乙苯-苯乙烯工艺原理
实验一 乙苯脱氢制苯乙烯
4.2 实验一 乙苯脱氢制苯乙烯一 实验目的(1)了解以乙苯为原料,氧化铁系为催化剂,在固定床单管反应器中制备苯乙烯的过程。
(2)学会稳定工艺操作条件的方法。
二 实验原理1.本实验的主副反应 主反应:副反应:在水蒸气存在的条件下,还可能发生下列反应:此外还有芳烃脱氢缩合苯乙烯聚合生成焦油和焦等。
这些连串副反应的发生不仅使反应的选择性下降,而且极易使催化剂表面结焦进而活性下降。
(1)影响本反应的因素 1)温度的影响乙苯脱氢反应为吸热反应,00>∆H,从平衡常数与温度的关系式20ln RT H T K pp ∆=⎪⎪⎭⎫ ⎝⎛∂∂可知,提高温度可增大平衡常数,从而提高脱氢反应的平衡转化率。
但是温度过高副反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适宜的反应温度。
本实验的反应温度为:540~600℃。
2)压力的影响乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式n p K K =γ∆⎪⎪⎭⎫⎝⎛∑i nP 总可知,当γ∆>时,降低总压总P 可使n K 增大,从而增加了反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。
本实验加水蒸气的目的是降低乙苯的分压,以提高平衡转化率。
较适宜的水蒸气用量为:水∶乙苯=1.5∶1(体积比)或8∶1(摩尔比)。
3)空速的影响乙苯脱氢反应系统中有平衡副反应和连串副反应,随着接触时间的增加,副反应也增加,苯乙烯的选择性可能下降,适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以0.6h-1为宜。
(2)催化剂本实验采用氧化铁系催化剂其组成为:Fe2O3—CuO—K2O3—CeO2。
三预习与思考(1)乙苯脱氢生成苯乙烯反应是吸热还是放热反应?如何判断?如果是吸热反应,则反应温度为多少?实验室是如何来实现的?工业上又是如何实现的?(2)对本反应而言是体积增大还是减小?加压有利还是减压有利?工业上是如何来实现加减压操作的?本实验采用什么方法?为什么加入水蒸气可以降低烃分压?(3)在本实验中你认为有哪几种液体产物生成?哪几种气体产物生成?如何分析?四实验装置及流程见图4.2-1。
苯乙烯生产—乙苯催化脱氢生产苯乙烯的工艺参数
本讲学习了苯烷基化和乙苯催化脱氢两个反应过程中的工艺参数及确 定,理解工艺参数对反应过程产生的影响,对学习乙苯脱氢生成苯乙烯 的工艺流程有重要帮助。 思考题: 请根据生产原理确定乙苯催化脱氢过程的工艺参数。
2、脱氢反应工艺参数
(3)水蒸气用量 目的:降低原料乙苯的分压,有利于主反应的进行。 选用水蒸气做稀释剂的好处: ①降低乙苯分压,改善化学平衡,提高平衡转化率; ②热容大,利于反应温度稳定; ③脱除催化剂表面的积炭,恢复催化剂活性,延长催化剂再生周期; ④置换吸附在催化剂表面的产物,有利于产物脱离催化剂表面,加快产品生成速度; ⑤容易与反应物分离。
1、苯烷基化反应工艺参数
(2)反应压力
压力对气液相反应平衡影响不大。 热力学计算:乙烯在接近常压5~6MPa下操作。 使用AlCl3催化剂:乙烯与苯通常在常压下进行反应。
(3)原料配比
1、苯烷基化反应工艺参数
乙烯对苯摩尔比增加,乙苯的生成 量增加,多乙苯的生成量也增加。
原料配比超过0.6,乙苯生成量增 加不显著,多乙苯生成量显著加大。
1、苯烷基化反应工艺参数
苯中的硫化物:总质量含量<0.1%。 甲苯:在AlCl3作用下生成甲乙苯,造成乙苯分离困难,且增加原料乙烯 的消耗。 过量水:将AlCl3水解,HCl腐蚀设备,Al(OH)3堵塞管道和设备。苯中 含水量一定要精确计算,一般含水量应小于500~700mg/kg。
2、脱氢反应工艺参数
2、脱氢反应工艺参数
转化率 反应温度/K
853 873 893 913
0 0.35 0.41 0.48 0.55
n(水蒸气):n(乙苯) 16
0.76 0.82 0.86 0.90
18 0.77 0.83 0.87 0.90
苯乙烯生产原理
苯乙烯生产原理1.1.1乙苯脱氢反应机理1.2.1.1脱氢反应乙苯通过强吸热脱氢反应生成苯乙烯,C6H5C2H5=C6H5C2H3+H2反应进行程度受化学平衡制约,气相状态下的平衡常数是P(苯乙烯)× P(氢)Kp = ————————————P(乙苯)PT×Y(苯乙烯)×Y(氢)= ————————————Y(乙苯)这里:P:表示分压;Y:表示摩尔分数;PT:表示总压。
对于气相吸热反应而言,反应平衡常数随温度上升而增加,温度与平衡常数的关系如下:lnKp=A-B/T这里:T:K ;Kp:atm;A=15.685;B=14990(根据API工程数据手册44页)。
所以高温有利于乙苯向苯乙烯转化。
1.2.1.2热反应:乙苯能在高温没有催化剂条件下转化生成苯乙烯。
在目前的催化工艺中,如果温度太高也会发生热反应。
在乙苯生成苯乙烯的热反应中,主要的副产物是苯及其转化生成的复杂的高级芳烃混合物(例如:蒽或芘)和焦碳。
低于600℃以下,热反应发生并不明显,在655℃以上时,就成为影响总产率的重要因素。
甚至在有蒸汽存在下(它能够吹走焦碳),在催化剂床层中,只要温度过高,这些热反应都将发生。
减弱热反应的方法之一就是在乙苯进入催化剂床层之前避免将乙苯加热足够的反应温度(超过620℃),就是说,将乙苯和部分用来抑制结焦的稀释蒸汽过热到低于580℃,然后在催化剂床层入口与大部分稀释蒸汽混合。
主蒸汽被加热的温度必须保证过热乙苯/水蒸气混合物达到催化剂床层入口温度要求。
在二级反应系统中,二段床层入口处安装一台反应器出料再加热器有利于抑制热反应。
再加热器安装在二段反应器顶部。
在催化剂床层顶部,从一段出口到二段反应器之间的体积对热反应影响不大,因为温度正好低于580℃。
控制热反应最重要的一点就是催化剂床层的结构。
径向外流式比轴流或径向内流具有较底的入口容积,当气相进料通过催化剂床层时可获得理想的分布。
苯乙烯的合成工艺
二、乙苯催化脱氢合成苯乙烯的工艺流程脱氢反应:强吸热反应;反应需要在高温下进行;反应需要在高温条件下向反应系统供给大量的热量。
由于供热方式不同,采用的反应器型式也不同。
工业上采用的反应器型式有两种:一种是多管等温型反应器,是以烟道气为热载体,反应器放在加热炉内,由高温烟道气,将反应所需要的热量通过管壁传递给催化剂床层。
另一种是绝热型反应器,所需要的热源是由过热水蒸气直接带入反应系统。
采用这两种不同型式反应器的工艺流程,主要差别:脱氢部分的水蒸气用量不同;热量的供给和回收利用方式不同。
(一)多管等温反应器脱氢部分的工艺流程反应器构成:是由许多耐高温的镍铬不锈钢钢管组成;或者内衬以铜锰合金的耐热钢管组成;管径为100~185mm;管长为3m;管内装填催化剂;管外用烟道气加热(见图4-9,P182)。
多管等温反应器脱氢部分的工艺流程图见图4-10(P182)所示。
反应条件及流程:1.原料乙苯蒸气和一定量的水蒸气混合;2.预热温度(反应进口):540℃;3.反应温度(反应出口):580~620℃;4.反应产物冷却冷凝:液体分去水后送到粗苯乙烯贮槽;不凝气体含有90%左右的H2,其余为CO2和少量C1及C2 可作为燃料气,也可以用作氢源。
5.水蒸气与乙苯的用量比(摩尔比)为6~9:1; (等温反应器脱氢,水蒸气仅作为稀释剂用)。
6.讨论:(1)等温反应器:要使反应器达到等温,沿反应器的反应管传热速率的改变,必须与反应所需要吸收热量的递减速率的改变同步。
(2)一般情况下,出口温度可能比进口温度高出几十度(传递给催化剂床层的热量,大于反应时需要吸收的热量。
)(3)催化剂床层的最佳温度分布以保持等温为好。
(4)在反应初期, 温度比较低有利:在反应初期,乙苯浓度高,平行副反应竞争激烈。
温度比较低,有利于抑制活化能比较高的裂解和水蒸气转化等副反应的进行。
(5) 接近反应器的出口,温度比较高有利:接近反应器的出口,乙苯浓度降低,反应的推动力减小,提高反应温度,不仅可以增大反应速度常数,也可以提高反应的推动力,从而加快脱氢反应速度,使乙苯能达到比较高的转化率。
苯乙烯生产工艺1
苯乙烯是一种重要的基本有机化工原料,主要用于生产聚苯乙烯树脂(PS)、丙烯腈-丁二烯-苯乙烯(ABS)树脂、苯乙烯-丙烯腈共聚物(SAN)树脂、丁苯橡胶和丁苯胶乳(SBR/SBR 胶乳)、离子交换树脂、不饱和聚酯以及苯乙烯系热塑性弹性体(如SBS)等。
此外,还可用于制药、染料、农药以及选矿等行业,用途十分广泛。
目前,世界上苯乙烯的生产方法主要有乙苯脱氢法、环氧丙烷-苯乙烯联产法、热解汽油抽提蒸馏回收法以及丁二烯合成法等。
1 乙苯脱氢法1.1、原料-----乙苯:乙苯脱氢法生产苯乙烯的原料是乙苯。
乙苯是乙基苯的俗称,无色,具有芳香气味的可燃液体,沸点136.19°C。
熔点(℃) -94.9,可由苯通过烷基化或直接从碳八芳烃分离获得,主要用于制造苯乙烯,少量用于有机合成工业,如制成苯乙酮用于香料、医药等方面。
目前,世界上90%以上的乙苯是由苯和乙烯烷基化生产制得,一分子乙烯在适当条件下与一分子苯作用生成一分子乙苯。
1.1.1、乙苯生产工艺方法:现在工业上约有90%的乙苯是通过苯烷基化生产的1)液相法液相法使用的催化剂为三氯化铝,反应器为塔式,反应温度范围在125~140℃,反应压力在0.2~0.4Mpa,使乙烯与苯反应生成乙苯:副反应是乙苯进一步用乙烯烷基化生成多乙苯。
工业上将苯的转化率限制在52%~55%左右,并采用高的苯与乙烯配料比(摩尔比一般为2左右),以防止生成更多的二乙苯与多乙苯。
乙苯的平均收率为94%~96%。
应严格控制原料苯和乙烯中的硫化物、乙炔等杂质,以减少三氯化铝的消耗。
一般烃化液的组成(质量%):苯40,乙苯47,多乙苯(主要是二乙苯)13。
反应前应将苯干燥至水含量30mg/kg以下,乙烯纯度为99.9%。
反应产物(粗乙苯)用精馏分离得到乙苯,分离得到的苯再循环使用。
2)气相法气相法的设备是固定床式,催化剂为磷酸负载在硅藻土构成的催化剂。
反应温度为200~250℃,反应压力为1.4Mpa.关于乙烯的综合纯度指标高低不是关键,关键是应在预处理中除掉硫及硫化物,氮化物和乙炔。
乙苯制取苯乙烯方程式
乙苯制取苯乙烯方程式乙苯制取苯乙烯方程式一、介绍乙苯制取苯乙烯是一种重要的有机化工反应,也是工业上生产苯乙烯的主要方法之一。
本文将从反应原理、反应条件、反应机理等方面详细介绍乙苯制取苯乙烯的相关知识。
二、反应原理在高温条件下,乙苯可以发生脱氢反应,生成苯乙烯和氢气。
其化学方程式为:C6H5CH3 → C6H5CH=CH2 + H2三、反应条件1.温度:该反应需要在高温下进行,通常在400-500℃左右。
2.催化剂:常用的催化剂为氧化铝、硅铝酸盐等。
3.压力:该反应需要在较低的压力下进行,通常为0.1-0.3MPa。
四、反应机理该反应属于脱氢反应,其机理如下:首先,通过吸收能量(如热能)使得乙苯中的碳-氢键断裂,形成一个自由基。
这个自由基随后与催化剂表面上的一个吸附态氧原子结合,形成一个临时的碳-氧键。
接着,自由基中的另一个氢原子被催化剂上的吸附态氧原子夺取,生成水分子和一个新的自由基。
最后,这个自由基与催化剂表面上的另一个吸附态氧原子结合,形成苯乙烯和催化剂表面上的活性位点。
五、反应优化1.提高反应温度可以促进反应速率,但过高的温度会导致产物分解或失活。
2.选择合适的催化剂可以提高反应效率和选择性。
3.控制反应压力可以避免产物分解或失活。
4.采用循环式反应可以提高产物收率。
六、总结乙苯制取苯乙烯是一种重要的有机化工反应,其原理是通过脱氢反应将乙苯转化为苯乙烯和氢气。
该反应需要在高温下进行,并使用适当的催化剂和较低压力。
通过优化反应条件可以提高产物收率和选择性。
乙苯脱氢制苯乙烯脱氢工段工艺设计
乙苯脱氢制苯乙烯脱氢工段工艺设计摘要本设计是以年产5万吨苯乙烯为生产目标,采用乙苯脱氢制得苯乙烯的工艺方法,本文针对设计要求对整个工艺流程进行物料衡算,热量衡算,对整个工段进行工艺设计和设备选型。
然后根据物料平衡分别对进出脱氢反应器和气提塔进行物料衡算。
根据热力学定律对工艺中的第一预热器第二预热器,热交换器和反应器进行了能量衡算。
对油水分离器,物料泵,热交换器理论上进行了尺寸计算及选择。
为满足设计要求,达到所需要的工艺条件,本设计本着理论联系实际的精神,用现行的乙苯脱氢制取苯乙烯的方法为设计基础,主要对乙苯脱氢工段进行工艺设计和优化。
关键词:乙苯脱氢苯乙烯物料衡算能量衡算工艺ABSTRACTThe design is based on an annual output of 50,000 tons of styrene production target of dehydrogenationof ethylbenzene to styrene process,Processfor the whole process design and the main equipment selection.Based on the design requirements of the entire process of the material balance and energy balance.According to the material balance were circulating oil-water separator,material pumps,heateexchangers and dreacters.According to the laws of thermodynamics the energy balance of the process preheater preheaters,heat exchangers and dreactor operator.As far as possible to meet the design requirements to achieve the required conditions.Key word:ethylbenzene; styrene; material balance; energy balance; distillation;第一章文献综述1.1 苯乙烯的性质及用途1.1.1苯乙烯的性质苯乙烯的分子式为C8H8分子量为104.14,化学结构式如下:或者苯乙烯又名乙烯基苯,系无色至黄色的油状液体。
乙苯脱氢制苯乙烯实验注意事项
乙苯脱氢制苯乙烯实验注意事项
一、实验原理
乙苯脱氢是利用催化剂将乙苯加热至高温,使其分解成苯和乙烯的过程。
该反应是工业上制取苯乙烯的重要方法。
二、实验步骤
1.将催化剂(如氧化钒或氧化铁)加入反应釜中。
2.加入适量的乙苯,并通入氢气。
3.升温至500℃左右,持续反应2-3小时。
4.冷却后,收集产物并进行分析。
三、注意事项
1.实验操作时需佩戴防护手套、护目镜等个人防护装备,以免受到反应物或产物的伤害。
2.反应釜应选择耐高温、耐腐蚀的材料制成,如不锈钢或玻璃等,并保持清洁干燥。
3.催化剂的选择要根据实验需要进行调整,以保证反应效果和产物纯度。
4.通入氢气时需注意控制流量和压力,避免因过高压力导致爆炸事故发生。
5.加热时要慢慢升温,避免温度过高引起反应釜爆炸。
6.收集产物时要使用合适的容器,并进行标记和储存,以免产生混淆或误用。
7.实验结束后,要及时清洗反应釜和设备,并进行妥善保管。
四、实验安全提示
1.实验室内禁止吸烟、饮食等行为,以免引起火灾或中毒事故。
2.实验前要对设备进行检查和试运行,确保其正常工作。
3.实验操作时要严格按照操作规程进行,不得随意更改或省略步骤。
4.如遇到异常情况(如气味异常、产物颜色变化等),应立即停止操作并向有关人员报告。
乙苯制取苯乙烯方程式
乙苯制取苯乙烯方程式介绍乙苯制取苯乙烯是一种重要的工业过程,用于生产合成橡胶、塑料和纤维等产品。
本文将深入探讨乙苯制取苯乙烯的方程式、反应机理以及相关应用。
乙苯制取苯乙烯的方程式乙苯制取苯乙烯的方程式如下所示:C6H5CH3 -> C6H5CH2 + H2乙苯制取苯乙烯的反应机理乙苯制取苯乙烯的反应机理涉及乙苯的脱氢过程。
乙苯在高温催化剂的作用下发生脱氢反应,生成苯乙烯和氢气两种产物。
具体反应机理如下:1.吸附乙苯在催化剂表面发生吸附,与催化剂形成活性物种。
2.脱氢吸附的乙苯经过脱氢反应,失去一个氢原子,生成苯乙烯。
3.产物解吸生成的苯乙烯和氢气从催化剂表面解吸,脱离催化剂。
乙苯制取苯乙烯的工业应用乙苯制取苯乙烯是一种重要的工业过程,在合成橡胶、塑料和纤维等行业有着广泛的应用。
以下是一些主要的工业应用:1.合成橡胶苯乙烯是生产合成橡胶的重要原料之一。
通过乙苯制取苯乙烯,可以提供充足的原料供应,满足合成橡胶工业的需求。
2.制造塑料苯乙烯是制造塑料的重要原料之一。
经过聚合反应,可以制得聚苯乙烯(PS)等塑料,用于制造各种日常用品和工业产品。
3.生产纤维苯乙烯还可以用于生产合成纤维。
通过乙苯制取苯乙烯,可以提供纤维工业所需的原料,用于生产合成纤维,如聚酰胺纤维等。
4.其他应用苯乙烯还可以用于生产涂料、粘合剂等。
其结构的稳定性和化学性质使其成为多种工业应用的重要原料之一。
总结乙苯制取苯乙烯是一种重要的工业过程,通过脱氢反应将乙苯转化为苯乙烯。
该反应涉及吸附、脱氢和产物解吸等过程。
乙苯制取的苯乙烯广泛应用于合成橡胶、塑料、纤维和涂料等领域,为这些行业提供了重要的原料供应。
以上就是乙苯制取苯乙烯方程式的相关内容,希望能为读者提供一些有用的信息。
感谢阅读!。
乙苯脱氢制苯乙烯实验
一 、实验目的1、了解以乙苯为原料在铁系催化剂上进行固定床制备苯乙烯的过程,学会设计实验流程和操作;2、掌握乙苯脱氢操作条件对产物收率的影响,学会获取稳定的工艺条件之方法;3、掌握催化剂的填装、活化、反应使用方法;4、掌握色谱分析方法。
二 、实验原理1、主副反应乙苯脱氢生成苯乙烯和氢气是一个可逆的强烈吸热反应,只有在催化剂存在的高温条件下才能提高产品收率,其反应如下:主反应副反应此外,还有部分芳烃脱氢缩合、聚合物以及焦油和碳生成。
2、影响因素 (1)温度的影响乙苯脱氢反应为吸热反应,△H 0>0,从平衡常数与温度的关系式20ln RT H T K P P ∆=⎪⎭⎫⎝⎛∂∂可知,提高温度可增大平衡常数,从而提高脱 氢 反应的平衡转化率。
但是温度过高副 反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适应的反应温度。
(2)压力的影响乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式γ∆⎥⎦⎤⎢⎣⎡∑=ni 总P K K n P 可知,当△γ>0时,降低总压P 总可使K n 增大,从而增加了反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。
实验中加入惰性气体或减压条件下进行,通常均使用水蒸气作稀释剂,它可降低乙苯的分压,以提高平衡转化率。
水蒸气的加入还可向脱氢反应提供部分热量,使反应温度比较稳定,能使反应产物迅速脱离催化剂表面,有利于反应向苯乙烯方向进行;同时还可以有利于烧掉催化剂表面的积碳。
但水蒸汽增大到一定程度后,转化率提高并不显著,因此适宜的用量为:水:乙苯=1.2~2.6:1(质量比)。
(3)空速的影响乙苯脱氢反应中的副反应和连串副反应,随着接触时间的增大而增大,产物苯乙烯的选择性会下降,催化剂的最佳活性与适宜的空速及反应温度有关,本实验乙苯的液空速以0.6~1h-1为宜。
(4)催化剂乙苯脱氢技术的关键是选择催化剂。
此反应的催化剂种类颇多,其中铁系催化剂是应用最广的一种。
乙苯脱氢反应实验报告
乙苯脱氢反应实验报告乙苯脱氢制苯乙烯实验报告乙苯脱氢制苯乙烯实验报告一实验目的(1)了解以乙苯为原料在铁系催化剂上进行固定床制备苯乙烯的过程,学会设计实验流程和操作;(2)掌握乙苯脱氢操作条件对产物收率的影响,学会获取稳定的工艺条件之方法。
(3)掌握催化剂的填装、活化、反应使用方法。
(4)掌握色谱分析方法。
二实验原理2.1主副反应乙苯脱氢生成苯乙烯和氢气是一个可逆的强烈吸热反应,只有在催化剂存在的高温条件下才能提高产品收率,其反应如下:主反应C6H5C2H56H5C2H3 + H2副反应C6H5C2H56 + C2H4C2H4 + H2H6C6H5C2H5 + H2H6+ C2H6C6H5C2H56H5,CH3+ CH4此外,还有部分芳烃脱氢缩合、聚合物以及焦油和碳生成。
2.2 影响因素2.2.1温度的影响乙苯脱氢反应为吸热反应,?H00,从平衡常数与温度的关系式?H0??lnKP?可知,提高温度可增大平衡常数,从而提高脱氢反应的平衡???2?TRT??P转化率。
但是温度过高副反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适应的反应温度。
2.2.2 压力的影响?P?乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式KP?Kn?总?可??ni???知,当?γ0时,降低总压P总可使Kn增大,从而增加了反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。
实验中加入惰性气体或减压条件下进行,通常均使用水蒸气作稀释剂,它可降低乙苯的分压,以提高平衡转化率。
水蒸气的加入还可向脱氢反应提供部分热量,使反应温度比较稳定,能使反应产物迅速脱离催化剂表面,有利于反应向苯乙烯方向进行;同时还可以有利于烧掉催化剂表面的积碳。
但水蒸汽增大到一定程度后,转化率提高并不显著,因此适宜的用量为:水:乙苯,1.2,2.6:1(质量比)。
2.2.3 空速的影响乙苯脱氢反应中的副反应和连串副反应,随着接触时间的增大而增大,产物苯乙烯的选择性会下降,催化剂的最佳活性与适宜的空速及反应温度有关,本-1实验乙苯的液空速以0.6,1h为宜。
乙苯脱氢制苯乙烯关键技术轴径向反应器和新型催化剂的研发及应用
乙苯脱氢制苯乙烯关键技术轴径向反应器和新型催化剂的研发及应用乙苯脱氢制苯乙烯是一种重要的工业反应过程,用于生产苯乙烯(常称为“乙烯基苯”)。
在这个过程中,通过催化剂的作用,将乙苯中的甲基基团去除,生成苯乙烯。
近年来,轴径向反应器和新型催化剂的研发和应用在乙苯脱氢制苯乙烯领域引起了广泛关注。
本文将介绍轴径向反应器和新型催化剂在乙苯脱氢制苯乙烯中的关键技术及其研发与应用。
一、轴径向反应器的原理和优势1.原理:轴径向反应器是一种特殊设计的反应器,具有内部离心力场。
乙苯和催化剂从轴向进入反应器,在高速旋转下,受到离心力作用,形成薄膜层,并在薄膜层中进行反应。
离心力可以提高反应速率和产物分离效率。
2.优势:-提高反应速率:轴径向反应器中的离心力可增加反应物的有效接触面积,加速反应速率。
-优化产物分离:由于薄膜层的形成,产物可以迅速从反应区域分离,减少副反应和产物混合,提高纯度。
-提高传热效率:离心力可增强热量传递,使得反应温度更均匀,提高产物质量。
二、新型催化剂的研发与应用1.催化剂设计:新型催化剂的设计致力于提高乙苯脱氢反应的选择性和活性。
一些关键技术包括:-载体选择:选择适合的载体材料,如γ-铝石英或硅铝酸盐等,以提高催化剂的稳定性和活性。
-活性金属:常用的活性金属有铬、钼等,其合理的掺杂和改性能够提高催化剂的活性和选择性。
-排序结构:通过优化催化剂的晶体结构、孔道结构和孔径分布等参数,提高乙苯脱氢反应的选择性。
2.催化剂应用:新型催化剂在乙苯脱氢制苯乙烯中的应用主要体现在以下几个方面:-提高反应选择性:新型催化剂能够提高乙苯脱氢反应中苯乙烯的选择性,降低副产物的生成。
-延长催化剂寿命:通过改善催化剂的稳定性和抗积碳性能,延长催化剂的使用寿命。
-降低生产成本:新型催化剂的设计和应用可以优化乙苯脱氢反应的条件,降低能耗和催化剂的使用量,从而降低生产成本。
三、研发与应用展望1.研发趋势:随着科学技术的不断进步,轴径向反应器和新型催化剂的研发将朝着以下方向发展:-进一步提高反应速率和选择性;-开发更加环保和高效的催化剂;-优化轴径向反应器的结构和工艺参数。
乙苯脱氢生产苯乙烯工艺
应选择合适旳水蒸气与乙苯旳百分比,一般水 蒸气:乙苯=(6-9):1。
(4)乙苯液空速
应采用高空速,以提升选择性,常选0.6 h-1。
3. 乙苯脱氢工艺流程和反应器
(1)反应器型式与构造
根据供热方式不同
列管式固定床反应器:高 温烟道气
绝热式反应器:过热蒸汽
(2)乙苯脱氢工艺流程
1)列管式等温反应器脱氢部分工艺流程
共聚:聚苯乙烯、丙烯腈-丁二烯-苯乙烯树脂 (ABS树脂); 与丁二烯反应:乳胶、合成橡胶。
CH CH2
二、乙苯脱氢法
1.乙苯催化脱氢旳主副反应 主反应:
副反应:
2.乙苯脱氢工艺条件选择
(1)温度 平衡常数随温度旳升高而增大,为防止副反应,
温度不应太高。 常选823-873K。
反应旳平衡常数和平衡转化率随反应温度变 化曲线。
等温反应器工艺流程特点: a.乙苯转化率高、苯乙烯选择性高; b.水蒸气用量较少。 c.反应器制造费用高。
2)绝热反应器反应工艺流程
绝热反应器工艺流程特点: a.反应器构造简朴,制造费用低,生产能 力大,检修以便。 b.乙苯转化率低、苯乙烯选择性低; c.水蒸气用量多,工业废水多。
3.苯乙烯旳回收精制
第二讲 乙苯脱氢制苯乙烯
学习目的
1.了解乙苯脱氢旳反应原理。 2.掌握乙苯脱氢工艺条件、水蒸气旳作用。 3.掌握外加热式列管反应器和绝热反应器工艺流 程,能绘制工艺流程方框图。 4.掌握苯乙烯精制流程图。 5.了解乙苯脱氢反应器旳特点。
一、概述 苯乙烯 (styrene),C8H8 , 1.用途
是高分子材料合成旳主要单体。
精馏塔。
(2)压力
乙苯脱氢生成苯乙烯旳反应是分子数增大旳反应, 降低压力对生成苯乙烯有利。苯乙烯旳工业生产 采用负压脱氢工艺,操作压力40-60 kPa。
乙苯脱氢制苯乙烯
工艺原理以乙苯为原料,按1.3~1.8水比加入过热水蒸汽,在轴径向反应器内,于高温、负压条件下,通过催化剂床层进行乙苯脱氢反应,生成苯乙烯主产品;副反应生成苯、甲苯、甲烷、乙烷、丙烷、H2、CO和CO2。
主反应:这是一个强吸热可逆增分子反应。
副反应是热裂解、氢化裂解和蒸汽裂解反应:C6H5CH2CH3→ C6H6+C2H4C6H5CH2CH3+H2→ C6H5CH3+CH4C6H5CH2CH3+H2→ C6H6+C2H6C +2H2O → 2H2+CO2CH4+H2O → 3H2+COC2H4+2H2O → 2CO +4H2水蒸汽变换反应:CO +H2O → H2+CO2在水蒸汽浓度很高时,生成苯、甲苯的反应式可能被下列反应所代替:C6H5CH2CH3+2H2O → C6H5 CH3+CO2+3H2C6H5CH2CH3+2H2O → C6H6+CH4+CO2+2H2在乙苯脱氢反应中,原料乙苯中的化学杂质也发生反应,生成物还会进一步发生反应,为此,最终生成物中还含有另一些副产物,如二甲苯、异丙苯、α-甲基苯乙烯、焦油等。
影响化学反应的因素主要有:反应温度、反应压力和水蒸汽/乙苯比(简称水比)。
此外,该反应还受到反应物通过催化剂床层的液体体积时空速度(LHSV)、催化剂性能、原料乙苯中含杂质情况等影响。
反应温度乙苯脱氢生成苯乙烯的反应为吸热反应,故乙苯转化率随着反应温度的升高而增加。
当温度升高后,不但生成苯乙烯的正反应增加,而且消耗苯乙烯的逆反应以更高的速度增加。
另外,当反应温度提高后,虽然乙苯转化率提高,但副反应(指吸热的副反应)也将加剧,故生成苯乙烯的选择性将降低,因而反应温度不宜过高。
从降低能耗和延长催化剂寿命出发,希望在保证苯乙烯单程收率的前提下,尽量采用较低的反应温度。
反应压力对于给定的反应温度和水比,乙苯的转化率随着反应压力的降低而显著增加。
在相同的乙苯液体空速和水比下,随着反应压力降低,可相应降低反应温度,而苯乙烯的单程收率维持不变,苯乙烯选择性提高。
苯乙烯工艺原理
苯乙烯工艺原理您知道苯乙烯吗?这玩意儿在咱们的生活中可有着不小的作用呢!先来说说苯乙烯是咋来的。
简单来讲,它主要是通过乙苯脱氢这个过程产生的。
就好像是一场魔法变身,乙苯这个小家伙在一定的条件下,经历了一系列的变化,就变成了咱们想要的苯乙烯。
那这个过程具体是咋回事呢?您别急,听我慢慢道来。
在反应装置里,温度可是个关键角色。
得把温度控制得恰到好处,就像咱们做饭掌握火候一样。
温度太低,反应就像个懒洋洋的家伙,不怎么动弹;温度太高呢,又可能会把事情搞砸。
所以,找到那个最合适的温度点,可太重要啦!还有压力这一因素,也不能小瞧。
压力就像是给反应施加的一股力量,压力合适,反应就能顺顺利利地进行;压力不合适,反应就可能会闹脾气,达不到咱们想要的效果。
除了温度和压力,催化剂在这个过程中也是个大功臣。
它就像是反应的助推器,能让反应更快、更有效地进行。
没有它,反应可能会变得慢吞吞的,效率低下。
在整个反应过程中,各种物质就像是一群小伙伴,相互合作又相互影响。
它们在装置里一起努力,最终把乙苯变成了宝贵的苯乙烯。
再来说说反应完成后的事儿。
得到的苯乙烯可不能直接就拿去用,还得经过一系列的分离和提纯步骤。
这就像是从一堆混杂的东西里挑出咱们最想要的宝贝。
通过各种巧妙的方法,把苯乙烯和其他杂质分开,让苯乙烯变得更加纯净、更加优质。
分离提纯完了,苯乙烯就准备好去发挥它的大作用啦!它可以用来制造各种各样的东西,比如塑料、橡胶,甚至是一些合成纤维。
是不是很厉害?苯乙烯的工艺原理虽然听起来有点复杂,但其实就像是一场精心编排的舞蹈,每个步骤、每个因素都配合得恰到好处,最终才能跳出美丽的“苯乙烯之舞”。
您觉得怎么样?是不是对苯乙烯的工艺原理有了一点更有趣的认识呢?要是还有啥不明白的,随时来找我唠唠!。
最新化工原理课程设计 乙苯-苯乙烯板式精馏塔的工艺设计
化工原理课程设计乙苯-苯乙烯板式精馏塔的工艺设计化工原理课程设计题目乙苯-苯乙烯板式精馏塔的工艺设计年级专业学号学生姓名2009年 12月 21日目录No table of contents entries found.第一节化工原理课程设计(精馏装置)的内容1.1设计题目课程设计题目——乙苯-苯乙烯板式精馏塔的工艺设计:设计一座乙苯-苯乙烯连续精馏塔,要求年处理原料液(40%乙苯)30000t/a,塔底馏出液中含乙苯不高于2%。
塔顶馏出液中含乙苯为98%(以上均为质量%)。
1.2操作条件1.塔顶压强4kPa(表压);2.进料热状况,自选;3.回流比,自选;4.塔釜加热蒸汽压力506kPa;5.单板压降不大于0.7kPa;6.年工作日300天,每天24小时连续运行。
1.3设计内容1.设计方案的确定及工艺流程的说明;2.塔的工艺计算;3.塔和塔板主要工艺结构的设计计算;4.塔内流体力学性能的设计计算;5.塔板负荷性能图的绘制;6.塔的工艺计算结果汇总一览表;7.辅助设备的选型与计算;8.生产工艺流程图及精馏塔工艺条件图的绘制;9.对本设计的评述或对有关问题的分析与讨论。
1.4基础数据1.安托因方程㏒P=A+B/(C+t)表12.组分的液相粘度µ(mpa.s)表23.组分的液相密度ρ(kg/m3)表34.组分的表面张力σ(mN/m)表4双组分混合液体的表面张力m σ可按下式计算:AB B A BA m x x σσσσσ+=(B A x x 、为A 、B 组分的摩尔分率)第二节 设计方案的确定及工艺流程的说明2.1设计方案的确定及工艺流程的说明原料液经卧式列管式预热器预热至泡点后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却后送至贮罐;塔釜采用热虹吸立式再沸器提供汽相流,塔釜产品经卧式列管式冷却器冷至贮罐 2.1流程图第三节 精馏塔(精馏段)计算3.1塔的工艺计算 3.1.1 全塔物料衡算(一)料液及塔顶底产品含苯的摩尔分率乙苯和苯乙烯的相对摩尔质量分别为106.168和104 .152kg/kmol 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章乙苯装置工艺流程及生产原理第一节催化干气预处理部分生产原理:乙苯烃化催化剂最怕碱性物质,会造成催化剂失活。
而催化干气多采用乙醇胺等碱性物质脱硫技术脱除硫化氢,因此为了防止碱性物质进入烃化反应系统,催化干气首先要经过水洗。
干气中的丙烯会与苯生成丙苯,同时会增加甲苯的生成量,造成苯耗上升增加产品成本,所以需要通过吸收的办法尽可能降低干气中丙烯的含量。
工艺流程叙述:催化干气进装置后进入催化干气水洗罐(D-101)。
该罐具有两个作用,其一是将催化干气进装置时携带的液体除去,另一作用是用水将携带的MEA除去。
罐内设填料一段,罐底设水洗循环泵(P-101A/B),水洗用水循环使用。
从催化干气水洗罐(D-101)顶部出来的气体依次进入催化干气换热器(E-101)、催化干气过冷器(E-102)与丙烯吸收塔(C-101)塔顶出来的低温催化干气、冷冻水换热,温度降至15℃,从底部进入丙烯吸收塔(C-101)。
吸收剂从丙烯吸收塔顶部进入与催化干气逆向接触,将催化干气中的丙烯绝大部分除去,从丙烯吸收塔顶部出来的催化干气进入催化干气换热器(E-101)与进塔的催化干气换热回收部分冷量后去反应部分。
吸收了丙烯的吸收剂从塔底出来进入贫液-富液换热器(E- 103)与贫液换热后进入解吸塔(C-102)。
解吸塔进料进入解吸塔后,塔顶汽相进入解吸塔顶蒸汽发生器(E-106)冷凝冷却,然后进入解吸塔回流罐(D-102),冷凝下来的液体用解吸塔回流泵(P-103A/B)送至解吸塔顶部,未冷凝的气体从解吸塔回流罐顶部出来后依次进入解吸塔顶冷却器(E-107)解吸塔顶气过冷器(E-108)进一步冷凝冷却,然后进入解吸塔顶分液罐(D-103)进行气液分离,冷凝下来的液体用解吸塔顶凝液泵(P-104A/B)送入解吸塔回流罐(D-102),未冷凝的气体出装置。
解吸塔塔底物料用吸收剂循环泵(P- 102A/B/C)加压后依次通过贫液-富液换热器(E-103)、贫液过冷器(E-104)冷却,返回丙烯吸收塔塔顶循环使用。
解吸塔蒸汽发生器(E- 106)产0.21Mpa蒸汽,解吸塔底重沸器(E-109)热源为热载体。
第二节烃化及反烃化部分生产原理:生成乙苯:C2H4+C6H6=C6H5C2H5在沸石催化剂上存在Lewis酸中心,可以吸附干气中的乙烯分子,生成正碳离子L-CH2CH2+,再与苯进行加成反应生成乙苯。
这一反应是可逆反应,但是在反应条件下,正向反应(烃化)比逆反应(反烃化)更有利。
烃化反应是放热反应。
反应热△H=-106.2KJ/ mol。
生成多乙苯:乙苯可以进一步烷基化生成二乙苯、三乙苯等。
如:C6H5C2H5+C2H4=C6H4(C2H5)2(有邻、间、对三种异构体)多乙苯反烃化:在反烃化反应器中,在沸石催化剂上同样存在Lewis酸中心,吸附多乙苯分子生成正碳离子,发生烷基转移反应生成乙苯,并达到稳态浓度。
C6H4(C2H5)2+C6H6=2C6H5C2H5生成丙苯和丁苯:干气中除含10~30(V)%的乙烯外,还含有少量的丙烯和丁烯,在烃化催化剂上,同样发生烷基化反应,生成同相应组分呈平衡的丙苯(异丙苯和正丙苯)和丁苯(4个异构体:正丁苯、异丁苯仲丁苯和叔丁基苯),C3H6+C6H6=C6H5C3H7C4H8+C6H6=C6H5C4H9生成甲苯:甲苯可以由非芳烃、乙苯和二甲苯生成的,且主要是由丙苯和丁苯之类较高级烷基苯生成的。
甲苯在反应器中不易通过脱烷基方法除去。
生成二甲苯:在Lewis酸中心作用下,在反应温度下,乙苯能够异构化生成二甲苯,三个二甲苯异构体之间很容易进行异构化,在反应器流出物中它们接近热力学平衡。
生成多烷基苯:在烷基化反应器中,烷基苯也可能进一步烷基化生成相应的多烷基苯,如通过下列反应生成同甲苯呈平衡的甲乙苯,C6H5CH3+C2H4→C6H4CH3C2H5C6H5CH3+C6H5C2H5→C6H4CH3C2H5+C6H6其它一些烷基苯也可能进一步烷基化生成相应的多烷基苯,如乙基异丙苯。
二丙苯,乙基二甲苯等。
脂肪烃和芳烃的异构化作用都是很容易进行的反应,因此,它们的异构体(如对/间/邻乙基甲苯等)在反应器流出物中是接近热力学平衡的。
生成轻组分:这些副产物包括H2、CO2、C2H6、CH4、N2,以及C3、C4、C5烯烃和石蜡烃。
进料原料中杂质是轻组分的主要来源,除此之外,烯烃聚合生成小于C8之类的烃类。
N[CnH2n]→[CnH2n]n生成多环化合物:多环化合物主要是二苯基乙烷和二苯基甲烷(联苯和1.1—二苯基甲烷)和它们的衍生物,被称做重组分或高沸物,二苯基甲烷主要是由较高级的烷基苯(丙苯、丁苯等)和苯反应生成的。
例如:C6H5C3H7+C6H6→C6H5CH2C6H5+C2H6生成二苯基乙烷将更直接,基本上是通过下列烷基化反应进行的:C6H5C2H3+C6H6→C6H5C2H4C6H5多环化合物作为多乙苯塔釜液从工艺过程除去。
工艺流程叙述:反应部分分为烃化反应和反烃化反应。
脱除丙烯后的催化干气分四路进入烃化反应器(R-101A/B)。
从分离部分来的循环苯分作两路。
其中一路与新鲜苯换热,然后与反应产物换热,最后经循环苯加热炉(F-102)加热至340~360℃后,进入烃化反应器顶部。
烃化反应器操作条件为:温度320~340℃,压力0.8MPa(G),苯:乙烯分子比6~7,乙烯重量空速为0.4~0.5h-1。
从烃化反应器出来反应产物首先进入反应产物-循环苯换热器(二)(E-110),再进入反应产物-循环苯换热器(一)(E-111)与烃化反应用循环苯换热。
从分离部分来循环苯进入循环苯罐(D-105)后,用循环苯泵(P-106A/B)抽出后分为两路,一路为烃化反应用苯,另一路为反烃化用苯。
烃化反应用循环苯先依次通过新鲜苯-循环苯换热器(E-115)与新鲜苯换热,然后经反应产物-循环苯换热器(二)(E-110)、反应产物-循环苯换热器(一)(E-111)换热并汽化至250℃,进入循环苯加热炉(F-102)。
反应产物被冷却至159℃,然后进入反应产物-苯塔进料换热器(E- 112)与苯塔进料换热被冷却至127℃,换热后被冷凝下来的液体用反应产物中间凝液泵(P-107A/B)抽出,与换热后的苯塔进料混合进入分离部分,未冷凝的气体再经反应产物冷凝冷却器(E-113)用循环水冷却至40℃,被冷凝下来的液体,自流至分离部分的烃化尾气吸收塔(C-103)底部,未冷凝的气体最后进入反应产物冷却器(E-114)用冷冻水冷凝冷却至15℃,最后自流至分离部分的尾气吸收塔(C-103)底部。
烃化反应器设两台,一开一备。
从分离部分来的反烃化料与从分离部分来的反烃化用苯进入反烃化反应进料罐(D-106),混合后用反烃化反应进料泵(P-108A/B)升压至 4.0MPaG,然后进入反烃化反应进料加热器(E-116)用热载体加热至反应所需温度,最后进入反烃化反应器(R-102)底部,反烃化反应器操作条件为:温度260℃,压力3.9MPaG,苯:反烃化料重量比6~8,反烃化料重量空速1~1.5h-1。
从反烃化反应器(R-102)顶部出来的反烃化反应产物降压后进入分离部分的循环苯塔(C-104)。
反烃化反应器设一台。
烃化催化剂、反烃化催化剂均采用器外再生。
烃化催化剂、反烃化催化剂在开工前需要进行活化,活化介质为氮气或净化压缩空气,采用电加热器加热氮气或净化压缩空气。
第三节分离部分生产原理:自反应部分来的烃化产物是苯、乙苯、多乙苯、丙苯、非芳等组成的混合物。
尾气吸收塔用多乙苯作为吸收剂吸收掉烃化尾气中的重组分,轻组分送出装置。
吸收塔底的重组分与反烃化产物进入循环苯塔,将其中的苯回收,返回到烃化反应器和反烃化反应器。
非芳塔的作用是从循环苯中的脱除轻非芳烃和低沸点化合物,以防积累,同时回收不凝气中的苯,降低苯耗。
乙苯精馏塔的主要任务就是使乙苯产品达到苯乙烯装置所要求的工艺指标,乙苯产品的质量将决定苯乙烯的质量,特别是其中二乙苯的含量不能超过10ppm(wt),以防止在苯乙烯单元中形成难溶的聚合物。
为了减少苯乙烯中α-甲基苯乙烯的含量,设置丙苯塔,以脱除丙苯的同系物。
多乙苯塔将反应产物中的二乙苯、三乙苯回收,送到反烃化反应器,与苯反应生成乙苯。
为了充分地回收热量,在循环苯塔、乙苯精馏塔、丙苯塔顶设置蒸汽发生器,产生0.21MPa蒸汽。
工艺流程叙述:自反应产物过冷器(E-114)来的反应产物进入尾气吸收塔(C-103)底部,在0.575Mpa(G)压力下闪蒸,闪蒸汽相与自上而下的吸收剂逆向接触,将汽相中绝大部分苯及重组分吸收下来后,尾气自塔顶出装置。
闪蒸液相、吸收剂及吸收下来的苯等重组分、反应产物冷凝冷却器(E-113)壳侧凝液等液体混合后,自塔底经吸收塔底泵(P-109A/B)压送至反应产物-苯塔进料换热器(E-112),加热至127℃后,与该换热器壳侧凝液混合后进入循环苯塔(C-104)。
循环苯塔共有三股进料,一股是从反应产物-苯塔进料换热器(E-112)过来的物料,一股是反烃化反应产物,一股是新鲜苯。
三股物料在不同位置进入循环苯塔(C-104)后,苯及不凝气从塔顶蒸出进入循环苯塔顶蒸汽发生器(E-117)和循环苯塔顶后冷器(E-133)冷凝冷却后进入循环苯塔回流罐(D- 107)凝液全部经由循环苯塔回流泵(P-110A/B)打入塔顶作为回流,未冷凝的气体从循环苯塔回流罐(D-107)罐顶出来后进入脱非芳塔(C- 105)作为脱非芳塔进料。
循环苯塔侧线抽出循环苯,用循环苯塔侧线抽出泵(P-111A/B)送至循环苯罐(D-105)供反应部分用苯。
塔底物料自压至乙苯精馏塔(C-106)。
循环苯塔顶蒸汽发生器(E-117)产0.21MPaG蒸汽,循环苯塔顶后冷器(E-133)产120℃热水,循环苯塔重沸器(E-118A/B)热源为3.5MPaG蒸汽。
脱非芳塔进料从底部进入脱非芳塔(C-105),脱非芳塔塔顶气体经脱非芳塔顶冷凝冷却器(E-119)和脱非芳塔顶后冷器(E-120)冷凝冷却,然后进入脱非芳塔回流罐(D-108)进行气液分离,不凝气从脱非芳塔回流罐顶出来进入燃料气分液罐(D-116),液体用脱非芳塔回流泵(P-112A/B)送至脱非芳塔顶部作为脱非芳塔回流。
脱非芳塔塔底物流用脱非芳塔底泵(P-113A/B)送至循环苯塔(C-104)或循环苯罐(D-105)。
脱非芳塔内置重沸器(E-137)热源采用1.0MPaG 蒸汽。
乙苯精馏塔进料进入乙苯精馏塔(C-106)后,乙苯从塔顶蒸出,进入乙苯精馏塔顶蒸汽发生器(E-121)冷凝,冷凝液进入乙苯精馏塔回流罐(D- 109),经乙苯精馏塔回流泵(P-114A/B)加压后,一部分打入塔顶作为回流,另一部分经乙苯产品冷却器(E-123)冷却至40℃后送至乙苯产品罐(D-115A/B),然后用乙苯产品泵(P-116A/B)送出装置,合格乙苯送至罐区乙苯罐,不合格乙苯送至罐区不合格乙苯罐。