2机械控制工程基础第二章答案
2机械控制工程基础第二章答案资料
习 题2.1 什么是线性系统?其最重要的特性是什么?下列用微分方程表示的系统中,x o 表示系统输出,x i 表示系统输入,哪些是线性系统? (1) x x x x x ioooo 222=++ (2) x tx x xiooo222=++ (3) x x x xio 222oo=++ (4) x tx x x xiooo222o=++ 解: 凡是能用线性微分方程描述的系统就是线性系统。
线性系统的一个最重要特性就是它满足叠加原理。
该题中(2)和(3)是线性系统。
2.2 图(题2.2)中三同分别表示了三个机械系统。
求出它们各自的微分方程,图中x i 表示输入位移,x o 表示输出位移,假设输出端无负载效应。
图(题2.2) 解: (1)对图(a)所示系统,由牛顿定律有xm x c x x c ioo2o1)(=-- 即x c x c c xm i121oo )(=++ (2)对图(b)所示系统,引入一中间变量x,并由牛顿定律有)1()()(1x xc k x x oi-=-)2()(2x k x xc oo=-消除中间变量有x ck x k k xk k c io121o21)(=-- (3)对图(c)所示系统,由牛顿定律有 x k x x k x xc ooioi21)()(=-+-即x k x c x k k xc iioo121)(+=++ 2.3求出图(题2.3)所示电系统的微分方程。
图(题2.3)解:(1)对图(a)所示系统,设i 1为流过R 1的电流,i 为总电流,则有⎰+=idt Ci R u o122i R u u o i 11=-dti i Cu u oi)(111⎰-=-消除中间变量,并化简有u R C u CC R R uR C u R C u C C R R u R C iiiooo12211221222121211)()1(1+++=-+++(2)对图(b)所示系统,设i 为电流,则有⎰++=idtC i R u u oi111⎰+=i R idt Cu o221 消除中间变量,并化简有u Cu R u C C u R R iioo2221211)11()(+=+++2.4 求图(题2.4)所示机械系统的微分方程。
机械控制工程基础第二章答案
习 题什么是线性系统其最重要的特性是什么下列用微分方程表示的系统中,x o 表示系统输出,x i 表示系统输入,哪些是线性系统 (1) x x x x x ioooo222=++&&& (2) x tx x xiooo222=++&&& (3)x x x x io222oo=++&&& (4) x tx x x xiooo222o=++&&& 解: 凡是能用线性微分方程描述的系统就是线性系统。
线性系统的一个最重要特性就是它满足叠加原理。
该题中(2)和(3)是线性系统。
图(题)中三同分别表示了三个机械系统。
求出它们各自的微分方程,图中x i 表示输入位移,x o 表示输出位移,假设输出端无负载效应。
图(题 解: (1)对图(a)所示系统,由牛顿定律有xm x c x x c i&&&&&oo2o1)(=--即xc x c c x m i&&&&121oo )(=++ (2)对图(b)所示系统,引入一中间变量x,并由牛顿定律有)1()()(1xx c k x x oi&&-=- )2()(2x k xx c oo=-&&消除中间变量有x ck x k k xk k c io&&121o21)(=-- (3)对图(c)所示系统,由牛顿定律有 x k x x k xx c ooioi21)()(=-+-&&即x k x c x k k x c iioo121)(+=++&&求出图(题所示电系统的微分方程。
图(题)解:(1)对图(a)所示系统,设i 1为流过R 1的电流,i 为总电流,则有⎰+=idtCi R u o122i R u u o i 11=-dti i Cu u oi)(111⎰-=-消除中间变量,并化简有u R C u CC R R u R C u R C uCC R R u R C iiiooo12211221222121211)()1(1+++=-+++&&&&&&&(2)对图(b)所示系统,设i 为电流,则有⎰++=idtC i R u u oi111⎰+=i R idt Cu o221 消除中间变量,并化简有uCu R u C C u R R iioo2221211)11()(+=+++&&求图(题所示机械系统的微分方程。
控制工程基础第2章答案
第2章系统的数学模型(习题答案)2.1什么是系统的数学模型?常用的数学模型有哪些?解:数学模型就是根据系统运动过程的物理、化学等规律,所写出的描述系统运动规律、特性、输出与输入关系的数学表达式。
常用的数学模型有微分方程、传递函数、状态空间模型等。
2.2 什么是线性系统?其最重要的特性是什么?解:凡是能用线性微分方程描述的系统就是线性系统。
线性系统的一个最重要的特性就是它满足叠加原理。
2.3 图( 题2.3) 中三图分别表示了三个机械系统。
求出它们各自的微分方程, 图中x i表示输入位移, x o表示输出位移, 假设输出端无负载效应。
题图2.3解:①图(a):由牛顿第二运动定律,在不计重力时,可得整理得将上式进行拉氏变换,并注意到运动由静止开始,即初始条件全部为零,可得[]于是传递函数为②图(b):其上半部弹簧与阻尼器之间,取辅助点A,并设A点位移为x,方向朝下;而在其下半部工。
引出点处取为辅助点B。
则由弹簧力与阻尼力平衡的原则,从A和B两点可以分别列出如下原始方程:消去中间变量x,可得系统微分方程对上式取拉氏变换,并记其初始条件为零,得系统传递函数为③图(c):以的引出点作为辅助点,根据力的平衡原则,可列出如下原始方程:移项整理得系统微分方程对上式进行拉氏变换,并注意到运动由静止开始,即则系统传递函数为2.4试建立下图(题图2.4)所示各系统的微分方程并说明这些微分方程之间有什么特点,其中电压)(t u r 和位移)(t x r 为输入量;电压)(t u c 和位移)(t x c 为输出量;1,k k 和2k 为弹簧弹性系数;f 为阻尼系数。
+-+-C)(t u r )(t u c )(t r )(t x c f1k 2k CR)(t u r )(u c +-+-f)(t r )(t x c )(a )(b )(c )(d R 2R题图2.4【解】:)(a方法一:设回路电流为i ,根据克希霍夫定律,可写出下列方程组:⎪⎩⎪⎨⎧=+=⎰i R u u dt i C u cc r 1消去中间变量,整理得:dtdu RC u dt du RCrc c =+方法二:dtdu RC u dt du RCRCs RCs CsR R s U s U rc c r c =+⇒+=+=11)()( 由于无质量,各受力点任何时刻均满足∑=0F ,则有:cc r kx dt dxdt dx f =-)(dtdx k f x dt dx k f rc c =+⇒()r r c c r c u dtduC R u dt du C R R Cs R R Cs R Cs R R CsR s U s U +=++⇒+++=+++=221212212)(1111)()( 设阻尼器输入位移为a x ,根据牛顿运动定律,可写出该系统运动方程r rc c aa c a r c r x dtdx k f x dt dx f k k k k dt dx f x x k x x k x x k +=++⇒⎪⎩⎪⎨⎧=--=-22121221)()()( 结论:)(a 、)(b 互为相似系统,)(c 、)(d 互为相似系统。
机械控制工程基础第二章2习题解答
题目:已知()t t f 5.0=,则其()[]=t f L 【 】A. 25.0s s +B. 25.0sC.221sD. s 21 分析与提示:由拉氏变换的定义计算,可得()[]215.0s t f L = 答案:C题目:函数f (t )的拉氏变换L[f(t)]= 。
分析与提示:拉氏变换定义式。
答案:dt e t f st ⎰∞-0)(题目:函数()atet f -=的拉氏变换L[f(t)]= 。
分析与提示:拉氏变换定义式可得,且f(t)为基本函数。
答案:as +1题目:若te t tf 22)(-=,则()=)]([t f L 【 】A.22+s B.3)2(2+s C.22-s D.3)2(2-s分析与提示:拉氏变换定义式可得,即常用函数的拉氏变换对,3)2(2)]([+=s t f L 答案:B题目:拉氏变换存在条件是,原函数f(t)必须满足 条件。
分析与提示:拉氏变换存在条件是,原函数f(t)必须满足狄里赫利条件。
答案:狄里赫利题目:已知()15.0+=t t f ,则其()[]=t f L 【 】A. 25.0s s +B. 25.0sC.s s1212+ D. s 21分析与提示:由拉氏变换的定义计算,这是两个基本信号的和,由拉氏变换的线性性质,其拉氏变换为两个信号拉氏变换的和。
()[]s st f L 115.02+= 答案:C题目:若()ss s s F ++=214,则()t f t ∞→lim )=( )。
【 】A. 1B. 4C. ∞D. 0分析与提示:根据拉氏变换的终值定理)(lim )(lim )(0s sF t f f s t →∞→==∞。
即有414lim )(lim 20=++=→∞→ss s st f s t答案:B题目:函数()t et f atωcos -=的拉氏变换L[f(t)]= 。
分析与提示:基本函数t ωcos 的拉氏变换为22ω+s s,由拉氏变换的平移性质可知()[]()22ω+++=a s as t f L 。
2机械控制工程基础第二章答案
习题2.1 什么是线性系统?其最重要的特性是什么?下列用微分方程表示的系统中,表示系统输出,表示系统输入,哪些是线性系统? xx io(1) (2) xxxxtxxxxx222222????????????oooiooooi (4) (3) xxtxxxxxxx222222????????????ooioooooi解: 凡是能用线性微分方程描述的系统就是线性系统。
线性系统的一个最重要特性就是它满足叠加原理。
该题中(2)和(3)是线性系统。
2.2 图(题2.2)中三同分别表示了三个机械系统。
求出它们各自的微分方程,图中表示输入位移,表示输出位移,假设输出端无xx oi 负载效应。
图(题2.2)所示系统,由牛顿定律有(a)对图: (1)解.)(?????xcxxmxc???1io2oo()???即?xccmcx???x o o121i(2)对图(b)所示系统,引入一中间变量x,并由牛顿定律有x)(xx)kc(x(1)?????oi1??)?kxc(x(2)?xo2o消除中间变量有()??xkckkxckxk???12o12o1i(3)对图(c)所示系统,由牛顿定律有)()(??xxxxxckk????o2ioio1()??即cxcxxkkkx????o12oi1i 2.3求出图(题2.3)所示电系统的微分方程。
图(题2.3)解:(1)对图(a)所示系统,设为流过的电流,为总电流,则有i iR111i? idtuR??2o C2iuu?R?11oi1(i?i)dt?u?u?oi1C1消除中间变量,并化简有CR1()uCuuR?1??????11CCRR2ooo122221CR)(uuuCR????????12CCRR2ii1i1122(2)对图(b)所示系统,设i为电流,则有1i?idt?uuR??1oi C11?i?uRidt?2o C2消除中间变量,并化简有111())(??uuuu??R?RR??CCC122ioio1222.4 求图(题2.4)所示机械系统的微分方程。
2机械控制工程基础第二章答案
习 题什么是线性系统其最重要的特性是什么下列用微分方程表示的系统中,x o 表示系统输出,x i 表示系统输入,哪些是线性系统 (1) x x x x x ioooo 222=++&&& (2) x tx x xiooo222=++&&& (3) x x x x io222oo=++&&& (4) x tx x x xiooo222o=++&&& 解: 凡是能用线性微分方程描述的系统就是线性系统。
线性系统的一个最重要特性就是它满足叠加原理。
该题中(2)和(3)是线性系统。
图(题)中三同分别表示了三个机械系统。
求出它们各自的微分方程,图中x i 表示输入位移,x o 表示输出位移,假设输出端无负载效应。
图(题 解: (1)对图(a)所示系统,由牛顿定律有 即xc x c c x m i&&&&121oo )(=++ (2)对图(b)所示系统,引入一中间变量x,并由牛顿定律有 消除中间变量有(3)对图(c)所示系统,由牛顿定律有 即x k x c x k k x c iioo121)(+=++&&求出图(题所示电系统的微分方程。
图(题)解:(1)对图(a)所示系统,设i 1为流过R 1的电流,i 为总电流,则有 消除中间变量,并化简有u R C u CC R R u R C u R C u C C R R u R C iiiooo12211221222121211)()1(1+++=-+++&&&&&&&(2)对图(b)所示系统,设i 为电流,则有 消除中间变量,并化简有求图(题所示机械系统的微分方程。
图中M 为输入转矩,C m 为圆周阻尼,J 为转动惯量。
解:设系统输入为M (即),输出θ(即),分别对圆盘和质块进行动力学分析,列写动力学方程如下:消除中间变量x,即可得到系统动力学方程KM M c Mm C R c k KJ c C km R cJ mC mJ mmm++=++-++++&&&&&&&&&θθθθ)(22)()()4( 输出y(t)与输入x(t)的关系为y(t)= 2x(t)+x 3(t)。
机械控制工程基础习题答案
第二章习题答案2-1试求下列函数的拉氏变换,假设0<t 时,0)(=t f(1))3cos 1(5)(t t f -= 答案:⎪⎭⎫⎝⎛+-=22315)(s s s s F (2)t et f t10cos )(5.0-= 答案:2210)5.0(5.0)(+++=s s s F (3))35sin()(π+=t t f 答案:22225235521)(+⋅++⋅=s s s s F (4)atn e t t f =)( 答案:1)(!)(+-=n a s n s F 2-2求下列函数的拉氏变换(1)te t t tf 33232)(-++= 答案:32182)(42+++=s ss s F (2))0(4sin 2cos )(333≥++=---t te t e e t tf t t t答案:222244)3(42)1(1)3(6)(++++++++=s s s s s F(3)te t t tf 22)1()2(15)(-+-⋅= 答案:)2(32)2(25)(----+=s s e s e s s F (4)⎩⎨⎧><≤≤=ππt t t tt f ,000sin )(答案:提示)sin(sin )(π-+=t t t f ,se s s s F π-+++=1111)(22 2-3已知)1(10)(+=s s s F(1)利用终值定理,求∞→t 时)(t f 值 答案:10)1(10lim )(lim )(lim 0=+==→→∞→s s ss sF t f s s t(2)通过取)(s F 的拉氏反变换,求∞→t 时)(t f 值答案:[]()101)(10lim 11110lim )(lim )(lim 11=-⋅=⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛+-==-∞→-∞→-∞→∞→tt t t t e t s s L s F L t f 2-4已知2)2(1)(+=s s F (1)利用初值定理,求)0(f 和)0(f '的值。
最新版本机械控制工程基础第二章答案
习 题2.1 什么是线性系统?其最重要的特性是什么?下列用微分方程表示的系统中,x o 表示系统输出,x i 表示系统输入,哪些是线性系统? (1) x x x x x ioooo 222=++ (2) x tx x xiooo222=++ (3) x x x xio 222oo=++ (4) x tx x x xiooo222o=++ 解: 凡是能用线性微分方程描述的系统就是线性系统。
线性系统的一个最重要特性就是它满足叠加原理。
该题中(2)和(3)是线性系统。
2.2 图(题2.2)中三同分别表示了三个机械系统。
求出它们各自的微分方程,图中x i 表示输入位移,x o 表示输出位移,假设输出端无负载效应。
图(题2.2) 解: (1)对图(a)所示系统,由牛顿定律有xm x c x x c ioo2o1)(=-- 即x c x c c xm i121oo )(=++ (2)对图(b)所示系统,引入一中间变量x,并由牛顿定律有)1()()(1x xc k x x oi-=- )2()(2x k x xc oo=-消除中间变量有x ck x k k xk k c io121o21)(=-- (3)对图(c)所示系统,由牛顿定律有 x k x x k x xc ooioi21)()(=-+-即x k x c x k k xc iioo121)(+=++ 2.3求出图(题2.3)所示电系统的微分方程。
图(题2.3)解:(1)对图(a)所示系统,设i 1为流过R 1的电流,i 为总电流,则有⎰+=idt Ci R u o122i R u u o i 11=-dti i Cu u oi)(111⎰-=-消除中间变量,并化简有u R C u CC R R uR C u R C u C C R R u R C iiiooo12211221222121211)()1(1+++=-+++(2)对图(b)所示系统,设i 为电流,则有⎰++=idtC i R u u oi111⎰+=i R idt Cu o221 消除中间变量,并化简有u Cu R u C C u R R iioo2221211)11()(+=+++2.4 求图(题2.4)所示机械系统的微分方程。
机械控制工程基础第二章2习题解答
题目:函数 的拉氏变换L[f(t)]=。
分析与提示:此为基本函数,拉氏变换为 。
答案:
题目:拉氏反变换的求法有多种方法,其中比较简单的方法是由 查拉氏变换表得出及。
分析与提示:拉氏反变换的求法有多种方法,其中比较简单的方法是由 查拉氏变换表得出及部分分式展开法。
答案:部分分式展开法
题目:已知 ,则其 为多少?
答案:错
题目:传递函数的定义中包括三个基本要素:、、输出与输入的拉氏变换之比。
分析与提示:传递函数的定义中的三个基本要素为:线性定常系统、零初始条件、输出与输入的拉氏变换之比。
答案:线性定常系统、零初始条件
题目:零初始条件的含义是什么?
分析与提示:输入及其各阶导数,输出及其各阶导数在0时刻均为零。
答案:(1)输入在 时才开始作用于系统,即输入及其各阶导数在 时刻均为0;
A.线性定常系统
B.线性系统
C.非线性系统
D.非线性时变系统
分析与提示:数学模型表达式是线性的系统称为线性系统,题目表示的微分方程不是线性的,故不是线性系统。
答案:C
题目:定量地描述系统的动态性能,揭示系统的结构、参数与动态性能之间的数学表达式称为系统的。
分析与提示:数学模型是定量地描述系统的动态性能,揭示系统的结构、参数与动态性能之间的数学表达式
答案:C
题目:传递函数框图中的环节是根据动力学方程来划分的,一个环节代表一个物理元件(物理环节或子系统),一个物理元件就是一个传递函数环节。
分析与提示:传递函数框图中的环节是根据动力学方程来划分的,一个环节并不一定代表一个物理元件(物理环节或子系统),一个物理元件也不一定就是一个传递函数环节(也许几个物理元件的特性才组成一个传递函数环节,也许一个物理元件的特性分散在几个传递函数环节中)。
机械控制工程基础第二章2习题解答
题目:已知()t t f 5.0=,则其()[]=t f L 【 】A. 25.0s s +B. 25.0sC.221sD. s 21 分析与提示:由拉氏变换的定义计算,可得()[]215.0s t f L = 答案:C题目:函数f (t )的拉氏变换L[f(t)]= 。
分析与提示:拉氏变换定义式。
答案:dt e t f st ⎰∞-0)(题目:函数()atet f -=的拉氏变换L[f(t)]= 。
分析与提示:拉氏变换定义式可得,且f(t)为基本函数。
答案:as +1题目:若te t tf 22)(-=,则()=)]([t f L 【 】A.22+s B.3)2(2+s C.22-s D.3)2(2-s分析与提示:拉氏变换定义式可得,即常用函数的拉氏变换对,3)2(2)]([+=s t f L 答案:B题目:拉氏变换存在条件是,原函数f(t)必须满足 条件。
分析与提示:拉氏变换存在条件是,原函数f(t)必须满足狄里赫利条件。
答案:狄里赫利题目:已知()15.0+=t t f ,则其()[]=t f L 【 】A. 25.0s s +B. 25.0sC.s s1212+ D. s 21分析与提示:由拉氏变换的定义计算,这是两个基本信号的和,由拉氏变换的线性性质,其拉氏变换为两个信号拉氏变换的和。
()[]s st f L 115.02+= 答案:C题目:若()ss s s F ++=214,则()t f t ∞→lim )=( )。
【 】A. 1B. 4C. ∞D. 0分析与提示:根据拉氏变换的终值定理)(lim )(lim )(0s sF t f f s t →∞→==∞。
即有414lim )(lim 20=++=→∞→ss s st f s t答案:B题目:函数()t et f atωcos -=的拉氏变换L[f(t)]= 。
分析与提示:基本函数t ωcos 的拉氏变换为22ω+s s,由拉氏变换的平移性质可知()[]()22ω+++=a s as t f L 。
2机械控制工程基础第二章答案
习 题2.1 什么是线性系统其最重要的特性是什么下列用微分方程表示的系统中,x o 表示系统输出,x i 表示系统输入,哪些是线性系统 (1) x x x x x ioooo 222=++ (2) x tx x xiooo222=++ (3) x x x xio 222oo=++ (4) x tx x x xiooo222o=++ 解: 凡是能用线性微分方程描述的系统就是线性系统。
线性系统的一个最重要特性就是它满足叠加原理。
该题中(2)和(3)是线性系统。
2.2 图(题2.2)中三同分别表示了三个机械系统。
求出它们各自的微分方程,图中x i 表示输入位移,x o 表示输出位移,假设输出端无负载效应。
图(题2.2) 解: (1)对图(a)所示系统,由牛顿定律有 即x c x c c xm i121oo )(=++ (2)对图(b)所示系统,引入一中间变量x,并由牛顿定律有 消除中间变量有(3)对图(c)所示系统,由牛顿定律有 即x k x c x k k xc iioo121)(+=++ 2.3求出图(题2.3)所示电系统的微分方程。
图(题2.3)解:(1)对图(a)所示系统,设i 1为流过R 1的电流,i 为总电流,则有 消除中间变量,并化简有u R C u CC R R u R C uR C u C C R R u R C iiiooo12211221222121211)()1(1+++=-+++(2)对图(b)所示系统,设i 为电流,则有 消除中间变量,并化简有2.4 求图(题2.4)所示机械系统的微分方程。
图中M 为输入转矩,C m 为圆周阻尼,J 为转动惯量。
解:设系统输入为M (即),输出θ(即),分别对圆盘和质块进行动力学分析,列写动力学方程如下:消除中间变量x,即可得到系统动力学方程KM M c Mm C R c k KJ c C km R cJ mC mJ mmm++=++-++++ θθθθ)(22)()()4(2.5 输出y(t)与输入x(t)的关系为y(t)= 2x(t)+0.5x 3(t)。
2机械控制工程基础第二章答案
习 题2.1 什么是线性系统?其最重要的特性是什么?下列用微分方程表示的系统中,x o 表示系统输出,x i 表示系统输入,哪些是线性系统? (1) x x x x x ioooo222=++ (2) x tx x xiooo222=++ (3)x x x x io222oo=++ (4) x tx x x xiooo222o=++ 解: 凡是能用线性微分方程描述的系统就是线性系统。
线性系统的一个最重要特性就是它满足叠加原理。
该题中(2)和(3)是线性系统。
2.2 图(题2.2)中三同分别表示了三个机械系统。
求出它们各自的微分方程,图中x i 表示输入位移,x o 表示输出位移,假设输出端无负载效应。
图(题2.2) 解: (1)对图(a)所示系统,由牛顿定律有xm x c x x c ioo2o1)(=-- 即 xc x c c x m i121o o )(=++ (2)对图(b)所示系统,引入一中间变量x,并由牛顿定律有)1()()(1x xc k x x oi-=- )2()(2x k x xc oo=-消除中间变量有 x ck x k k x k k cio121o21)(=--(3)对图(c)所示系统,由牛顿定律有 xk x x k x x c ooioi21)()(=-+-即 x k x c x k k xciioo121)(+=++ 2.3求出图(题2.3)所示电系统的微分方程。
图(题2.3)解:(1)对图(a)所示系统,设i 1为流过R 1的电流,i 为总电流,则有 ⎰+=idt Ci R u o 122i R u u o i 11=- dt i i Cu u o i )(111⎰-=-消除中间变量,并化简有u R C u CC R R u R C uR C u C C R R u R C iiiooo12211221222121211)()1(1+++=-+++(2)对图(b)所示系统,设i 为电流,则有 ⎰++=idt Ci R u u o i 111⎰+=i R idt Cu o 221消除中间变量,并化简有 u Cu R u C C u R R iioo2221211)11()(+=+++2.4 求图(题2.4)所示机械系统的微分方程。
机械控制工程基础第二章答案解析
习 题2.1 什么是线性系统?其最重要的特性是什么?下列用微分方程表示的系统中,x o 表示系统输出,x i 表示系统输入,哪些是线性系统? (1) x x x x x ioooo 222=++ (2) x tx x xiooo222=++ (3) x x x xio 222oo=++ (4) x tx x x xiooo222o=++ 解: 凡是能用线性微分方程描述的系统就是线性系统。
线性系统的一个最重要特性就是它满足叠加原理。
该题中(2)和(3)是线性系统。
2.2 图(题2.2)中三同分别表示了三个机械系统。
求出它们各自的微分方程,图中x i 表示输入位移,x o 表示输出位移,假设输出端无负载效应。
图(题2.2) 解: (1)对图(a)所示系统,由牛顿定律有xm x c x x c ioo2o1)(=-- 即x c x c c xm i121oo )(=++ (2)对图(b)所示系统,引入一中间变量x,并由牛顿定律有)1()()(1x xc k x x oi-=- )2()(2x k x xc oo=-消除中间变量有x ck x k k xk k c io121o21)(=-- (3)对图(c)所示系统,由牛顿定律有 x k x x k x xc ooioi21)()(=-+-即x k x c x k k xc iioo121)(+=++ 2.3求出图(题2.3)所示电系统的微分方程。
图(题2.3)解:(1)对图(a)所示系统,设i 1为流过R 1的电流,i 为总电流,则有⎰+=idt Ci R u o122i R u u o i 11=-dti i Cu u oi)(111⎰-=-消除中间变量,并化简有u R C u CC R R uR C u R C u C C R R u R C iiiooo12211221222121211)()1(1+++=-+++(2)对图(b)所示系统,设i 为电流,则有⎰++=idtC i R u u oi111⎰+=i R idt Cu o221 消除中间变量,并化简有u Cu R u C C u R R iioo2221211)11()(+=+++2.4 求图(题2.4)所示机械系统的微分方程。
控制工程基础第2章答案.
第2章系统的数学模型(习题答案)2.1什么是系统的数学模型?常用的数学模型有哪些?解:数学模型就是根据系统运动过程的物理、化学等规律,所写出的描述系统运动规律、特性、输出与输入关系的数学表达式。
常用的数学模型有微分方程、传递函数、状态空间模型等。
2.2 什么是线性系统?其最重要的特性是什么?解:凡是能用线性微分方程描述的系统就是线性系统。
线性系统的一个最重要的特性就是它满足叠加原理。
2.3 图( 题2.3) 中三图分别表示了三个机械系统。
求出它们各自的微分方程, 图中x i表示输入位移, x o表示输出位移, 假设输出端无负载效应。
题图2.3解:①图(a):由牛顿第二运动定律,在不计重力时,可得整理得将上式进行拉氏变换,并注意到运动由静止开始,即初始条件全部为零,可得[]于是传递函数为②图(b):其上半部弹簧与阻尼器之间,取辅助点A,并设A点位移为x,方向朝下;而在其下半部工。
引出点处取为辅助点B。
则由弹簧力与阻尼力平衡的原则,从A和B两点可以分别列出如下原始方程:消去中间变量x,可得系统微分方程对上式取拉氏变换,并记其初始条件为零,得系统传递函数为③图(c):以的引出点作为辅助点,根据力的平衡原则,可列出如下原始方程:移项整理得系统微分方程对上式进行拉氏变换,并注意到运动由静止开始,即则系统传递函数为2.4试建立下图(题图2.4)所示各系统的微分方程并说明这些微分方程之间有什么特点,其中电压)(t u r 和位移)(t x r 为输入量;电压)(t u c 和位移)(t x c 为输出量;1,k k 和2k 为弹簧弹性系数;f 为阻尼系数。
+-+-C)(t u r )(t u c )(t r )(t x c f1k 2k CR)(t u r )(u c +-+-f)(t r )(t x c )(a )(b )(c )(d R 2R题图2.4【解】:)(a方法一:设回路电流为i ,根据克希霍夫定律,可写出下列方程组:⎪⎩⎪⎨⎧=+=⎰i R u u dt i C u cc r 1消去中间变量,整理得:dtdu RC u dt du RCrc c =+方法二:dtdu RC u dt du RCRCs RCs CsR R s U s U rc c r c =+⇒+=+=11)()( 由于无质量,各受力点任何时刻均满足∑=0F ,则有:cc r kx dt dxdt dx f =-)(dtdx k f x dt dx k f rc c =+⇒()r r c c r c u dtduC R u dt du C R R Cs R R Cs R Cs R R CsR s U s U +=++⇒+++=+++=221212212)(1111)()( 设阻尼器输入位移为a x ,根据牛顿运动定律,可写出该系统运动方程r rc c aa c a r c r x dtdx k f x dt dx f k k k k dt dx f x x k x x k x x k +=++⇒⎪⎩⎪⎨⎧=--=-22121221)()()( 结论:)(a 、)(b 互为相似系统,)(c 、)(d 互为相似系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题2.1 什么是线性系统其最重要的特性是什么下列用微分方程表示的系统中,x o 表示系统输出,x i 表示系统输入,哪些是线性系统 (1) x x x x x ioooo 222=++&&& (2) x tx x xiooo222=++&&& (3) x x x x io222oo=++&&& (4) x tx x x xiooo222o=++&&& 解: 凡是能用线性微分方程描述的系统就是线性系统。
线性系统的一个最重要特性就是它满足叠加原理。
该题中(2)和(3)是线性系统。
2.2 图(题2.2)中三同分别表示了三个机械系统。
求出它们各自的微分方程,图中x i 表示输入位移,x o 表示输出位移,假设输出端无负载效应。
图(题2.2) 解: (1)对图(a)所示系统,由牛顿定律有 即xc x c c x m i&&&&121oo )(=++ (2)对图(b)所示系统,引入一中间变量x,并由牛顿定律有 消除中间变量有(3)对图(c)所示系统,由牛顿定律有 即x k x c x k k x c iioo121)(+=++&&2.3求出图(题2.3)所示电系统的微分方程。
图(题2.3)解:(1)对图(a)所示系统,设i 1为流过R 1的电流,i 为总电流,则有 消除中间变量,并化简有u R C u CC R R u R C u R C u C C R R u R C iiiooo12211221222121211)()1(1+++=-+++&&&&&&&(2)对图(b)所示系统,设i 为电流,则有 消除中间变量,并化简有2.4 求图(题2.4)所示机械系统的微分方程。
图中M 为输入转矩,C m 为圆周阻尼,J 为转动惯量。
解:设系统输入为M (即),输出θ(即),分别对圆盘和质块进行动力学分析,列写动力学方程如下:消除中间变量x,即可得到系统动力学方程KM M c Mm C R c k KJ c C km R cJ mC mJ mmm++=++-++++&&&&&&&&&θθθθ)(22)()()4(2.5 输出y(t)与输入x(t)的关系为y(t)= 2x(t)+0.5x 3(t)。
(1)求当工作点为x o =0,x o =1,x o =2时相应的稳态时输出值; (2)在这些工作点处作小偏差线性化模型,并以对工作的偏差来定义x 和y ,写出新的线性化模型。
解: (1) 将x o =0,x o =1,x o =2分别代入y(t)= 2x(t)+0.5x 3(t)中,即当工作点为x o =0,x o =1,x o =2时相应的稳态输出值分别为0=y o ,5.20=y ,8=y o。
(2) 根据非线性系统线性化的方法有,在工作点)(,y x oo附近,将非线性函数展开成泰勒级数,并略去高阶项得 若令x x∇=,y y ∇=有x x y )5.12(20+=当工作点为0=x o 时,xx x y 2)5.12(20=+= 当工作点为1=x o 时, x x x y 5.3)5.12(20=+=当工作点为2=x o 时,x x x y 8)5.12(2=+=2.6已知滑阀节流口流量方程式为ρpcwx Qv2=,式中.Q 为通过节流阀流口的流量;p 为节流阀流口的前后油压差;x v 为节流阀的位移量;c 为疏量系数;w 为节流口面积梯度;ρ为油密度。
试以Q 与p 为变量(即将Q 作为P 的函数)将节流阀流量方程线性化。
解:利用小偏差线性化的概念,将函数Q=F(x v ,p)在预定工作点F(x o ,p o )处按泰勒级数展开为消除高阶项,有若令)(p x x F K ovo v,|)(1∂∂=,)(p x F K o vo ,|)p (2∂∂=, 将上式改写为增量方程的形式2.7 已知系统的动力学方程如下,试写出它们的传递函数Y(s)/R(s)。
(1))(2)()(500)(50)(15)(t r t r t y t y t y t y &&&&&&&&&+=+++ (2))(5.0)(25)(5t r t yt y &&&&=+ (3))(5.0)(25)(t r t yt y =+&&& (4))(4)(4)(6)(3)(t r dt t y t y t yt y =+++⎰&&& 解:根据传递函数的定义,求系统的传递函数,只需将其动力学方程两边分别在零初始条件下进行拉式变换,然后求Y(s)/R(s)。
(1)(2))(5.0)(25)(52s sR s sY s Y s =+ (3) )(5.0)(25)(2s R s SY S Y s =+(4))(4)(14)(6)(3)(2s Y s Y ss Y S sY s Y s =+++2.8 如图(题2.8)为汽车或摩托车悬浮系统简化的物理模型,试以位移x 为输入量,位移y 为输出量,求系统的传递函数Y(s)/X(s)。
2.9 试分析当反馈环节H(s)=1,前向通道传递函数G(s)分别为惯性环节、微分环节、积分环节时,输入、输出的闭环传递函数。
解:由于惯性环节、微分环节、积分环节的传递函数分别为1)(+=Ts K s G ,Ts s G =)(,s K s G =)(,而闭环传递函数为)()(1)()(s H s G s G s G B •±=,则(1)当反馈环节H(s)=1,前向通道传递函数G(s)为惯性环节时, (2)当反馈环节H(s)=1,前向通道传递函数G(s)为微分环节时,(3)当反馈环节H(s)=1,前向通道传递函数G(s)为积分环节时, 2.10 证明图(题2.10)与图(题2.3(a )所示系统是相似系统(即证明两系统的传递函数具有相同形式)。
解:对题2.4(a)系统,可列出相应的方程。
对以上三式分别作Laplce 别换,并注意到初始条件为零,即 则)(4)()1()()()(2222s I sC R sC s I s I R s U O+=+= sC 11)5(⨯,得)7()()()(111110s I sC R s U s U sC i =-⎥⎦⎤⎢⎣⎡R ⨯)6(1, 得 )8()()()()(111111s I sC R s C s I R s U s U R i -=-⎥⎦⎤⎢⎣⎡)8()7(+, 得)()()()1(11110s I sC R s U s U R sC i=-+⎥⎦⎤⎢⎣⎡即 )(1)(1)()(11111111s I C R R s I sC R s C s C R s U s U Oi+=+⨯=-则 )9()(1)()(1110s I C R R s U s U i ++=将(4)式中的)(0s U 代入(9)式再用(4)式与上式相比以消去)(s I ,即得电系统的传递函数为 而本题中,引入中间变量x,依动力学知识有 对上二式分别进行拉式变换有消除)(s X 有比较两系统的传递函数有 故这两个系统为相似系统。
2.11 一齿轮系如图(题2.11)所示。
图中,z 1、z 2、z 3和z 4分别为各齿轮齿数;J 1、J 2、和J 3表示各种传动轴上的转动惯量,θ1、θ2和θ3为各轴的角位移;M m 是电动机输出转矩。
试列写折算到电动轴上的齿轮系的运动方程。
2.12 求图(题2.12)所示两系统的传递函数。
图(题2.12) 解:(1)由图(a)中系统,可得动力学方程为 作Laplce 别换,得 则有)/()(/)()(20k cs ms k s X s X s G i ++==(2)由图(b)中系统,设i 为电网络的电流,可得方程为 作Laplce 别换,得 )(1)()()(s I Css LsI s RI s U i ++=消除中间变量有 11)(/)()(20++==RCs LCs s U s U s G i2.13 某直流调速系统如图(题2.13)所示,u s 为给定输入量,电动机转速n 为系统的输出量,电动机的负载转矩T L 为系统的扰动量。
各环节的微分方程:比较环节 u u u fn s n -=∇ 比例调节器uK u nkc∇= (K k 为放大系数)晶闸管触发整流装置uK u ckd = (K s 为整流增益)电动机电枢回路e dtdi L R i u addad++=(R d 为电枢回路电阻,L d 为电枢回路电感,i a 为电枢电流 ) 电枢反电势 n K e d= (Kd为反电势系数)电磁转矩iK M am e= (K m 为转矩系数)负载平衡方程 Tdtdn J M LGe+= (J G 为转动惯量,T L 为负载转矩) 测速电动机nu fn α= (α为转速反馈系数)试根据所给出的微分方程,绘制各环节相应的传递函数方框图和控制系数的传递函数方框图,并由方框图求取传递函数)()(s U s N s和)()(s T s N L。
2.14 试绘制图(题2.14)所示机械系统传递函数方框图。
2.15 若系统传递函数方框图为图(题2.15)。
(1) 求以)(s R 为输入,当0)(=s N 时,分别以)(s C 、)(s Y 、)(s B 、)(s E 为输出的闭环传递函数;(2) 求以)(s N 为输入,当0)(=s R 时,分别以)(s C 、)(s Y 、)(s B 、)(s E 为输出的闭环传递函数;(3) 比较以上各传递函数的分母,从中可以得出什么结论?图(题2.15)解:(1)求以)(s R 为输入,当0)(=s N 时:若以)(s C 为输出,有 若以)(s Y 为输出,有 若以)(s B 为输出,有 若以)(s E 为输出,有(2)求以)(s N 为输入,当0)(=s R 时: 若以)(s C 为输出,有 若以)(s Y 为输出,有 若以)(s B 为输出,有 若以)(s E 为输出,有(3)从上可知:对于同一个闭环系统,当输入的取法不同时,前向通道的传递出数不同,反馈回路的传递函数不同,系统的传递函数也不同,但系统的传递函数的分母保持不变,这是因为这一分母反映了系统的固有特性,而与外界无关。
2.16 已知某系统的传递函数方框图为图(题 2.16),其中,)(s X i为输入,)(s X O为输出,N(s)为干扰,试问:G(s)为何值时,系统可以消除干扰的影响。