR=28+4=32(平方米).故答案是:32.8.解:假设每人每分钟修大坝1份洪水冲毁大坝速度:(10×45﹣20×20)÷(45﹣20)=(450﹣400)÷25=50÷25=2(份)大坝原有的份数45×10﹣2×45=450﹣90=360(份)14人修好大坝需要的时间360÷(14﹣2)=360÷12=30(分钟)答:14人修好大坝需30分钟.故答案为:30.9.解:根据分析,在2000~2020之间排除掉奇数,剩下的偶数还可以排除掉不能被3整除的偶数,最后只剩下:2004、2010、2016,再将三个数分别分解质因数得:2004=2×2×3×167;2010=2×3×5×67;2016=2×2×2×2×2×3×3×7,显然2014和2010的质因数在1~9中不到7个,不符合题意,排除,符合题意的只有2016,此时2016的因数分别是:2、3、4、6、7、8、9.故答案是:2016.10.解:在不超过100的整数中,以下8组:3,5;5,7;11,13;17,19;29,31;41,43;59,61;71,73是孪生质数.故答案为8.11.解:根据分析,从甲开始,乙欠甲1元,故甲应得1元,甲欠丁4元,故甲应还4元;清算时,甲还应拿出4﹣1=3元,此时甲的账就结清了;再看看丁的账,丁得到甲的4元后,还给丙3元,即可结清;再看看丙的账,丙得到丁的3元后,还给乙2元,丙的账也清了;再看看乙的账,乙得到丙的2元后,还给甲1元,乙的账也结清;综上,甲只须先拿出4元还给丁,后得到乙的1元,故而甲总共只须拿出3元.故答案是:3.12.解:3n是5的倍数,3n的个数一定是0或5又因为大于0的自然数n是3的倍数,所以3n最小是453n=45n=15所以n最小取15时,n是3的倍数,3n是5的倍数.答:n的最小值是15.故答案为:15.13.解:42÷2=21(只)21÷3×26=7×26=182(只)182÷2×3=91×3=273(只)273×3=819(只)答:3头牛可以换819只鸡.14.解:依题意可知:结果的首位是2,那么在第二个结果中的首位还是2.再根据第一个结果中有一个1,那么就是有和数字5相乘以后数字1的进位同时十位数字是偶数才能满足条件,第一个乘数的个位数字只能是2或者3才能满足进位是1.当第一个乘数尾数是2时,首位数字无论是哪一个偶数都不能得到200多的结果.不满足题意.当第一个乘数尾数是3时,来看看偶数的情况.23×9=207.43,63,83无论乘以数字几都不能构成百位十位是20的结果.故是23×95=2185,那么23+95=118.故答案为:11815.解:原式=++++=++++=×(﹣+﹣+…+﹣)=×()=5+24=29故答案为:2916.解:根据分析,因面和水的比为3:2,即每一份水需要:3÷2=1.5份面粉,现在有5千克水,则需要面粉:5×1.5=7.5千克,而现有面粉量为:1.5千克,故还须加:7.5﹣1.5=6千克,分三次加入,则每次须加入:6÷3=2千克.故答案是:2.17.解:依题意可知:3a+2与17是对立面,3a+2=17,所以a=5;7b﹣4与10是对立面,7b﹣4=10,所以b=2;a+3b﹣2c与11的对立面,5+3×2﹣2c=11,所以c=0;所以a﹣b×c=5故答案为:518.解:10÷2=5(颗)18÷2=9(颗)此时A有:26﹣10+9=25(颗)此时C有:25×4=100(颗)原来C有:100﹣9﹣5=86(颗)答:松鼠C原有松果 86颗.故答案为:86.19.解:因为每道题的答案都是1、2、3、4的一个,所以①的答案不宜太大,不妨取1,此时②的答案其实就是7个答案中1和4的个数,显然只能取2、3、4中的一个,若取2,则意味着剩余的题目只能有一道题答案为1,这是④填1,⑦填2,⑤填3,⑥填2,而③无法填整数,与题意矛盾;所以②的答案取3,则剩余的题目答案为1和4各有1道,此时④填2,显然⑦只能填1,那么⑤填2,则4应该是⑥的答案,从而③填3,此时7道题的答案如表;它们的和是1+3+3+2+2+4+1=16.20.解:首先根据奇偶位数和相等一定是11的倍数.因数一共的个数是3+39=42(个),将42分解成3个数字相乘42=2×3×7.=a×b2×c6.如果是11×52×26=17600(不是四位数不满足条件).再看一下如果这个数字最小是=11×32×26=6336.=3663=11×37×32.因数的个数共2×2×3=12(个).故答案为:12个.21.解:设这种饮料每杯10,两杯售价是20元,实际用了:10+10×,=10+5,=15(元),15÷20=0.75=75%,所以是打七五折;故答案为:七五.22.解:如图延长BA和EF交于点O,并连接AE,由正六边形的性质,我们可知S ABCM=S CDEN=S EF AK=六边形面积,根据容斥原理,重叠部分三个三角形面积和等于阴影部分面积,且因为对称,△AKP,△CMQ,△ENR三个三角形是一样的,有KP=RN,AP=ER,RP=PQ,=,则=,=,由鸟头定理可知道3×KP ×AP =RP ×PQ , 综上可得:PR =2KP =RE ,那么由三角形AEK 是六边形面积的,且S △APK =S △AKE ,S △APK =S ABCDEF =47,所以阴影面积为47×3=141故答案为141.23.2800[解答] 设两地之间距离为S 。
四年级奥数从课本到奥数一

四年级奥数从课本到奥数一一、拓展提优试题1.甲、乙、丙三校合办画展,参展的画中,有41幅不是甲校的,有38幅不是乙校的,甲、乙两校参展的画共43幅,那么,丙校参展的画有幅.2.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子个.3.一列火车身长90米,火车以每分钟160米的速度通过山洞,用了3分钟,山洞长390米.4.如图,BC=3BE,AC=4CD,三角形ABC的面积是三角形ADE面积的倍.5.一辆公共汽车有78个座位,空车出发,第一站上一位乘客,第二站上二位乘客,第三站上三位乘客,依次下去,多少站以后,车上坐满乘客?6.一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是A,那么,这个数A等于几?7.豆豆全家有4口人.今年豆豆哥哥比豆豆大3岁,豆豆妈妈比豆豆爸爸小2岁.5年前,全家年龄为59岁,5年后,全家年龄和为97岁,豆豆妈妈今年岁.8.如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是厘米.9.粮店里有6袋面粉,分别重15、16、18、19、20、31千克,食堂分两次买走了其中5袋,已知第一次买走得重量是第二次的两倍,剩下的一袋重量为千克.10.甲、乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍.那么,原来甲桶中油比乙桶中的油多千克.11.一个两位数除723,余数是30,满足条件的两位数共有个,分别是.12.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.13.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.14.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.15.如图,阴影小正方形的边长是2,最外边的大正方形的边长是6,则正方形ABCD的面积是.【分析】如图所示:添加辅助线,因为阴影小正方形的边长是2,最外边的大正方形的边长是6,则大正方形被分成了9个小正方形,其中大正方形每个角上的三角形的面积相当于边长是2的小正方形的面积,所以正方形ABCD的面积相当于5个阴影小正方形的面积,然后利用正方形的面积公式即可求解.16.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.17.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.18.如图,一个大正方形被分成四个相同的小长方形和一个小正方形,若一个小长方形的周长是28,则大正方形的面积是.19.围棋24元一副,象棋18元一副,用300元恰好可以购买两种棋子共14副,其中象棋有副.20.如图是长方形,将它分成7部分,至少要画条直线.21.在一个长方形内,任意画一条直线,长方形被分成两部分(如图),如果画三条互不重合的直线,那么长方形至少被分成部分,最多被分成部分.22.(8分)传说,能在三叶草中找到四叶草的人,都是幸运之人.一天,佳佳在大森林中摘取三叶草,当她摘到第一颗四叶草时,发现摘到的草刚好共有100片叶子,那么,她已经有颗三叶草.23.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.24.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.25.有一个数学运算符号“⊙”,使下列算式成立:2⊙4=8,4⊙6=14,5⊙3=13,8⊙7=23.按此规定,9⊙3=.26.将一张长11厘米,宽7厘米的长方形纸沿直线剪开,每次必须剪出正方形,这样最多能剪出个正方形.27.少先队员计划做一些幸运星送给幼儿园的小朋友.如果每人做10个,还差6个没完成计划;如果其中4人各做8个,其余每人各做12个,就正好完成计划.问一共计划做颗幸运星.28.《好少年》上下两册书的页码共用了888个数码,且下册比上册多用8页,下册书有页.29.如果,那么=.30.某个学习小组由男生和女生共8位同学,其中女生比男生多,那么男生的人数可能是.31.(8分)如图,已知正方形的面积是100m2,图中灰色部分的面积是m2.32.某冷饮店推出“夏日冰饮第二杯半价”活动,小刚买了2杯饮料共花了13元5角.那么一杯饮料的原价是元.33.有一筐桃子,4个4个地数,多2个;6个6个地数,多4个;8个8个地数,少2个.已知这筐桃子的个数不少于120,也不多于150,共有个.34.在□中填上适当的数,使竖式成立.35.一条大河,河中间(主航道)水的流速为每小时10千米,沿岸边水的流速为每小时8千米.一条船在河中间顺流而下,10小时行驶360千米,这条船沿岸边返回原地需要小时.36.(7分)用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.37.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…38.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?39.爸爸比儿子大24岁,今年爸爸的年龄是儿子的五倍,年后爸爸的年龄是儿子的三倍.40.如果今天是星期五,那么从今天算起,57天后的第一天是星期.【参考答案】一、拓展提优试题1.【分析】41幅不是甲校的,就是乙校和丙校的,38幅不是乙校的,就是甲校和丙校,其中丙校的数量同时包含在41与38中,所以41+38=79(幅)是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,得出丙校的2倍,再除以2就是丙校参展的画的数量.解:(41+38﹣43)÷2=(79﹣43)÷2=36÷2=18(幅)答:丙校参展的画有 18幅.故答案为:18.【点评】解决本题的关键是明确其丙校的数量同时包含在41与38中,所以,41与38的和是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,再除以2就是丙校参展的画的数量.2.【分析】因黑子个数是白子个数的2倍,可假设黑子每次取的个数也是白子的2倍,即黑子每次2×2=4个、白子每次取2个,则白子余1个时,黑子余2个.现每次黑子取少4﹣3=1个了,则黑子多出来的数量,除以应取和实取的差,就是取的次数.据此解答.解:假设黑子每次取的个数也是白子的2倍,即黑子每次2×3=6个、白子每次取3个,则:(31﹣1×2)÷(2×2﹣3)=29÷1=29(次)3×29+31=87+31=118(个)答:袋中原有黑子 118个.故答案为:118.【点评】本题的关键是根据黑子是白子个数的2倍,假设每次取黑子的个数是白子的2倍,与实际取黑子的差,及实际取与假设取应剩下黑子的差,进行解答.3.解:160×3﹣90,=480﹣90,=390(米),答:山洞长390米.故答案为:390.4.解:因为BC=3BE,AC=4CD,则BC:BE=3:1,AC:CD=4:1,所以S△ABE =S△ABC,S△ACE=S△ABC,S△ADE=S△ACE=S△ABC=S△ABC,三角形ABC的面积是三角形ADE面积的2倍.故答案为:2.5.解:设第n站以后车上坐满了乘客,可得:[1+1+(n﹣1)×1]×n÷2=78[2+n﹣1]×n÷2=78,[1+n]×n÷2=78,(1+n)×n=156,由于12×13=156,即n=12.答:12站以后,车上坐满乘客.6.解:设组成三位数A的三个数字是a,b,c,且a>b>c,则最大的三位数是a×100+b×10+c,最小的三位数是c×100+b×10+a,所以差是(a×100+b×10+c)﹣(c×100+b×10+a)=99×(a﹣c).所以原来的三位数是99的倍数,可能的取值有198,297,396,495,594,693,792,891,其中只有495符合要求,954﹣459=495.答:这个三位数A是495..7.解:10×4﹣(97﹣59)=40﹣38=2(岁)所以豆豆是3年前出生的,即今年豆豆应该是3岁,今年豆豆的哥哥的年龄为:3+3=6(岁),今年全家的年龄和为:97﹣5×4=77(岁),今年爸爸妈妈的年龄和为:77﹣3﹣6=68(岁),豆豆的妈妈今年的年龄为:(68﹣2)÷2=33(岁).答:豆豆妈妈今年33岁.故答案为:33.8.【分析】剩下部分的周长=原长方形的周长+2个(12+4)厘米,依此列出算式(50+20)×2+(12+4)×2计算即可求解.解:(50+20)×2+(12+4)×2=70×2+16×2=140+32=172(厘米)答:剩余部分图形的周长是172厘米.故答案为:172.【点评】本题主要考查了学生对长方形面积和周长公式的掌握情况,关键是让学生理解剩下部分的周长=原长方形的周长+2个(12+4)厘米.9.解:15+16+18+19+20+31=119(千克),食堂共买走的总量是:119﹣20=99(千克),99÷3=33(千克),第二次买走得重量是:15+18=33(千克),第一次买走得重量是:16+31+19=66(千克);答:剩下的一袋重量为20千克.故答案为:20.10.【分析】根据题意,把甲乙两个油桶的共存油看作5份,可以计算出每份是多少千克油,将乙桶中的15千克油注入甲桶后,甲桶占了其中的4份,乙桶占了其中的1份,1份即100÷5=20千克,可以计算出注入后各个油桶的千克,再用乙桶的油减去15千克,甲桶的油加上15千克,即是甲乙两桶原存油的数量,再用甲桶原存油的数量减去一桶原存油的数量,列式解答即可解:100÷(1+4)=20(千克)注入后的甲桶:4×20=80(千克)倒出后的乙桶:1×20=20(千克)原甲桶存油:80﹣15=65(千克)原乙桶存油:20+15=35(千克)甲桶中油比乙桶中的油多:65﹣35=30(千克)答:原来甲桶中油比乙桶中的油多30千克.故答案为:30.【点评】解答此题的关键是分清注入后甲乙两桶油的关系,即甲桶存油等于乙桶存油的4倍,然后可计算出注入后甲乙两桶油的存量,再计算出注入前两桶油的重量,二者相减即可.11.解:723﹣30=693,693=3×3×7×11,所以一个两位数除723,除数大于30的两位数因数有:11×3=33,11×7=77,3×3×7=63,11×3×3=99,共4个;故答案为:33、63、77、99.12.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.13.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.14.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.解:35﹣(72﹣36﹣19)=35﹣17=18(人)答:四(1)班有女生 18人.故答案为:18.【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.15.解:2×2×5=20答:正方形ABCD的面积是20.故答案为:20.【点评】解答此题的关键是:将原图形进行分割,然后利用正方形的面积公式求解.16.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.17.【分析】根据题意知:小丽第一次用的时间×第一次的速度=(第一次用的时间﹣4)×第二次用的速度,可设第一次用的时间是x小时,据此可求出用的时间,再根据路程=速度和×时间可求出两家的距离.据此解答.解:设第一次相遇用的时间是x分钟70x=90×(x﹣4)70x=90x﹣36090x﹣70x=36020x=360x=360÷20x=18(52+70)×18=122×18=2196(米)答:两家相距2196米.【点评】本题的重点是求出两人相遇时用的时间,再根据路程=速度和×时间进行解答.18.【分析】一个小长方形的周长是28,也就是小长方形的长和宽的和是28÷2=14,也就是大正方形的边长,然后根据正方形的面积公式,解决问题.解:28÷2=1414×14=196答:大正方形的面积是196.故答案为:196.【点评】根据长方形的长和宽与正方形边长之间的关系,先求出小长方形的长和宽的和,即求出了大正方形的边长.19.【分析】假设全是围棋,那么就有24×14=336元,这就比已知的300元多出了336﹣300=36元,因为一副围棋比一副象棋多24﹣18=6元,由此即可求得象棋的数量.解:假设全是围棋,则象棋就有:(24×14﹣300)÷(24﹣18)=36÷6=6(副);答:其中象棋有6副.故答案为:6.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.20.【分析】两条直线把正方形分成4部分,第三条直线与前两条直线相交多出3部分,共分成7部分;第四条直线与前3条直线相交,又多出4部分.共11部分,第五条直线与前4条直线相交,又多出5部分,如下图所示.解:1+1+2+3=7答:在一个长方形上画上3条直线,最多能把长方形分成7部分.故答案为:3.【点评】此题考查了图形的拆拼.使直线间相互交叉,交点越多,则分割的空间越多.每多第几条直线,就加几个部分.21.【分析】三条线不重合,不相交时,把长方形分成的部分最少;三条线不重合,但在长方形内两两相交,有3个交点,把长方形分成的部分最多,如下图所示,因此得解.解:由分析可得:故答案为:4,7.【点评】认真分析题意,找出规律是解决此题的关键,线的交点越多,图形被分的部分越多.22.解:(100﹣4)÷3=96÷3=32(棵)答:她已经有了32棵三叶草.故答案为:32.23.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.24.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.解:父子年龄差是:31﹣5=26(岁),爸爸的年龄是小军的3倍时,小军的年龄是:26÷(3﹣1)=26÷2=13(岁),13﹣5=8(年),答:再过8年,爸爸的年龄是小军的3倍.故答案为:8.【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).25.解:9⊙3=9×2+3=21;故答案为:21.26.解:根据题干分析可得:答:一共可以剪出6个正方形.故答案为:6.27.解:[(12﹣8)×4+6]÷(12﹣10),=[16+6]÷2,=22÷2,=11(人);10×11+6=116(个);答:一共计划做116颗幸运星.故答案为:116.28.解:个位数1~9页共有9个数码;两位数10~99共用2×90=180个数码;此时还剩888﹣9﹣180=699个数码,699÷3=233,699个数码可组成233个三位数,所以上下册共有:233+100﹣1=332页,则下册书有:(332+8)÷2=340÷2,=170(页).即下册书有170页.故答案为:170.29.解:因为,所以(b+10a)×65=4800+10a+b,即10a+b=75,因此b=5,a=7.即=75.故答案为:75.30.【分析】先假设男生和女生一样多,则男生有4人,女生有4人,因为女生比男生多,所以男生的人数一定小于4人,然后写出即可.解:8÷2=4(人),因为女生比男生多,所以男生的人数一定小于4人,所以男生可能是1人,2人或3人;故答案为:1人,2人或3人.【点评】解答此题的关键:先假设男、女生一样多,求出男生人数,进而根据题意,进行分析、继而得出结论.31.解:根据分析可得,100÷2=50(平方米)答:图中灰色部分的面积是 50m2.故答案为:50.32.【分析】把第一杯饮料的原价看作单位“1”,则第二杯饮料的价钱是第一杯的,由题意可知:第一杯饮料价钱的(1+)是13.5元,根据已知一个数的几分之几是多少,求这个数,用除法解答.解:13.5÷(1+),=13.5÷1.5,=9(元);答:一杯饮料的原价是9元;故答案为:9.【点评】解答此题的关键是:判断出单位“1”,进而根据已知一个数的几分之几是多少,求这个数,用除法解答.33.【分析】可以看做4个4个地数,少2个;6个6个地数,少2个;8个8个地数,也是少2个.也就是4、6、8的公倍数减2.[4、6、8]=24.可以记作24x﹣2,120<24x﹣2<150.x是整数,x=6.这筐桃子共有24×6﹣2,计算即可.解:[4、6、8]=24.这筐桃子的数量可以记作24x﹣2,120<24x﹣2<150.x是整数,所以x=6,这筐桃子共有:24×6﹣2=142(个).答:这筐桃子共有142个.故答案为:142.【点评】关键是通过把原题转化,运用了求最小公倍数以及解不等式的方法解决问题.34.解:根据题干分析可得:35.解:船的静水速度为:360÷10﹣10,=36﹣10,=26(千米/时);返回原地需要:360÷(26﹣8),=360÷18,=20(小时);答:这条船沿岸边返回原地需要20小时.故答案为:20.36.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:5123﹣4876=247故答案为:247.37.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.38.解【分析】如图所示:,假设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,则截去的部分的面积为:4b+4a+4×4=168,求出a+b=(168﹣16)÷4=38,原来长方形的周长为:(b+4+a+4)÷2,据此代入(a+b)的值计算即可.:如图所示:,设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,4b+4a+4×4=1684(a+b)=168﹣164(a+b)=152,4(a+b)÷4=152÷4a+b=38,原长方形的周长为:(b+4+a+4)×2=(38+8)×2=46×2=92(分米).答:原来长方形的周长是92分米.39.解:根据题意,由差倍公式可得:今年爸爸的年龄是儿子的五倍时,儿子的年龄是:24÷(5﹣1)=6(岁);爸爸的年龄是儿子的三倍时,儿子的年龄是:24÷(3﹣1)=12(岁);12﹣6=6(年).答:6年后爸爸的年龄是儿子的三倍.故答案为:6.40.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.解:57÷7,=57÷7,=8(周)…1(天);余数是1,星期五再过1天是星期六.故答案为:六.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.。
从课本到奥数(五年级)第一讲小数的简便运算

从课本到奥数(五年级)第一讲小数的简便运算从课本到奥数(五年级)第一讲小数的简便运算简便运算,就是用比较简捷、巧妙的方法计算出算式的得数。
一道计算题的简便算法常常不止一种。
小数的简便运算一般分为两个方面:(1)利用加、减、乘、除法的运算性质巧算;(2)巧用特殊数之间四则运算时表现出的一些特性巧算。
计算时,仔细观察算式的特点,观察算式中数与数之间的关系,确定正确的简便运算方法,简捷、巧妙地计算出算式的得数。
难题点拨①计算:⑴0.125×400 ⑵2.5×10.8点拨:观察上面两道算式,算式⑴中,400可以写成8×50:算式⑵中,10.8可以写成10+0.8。
这两道题都可以利用特殊数之间四则运算时表现出的一些特殊巧算。
0.125×400 =0.125×8×50=1×50=50 2.5×10.8=2.5×(10+0.8)=2.5×10+2.5×0.8=25+2=27想一想做一做1.0.125×96=0.125×(100-4)=0.125×100-0.125×4 =12.5-0.5 =12 2.1.25×88=1.25×(80+8)=1.25×80+1.25×8=100+10=1103. 0.25×40.4 =0.25×(40+0.4)=12.5×(10+0.8) =0.25×40+0.25×0.4 =10+0.1 =10.14. 12.5×10.8= 125+10=135难题点拨②计算:199.7×19.98-199.8×19.96点拨:观察算式发现,19.98扩大到它的10倍就是199.8,因此我们先将减号前面的部分写成19.97×199.8,再利用乘法的分配律巧算。
从课本到奥数(整理稿)

1.百分数应用题(一)1.某商店同时卖出两件商品,每件各得60元,但其中一件赚20%,另一件亏本20%。
问这个商店卖出这两件商品是赚钱还是亏本?2.一桶油,第一次用了全桶的20%,第二次用了20千克,第三次用了前两次的和,这时桶里还剩8千克,问这桶油还有多少千克?3.甲乙两店都经营同样的某种商品,甲先涨价10%后又降价10%,乙先涨价15%后,又降价15%,请问:两位店主谁比较聪明?4.某班有学生48名,女生占全班人数的37.5%,后来又转来了若干名女生。
这是女生人数恰好是全班人数的2/5,问共转来了多少名女生?5.某工厂一车间人数占全厂的25%,二车间人数比一车间少1/5,三车间人数比二车间多3/10,三车间有156人,求这个工厂全厂共有多少人?6.小刚看一本书,第一天看了全书的1/6,第二天看了24页,第三天看前两天看的总数的150%,这时还剩下全书的1/4没有看。
全书共有多少页?【题型概述】商品的打折可以转化成百分数应用题解决,主要的关系式有:定价=成本×(1+利润百分数)利润百分数=(卖价-成本)÷成本×100%【典型例题】把一套西装按50%的利润定价,然后打八八折卖出,可以获得利润480元,这套西装的成本是多少元?【举一反三】1.把一件女装按40%的利润定价,然后打九折卖出,可以获得利润130元,这件女装的成本是多少元?2. 有一批空调,如果按每台20%的利润定价,然后按八折出售,每台空调反而亏损128元,这种空调的进货价是多少?3.一批新书按定价的20%出售时,仍能获得40%的利润,那么定价时所期望的利润率是多少?【拓展提高】一种自行车,甲商店比乙商店的进货价便宜5%,甲商店按20%的利润定价,乙商店按15%的利润定价,结果甲店比乙店便宜3元,乙店的进货价是多少元?【奥赛训练】4.一种商品,甲商店比乙商店的进货价便宜10%,甲商店按30%的利润定价,乙商店按25%的利润定价,结果甲店比乙店便宜40元,甲店的进货价是多少元?5.两家商店购进同一种商品,一店比二店的进货价便宜5%,一店按40%的利润定价,二店按25%的利润定价,结果一店比二店贵16元,二店的进货价是多少元?6.有两家商场,当第一家商场的利润减少15%,而第二家商场利润增加18%时,这两家商场的利润相同。
从课本到奥数

? (6.4×12.5×0.4)÷(1.6×2.5×0.2)
(45.6+15+54.4+10)×8.88×0.55÷55 0.75×42.7+57.3-0.573×25
? 甲、乙两数的差是7.92,把乙数的小数点向 右移动一位正好等于甲数,你知道甲、乙 两数各是多少吗?
︸ ? a=0.0…0125
? 某移动通信公司有两种手机卡,采用的收费标准 见下表。
种类 固定月租费 每分钟通话费
A卡
30元
B卡
0元
0.3元 0.6元
李阿姨每月的通话费时间累计不超过80分钟, 王阿姨每月的通话时间累计在200分钟左右。 请你帮她们分别选一种比较划算的手机卡,并 通过计算说明理由
? 移动公司有两种优惠用户的计划,如下表
? 春节快到了,妈妈到菜市场买了些鱼和肉, 准备过年。如果买6千克鱼和8千克肉需要
320元,买4千克鱼和12千克肉需要400元。 那么买一千克鱼和1千克肉分别需要多少元?
? 军军用一根绳子测量一口井的深度,他把 绳子的一端垂入井底,井口外绳子长8米;
他把这根绳子对折后,将一端垂入井底, 这时在井口外的绳子还有1米,这口井有多 深?
? 某服装店销售一种服装,当销售困难时, 就按原定售价打对折销售。当生意红火起 来,有悄悄地加价14.5元出售,见买的顾客 少了,又降价2.5元按现价96.4元出售。当 初定价时是在进货价上加40.5元作为售价。 问这种服装进货价是多少元?
? 某人买6瓶饮料,每瓶付款2.50元,喝完全 部饮料可退空瓶,每只空瓶退得的钱比瓶 中饮料的钱少2.30元。这人可退得多少钱?
? 文峰大世界运进一批液晶面板彩色电视机, 第一个星期销售了一半少20台,第二个星 期销售了剩下的一半多30台,这样还剩下 80台。这批电视机一共多少台?
五年级上册数学竞赛课件 《从课本到奥数》 全国通用 75

有0、1、2、3、4、5、6、7、8、9共10张数字卡片,丽丽和王芳两 人轮流翻动一张卡片,让对方猜翻开的卡片是单数还是双数。如果猜对, 猜的人获胜,翻的人输;若猜错,猜的人输,翻的人获胜。
(1)你认为这个游戏规则公平吗?为什么? (2)不改变游戏的道具,你能设计一种不同的游戏规则,使双方都 公平吗?将游戏规则写下来。
(1)单数 双数
个数相等
可能性相等 所以,这个游戏规则是公平的。
(2) 将10张卡片分成个数相等的2份 两人轮流翻动一张卡片, 翻到小于5的,丽丽赢; 翻到大于4的,王芳赢。
ቤተ መጻሕፍቲ ባይዱ
五年级上册数学竞赛课件 《从课本到奥数》 全国通用 (225份打包)75
从课本到奥数B版第二学期

1.找规律填数。
(1)4,9,16,(),36,( );(2)25,4,( ),( ),15,8,10,10。
2.如图所示,正方形内的数是按照一定的规律排列的,按照这个规律,A代表的数是( )。
9 1 30 2 A 32 3 3 6 6 73. 如果○-□=○÷□,那么□=(),○=()。
4. 有一个正方形操场,若每边栽的树一样多,且四个角上各栽一棵树,一共栽了16棵树。
那么,每边栽了多少棵树?5.如图:。
.。
....3根小棒9根小棒18根小棒如果有7层的三角形,一共要用()根小棒。
6.2个小朋友同时吃2颗糖要2分钟,照这样的吃法,20个小朋友同时吃20颗糖要()分钟;10个小朋友同时吃10分钟,一共可以吃()颗糖.7.小新买1支铅笔和3块橡皮花了5元,小少买同样的3支铅笔和1块橡皮花了7元,小年买同样的1支铅笔和1块橡皮要花()元。
8.小巧买1件上衣和2条裤子共用去70元,又知道2条裤子比一件上衣贵10元,问:小巧买的裤子每条多少元?9.有30个苹果。
(1)最少拿走( )个,就能使8个小朋友分到的苹果一样多;(2)每个小朋友可以分到( )个;(3)最少再增加()个,8个小朋友分到的苹果还是一样多。
10.有5个盘子,杯子比盘子多20只,杯子有几只?平均每个盘子里放几只杯子?11.体育课上小朋友们做游戏,分成6组,每组5人,一共有小朋友多少人?如果分成3组,每组有小朋友多少人?12.超市里买3袋饼干要付10元,妈妈要买9袋饼干应付多少元?13.小丁丁从家到学校,走到离校还有200米时发现忘了一本书,他就从原路返回家去拿,到家后又走了1000米才赶到学校.这样小丁丁从家到学校一共走了多少米?14.小林带了60多元钱,和他的小伙伴们去玩“激流勇进”,他们发现票的单价与他们要买的张数相同,且带的钱正好用完。
想一想,票的单价是多少元?小林带了多少元钱?15.二(1)班小朋友排成4列做早操,每列人数相等,小胖站在其中一列,他前面有4人,后面有2人。
四年级奥数从课本到奥数一

四年级奥数从课本到奥数一一、拓展提优试题1.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.2.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.3.(8分)小红去买水果,如果买5千克苹果则少4元,如果买6千克梨则少3元,已知苹果比梨每500克贵5角5分,那么小红买水果共带了元.4.有一个数学运算符号“⊙”,使下列算式成立:2⊙4=8,4⊙6=14,5⊙3=13,8⊙7=23.按此规定,9⊙3=.5.一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是分.6.如果今天是星期五,那么从今天算起,57天后的第一天是星期.7.如图所示,5个相同的两位数相加得两位数,其中相同的字母表示相同的数字,不同的字母表示不同的数字,则=.8.一条大河,河中间(主航道)水的流速为每小时10千米,沿岸边水的流速为每小时8千米.一条船在河中间顺流而下,10小时行驶360千米,这条船沿岸边返回原地需要小时.9.甲、乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍.那么,原来甲桶中油比乙桶中的油多千克.10.一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是秒.【分析】坐在慢车上的人看见快车驶过的时间是21秒:既为人与快车的相遇问题,人此11.甲、乙二人从同一天开始工作,公司规定:甲每工作3天后休息1天,乙每工作7天后连续休息3天,则在开始的前1000天中,甲、乙同一天休息的日子有天..12.(8分)2015年1月1日是星期四,那么2015年6月1日是星期.13.洋洋从家出发去学校,若每分钟走60米,则它6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家里出发的时刻是.14.有一笔钱,用来给四(1)班的学生每人买一个笔记本,若每本3元,则可多买6本;若每本5元,则差30元.若用完这笔钱,恰好给每人买一个笔记本,则共买笔记本24个,其中3元的笔记本个.15.(8分)如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是平方厘米.【参考答案】一、拓展提优试题1.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.2.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.解:父子年龄差是:31﹣5=26(岁),爸爸的年龄是小军的3倍时,小军的年龄是:26÷(3﹣1)=26÷2=13(岁),13﹣5=8(年),答:再过8年,爸爸的年龄是小军的3倍.故答案为:8.【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).3.解:设梨每千克x元,则每千克苹果x+0.55×2=(x+1.1)元6x﹣3=5×(x+1.1)﹣46x﹣3=5x+5.5﹣46x﹣5x=1.5+3x=4.56×4.5﹣3=27﹣3=24(元)答:小红买水果共带了24元.故答案为:24.4.解:9⊙3=9×2+3=21;故答案为:21.5.【分析】要想四轮得分的平均分不低于96分,总分应该达到96×4=384分,用这一分数减去小光前三轮的得分即可解答.解:96×4﹣95﹣97﹣94,=384﹣95﹣97﹣94,=98(分);答:第四轮的得分至少是98分.【点评】本题主要考查简单规划问题,熟练掌握平均数的定义与求法是解答本题的关键.6.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.解:57÷7,=57÷7,=8(周)…1(天);余数是1,星期五再过1天是星期六.故答案为:六.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.7.【分析】根据整数加法竖式计算的方法进行推算即可.解:根据题意,由加法竖式可得:个位上,5×B的末尾还是B,由5×0=0,5×5=25可得:B=0或B=5;假设B=0,那么十位上,5×A=M,M要小于10,只有当A=1时,5×1=5,符合;所以,A=1,B=0;由以上推算可得:假设B=5时,5×5=25,向十位进2;十位上,5×A+2=M,M要小于10,只有当A=1时,5×1+2=7,符合;所以,A=1,B=5;由以上推算可得:因此两位数是:10或15.故答案为:10或15.【点评】推算过程中,本题的关键是末尾数字相同,然后再进一步解答即可.8.解:船的静水速度为:360÷10﹣10,=36﹣10,=26(千米/时);返回原地需要:360÷(26﹣8),=360÷18,=20(小时);答:这条船沿岸边返回原地需要20小时.故答案为:20.9.【分析】根据题意,把甲乙两个油桶的共存油看作5份,可以计算出每份是多少千克油,将乙桶中的15千克油注入甲桶后,甲桶占了其中的4份,乙桶占了其中的1份,1份即100÷5=20千克,可以计算出注入后各个油桶的千克,再用乙桶的油减去15千克,甲桶的油加上15千克,即是甲乙两桶原存油的数量,再用甲桶原存油的数量减去一桶原存油的数量,列式解答即可解:100÷(1+4)=20(千克)注入后的甲桶:4×20=80(千克)倒出后的乙桶:1×20=20(千克)原甲桶存油:80﹣15=65(千克)原乙桶存油:20+15=35(千克)甲桶中油比乙桶中的油多:65﹣35=30(千克)答:原来甲桶中油比乙桶中的油多30千克.故答案为:30.【点评】解答此题的关键是分清注入后甲乙两桶油的关系,即甲桶存油等于乙桶存油的4倍,然后可计算出注入后甲乙两桶油的存量,再计算出注入前两桶油的重量,二者相减即可.10.时具有慢车的速度,相遇路程为快车的车长315米,相遇时间为21秒,即人与慢车的速度和为快车与慢车的速度和为:315÷21=15(米/秒);那么坐在快车上的人看见慢车驶过的时间,既为人与慢车的相遇问题,人此时具有快车的速度,相遇路程为慢车的车长300米,由于两车为相向而行,所以坐在车上的人看到车通过的速度为两车的速度和.用快车车长除以快车与慢车的速度和即可.解:根据题意可得:快车与慢车的速度和:315÷21=15(米/秒);坐在快车上的人看见慢车驶过的时间是:300÷15=20(秒);答:坐在快车上的人看见慢车驶过的时间是20秒.故答案为:20.【点评】完成本题的关键是根据坐在慢车上的人见快车通过的时间求出两车的速度和,然后再根据相遇问题进一步解答即可.11.【分析】甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么甲只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期,每一周期有一天重合,那么100周期共有100天重合解:甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么乙只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期每一周期有一天重合,那么100周期共有100天重合.故答案为:100.【点评】本题主要考查了公约数与公倍数问题.关键是乙每工作10天才会有1天与甲的重合.12.解:因为2015÷4=503…3,所以2015年是平年,2月有28天,(31×3+30+28)÷7=151÷7=21(个)…4(天)因为2015年1月1日是星期四,4+4﹣7=1所以2015年6月1日是星期一.故答案为:一.13.【分析】6时53分﹣6时45分=8分钟,设从家到学校若每分钟走60米,x分钟到学校,则若每分钟走75米,x﹣8分钟到学校,因为从家到学校的距离一定,根据“速度×时间=路程”列方程解答即可.解:设从家到学校若每分钟走60米,x分钟到学校,6时53分﹣6时45分=8分钟60x=(x﹣8)×7560x=75x﹣60015x=600x=40;6时53分﹣40分=6时13分;答:洋洋从家里出发的时刻是6:13.故答案为:6:13.【点评】此题考查列方程解应用题,本题关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.14.【分析】若每本3元,则多3×6=18元,则总人数为(18+30)÷(5﹣3)=24人,总钱数有5×24﹣30=90元,进而可得结论.解:由题意得若每本3元,则多3×6=18元,则总人数为(18+30)÷(5﹣3)=24人,总钱数有5×24﹣30=90元,若钱用完刚好买24本,则3元的笔记本有(24×5﹣90)÷(5﹣3)=15个,故答案为24,15.【点评】本题考查分配盈亏问题,考查学生的计算能力,属于中档题.15.解:最大正方形的边长是11厘米,次大正方形的边长:19﹣11=8(厘米)最小正方形的边长是:11﹣8=3(厘米)阴影长方形的长是3厘米,宽是8﹣3﹣3=2(厘米)3×2=6(平方厘米)答:没有被正方形覆盖的小长方形(图中阴影部分)的面积是 6平方厘米.故答案为:6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从课本到奥数专题一数学思想与方法(一)数形结合的思想1、如图,a , b , c 三种物体的质量的大小关系 是 ・D 、15 3、如图, 电路的电线等距排列,则三户所用电线a b c2、如图,把一块含有45。
角的直角三角板的两个顶点放在直尺的对边 上•如果/仁20°,那么/ 2的度数是( )A 、30 °B 、25C 、20 有a 、b 、c 三户家用电路接入电表,相邻 C. pc 户 a ] bi(A. a户最长B. b户最长最长 D.三户一样长4、实数a +b + J(b- a)2b在数轴上的位置如图所示,则化简a Ob .5、按如图程序进行运算,规定:程序运行到 判 断结果是否大于244”为一次运算,若运算进行 了 5次才停止,则x 的取值范围是 ___________ .y o )经平移后对应点为 P i (X o +5, y o — 3)那么 图 将厶ABC 作同榉的平移得到△ A i B i C i ,则点A 的对应点A i 的坐标是() A. (4, i )B. (9, 一 4) 6, 7) D. (一 i , 2)7、如图所示,直径为单位i 的圆从原点沿着数 轴无滑动的逆时针滚动一周到达 A 点,则A 点 表示的数是 ________ .若点B 表示-3.i4,则点B 在点A 的 边(填左”或右”.6、如图3,若厶ABC 中任意一点P (x o ,C.(8如图1是长方形纸带,/ DEF=20Q 将纸带 沿EF 折叠成图2,再沿BF 折叠成图3,(二)转化的思想”2 Y + \/ =3* _11、 若关于X 、y 的二元一次方程组[x+2y=—2的解 满足x + y > 1,则k 的取值范围是 _______________ .2、 已知等式(2A — 7B )x+(3A — 8B )=8x+10,对一 切实数x 都成立,求A 、B 的值。
则图3中的/ CFE 的度数是AD G 图3 FDC3、设a是大于1的实数,若a号,于在数轴上对应的点分别记作A、B、C,则A、B、C三点在数轴上从左至右的顺序是______________________ .4、不等式组的解集是3< X V a+2,则3 <x <5a的取值范围是()A.a > 1B.a<3C.a < 1 或 a > 3D.1 < a< 35、若不等式组=无解,贝U m的取值范围是__________ .6、已知关于x的不等式组叮;沦°的整数解共有3 — 2x a -15个,贝V a的取值范围是________ ・7、用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的1钉子长度是前一次的2 .已知这个铁钉被敲击3 次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2cm,若铁钉总长度为acm贝V a的取值范围是_______________ ・8是否存在这样的整数m,使方程组{:+y「m62*374x_5y = 6m + 3 的解X、y为非负数,若存在,求m?的取值?若不存在,则说明理由.9、若a、b、c是有理数,且满足等式a + b、.2 + c、3 = 2- .2+3、3,试计算(a-c)2010+b2011的值。
10、已知^^5+^5 = 0,求7 (x + y)—20 的立方根11、自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:口.0 , 等.那么如何求出它们的解集呢?x 1 x -1根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负•其字母表达式为:(1)若b o,则:0或「0(2) ____________________ 若a .:0,贝y 或b根据上述规律,求不等式(1) 口汕(2)—2x+5 2x-6 的解集.(三)方程的思想 1、如图1,在边长为a 的大正万形中剪去一个边长为b 的小正方形,再将图中的阴影部分剪 中H 部分的面积是 _________ 2、如图,长万形ABCD 中放置9 相同的小长方形,相关数据图中 所示,则图中阴影部分的面积为 多少.30,宽为20.则图2拼成一个如图成的长方长方形, 2.这个拼 形的长为 D C3、如图,在某张桌子上放相同的木块,R=63 S=77,则桌子的高度是()A . 70B . 50 I C. 65 D . 14 丄4、如图所示,直线AB、CD相交于点OQE丄AB, 点O为垂足,OF平分/ AOC , / COE= 2 Z AOC,求 / DOF 的度数.FO专题二:规律探索问题1.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1( - 1,1),第四次向右跳动5个单位至点A4(3, 2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是 . 2.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“―”方向排列,如(1, 0),(2, 0),(2, 1),(1,1),(1, 2),(2, 2)…根据这个规律,第2012个点的横坐标为__________ .3.在平面直角坐标系中,正方形ABCD勺顶点坐标分别是A( 1, 1), B( 1, - 1), C(- 1, - 1), □ (- 1, 1), y轴上有一点P (0, 2),作P关于A 的对称点P i ,作P i 关于B 的对称点P 2,作P 2 关于C 的对称点P 3 ,作P 3关于D 的对称点P 4,作 P 4关于A 的对称点P 5,…按此操作下去,则点P 2012的坐标为( )4.在国外留学的叔叔送给聪聪一个新奇的玩具 智能流氓兔。
它的新奇之处在于若第一次向 正南跳一下,第二次就掉头向正北跳两下,第三 次又掉头向正南跳三下,……而且每一跳的距离 为20厘米。
当流氓兔位于原点处,第一次向正 南(记y 轴正半轴方向为正北),那么跳完第 80次后,流氓兔所在位置的坐标为() A . (800,0) B . (0, — 80) C ・(0,800)D . (0, 80)专题三:阅读理解1.为确保信息安全,信息需加密传输,发送方kg』门1)"ITX '第1题图 第2题图第3题图由明文f密文(加密),接收方由密文f明文(解密),已知加密规则为:明文a , b , c , d 对应密文a+2b, 2b+c ,2c+3d ,4d .例如,明 文1, 2, 3, 4对应密文5, 7, 18, 16.当接 收方收到密文14, 9, 23, 28时,则解密得到 的明文为()2.如图,已知/ AGD=Z ACB / 1 = 2 2。
求证:3.如图,2 A= 60°, DF 丄 AB 于 F, DG/ AC 交AB 于 G DE// AB 交 AC 于 E 。
A . 7, 6, 1, 4 7C . 4, 6, 1, 7B .6, 4, 1,D 1, 6, 4, 7CD// EF 。
(填空并在后面的括号中填 理由)D 1E234.如图所示,已知 AB//CD ,/ 1:7 2:/ 3=1: 2: 3,求证:BA 平分7 EBF.下面给出证法1:证法1:设7 1、7 2、7 3的度数分别为12x °、3x ° .C3•・• AB//CD ,二 2x ° +3x ° =180°,解得 x=36・・・7 1=36°,7 2=72°,7 3=108° • 7 EBD=180 ,・・・7 EBA=72 . ・•・BA 平分7 EBF.请阅读证法1后,找出与证法1不同的证法2, 并写出证明过程求/ GDF 的度数B5. 某工厂用如图甲所示的长方形和正方形纸板 做成如图乙所示的A, B 两种长方体形状的无盖 纸盒.现有正方形纸板140张,长方形纸板360 张,刚好全部用完,问能做成多少个A 型盒子? 多少个B 型盒子?(1)根据题意,甲和乙两同学分别列出的方程 组如下: 甲:{X+2y=140 ; 乙:4x+3y=360根据两位同学所列的方程组,请你分别指出未知 数x ,y 表示的意义: 甲:x 表示 ____________________________ , y{ x+y=140 {(逊翕)乙(B型盒)表示 _____________________________ ;乙: x表示_____________________________ , y表示 _______________________________ ;(2)求出做成的A型盒子和B型盒子分别有多少个(写出完整的解答过程)?6.如图,某化工厂与A, B两地有公路和铁路相连,这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/ (吨?千米),铁路运价为1.2元/ (吨?千米),这两次运输共支出公路运费15 000元,铁路运费97 200元,请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:1.5(20x 10y)主口乙:1.2(110x 120y)二口x y i—1.5(20 汉- +1^^—)=彳8000 10001.2(110 X 120 —)=I 8000 1000根据甲,乙两名同学所列方程组,请你分别指出未知数x,y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x表示 _________________________________ , y表示 __乙:X表示 _______________________________ , y表示 __(2)甲同学根据他所列方程组解得x=300,请你帮他解出y的值,并解决该实际问题.7.先阅读,再解题.解不等式:2x +5> 0.x- 3解:根据两数相除,同号得正,异味号得负, 得①士 > 0或②2x二,解不等式组①,得 x x- 3 [x-3c0.>3,解不等式组②,得x v — |.所以原不等式的解集为x >3或x v — |.2参照以上解题过程所反映的解题思想方法, 试解不等式:筈3v 0.1+3x暑 1Ukm挟路"小琨:仙甬快暗lUJkm思维扩展: 1 •.如图,在长方形草地内修建了宽为2米的道路,则草地面积为 ______ 米2.2•把一副常用三角板如图所示拼在一起,那么图中/ ADE是_________ 度3•如图,将一副三角板叠放在一起,使直角的顶点重合,/ AOCFDOB= ____________ ,当三角板AOB 绕着O点旋转时,(OB边始终与线段DC有交点),/ AOC与/ DOB的和是否变—CB第1题图第2题图第3题图。