2机械控制工程基础第二章答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题
2.1 什么是线性系统其最重要的特性是什么下列用微分方程表示的系统中,x o 表示系统输出,x i 表示系统输入,哪些是线性系统 (1) x x x x x i
o
o
o
o 222=++&&& (2) x tx x x
i
o
o
o
222=++&&& (3) x x x x i
o
222o
o
=++&&& (4) x tx x x x
i
o
o
o
222o
=++&&& 解: 凡是能用线性微分方程描述的系统就是线性系统。线性系统的一个最重要特性就是它满足叠加原理。该题中(2)和(3)是线性系统。
2.2 图(题2.2)中三同分别表示了三个机械系统。求出它们各自的微分方程,图中x i 表示输入位移,x o 表示输出位移,假设输出端无负载效应。
图(题2.2) 解: (1)对图(a)所示系统,由牛顿定律有 即
x
c x c c x m i
&&&&1
2
1
o
o )(=++ (2)对图(b)所示系统,引入一中间变量x,并由牛顿定律有 消除中间变量有
(3)对图(c)所示系统,由牛顿定律有 即
x k x c x k k x c i
i
o
o
1
2
1
)(+=++&&
2.3求出图(题2.3)所示电系统的微分方程。
图(题2.3)
解:(1)对图(a)所示系统,设i 1为流过R 1的电流,i 为总电流,则有 消除中间变量,并化简有
u R C u C
C R R u R C u R C u C C R R u R C i
i
i
o
o
o
1
2
2
1
1
2
2
1
2
2
2
1
2
1
2
1
1)()1(1+++=-+
++&&&&&&&
(2)对图(b)所示系统,设i 为电流,则有 消除中间变量,并化简有
2.4 求图(题2.4)所示机械系统的微分方程。图中M 为输入转矩,C m 为圆周阻尼,J 为转动惯量。
解:设系统输入为M (即),输
出θ(即),分别对圆盘和质块进行动力学分析,列写动力学方程如下:
消除中间变量
x
,即可得到系统动力学方程
KM M c M
m C R c k KJ c C km R cJ mC mJ m
m
m
++=++-++++&&&&&&&&&θ
θθθ)(2
2
)()()
4(2.5 输出y(t)与输入x(t)的关系为y(t)= 2x(t)+0.5x 3(t)。 (1)求当工作点为x o =0,x o =1,x o =2时相应的稳态时输出值; (2)在这些工作点处作小偏差线性化模型,并以对工作的偏差来定
义x 和y ,写出新的线性化模型。 解: (1) 将
x o =0,x o =1,x o =2分别代入y(t)= 2x(t)+0.5x 3
(t)中,即当工作
点为x o =0,x o =1,x o =2时相应的稳态输出值分别为0=y o ,5.20
=y ,
8=y o
。
(2) 根据非线性系统线性化的方法有,在工作点)(,y x o
o
附近,将
非线性函数展开成泰勒级数,并略去高阶项得 若令x x
∇=
,y y ∇=有
x x y )5.12(20+=
当工作点为0=
x o 时,
x
x x y 2)5.12(20
=+= 当工作点为1=x o 时, x x x y 5.3)5.12(20=+=
当工作点为2
=
x o 时,
x x x y 8)5.12(2
=+=
2.6已知滑阀节流口流量方程式为ρ
p
cwx Q
v
2=,式中.Q 为通过
节流阀流口的流量;p 为节流阀流口的前后油压差;x v 为节流阀的位移量;c 为疏量系数;w 为节流口面积梯度;ρ为油密度。试以Q 与p 为变量(即将Q 作为P 的函数)将节流阀流量方程线性化。
解:利用小偏差线性化的概念,将函数Q=F(x v ,p)在预定工作点F(x o ,p o )处按泰勒级数展开为
消除高阶项,有
若令)(p x x F K o
vo v
,|)(1
∂∂=,)(p x F K o vo ,|)p (2
∂∂=, 将上式改写为增量方程的形式
2.7 已知系统的动力学方程如下,试写出它们的传递函数
Y(s)/R(s)。
(1))(2)()(500)(50)(15)
(t r t r t y t y t y t y &&&&&&&&&+=+++ (2))(5.0)(25)(5t r t y
t y &&&&=+ (3))(5.0)(25)(t r t y
t y =+&&& (4))(4)(4)(6)(3)
(t r dt t y t y t y
t y =+++⎰&&& 解:根据传递函数的定义,求系统的传递函数,只需将其动力学方程两边分别在零初始条件下进行拉式变换,然后求Y(s)/R(s)。 (1)
(2)
)
(5.0)(25)(52
s sR s sY s Y s =+ (3) )
(5.0)(25)(2
s R s SY S Y s =+
(4)
)(4)(1
4)(6)(3)(2
s Y s Y s
s Y S sY s Y s =+++
2.8 如图(题2.8)为汽车或摩托车悬浮系统简化的物理模型,试以位移x 为输入量,位移y 为输出量,求系统的传递函数Y(s)/X(s)。
2.9 试分析当反馈环节H(s)=1,前向通道传递函数G(s)分别为惯性环节、微分环节、积分环节时,输入、输出的闭环传递函数。
解:由于惯性环节、微分环节、积分环节的传递函数分别为
1)(+=
Ts K s G ,Ts s G =)(,s K s G =)(,而闭环传递函数为
)
()(1)()(s H s G s G s G B •±=
,则
(1)当反馈环节H(s)=1,前向通道传递函数G(s)为惯性环节时, (2)当反馈环节H(s)=1,前向通道传递函数G(s)为微分环节时,