2019年全国中考试题汇编知识点49 数学文化(通用版全解全析)
2019年全国各地中考数学试题分类汇编(第二期):整式与因式分解(PDF版,含解析)
故选: D.
【点评】本题考查整式的运算;熟练掌握合并同类项法则,完全平方公式,幂的乘方与
积的乘方的运算法则是解题的关键.
6. 小明总结了以下结论:
① a( b+c)= ab+ac;
② a( b﹣ c)= ab﹣ ac;
③( b﹣ c)÷ a= b÷ a﹣ c÷ a( a≠ 0);
④ a÷( b+c)= a÷ b+a÷c( a≠0)
别分析得出答案.
【解答】解: A、 a2+a3,无法计算,故此选项错误;
B、( a2) 3= a6,故此选项错误;
C、 a6÷ a3= a3,故此选项错误;
23
36
D、( ab ) = a b ,正确;
故选: D.
【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌
握相关运算法则是解题关键.
9. ( 2 019 ·江苏盐城· 3 分)下列运算正确的是 ( )
【答案】 B
【解析】 a 5 a 2 a7 ,故 A 错; 2a a 3a ,故 C 错; (a2) 3 a6 ,故 D 错。故选 B.
10. (2019?广西贺州 ?3 分)把多项式 4a2﹣ 1 分解因式,结果正确的是(
)
A.( 4a+1)( 4a﹣ 1) C.( 2a﹣ 1) 2
其中一定成立的个数是(
)
A. 1
B. 2
C. 3
D.4
【解答】解:① a( b+c)= ab+ac,正确;
② a( b﹣ c)= ab﹣ ac,正确;
③( b﹣ c)÷ a= b÷ a﹣ c÷ a( a≠0),正确;
④ a÷( b+c)= a÷ b+a÷c( a≠0),错误,无法分解计算.
2019年全国中考数学试题分类解析汇编(159套63专题)4
2019年全国中考数学试题分类解析汇编(159套63专题)专题5:分式一、选择题1. (2019安徽省4分)化简xxx x -+-112的结果是【 】 A.x +1 B. x -1 C.—x D. x 【答案】D 。
【考点】分式的加法运算【分析】分式的加减,首先看分母是否相同,同分母的分式加减,分母不变,分子相加减,如果分母不同,先通分,后加减,本题分母互为相反数,可以化成同分母的分式加减:222(1)111111x x x x x x x x x x x x x x x --+=-===------。
故选D 。
2. (2019浙江湖州3分)要使分式1x有意义,x 的取值范围满足【 】A .x=0B .x≠0 C.x >0 D .x <0 【答案】B 。
【考点】分式有意义的条件。
【分析】根据分式分母不为0的条件,要使1x 在实数范围内有意义,必须x≠0。
故选B 。
3.(2019浙江嘉兴、舟山4分)若分式x 1x+2-的值为0,则【 】A . x=﹣2B . x=0C . x=1或2D .x=1 【答案】D 。
【考点】分式的值为零的条件。
【分析】∵分式x 1x+2-的值为0,∴x 1=0x+2x+20-⎧⎪⎨⎪≠⎩,解得x=1。
故选D 。
4. (2019浙江绍兴4分)化简111x x --可得【 】 A .21x x - B . 21x x -- C .221x x x+- D .221x x x--【答案】B 。
【考点】分式的加减法。
【分析】原式=211(1)x x x x x x--=---。
故选B 。
5. (2019浙江义乌3分)下列计算错误的是【 】A .0.2a b 2a b 0.7a b 7a b ++=--B .3223x y x y x y= C .a b 1b a -=-- D .123c c c +=【答案】A 。
【考点】分式的混合运算。
【分析】根据分式的运算法则逐一作出判断:A 、0.2a b 2a 10b0.7a b 7a 10b ++=--,故本选项错误; B 、3223x y xyx y =,故本选项正确; C 、a b b a1b a b a --=-=---,故本选项正确; D 、123c c c+=,故本选项正确。
2019全国中考数学真题分类含答案解析-知识点47 新定义型2019
一、选择题1.(2019·岳阳)对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是() A .c <-3 B .c <-2 C .14c <D .c <1 【答案】B【解析】 当y =x 时,x =x 2+2x +c ,即为x 2+x +c =0,由题意可知:x 1,x 2是该方程的两个实数根,所以12121x x x x c+=-⎧⎨⋅=⎩∵x 1<1<x 2,∴(x 1-1)(x 2-1)<0, 即x 1x 2-(x 1+x 2) +1<0, ∴c -(-1)+1<0, ∴c <-2.又知方程有两个不相等的实数根,故Δ>0, 即12-4c >0, 解得:c <14.∴c 的取值范围为c <-2 .2.(2019·济宁)−1,-1的差类推,那么a 1+a 2+…+a 100的值是() A .-7.5 B .7.5 C .5.5 D .-5.5 【答案】A【解析】二、填空题18.(2019·娄底) 已知点P()00,x y 到直线y kx b =+的距离可表示为d =0,1)到直线y =2x+6的距离d ==y x =与4y x =-之间的距离为___________. 【答案】【解析】在直线y x =上任取点,不妨取(0,0),根据两条平行线之间距离的定义可知,(0,0)到直线4y x =-的距离就是两平行直线y x =与4y x =-之间的距离.d === 16.(2019·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y =x 2的图象上在第一象限内的任意一点,PQ 垂直直线y =-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是 .(填序号)【答案】①④【解析】正方形和菱形满足一组对边平行,一组邻边相等,故都是广义菱形,故①正确;平行四边形虽然满足一组对边平行,但是邻边不一定相等,因此不是广义菱形,故②错误;对角线互相垂直,且两组邻边分别相等的四边形的对边不一定平行,邻边也不一定相等,因此不是广义菱形,故③错误;④中的四边形PMNQ 满足MN ∥PQ ,设P (m ,0)(m >0),∵PM=+1,PQ =-(-1)=+1,∴PM =PQ ,故四边形PMNQ 是广义菱形.综上所述正确的是①④.17.(2019·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k = .【答案】85或14. 【解析】当∠A 是顶角时,底角是50°,则k=808505=;当∠A 是底角时,则底角是20°,k=201804=,故答案为:85或14.三、解答题1.(2019·重庆A 卷)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义:对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由; (2)求出不大于100的“纯数”的个数.解:(1)2019不是“纯数”,2020是“纯数”,理由如下:∵在计算2019+2020+2021时,个位产生了进位,而计算2020+2021+2022时,各数位都不产生进位,∴2019不是“纯数”,2020是“纯数”.(2)由题意可知,连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.现分三种情况讨14214m 214m 214m论如下:①当这个数为一位自然数时,只能是0、1、2,共3个;②当这个数为二位自然数时,十位只能为1、2、3,个位只能为0、1、2,即10、11、12、20、21、22、30、31、32共9个; ③当这个数为100时,易知100是“纯数”. 综上,不大于100的“纯数”的个数为3+9+1=13.2.(2019·重庆B 卷)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等. 现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数,在通过列竖式进行的运算时各位都不产生进位现象,则称这个自然数为“纯数”.例如:是“纯数”,因为在列竖式计算时各位都不产生进位现象; 不是“纯数”,因为在列竖式计算时个位产生了进位. ⑴请直接写出1949到2019之间的“纯数”;⑵求出不大于100的“纯数”的个数,并说明理由.解:(1)1949到2019之间的“纯数”为2000、2001、2002、2010、2011、2012 . (2)由题意:不大于100的“纯数”包含:一位数、两位数和三位数100若n 为一位数,则有n +(n +1)+(n +2)<10,解得:n <3,所以:小于10的“纯数数”有0、1、2,共3个.两位数须满足:十位数可以是1、2、3,个位数可以是0、1、2,列举共有9个分别是10、11、12、20、21、22、30、31、32;三位数为100,共1个所以:不大于100的“纯数”共有13个.3.(2019·衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满是x =3a c +,y =3b d +,那么称点T 是点A ,B 的融合点。
数学文化问题(精讲)-2019年中考数学高频考点突破全攻略(解析版)
【课标解读】数学文化是指数学在发展过程中蕴含的人文成分,这个人文成分包括以下这些方面的要素,例如包括数学概念、公式一数学游戏一数学家的创造活动+ 数学的发展史一数学发展社会背景等数学史,还包括日常应用中的数学,以及数学思想方法和数学精神等。
在近几年的中考中,以数学文化为载体的数学题越来越多,只要我们平时注意积累和了解这方面的常识,解题时注意审题,实现载体与考点的有效转化,透过现象看本质,问题便可迎刃而解.【解题策略】首先在理解古代名人研究的成果的基础上,结合语意进行探索,并进行转化,转为为数学知识进行解答.【考点深剖】★考点一以古代名人或者成就为背景【典例1】2018•莱芜•4分)如图,若△ABC内一点P满足∠PAC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC中,CA=CB,∠ACB=120°,P为△ABC的布罗卡尔点,若PA=,则PB+PC= .【分析】作CH⊥AB于H.首先证明BC=BC,再证明△PAB∽△PBC,可得===,即可求出PB.PC;【解答】解:作CH⊥AB于H.∴===,∵PA=,∴PB=1,PC=,∴PB+PC=1+.故答案为1+.学科&网★考点二以古代名著作品为背景【典例2】(2018•福建)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.★考点三以科学技术为背景【典例3】(2016·陕西)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【考点】相似三角形的应用.★考点四以其他方面的知识为背景【典例4】阅读理解:如图1,⊙O与直线a、b都相切,不论⊙O如何转动,直线a、b之间的距离始终保持不变(等于⊙O的直径),我们把具有这一特性的图形成为“等宽曲线”,图2是利用圆的这一特性的例子,将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力既可以推动物体前进,据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.拓展应用:如图3所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图4,夹在平行线c,d之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,若直线c,d之间的距离等于2cm,则莱洛三角形的周长为cm.【点评】本题主要考查新定义下弧长的计算,理解“等宽曲线”得出等边三角形是解题的关键.【讲透练活】变式1:(2018广西南宁)(3.00分)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.2【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.变式2:(2017湖北宜昌)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【考点】KT:勾股数;KQ:勾股定理.【分析】由n=1,得到a=(m2﹣1)①,b=m②,c=(m2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=(m2﹣1)①,b=m②,c=(m2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,(m2﹣1)=5,解得:m=(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,(m2+1)=5,解得:m=±3,∵m>0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.学科&网变式3:(2017江西)钓鱼岛自古就是中国的!2017年5月18日,中国海警2305,2308,2166,33115舰船队在中国的钓鱼岛领海内巡航,如图,我军以30km/h的速度在钓鱼岛A附近进行合法巡逻,当巡逻舰行驶到B处时,战士发现A在他的东北方向,巡逻舰继续向北航行40分钟后到达点C,发现A在他的东偏北15°方向,求此时巡逻舰与钓鱼岛的距离(≈1.414,结果精确到0.01)变式4:(2017•北京)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据该图完成这个推论的证明过程.证明:S矩形NFGD=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣(S△AEF+ S△FCM).易知,S△ADC=S△ABC,S△ANF= S△AEF,S△FGC= S△FMC.可得S矩形NFGD=S矩形EBMF.【考点】LB:矩形的性质.变式5:(2017湖北随州)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H 在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作BE⊥DH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AHtan∠CAH=tan55°•x知CE=CH﹣EH=tan55°•x﹣10,根据BE=DE可得关于x的方程,解之可得.【解答】解:如图,作BE⊥DH于点E,。
【通用版】2019届中考数学知识点梳理
第一部分教材知识点梳理·系统复习第一单元数与式第1讲实数第2讲整式与因式分解第3讲分式第4讲二次根式第二单元方程(组)与不等式(组) 第5讲一次方程(组)第6讲一元二次方程第7讲分式方程第8讲一元一次不等式(组) x≥a x>a x≤a x<a第9讲平面直角坐标系与函数第10讲一次函数面积;②也要注意系数k的几何意义三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S第12讲二次函数的图象与性质第13讲二次函数的应用第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线第15讲一般三角形及其性质第16讲等腰、等边及直角三角形第17讲相似三角形D cD c的比叫做黄金比.)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍. 第18讲 解直角三角形E C解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,弄清题中名词、术语,根据题意画出图形,建立数学模型;第五单元四边形第19讲多边形与平行四边形,每一个外角为(1)如图①,AF平分∠BAD,则可利用平行线的性质结合等角对等边得到第20讲特殊的平行四边形形.(变式:如图④,四边形图①图②图③图④第六单元圆第21讲圆的基本性质垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧.只要满足其中两个,另外三个结论一定成立,即推二知三.图a 图b 图cBAC=40°,则∠D图a 图b 图cBAC=40°,则∠D 第22讲与圆有关的位置关系已知△ABC的三边长a=3,b=4则它的外切圆半径是2.5.第23讲与圆有关的计算:正多边形与圆(2)特殊正多边形中各中心角、长度比:中心角=120°中心角=90°中心角=60°,△BOCa:r:R=2:1:2 a:r:R=2::2知识点二:与圆有关的计算公式n第七单元图形与变换第24讲平移、对称、旋转与位似第25讲视图与投影第八单元统计与概率第27讲概率。
2019年全国中考数学真题分类汇编:数学文化(含答案)
2019年全国中考数学真题分类汇编:数学文化一、选择题1. (2019年乐山市)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。
问人数、物价各多少?”根据所学知识,计算出人数、物价分别是( ) ()A 1,11()B 7,53 ()C 7,61 ()D 6,50【考点】二元一次方程组的解法与应用 【解答】解:设人数x 人,物价y 钱.⎩⎨⎧=+=-y x yx 4738解得:⎩⎨⎧==537y x ,故选B.2.(2019年重庆市)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A .B .C .D .【考点】二元一次方程组的解法与应用 【解答】解:设甲的钱数为x ,乙的钱数为y ,依题意,得:.故选:A .3. (2019年山东省德州市)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x尺,木长y尺,则可列二元一次方程组为()A. B. C. D.【考点】二元一次方程组的解法与应用、数学文化【解答】解:设绳长x尺,长木为y尺,依题意得,故选:B.4. (2019年湖北省襄阳市)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x﹣45=7x﹣3 B.5x+45=7x+3 C.=D.=【考点】一元一次方程的应用【解答】解:设合伙人数为x人,依题意,得:5x+45=7x+3.故选:B.5. (2019年湖北省宜昌市)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=,那么三角形的面积为S=.如图,在△ABC 中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为()A.6B.6C.18 D.【考点】二次根式的应用【解答】解:∵a=7,b=5,c=6.∴p==9,∴△ABC的面积S==6;故选:A.6.(2019年福建省)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685C.x+2x+2x=34685 D.x+x+x=34685【考点】由实际问题抽象出一元一次方程【解答】解:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.7.(2019年吉林省长春市)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,买鸡的钱数为y,可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组【解答】解:设人数为x,买鸡的钱数为y,可列方程组为:.故选:D.8.(2019年甘肃兰州)《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组【解答】解:由题意可得,,故选:C.9.(2019年湖南省长沙市)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组【解答】解:由题意可得,,故选:A.10.(2019年浙江省舟山市)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.【考点】二元一次方程组的应用【解答】解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:D.11.(2019年浙江省宁波市)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【考点】勾股定理【解答】解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的宽=a﹣(c﹣b),长=a,则较小两个正方形重叠部分底面积=a(a+b﹣c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C.二、填空题1. (2019年上海市)《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛.斛米.(注:斛是古代一种容量单位)【考点】二元一次方程组的解法【解答】解:设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则,故5x+x+y+5y=5,则x+y.答:1大桶加1小桶共盛斛米.故答案为:.2. (2019年辽宁省大连市)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.【考点】二元一次方程组的应用【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意得:,故答案为.3.(2019年江苏省南通市)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x个人共同出钱买鸡,根据题意,可列一元一次方程为.【解答】一元一次方程的应用【考点】解:设有x个人共同买鸡,根据题意得:9x﹣11=6x+16.故答案为:9x﹣11=6x+16.4.(2019年湖南省株洲市)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.【解答】一元一次方程的应用【考点】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.5.(2019年湖北省咸宁市)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为.【解答】二元一次方程组的应用【考点】解:设木条长x尺,绳子长y尺,依题意,得:.故答案为:.6.(2019年江苏省泰安市)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意可列方程组为____ .【解答】由实际问题抽象出二元一次方程组【考点】解:设每枚黄金重x两,每枚白银重y两,由题意得:,故答案为:.7.(2019年宁夏自治区)你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程x2+5x﹣14=0即x(x+5)=14为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是(x+x+5)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×14+52,据此易得x=2.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程x2﹣4x﹣12=0的正确构图是.(只填序号)【解答】一元二次方程的应用【考点】解:∵x2﹣4x﹣12=0即x(x﹣4)=12,∴构造如图②中大正方形的面积是(x+x﹣4)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×12+42,据此易得x=6.故答案为:②.8.(2019年甘肃白银)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:请根据以上数据,估计硬币出现“正面朝上”的概率为0.5 (精确到0.1).【解答】利用频率估计概率【考点】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.三、解答题1. (2019年甘肃省)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?【考点】一元一次方程的解法及应用【解答】解:设共有x人,根据题意得:+2=,去分母得:2x+12=3x﹣27,解得:x=39,∴=15,则共有39人,15辆车.2.(2019年湖北省黄石市)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?【解答】一元一次方程的应用【考点】解:(1)设当走路慢的人再走600步时,走路快的人的走x步,由题意得x:600=100:60∴x=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+y∴y=500答:走路快的人走500步才能追上走路慢的人.。
2019全国中考数学真题分类含答案解析-知识点48 几何最值2019
一、选择题12.(2019·长沙)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+5 BD的最小值是【】A.25B.45C.53D.10【答案】B二、填空题16.(2019·黄冈)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8.点M为AB的中点.若∠CMD=120°,则CD的最大值是.【答案】14【解析】将△CAM沿CM翻折到△CA′M,将△DBM沿DM翻折至△DB′M,则A′M=B′M,∠AMC=∠A′MC,∠DMB=∠DMB′,∵∠CMD=120°,∴∠AMC+∠DMB=∠A′MC+∠DMB′=60°,∴∠A′MB′=180°-(∠AMC+∠DMB+∠A′MC+∠DMB′)=60°,∴△A′MB′是等边三角形,又∵AC=2,BD=8,AB=8.点M为AB的中点,∴A′B′=A′M=B′M=AM=12AB=4,CA′=AC=2,DB′=DB=8,又CD≤CA′+A′B′+DB′=2+4+8=14.三、解答题24.(2019山东威海,24,12分)如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止,设△BEF的面积为ycm2,E点的运动时间为x秒.(1)求证:CE =EF ;(2)求y 与x 之间关系的函数表达式,并写出自变量x 的取值范围; (3)求△BEF 面积的最大值. 【解题过程】(1)证明:过E 作MN ∥AB ,交AD 于M ,交BC 于N , ∵四边形ABCD 是正方形,∴AD ∥BC ,AB ⊥AD , ∴MN ⊥AD ,MN ⊥BC , ∴∠AME =∠FNE =90°=∠NFE +∠FEN , ∵AE ⊥EF ,∴∠AEF =∠AEM +∠FEN =90°, ∴∠AEM =∠NFE , ∵∠DBC =45°,∠BNE =90°, ∴BN =EN =AM .∴△AEM ≌△EFN (AAS ). ∴AE =EF .∵四边形ABCD 是正方形, ∴AD =CD ,∠ADE =∠CDE , ∵DE =DE ,∴△ADE ≌△CDE (SAS ), ∴AE =CE =EF .(2)在Rt △BCD 中,由勾股定理得:BD=,∴0≤x ≤. 由题意,得BE =2x ,∴BN =EN x.由(1)知:△AEM ≌△EFN , ∴ME =FN ,∵AB =MN =10,∴ME =FN =10x ,如图(1),当0≤x ≤2时, ∴BF =FN -BN =10x x =10-x . ∴y =12BF ·EN =1(102-=-2x 2+(0≤x ≤2); 如图(2)x ≤∴BF =BN -FNx -(10x)=-10, ∴y =12BF ·EN=12-=2x 2-(2≤x≤.∴222(0);22(2x x y x x ⎧-+≤≤⎪⎪=⎨⎪-<≤⎪⎩(1) (2) (3)y =-2x 2+5x =-2(x-524)2+254,∵-2<0, ∴当x =524时,y 有最大值是;即△BEF 面积的最大值是;<x ≤ y =2x 2-=22()4x --254, 此时2>0,开口向上,对称轴为直线x =4, ∵对称轴右侧,y 随x 的增大而增大, ∴当x =y 最大值=50.∴当x =BEF 面积的最大值是50.【知识点】四边形综合运用,二次函数的解析式,二次函数的最值问题,三角形全等的判定. 25.(2019山东省威海市,题号25,分值12) (1)方法选择如图①,四边形ABCD 是OO 的内接四边形,连接AC ,BD .AB =BC =AC . 求证:BD =AD +CD .小颖认为可用截长法证明:在DB 上截取DM =AD ,连接AM ..…… 小军认为可用补短法证明:延长CD 至点N ,使得DN =AD …… 请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .BC 是⊙O 的直径,AB =AC .试用等式表示线段AD ,BD ,CD 之间的数量关系,并证明你的结论. 【探究2】如图③,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .若BC 是⊙O 的直径,∠ABC =30°,则线段AD ,BD ,CD 之间的等量关系式是. (3)拓展猜想如图④,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .若BC 是O 0的直径,BC :AC :AB =a :b :c ,则线段AD ,BD ,CD 之间的等量关系式是.【思路分析】(1)选小颖的截长法,如图①,在DB 上截取DM =AD ,连接AM ,由旋转全等得BM =CD ,∴BD =MD +BM =AD +CD(2)【探究1】数量关系为:BDAD +CD如图②,在DB 上截取AD =AN ,连接AN ,可得△AND 为等腰直角三角形,∴NDAD ,由旋转全等得BN =CD ,∴BD =ND +BNAD +CD 【探究2】数量关系为:BD =2AD如图③,在DB 上截取2AD =PD ,连接AP ,可得△APD 为30°的直角三角形, 由旋转相似得BP,∴BD =PD +BP =2ADCD (3)拓展猜想数量关系为:BD =a bAD +cb CD如图④,过A 作AQ ⊥AD 交BD 于Q ,连接AQ ,由旋转相似得=BQ AB c CD AC b =,=DQ BC aAD AC b=, 图①图②B图③BC 图④BC∴BQ =c b CD ,BQ =a b AD ,∴BD =PD +BP =a bAD +c b CD【解题过程】(1)选小颖的截长法,如图①,在DB 上截取DM =AD ,连接AM ,可得△AMD 为等边三角形,可证△BAM ≌△CAD (SAS )得BM =CD ,∴BD =MD +BM =AD +CD(2)【探究1】数量关系为:BDAD +CD如图②,在DB 上截取AD =AN ,连接AN ,可得△AND 为等腰直角三角形,∴NDAD ,∠BAN =∠CAD ,可证△BAN ≌△CAD (SAS )得BN =CD ,∴BD =ND +BNAD +CD【探究2】数量关系为:BD =2AD如图③,在DB 上截取2AD =PD ,连接AP ,可得△APD 为30°的直角三角形,∴=tan 30AP ABAD AC=︒∠BAP =∠CAD ,可证△BAP ∽△CAD 得BP,∴BD =PD +BP =2ADCD答案图①答案图②B(3)拓展猜想数量关系为:BD =a bAD +c b CD如图④,过A 作AQ ⊥AD 交BD 于Q ,连接AQ ,可得∠BAQ =∠CAD ,∠ABQ =∠ACD ,∠ADQ =∠ACB ,∠BAC =∠QAD ∴△BAP ∽△CAD ,△ADQ ∽△ACB ∴=BQ AB c CD AC b =,=DQ BC aAD AC b=, ∴BQ =c b CD ,BQ =a b AD ,∴BD =PD +BP =a bAD +cb CD26.(2019·益阳)如图,在半面直角坐标系xOy 中,矩形ABCD 的边AB=4,BC=6.若不改变矩形ABCD 的形状和大小,当形顶点A 在x 轴的正半轴上左右移动时,矩形的另一个顶点D 始终在y 轴的正半上随之上下移动. (1)当∠OAD=30°时,求点C 的坐标;(2)设AD 的中点为M ,连接OM 、MC ,当四边形 OMCD 的面积为221时,求OA 的长; (3)当点A 移动到某一位置时,点C 到点O 的距离有最大值,请直接写出最大值,并求此时cos ∠OAD 的值.第26题图 第26题备用图【解题过程】(1)如图1,过点C 作CE ⊥y 轴,垂足为E.答案图③B答案图④BC第26题答图1∵矩形ABCD 中,CD ⊥AD , ∴∠CDE+∠ADO=90°, 又∵∠OAD+∠ADO=90°, ∴∠CDE=∠OAD=30°. 在Rt △CED 中,CE=21CD=2, ∴DE=32242222=-=-CE CD ; 在Rt △OAD 中,∠OAD=30°, ∴OD=21AD=3. ∴点C 的坐标为(2,323+). (2)∵M 为AD 的中点, ∴DM=3,6=DCM S △. 又∵221=OMCD S 四边形, ∴29=ODM S △, ∴9=OAD S △. 设OA=x ,OD=y ,则⎪⎩⎪⎨⎧==+9213622xy y x , ∴xy y x 222=+, 即0)(2=-y x , ∴x=y.将x=y 代入3622=+y x 得182=x , 解得23=x (23-不合题意,舍去), ∴OA 的长为23.(3)OC 的最大值为8.理由如下: 如图2,第26题答图2 ∵M 为AD 的中点,∴OM=3,522=+=DM CD CM .∴OC ≤OM+CM=8,当O 、M 、C 三点在同一直线时,OC 有最大值8.连接OC ,则此时OC 与AD 的交点为M ,过点O 作ON ⊥AD ,垂足为N. ∵∠CDM=∠ONM=90°,∠CMD=∠OMN , ∴△CMD ∽△OMN , ∴OM CMMN DM ON CD ==, 即3534==MN ON , 解得59=MN ,512=ON , ∴56=-=MN AM AN . 在Rt △OAN 中,∵55622=+=AN ON OA , ∴55cos ==∠OA AN OAD . 26.(2019·衡阳)如图,在等边△ABC 中,AB =6cm ,动点P 从点A 出发以cm/s 的速度沿AB 匀速运动.动点Q 同时从点C 出发以同样的速度沿BC 延长线方向匀速运动.当点P 到达点B 时,点P 、Q 同时停止运动.设运动时间为t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB′的值最小?并求出最小值.解:(1)∵△ABC为等边三角形,∴∠B=60°,∵BP⊥PQ,∴2BP=BQ即2(6-t)=6+t,解得t=2.∴当t为2时,△BPQ为直角三角形;(2)存在.作射线BF,∵PE⊥AC,∴AE=0.5t.∵四边形CQFE是平行四边形,∴FQ=EC=6-0.5t,∵BF 平分∠ABC,∴∠FBQ+∠BQF=90°.∵BQ=2FQ,BQ=6+t,∴6+t=2(6-0.5t),解得t=3.(3)过点P作PG∥CQ交AC于点G,则△APG是等边三角形.∵BP⊥PQ,∴EG=12AG.∵PG∥CQ,∴∠PGD=∠QCD,∵∠PDG=∠QDC,PG=PA=CG=t,∴△PGD≌△QCD.∴GD=12GC.∴DE=12AC=3.(4)连接AM,∵△ABC为等边三角形,点M是BC的中点,∴BM=3.由勾股定理,得AM=.由折叠,得BM′=3.当A 、B′、M在同一直线上时,AB′的值最小,此时AB′=3.过点B′作B′H⊥AP于点H,则cos30°=AHAB',t,解得t=9-∴t为9-AB′的值最小,最小值为3.MMM QB C1.(2019·重庆A 卷)如图,在平面在角坐标系中,抛物线y =x 2-2x -3与x 轴交与点A ,B (点A 在点B 的左侧)交y 轴于点C ,点D 为抛物线的顶点,对称轴与x 轴交于点E .(1)连结BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN ⊥BD 交抛物线于点N (点N 在对称轴的右侧),过点N 作NH ⊥x 轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MN 取得最大值时,求HF +FP +13PC 的最小值;(2)在(1)中,当MN 取得最大值,HF +FP +13PC 取得小值时,把点P 向上平移个2单位得到点Q ,连结AQ ,把△AOQ 绕点O 顺时针旋转一定的角度α(0°<α<360°),得到△A OQ '',其中边A Q ''交坐标轴于点G ,在旋转过程中,是否存在一点G ,使得OG Q Q ''∠=∠?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.解:(1)由题意得A (-1,0),B (3,0),C (0,-3),D (1,-4),直线BD :y =2x -6. 如答图1,连接DN 、BN ,则S △BDN =12BD •MN ,而BD 为定值,故当MN 最大时,S △BDN 取最大值.此时由S △BDN =S △DFN +S △BFN =12EH •FN +12BH •FN =12BE •FN =FN ,从而S △BDN 取最大值时,即为FN 有最大值.令N (m ,m 2-2m -3),则F (m ,2m -6),从而FN =(2m -6)-(m 2-2m -3)=-m 2+4m -3=-(m -2)2+1,此时,当且仅当m =2,FN 有最大值为1,于是N (2,-3),F (2,-2),H (2,0). 在直角三角形中,设最小的直角边为a ,斜边为3a ,较长直角边为3,即可求出a =324,于是在x 轴上取点H B'M FD E QA BP yxOEDCBA第26题备用图第26题图K (-324,0),连接KC ,易求直线KC :y =-22x -3.如答图1,过点F 作FR ⊥CK 于点R ,交OC 于点P ,作FT ⊥OC ,交CK 于点T ,则∠OCK =∠TFR ,于是,由△PCR ∽△ACO ∽△TFR ,得133PR OK a PC KC a ===,从而PR =13PC ,因此由FH 为定值,再由定点F 到直线的垂直线最短,可知MN 取得最大值时,HF +FP+13PC 最小值=HF +FR .在y =-22x -3中,当y =-2,x =-24,于是FT =2+24.在Rt △FTR 中,由223FR FT =,得FR =223FT =223(2+24)=14233+,故HF +FP +13PC 最小值=2+14233+=7423+.(2)4525(,)55--,2545(,)55-,4525(,)55,2545(,)55-. 第26题答图4第26题答图5第26题答图1 T KR QP HF NMyxO ED CBA第26题答图2第26题答图32.(2019·重庆B 卷)在平面直角坐标系中,抛物线2y =++与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q .(1)如图1,连接AC ,BC .若点P 为直线BC 上方抛物线上一动点,过点P 作PE ∥y 轴交BC 于点E ,作PF⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G .点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK .当△PEF 的周长最大时,求PH +HKKG 的最小值及点H 的坐标. (2)如图2,将抛物线沿射线AC 方向平移,当抛物线经过原点O 时停止平移,此时抛物线顶点记作D ’,N 为直线DQ 上一点,连接点D ’,C ,N ,△D ’CN 能否构成等腰三角形?若能,直接写出满足条件的点N 的坐标;若不能,请说明理由.解:(1)∵2y x =+与x 轴交于A ,B 两点, ∴当y=0时,即20=+,∴122,4x x =-=,即A (-2,0),B (4,0), 设直线BC 的解析式为y =kx +b ,∵C (0,,B (4,0),∴40b k b ⎧=⎪⎨+=⎪⎩,∴b k ⎧=⎪⎨=⎪⎩,∴直线BC的解析式为y =+设点2(,4),P m m +<< ∵PE ∥y 轴且点E 在直线BC上,∴(,E m +∠PEF =∠OCE ,∴2(04),PE m =<< ∵PF ⊥BC ,∴∠PFE =∠COB =90°,∴△PEF ∽△BCO ,设△PEF 的周长为1l ,△BCO 的周长为2l , 则12l PEl BC=,∵B (4,0),C (0,,∴BC=24l =+∴21)(04),l m =<< 备用图图1图2∴当m=2时,1l此时点P 的坐标为(2,, ∵A (-2,0),C (0,,∴∠ACO =30°,∠CAO =60°, ∵BG ∥AC ,∴.∠BGD =30°,∠OBG =60°,∴G (0,-, 直线BG解析式为y -PM解析式为y =,过点G 作GN ⊥BG ,过点P 作PM ⊥GN 于点M ,如图1,此时,点H 为PM 与对称轴的交点,K 为PM 与y 轴的交点,点K 与点O 重合, 则KM=OMKG ,PH +HKKG 的最小值为线段PM 的长.(此问题是胡不归问题).解法一:(作一线三直角利用相似求解)如图2,过点P 作PQ ∥x 轴交对称轴于点T , 过点M 作MQ ⊥y 轴交PT 于点Q ,过点G 作GJ ⊥MQ 交MQ 于点J.设点Q (n,,∴J (n,-,∴PQ =2-n ,2-n ), ∵GJ =-n ,∴MJ=,∴MQ +MJ =CG=(-=2-n )+()=n =-3,∴Q (-3,),∴PQ =5, ∴PM =2PQ =10,∴PH +HKKG 的最小值为10, ∵∠OGM =60°,∠PHT=30°,∠HPT=60°,∴PT =1,∴HTH (1.图1N解法二:由上面的解法可知MG ⊥BG ,直线MG的解析式为:y =- 如图3,过点P 作PR ⊥x 轴交MG 于点R ,∴R (2,, 由第一种解法可知∠PRG =60°,∴PMP R()=10, ∴PH +HKKG 的最小值为10,同理可求H (1.(2)这样的N 点存在.当△'CD N 为等腰三角形时,这样的N有:1N,2N,3N,4N,5N .【提示】由(1)可知∠ACO=30°,∠OAC=60°,又∵221)y x =++=-D (1, ∵抛物线按射线AC的方向平移,设平移后顶点'(D a +,平移后的抛物线解析式为21)y x a =--++该抛物线经过原点,则201)a =--+图2NN∴2280a a --=,∴a =4或a =-2(舍去),即D .设点N (1,b )'CDCN ='ND 如图4,当△'CD N 为等腰三角形时,分三种情况: ①当'CD CN ==,可得1N,2N ; ②当''CD D N ==3N,4N ,③当'CN D N =可得5N , ∴当△'CD N 为等腰三角形时,这样的N有:1N,2N,3N,4N,5N .3.(2019·天津)已知抛物线y=x 2-bx+c(b,c 为常数,b>0)经过点A (-1,0),点M(m,0)是x 轴正半轴上的动点,(1)当b=2时,求抛物线的顶点坐标;(2)点D(b,y D )在抛物线上,当AM=AD,m=5时,求b 的值; (3)点Q(1b ,2+y Q )2QM +时,求b 的值. 解:(1)∵抛物线y=x 2-bx+c 经过点A (-1,0), ∴1+b+c=0,∴c=-1-b 当b=2时,c=-3,∴抛物线的解析式为y=x 2-2x-3, ∴顶点坐标为(1,-4) (2)由(1)知,c=-1-b , ∵点D(b,y D )在抛物线上, ∴y D =-b-1,∵b>0,∴b 02b >>,-b-1<0,∴D(b,-b-1)在第四象限,且在抛物线对称轴2bx =的右侧.如图,过点D 作DE ⊥x 轴于E ,则E (b ,0),∴AE=b+1=DE,所以1)b +, ∵m=5,∴AM=5-(-1)=6, ∴1)b +∴b=(3)∵点Q(1b ,2+y Q )在抛物线上, ∴yQ=2113)()12224b b b b b +-+--=--(, ∴点Q (1b ,2+3-24b -)在第四象限,且在直线x=b 的右侧,2QM +的最小值为4,A(-1,0) ∴取点N(0,1),如图,过点Q 作QH ⊥x 轴于H ,作QG ⊥AN 于G,QG 与x 轴交于点M ,则H (1b ,2+0),∠GAM=45°,∴GM=2AM ,∵M (m,0),∴AM=m+1,MH=1b 2m +-,QH=324b +, ∵MH=QH,∴1b 2m +-=324b +, ∴m=1-24b ,∴AM=13-12424b b +=+,3)24b =+(2QM +33)))24244b b +++=(,∴b=4. 4.(2019·自贡)如图,已知直线AB 与抛物线:y =ax 2+2x +c 相交于点A (-1,0)和点B (2,3)两点. (1)求抛物线C 函数解析式;(2)若点M 是位于直线AB 上方抛物线上的一动点,以MA 、MB 为相邻的两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时平行四边形MANB 的面积S 及点M 的坐标; (3)在抛物线C 的对称轴上是否存在顶点F ,使抛物线C 上任意一点P 到F 的距离等于到直线y =174的距离,若存在,求出定点F 的坐标;若不存在,请说明理由.解:(1)将A (-1,0)和B (2,3)代入抛物线解析式得{a −2+c =04a +4+c =3解得,{a =−1c =3∴抛物线解析式为y =-x 2+2x +3.(2)过M 作MH ∥y 轴,交AB 于H ,设直线AB 为y =kx +b ,将A ,B 坐标代入得,{−k +b =02k +b =3解得,{k =1b =1.∴直线AB 的解析式为y =x +1.设M 为(m ,-m 2+2m +3),则H (m ,m +1) ∴MH =y M -Y H =(-m 2+2m +3)-( m +1)=-m 2+m +2. ∴S △ABM =S △AMH +S △BMH =12·MH ·(x B -x A ) =12·(-m 2+m +2)·(2+1)=-32(m 2-m )+3 =-32(m -12)2+278.∵四边形MANB 是以MA 、MB 为相邻的两边的平行四边形, ∴△ABM ≌△BAN .∴S 四边形MANB =2 S △ABM =-3(m -12)2+274,∵a =-3<0且开口向下,∴当m =12时,S 四边形MANB 的最大值为274. 此时,M 坐标为(12,154). (3)存在,理由如下:过P 作直线y =174的垂线,垂足为T ,∵抛物线为y =-x 2+2x +3=-(x -1)2+4.∴抛物线的对称轴为直线x =1,顶点坐标为(1,4). 当P 为顶点,即P (1.4)时, 设F 点坐标为(1,t ), 此时PF =4-t ,PT =174-4=14.∵P 到F 的距离等于到直线y =174的距离,∴4-t =14,即t =154.∴F 为(1,154)设P 点为(a ,-a 2+2a +3),由勾股定理,PF 2=(a -1)2+(-a 2+2a +3-154)2=a 4-4a 3+132a 2-5a +2516.又∵PT 2=[174-(-a 2+2a +3)]2= a 4-4a 3+132a 2-5a +2516. ∴PF 2=PT 2,即PF =PT .∴当F 为(1,154)时,抛物线C 上任意一点P 到F 的距离等于到直线y =174的距离 .27.(2019·淮安)如图①,在△ABC 中,AB=AC=3,∠BAC=100°,D 是BC 的中点.小明对图①进行了如下探究:在线段AD 上任取一点P ,连接PB.将线段PB 绕点P 按逆时针方向旋转80°,点B 的对应点是点E ,连接BE ,得到△BPE.小明发现,随着点P 在线段AD 上位置的变化,点E 的位置也在变化,点E 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧. 请你帮助小明继续探究,并解答下列问题: (1)当点E 在直线AD 上时,如图②所示. ①∠BEP=°;②连接CE ,直线CE 与直线AB 的位置关系是.(2)请在图③中画出△BPE ,使点E 在直线AD 的右侧,连接CE.试判断直线CE 与直线AB 的位置关系,并说明理由.(3)当点P 在线段AD 上运动时,求AE 的最小值.【解题过程】(1)①由题意得,PE=PB ,∠BPE=80°,∴∠BEP=︒=︒-︒50280180; ②如图所示,∵AB=AC ,D 是BC 的中点,∠BAC=100°, ∴∠ABC=︒=︒-︒402100180,∵∠BEP=50°,∴∠BCE=∠CBE=40°, ∴∠ABC=∠BCE , ∴CE ∥AB.答案:①50°;②平行(2)在DA 延长线上取点F ,使∠BFA=∠CFA=40°,总有△BPE ∽△BFC. 又∵△BPF ∽△BEC , ∴∠BCE=∠BFP=40°, ∴∠BCE=∠ABC=40°, ∴CE ∥AB.(3)当点P 在线段AD 上运动时,由题意得PB=PE=PC ,∴点B 、E 、C 在以P 为圆心、PB 为半径的圆上, 如图所示:∴AE 的最小值为AC=3.5.(2019·凉山州)如图,抛物线y = ax 2+bx +c 的图象过点A (-1,0)、B (3,0)、C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△P AC 的周长最小,若存在,请求出点 P 的坐标及△P AC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得 S △P AM =S △P AC ,若存在,请求出点M 的坐标;若不存在,请说明理由.解:(1)由题知⎪⎩⎪⎨⎧==++=+-30390c c b a c b a ,解得⎪⎩⎪⎨⎧==-=321c b a ,∴抛物线的解析式为y = -x 2+2x +3;(2)存在.连接BC 交抛物线对称轴于点P ,此时△P AC 的周长最小.设BC :y =kx +3,则3k +3=0,解得k =-1,∴BC :y =-x +3.由抛物线的轴对称性可得其对称轴为直线x =1,当x =1时,y =-x +3=2,∴P (1,2).在Rt △OAC 中,AC =2231+=10;在Rt △OBC 中,BC =2233+=32.∵点P 在线段AB 的垂直平分线上,∴P A =PB ,∴△P AC 的周长=AC +PC +P A = AC +PC +PB =AC +BC =10+32.综上,存在符合条件的点P ,其坐标为(1,2),此时△P AC 的周长为10+32;(3)存在.由题知AB =4,∴S △P AC =S △ABC -S △P AB =21×4×3-21×4×2=2.设:AP :y =mx +n ,则⎩⎨⎧=+=+-20n m n m ,解得⎩⎨⎧==11n m ,∴AP :y =x +1. ①过点C 作AP 的平行线交x 轴上方的抛物线于M ,易得CM :y =x +3,由⎩⎨⎧++-=+=3232x x y x y 解得⎩⎨⎧==3011y x ,⎩⎨⎧==4122y x ,∴M (1,4);②设抛物线对称轴交x 轴于点E (1,0),则S △P AC =21×2×2=2=S △P AC .过点E 作AP 的平行线交x轴上方的抛物线于M ,设EM :y =x +t ,则1+t =0,∴t =-1,∴EM :y =x -1. 由⎩⎨⎧++-=-=3212x x y x y 解得⎪⎪⎩⎪⎪⎨⎧--=-=2171217111y x (舍),⎪⎪⎩⎪⎪⎨⎧+-=+=2171217122y x ,∴M (2171+,2171+-). 综上,存在符合条件的点M ,其坐标为(1,4)或(2171+,2171+-).27.(2019·苏州,26,10)已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP =.如图①,动点M 从点A 出发,在矩形边上沿着A →B →C 的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),△APM 的面积为S (cm 2),S 与t 的函数关系如图②所示. (1)直接写出动点M 的运动速度为 cm/s ,BC 的长度为 cm ;(2)如图③,动点M 重新从点A 出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N 从点D 出发,在矩形边上沿着D →C →B 的方向匀速运动,设动点N 的运动速度为v (cm/s ).已知两动点M ,N 经过时间x (s )在线段BC 上相遇(不包含点C ),动点M ,N 相遇后立即同时停止运动,记此时△APM 与△DPN 的面积分别为S 1(cm 2),S 2(cm 2) ①求动点N 运动速度v (cm/s )的取值范围;②试探究S 1•S 2是否存在最大值,若存在,求出S 1•S 2的最大值并确定运动时间x 的值;若不存在,请说明理由.图① 图② 图③(第27题)【解题过程】解:(1)∵t =2.5s 时,函数图象发生改变,∴t =2.5s 时,M 运动到点B 处,∴动点M 的运动速度为52.5=2cm/s ,∵t =7.5s 时,S =0,∴t =7.5s 时,M 运动到点C 处,∴BC =(7.5﹣2.5)×2=10(cm ), 故答案为2,10;(2)①∵两动点M ,N 在线段BC 上相遇(不包含点C ),∴当在点C 相遇时,v 527.53==(cm/s ),当在点B 相遇时,v 5102.5+==6(cm/s ),∴动点N 运动速度v (cm/s )的取值范围为23cm/s <v ≤6cm/s ; ②过P 作EF ⊥AB 于F ,交CD 于E ,如图所示:则EF ∥BC ,EF =BC =10,∴AF APAB AC=,∵AC==∴5AF =,解得AF =2,∴DE =AF =2,CE =BF =3,PF ==4, ∴EP =EF ﹣PF =6,∴S 1=S △APM =S △APF +S 梯形PFBM ﹣S △ABM 12=⨯4×212+(4+2x ﹣5)×312-⨯5×(2x ﹣5)=﹣2x +15,S 2=S △DPM =S △DEP +S 梯形EPMC ﹣S △DCM 12=⨯2×612+(6+15﹣2x )×312-⨯5×(15﹣2x )=2x , ∴S 1•S 2=(﹣2x +15)×2x =﹣4x 2+30x =﹣4(x 154-)22254+,∵2.5154<<7.5,在BC 边上可取,∴当x 154=时,S 1•S 2的最大值为2254.第27题答图6.(2019·巴中)如图,抛物线y =ax 2+bx -5(a ≠0)经过x 轴上的点A(1,0)和点B 及y 轴上的点C,经过B,C 两点的直线为y =x+n.①求抛物线的解析式;②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 描,求t 为何值时,△PBE 的面积最大,并求出最大值.③过点A 作AM ⊥BC 与点M,过抛物线上一动点N(不与点B,C 重合)作直线AM 的平行线交直线BC 于点Q,若点A,M,N,Q 为顶点的四边形是平行四边形.求点N 的横坐标.第26题图分析:①由点A 和直线y =x+n 可得方程组,解出系数,求得二次函数的解析式;②根据题意表示出三角形面积,利用二次函数最值进行求解;③分析得到AM 平行且等于NQ,设出坐标,利用坐标关系列方程进行求解,并检验. 解:①因为点B,C 在y =x+n 上,所以B(-n,0),C(0,n),因为点A(1,0)在抛物线上,所以250505a b an bn n ,解得,a =-1,b =6,所以抛物线的解析式为:y =-x 2+6x -5. ②由题意得:PB =4-t,,BE =2t ,由①可知:∠OBC =45°,点P 到BC 上的高h =BPsin45(4-t), 所以S △PBE =12BE h =22222t ,当t =2时,S 取得最大值为③因为l BC :y =x -5,所以B(5,0), 因为A(1,0),所以AB =4,在Rt △ABM 中,∠ABM =45°,AMAB =M(3,-3), 过点N 作x 轴的垂线交直线BC 于点P 交x 轴于点H, 设N(m,-m 2+6m -5),则H(m,0),P(m,m -5),易证△PQN 为等腰直角三角形,即NQ=PQ=所以PN =4.当NH+HP =4时,即-m 2+6m -5-(m -5)=4, 解之得,m 1=1,m 2=4.当m 1=1时,点N 与点A 重合,故舍去;当NH+HP =4时,即m -5-(-m 2+6m -5)=4, 解得,m 1541,m 2541,因为m>5,所以m =5412; 当NH -HP =4,即-(-m 2+6m -5)-[-(m -5)]=4, 解得,m 1541,m 2541,因为m<0,所以m =5412.综上所述,要使点A,M,N,Q 为顶点的四边形是平行四边形,点N 的横坐标为:4541或541.第26题答图7.(2019·淄博)如图,顶点为M 的抛物线y =ax 2+bx +3与x 轴交于A (3,0),B (-1,0)两点,与y 轴交于点C .(1)求这条抛物线对应的函数表达式;(2)问在y 轴上是否存在点P ,使得△P AM 为直角三角形?若存在,求出点P 的坐标;若不存在,说明理由. (3)若在第一象限的抛物线下方有一动点D ,满足DA =OA ,过D 作DG ⊥x 轴于点G ,设△ADG 的内心为I ,试求CI 的最小值.解:(1)将A 、B 两点坐标代入抛物线表达式,得933030a b a b ++=⎧⎨-+=⎩,解得12a b =-⎧⎨=⎩.∴y =-x 2+2x +3.(2)假设存在点P ,使△P AM 是直角三角形.当点M 为直角顶点,过M 作CD ⊥y 轴,过A 作AD ⊥x 轴,交CD 于D ,CD 交y 轴于C ,∵∠AMP =90°,图∴∠CMP +∠AMD =90,∴∠CMP =∠MAD ,又∵∠DM =∠PCM ,∴△CPM ∽△DMA ,∴CM AD =PCMD, ∴14=2PC ,∴PC =12,∴P 1(0,72); 当点A 为直角顶点,过A 作CD ⊥x 轴,过M 作MD ⊥y 轴交AD 于D ,过P 作PC ⊥y 轴交CD 于C ,同上△CP A∽△DAM ,∴PC AD =AC MD ,∴34=2AC ,∴AC =32,∴P 2(0,-32); 当点P 为直角顶点,过M 作CM ⊥y 轴于C ,∴△CPM ∽△OAP ,∴PC AO =CM PO ,∴3PC =14-PC,∴PC =1或3,∴P 3(0,3),P 4(0,1).综上所述,使△P AM 是直角三角形的点P 的是P 1(0,72),P 2(0,-32),P 3(0,3),P 4(0,1).(3)(方法1)由(1)得DA =OA =3,设D (x ,y ),△ADG 的内切圆半径为r ,则△ADG 的内心I 为(x +r ,r ), ∴DG =y ,AG =3-x由两点距离公式可得()2222339DA x y =-+==①由等面积法得r =()33+22y x DG AG DA +---==2y x-②∴()()2223CI x r r =++-③由①②③得(2229123124CI x y -⎡⎤⎡⎤⎛⎫=-+-+ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,2CI在312x y =最小,此时CI 也最小,min 32CI =(方法2)简解:如图,由内心易知:∠DIA =135°,∠DAI =∠OAI ,△DAI ≌△OAI (SAS ),∴∠DIA =∠OIA =135°,则I 在圆周角∠OIA =135°⊙T 的圆周上运动,且半径R T 为(32,32),∴CI在△CIA 中,CI ≥CT-IT=32,当C 、I、T三点一线时,min 3=2CI .(2)答图18.(2019·枣庄)已知抛物线y =ax 2+32x+4的对称轴是直线x =3,与x 轴相交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C.(1)求抛物线的解析式和A 、B 两点的坐标;(2)如图1,若点P 是抛物线上B 、C 两点之间的一个动点(不与B 、C 重合),是否存在点P ,使四边形PBOC 的面积最大?若存在,求点P 的坐标及四边形PBOC 面积的最大值;若不存在,请说明理由.(3)如图2,若点M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N ,当MN =3时,求点M 的坐标.解:(1)抛物线y =ax 2+32x+4的对称轴为:x =332224b a a a -=-=-=3,∴a =14-,∴抛物线的解析式为:y =14-x 2+32x+4,令y =0,得14-x 2+32x+4=0,解之,得,x 1=-2,x 2=8,∵点B 在点A 的右侧,∴A(-2,0),B(8,0);(2)连接BC,在抛物线y =14-x 2+32x+4中,令x =0,得y =4,∴C(0,4),∴OC =4,OB =8,∴S △OBC =16,∵B(8,0),C(0,4),设l BC :y =kx+b ,得0=8k+b ,4=b ,∴k =12-,b =4,l BC :y =12-x+4,∴过点P 作PD ∥y 轴交BC 于点D,过点C作CE 垂直PD 于点E,过点B 作BF ⊥PD 于点F,则S △PBC =S △PCD +S △PBD =12PD ×CE+12PD ×BF =12PD ×(CE+BF)=12PD ×(x B -x C )=12PD ×8=4PD,∵点P 在抛物线上,设点P(x,14-x 2+32x+4),∵PD ∥y 轴,点D 在直线BC 上,∴D(x,12-x+4),∵点P 在B,C 间的抛物线上运动,∴PD =y P -y D =14-x 2+32x+4-(12-x+4)=14-x 2+2x,S △PBC =4PD =4(14-x 2+2x)=-x 2+8x =-(x -4)2+16,∴当x =4时,S △PBC 取最大值16,∴此时S 四边形OBPC =S △OBC +S △PBC =32;Iy 12第25题答图(3)∵MN∥y轴,∴设M,N的横坐标为m,∵点M在抛物线上,设点M(m,n),其中n=14-m2+32m+4,点N在直线BC上,∴N(m,12-m+4),∵点M是抛物线上任意一点,∴点M和点N的上下位置关系不确定,∴MN=|14-m2+32m+4-(12-m+4)|=|14-x2+2x|,∵MN=3,∴|14-x2+2x|=3,即14-x2+2x=3或14-x2+2x=-3,解这两个方程,得m1=2,m2=6, m3=4+4=4-∴n1=6, n2=4, n31, n41,∴M1(2,6), M2(6,4), M3(4+-1), M4(4-1).9.(2019·聊城)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(-2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线,线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.第25题图解:(1)由已知,将C(0,8)代入y=ax2+bx+c,∴c=8,将点A(-2,0)和B(4,0)代人y=ax2+bx+8,得4280 16480a ba b-+=⎧⎨++=⎩,解得12ab=-⎧⎨=⎩,∴抛物线的表达式为y=-x2+2x+8;(2)∵A(-2,0),C(0,8),∴OA=2,OC=8,∵l⊥x轴,∠PEA=∠AOC=90°,∵∠PAE≠∠CAO,只有当∠PAE=∠ACO 时,△PEA ∽△AOC.此时AE PECO AO=,∴AE =4PE.设点P 的纵坐标为k,则PE =k,AE =4k,∴OE =4k -2,P 点的坐标为(4k -2,k),将P(4k -2,k)代入y =-x 2+2x+8,得-(4k -2)2+2(4k -2)+8=k,解得k 1=0(舍去),k 2=2316,当k =2316时,4k -2=154,∴P 点的坐标为(154,2316). (3)在Rt △PFD 中,∠PFD =∠COB =90°,∵l ∥y 轴,∴∠PDF =∠OCB,∴Rt △PFD ∽Rt △BOC,∴2PFD=S PD S BC ⎛⎫ ⎪⎝⎭△△BOC,∴S △PFD =2PD S BC ⎛⎫⋅ ⎪⎝⎭△BOC ,由B(4,0)知OB =4,又∵OC =8,∴BC 又S △BOC =12OB OC ⋅=16,∴S △PFD =215PD ,∴当PD 最大时,S △PFD 最大.由B(4,0),C(0,8)可解得BC 所在直线的表达式为y =-2x+8,设P(m,-m 2+2m+8),则D(m,-2m+8),∴PD =-(m -2)2+4,当m =2时,PD 取得最大值4,∴当PD =4时,S △PFD =165,为最大值.10.(2019·济宁)如图1,在矩形ABCD 中,AB =8,AD =10,E 是CD 边上一点,连接AE ,将矩形ABCD 沿AE 折叠,顶点D 恰好落在BC 边上点F 处,延长AE 交BC 的延长线于点G . (1)求线段CE 的长;(2)如图2,M ,N 分别是线段AG ,DG 上的动点(与端点不重合),且∠DMN =∠DAM ,设AM =x ,DN =y . ①写出y 关于x 的函数解析式,并求出y 的最小值;②是否存在这样的点M ,使△DMN 是等腰三角形?若存在,请求出x 的值;若不存在,请说明理由.解:(1)由折叠可得AF =AD =10,EF =ED ,矩形ABCD 中,∠B =90°,∴AB 2+BF 2=AF 2,∴6,BF ===∴CF =BC -BF =AD -BF =10-6=4.设CE =x ,则EF =DE =CD -CE =AB -CE =8-x ,∵EF 2=CE 2+CF 2.∴(8-x )2=x 2+42.∴x =3,∴CE =3. (2)①∵矩形ABCD 中,AD ∥BC ,∴∠DAG =∠AGF , ∵∠DAG =∠F AG , ∠DAG =∠AGF , ∴∠F AG =∠AGF ,∴AF =FG =10, ∴BG =BF +FG =6+10=16. ∵矩形ABCD 中∠B =90°, ∴AB 2+BG 2=AG 2,∴AG ===∵AD =FG ,AD ∥FG ,∴四边形AFGE是平行四边形,又∵AD=AF,∴平行四边形AFGE是菱形,∴DG=DA=10,∴∠DAG=∠DGA,∵∠DMG=∠DMN+∠NAG=∠DAM+∠ADM, ∠DMN=∠DAM,∴∠NMG=∠ADM.在△ADM和△MNG中,∠ADM=∠NMG, ∠DAG=∠DGA,∴△ADM∽△GMN.∴AD AMMG NG=10xy=-,∴211010y x x=-+,∵110>0,∴当51210x=-=⨯时,y有最小值为214101021410⎛⨯⨯-⎝⎭=⨯.∴y关于x的函数解析式是:211010y x x=-+,当x=y有最小值为2.②在△DMN和△DMG中,∠DMN=∠DGM,∠MDG=∠MDG,∴△DMN和△DMG是相似三角形.当△DMG是等腰三角形时,△DMN也是等腰三角形.∵M不与A重合,∴DM≠DG,∴△DMG是等腰三角形只有GM=GD或DM=GM两种情况:(1)如图3,当△DMG中GM=GD=10时,△DMN也是等腰三角形,即x=AG-MG=10;(2)如图4,当△DMG中DM=GM时,△DMN也是等腰三角形,∴∠MDG=∠DGM,∴∠DAG=∠MDG=∠MDG,∴△ADG∽△DMG,∴AD AGMG DG=,=,∴x综上:当x的值为2△DMN是等腰三角形.11.(2019·滨州)如图①,抛物线y=-x2+x+4与y轴交于点A,与x轴交于点B,C,将直线AB绕点A 逆时针旋转90°,所得直线与x轴交于点D.(1)求直线AD的函数解析式;(2)如图②,若点P是直线AD上方抛物线上的一个动点①当点P到直线AD的距离最大时,求点P的坐标和最大距离;②当点P到直线AD的距离为时,求sin∠P AD的值.解:(1)当x=0时,y=4,则点A的坐标为(0,4),………………………………………1分当y=0时,0=-x2+x+4,解得x1=-4,x2=8,则点B的坐标为(-4,0),点C的坐标为(8,0),∴OA=OB=4,∴∠OBA=∠OAB=45°.∵将直线AB绕点A逆时针旋转90°得到直线AD,∴∠BAD=90°,∴OAD=45°,∴∠ODA=45°,∴OA=OD,∴点D的坐标为(4,0).………………………………………………………………………2分设直线AD的函数解析式为y=kx+b,,得,即直线AD的函数解析式为y=-x+4.……………………………………………………………4分(2)作PN⊥x轴交直线AD于点N,如右图①所示,设点P的坐标为(t,-t2+t+4),则点N的坐标为(t,-t+4),∴PN=(-t2+t+4)-(-t+4)=-t2+t,………………………………………………6分∴PN⊥x轴,∴PN∥y轴,∴∠OAD=∠PNH=45°.作PH⊥AD于点H,则∠PHN=90°,∴PH==(-t2+t)=t=-(t-6)2+,∴当t=6时,PH取得最大值,此时点P的坐标为(6,),………………………………8分即当点P到直线AD的距离最大时,点P的坐标是(6,),最大距离是.………………9分②当点P到直线AD的距离为时,如右图②所示,则t=,解得t1=2,t2=10,………………………………………………………………………10分则P1的坐标为(2,),P2的坐标为(10,-).当P1的坐标为(2,),则P1A==,∴sin∠P1AD==;…………………………………………………………12分当P2的坐标为(10,-),则P2A==,∴sin∠P2AD==;由上可得,sin∠P AD的值是或.……………………………………………14分二、填空题16.(2019·南充)如图,矩形硬纸片ABCD的顶点A在y轴的正半轴及原点上滑动,顶点B在x轴的正半轴及BC=.给出下列结论:①点A从点O出发,到点B运动至点O为原点上滑动,点E为AB的中点,24AB=,5∆的面积最大值为144;③当OD最大时,点D的坐标为,止,点E经过的路径长为12π;②OAB.其中正确的结论是.(填写序号)【答案】②③ 【解析】点E 为AB 的中点,24AB =,1122OE AB ∴==, AB ∴的中点E 的运动轨迹是以点O 为圆心,12为半径的一段圆弧, 90AOB ∠=︒,∴点E 经过的路径长为90126180ππ⨯⨯=,故①错误; 当OAB ∆的面积最大时,因为24AB =,所以OAB ∆为等腰直角三角形,即OA OB =, E 为AB 的中点,OE AB ∴⊥,1122OE AB ==, ∴124121442AOB S ∆=⨯⨯=,故②正确; 如图,当O 、E 、D 三点共线时,OD 最大,过点D 作DF y ⊥轴于点F , 5AD BC ==,1122AE AB ==,∴13DE ==,131225OD DE OE ∴=+=+=, 设DF x =,∴OF =四边形ABCD 是矩形,90DAB ∴∠=︒,DFA AOB ∴∠=∠,DAF ABO ∴∠=∠, DFA AOB ∴∆∆∽∴DF DA OA AB =,∴524x OA =,∴245x OA =, E 为AB 的中点,90AOB ∠=︒,AE OE ∴=,AOE OAE ∴∠=∠,DFO BOA ∴∆∆∽,∴OD OF AB OA=,∴25245=,解得x,x =舍去,∴OF ,∴D .故③正确. 故答案为:②③.【知识点】直角形的性质;矩形的性质;相似三角形的判定和性质三、解答题17. (2019 · 镇江)如图,菱形ABCD 的顶点B 、C 在x 轴上(B 在C 的左侧),顶点A 、D 在x 轴上方,对角线BD (2,0)E -为BC 的中点,点P 在菱形ABCD 的边上运动.当点(0,6)F 到EP 所在直线的距离取得最大值时,点P 恰好落在AB 的中点处,则菱形ABCD 的边长等于( )A .103BC .163D .3【答案】A【解析】如图1中,当点P 是AB 的中点时,作FG PE ⊥于G ,连接EF .(2,0)E -,(0,6)F ,2OE ∴=,6OF =,EF ∴=90FGE ∠=︒,FG EF ∴,∴当点G 与E 重合时,FG 的值最大. 如图2中,当点G 与点E 重合时,连接AC 交BD 于H ,PE 交BD 于J .设2BC a =.PA PB =,BE EC a ==, //PE AC ∴,BJ JH =, 四边形ABCD 是菱形,AC BD ∴⊥,BH DH ==BJ =, PE BD ∴⊥,90BJE EOF PEF ∠=∠=∠=︒, EBJ FEO ∴∠=∠, BJE EOF ∴∆∆∽, ∴BE BJ EF EO=,∴62=, 53a ∴=, 1023BC a ∴==, 故选:A .【知识点】菱形的性质;平面直角坐标系;相似三角形的判定和性质;垂线段最短。
(完整)2019年全国中考数学真题分类汇编:圆内有关性质(包含答案),推荐文档
2019 年全国中考数学真题分类汇编:圆内有关性质一、选择题1.(2019 年ft东省滨州市)如图,AB 为⊙O 的直径,C,D 为⊙O 上两点,若∠BCD=40°,则∠ABD 的大小为()A.60°B.50°C.40°D.20°【考点】圆周角定理、直角三角形的性质【解答】解:连接AD,∵AB 为⊙O 的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.2.(2019 年ft东省德州市)如图,点O 为线段BC 的中点,点A,C,D 到点O 的距离相等,若∠ABC=40°,则∠ADC 的度数是()A. 130 ∘B. 140 ∘C. 150 ∘D. 160 ∘【考点】圆内接四边形的性质【解答】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD 为圆O 的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.3.(2019 年ft东省菏泽市)如图,AB 是⊙O 的直径,C,D 是⊙O 上的两点,且BC 平分∠ABD,AD 分别与BC,OC 相交于点E,F,则下列结论不一定成立的是()A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD【考点】圆周角定理、垂径定理、等腰三角形的性质、平行线的性质、角平分线的性质【解答】解:∵AB 是⊙O 的直径,BC 平分∠ABD,∴∠ADB=90°,∠OBC=∠DBC,∴AD⊥BD,∵OB=OC,∴∠OCB=∠OBC,∴∠DBC=∠OCB,∴OC∥BD,选项A 成立;∴AD⊥OC,选项B 成立;∴AF=FD,选项D 成立;∵△CEF 和△BED 中,没有相等的边,∴△CEF 与△BED 不全等,选项C 不成立;故选:C.4.(2019 年四川省资阳市)如图,直径为2cm 的圆在直线l 上滚动一周,则圆所扫过的图形面积为()A.5πB.6πC.20πD.24π【考点】圆的面积、矩形的面积、圆的周长【解答】解:圆所扫过的图形面积=π+2π×2=5π,故选:A.2 3 ⏜ ⏜5. (2019 年广西贵港市)如图,AD 是⊙O 的直径,AB =CD ,若∠AOB =40°,则圆周角∠BPC 的度数是()A. 40 ∘B. 50 ∘C. 60 ∘D. 70 ∘【考点】圆周角定理【解答】解:∵=,∠AOB=40°,∴∠COD=∠AOB=40°,∵∠AOB+∠BOC+∠COD=180°,∴∠BOC=100°,∴∠BPC= ∠BOC=50°, 故选:B .6. (2019 年湖北省十堰市) 如图,四边形 ABCD 内接于⊙O ,AE ⊥CB 交 CB 的延长线于点 E ,若 BA 平分∠DBE ,AD =5,CE = 13,则AE =( ) A .3B .3C .4D .2【考点】圆内接四边形的性质、勾股定理【解答】解:连接 AC ,如图,∵BA 平分∠DBE ,∴∠1=∠2,∵∠1=∠CDA ,∠2=∠3,∴∠3=∠CDA ,∴AC =AD =5,∵AE ⊥CB ,3∴∠AEC=90°,= 52‒ ( 13)2=2 3.∴AE=故选:D.7.(2019 年陕西省)如图,AB 是⊙O 的直径,EF、EB 是⊙O 的弦,且EF=EB,EF 与AB 交于点C,连接OF.若∠AOF=40°,则∠F 的度数是()A.20°B.35°C.40°D.55°【考点】圆内有关性质【解答】连接FB,得到FOB=140°;∴∠FEB=70°∵EF=EB∴∠EFB=∠EBF∵FO=BO,∴∠OFB=∠OBF,∴∠EFO=∠EBO,∠F=35°8.(2019 年浙江省衢州市)一块圆形宣传标志牌如图所示,点A,B,C 在⊙O 上,CD 垂直平分AB 于点D,现测得AB=8dm,DC=2dm,则圆形标志牌的半径为()A.6dmB. 5dmC. 4dmD. 3dm【考点】垂径定理的应用【解答】解:连结OD,OA,如图,设半径为r,∵AB=8,CD⊥AB,∴AD=4,点O、D、C 三点共线,AC2 ‒C E2∵CD=2,∴OD=r-2,在Rt△ADO 中,∵AO2=AD2+OD2,,即r2=42+(r-2)2,解得:r=5,故答案为:B.9.(2019 年甘肃省天水市)如图,四边形ABCD 是菱形,⊙O 经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC 的度数为()A.20°B.25°C.30°D.35°【考点】菱形的性质,三角形的内角和,圆内接四边形的性质【解答】解:∵四边形ABCD 是菱形,∠D=80°,1 1∴∠ACB=2∠DCB=2(180°﹣∠D)=50°,∵四边形AECD 是圆内接四边形,∴∠AEB=∠D=80°,∴∠EAC=∠AEB﹣∠ACE=30°,故选:C.10.(2019 年甘肃省)如图,AB 是⊙O 的直径,点C、D 是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°【考点】圆周角定理【解答】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°.故选:C.11.(2019 年湖北省襄阳市)如图,AD 是⊙O 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OP C.OB⊥AC D.AC 平分OB 【考点】圆内有关性质【解答】解:∵AD 为直径,∴∠ACD=90°,∵四边形OBCD 为平行四边形,∴CD∥OB,CD=OB,在Rt△ACD 中,sin A==,∴∠A=30°,在Rt△AOP 中,AP=OP,所以A 选项的结论错误;∵OP∥CD,CD⊥AC,∴OP⊥AC,所以C 选项的结论正确;∴AP=CP,∴OP 为△ACD 的中位线,∴CD=2OP,所以 B 选项的结论正确;∴OB=2OP,∴AC 平分OB,所以D 选项的结论正确.故选:A.12.(2019 年湖北省宜昌市)如图,点A,B,C 均在⊙O 上,当∠OBC=40°时,∠A 的度数是()A.50°B.55°C.60°D.65°【考点】圆周角定理【解答】解:∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A=∠BOC=50°.故选:A.13.(2019 年甘肃省武威市)如图,点A,B,S 在圆上,若弦AB 的长度等于圆半径的倍,则∠ASB 的度数是()A.22.5°B.30°C.45°D.60°【考点】圆周角定理【解答】解:设圆心为O,连接OA、OB,如图,∵弦AB 的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB 为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.14.(2019 年内蒙古包头市)如图,在Rt△ABC 中,∠ACB=90°,AC=BC=2 ,以BC为直径作半圆,交AB 于点D,则阴影部分的面积是()A.π﹣1 B.4﹣πC.D.2【考点】圆周角定理【解答】解:连接CD,∵BC 是半圆的直径,∴CD⊥AB,∵在Rt△ABC 中,∠ACB=90°,AC=BC=2 ,∴△ACB 是等腰直角三角形,∴CD=BD,∴阴影部分的面积=×2 2 =2,故选:D.15.(2019 年内蒙古赤峰市)如图,AB 是⊙O 的弦,OC⊥AB 交⊙O 于点C,点D 是⊙O上一点,∠ADC=30°,则∠BOC 的度数为()A.30°B.40°C.50°D.60°【考点】圆内有关性质【解答】解:如图,∵∠ADC=30°,∴∠AOC=2∠ADC=60°.∵AB 是⊙O 的弦,OC⊥AB 交⊙O 于点C,∴=.∴∠AOC=∠BOC=60°.故选:D.16.(2019 年西藏)如图,在⊙O 中,半径OC 垂直弦AB 于D,点E 在⊙O 上,∠E=22.5°,AB=2,则半径OB 等于()A.1B.C.2 D.2【考点】勾股定理、垂径定理、圆周角定理【解答】解:∵半径OC⊥弦AB 于点D,∴=,∴∠E=∠BOC=22.5°,∴∠BOD=45°,∴△ODB 是等腰直角三角形,∵AB=2,∴DB=OD=1,则半径OB 等于:=.故选:B.17.(2019 年海南省)如图,直线l1∥l2,点A 在直线l1 上,以点A 为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C 两点,连结AC、BC.若∠ABC=70°,则∠1 的大小为()A.20°B.35°C.40°D.70°【考点】圆内有关性质【解答】解:∵点A 为圆心,适当长度为半径画弧,分别交直线l1、l2 于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°﹣70°﹣70°=40°,故选:C.二、填空题1.(2019 年ft东省德州市)如图,CD 为⊙O 的直径,弦AB⊥CD,垂足为⏜⏜E,= ,CE=1,AB=6,则弦AF 的长度为.【考点】圆周角、弧、弦的关系、垂径定理、勾股定理【解答】解:连接OA、OB,OB 交AF 于G,如图,∵AB⊥CD,1∴AE=BE=2AB=3,设⊙O 的半径为r,则OE=r-1,OA=r,在Rt△OAE 中,32+(r-1)2=r2,解得r=5,∵= ,∴OB⊥AF,AG=FG,在Rt△OAG 中,AG2+OG2=52,①在Rt△ABG 中,AG2+(5-OG)2=62,②24解由①②组成的方程组得到AG= 5 ,48 48∴AF=2AG= 5 .故答案为 5 .⏜2.(2019 年湖北省随州市)如图,点A,B,C 在⊙O 上,点C 在优弧AB上,若∠OBA=50°,则∠C 的度数为.【考点】圆周角定理【解答】解:∵OA=OB,∴∠OAB=∠OBA=50°,∴∠AOB=180°-50°-50°=80°,∴∠C=∠AOB=40°.故答案为40°.3.(2019 年黑龙江省伊春市)如图,在⊙O 中,半径OA 垂直于弦BC,点D 在圆上且∠ADC=30°,则∠AOB 的度数为.【考点】圆周角定理【解答】解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC,∵∠ADC=30°,∴∠AOB=60°,故答案为60°.4.(2019 年江苏省泰州市)如图,⊙O 的半径为5,点P 在⊙O 上,点A 在⊙O 内,且AP=3,过点A 作AP 的垂线交于⊙O 点B、C.设PB=x,PC=y,则y 与x 的函数表达式为.【考点】圆周角定理、相似三角形的判定和性质【解答】如图,连接 PO 并延长交⊙O 于点N,连接 BN,∵PN 是直径,∴∠PBN=90°.∵AP⊥BC,∴∠PAC =90°,∴∠PBN=∠PAC,又∵∠PNB=∠PCA,∴△PBN∽△PAC,PB PN∴ PA = PC ,x 10∴ 3 = y30∴y= x .30故答案为:y= x .三、解答题1.(2019 年上海市)已知:如图,AB、AC 是⊙O 的两条弦,且AB=AC,D 是AO 延长线上一点,联结BD 并延长交⊙O 于点E,联结CD 并延长交⊙O 于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC 是菱形.【考点】圆内有关性质、相似三角形、菱形的判定【解答】证明:(1)如图1,连接BC,OB,OD,∵AB、AC 是⊙O 的两条弦,且AB=AC,∴A 在BC 的垂直平分线上,∵OB=OA=OD,∴O 在BC 的垂直平分线上,∴AO 垂直平分BC,C D E F O ∴BD =CD ;(2)如图 2,连接 OB ,∵AB 2=AO •AD ,=∴AOAB , ∵∠BAO =∠DAB ,∴△ABO ∽△ADB ,∴∠OBA =∠ADB ,∵OA =OB ,∴∠OBA =∠OAB ,∴∠OAB =∠BDA ,∴AB =BD ,∵AB =AC ,BD =CD ,∴AB =AC =BD =CD ,∴四边形 ABDC 是菱形.2. (2019 年江苏省苏州市)如图,AE 为 O 的直径,D 是弧 BC 的中点 BC 与 AD ,OD 分别交于点 E ,F .(1) 求证: DO ∥AC ;(2) 求证: DE ⋅ DA = DC 2 ;(3) 若 tan ∠CAD = 1,求sin ∠CDA 的值. 2A B【考点】圆内有关性质、相似三角形、锐角三角函数【解答】(1)证明:∵D 为弧 BC 的中点,OD 为 O 的半径∴ OD ⊥BC又∵AB 为 O 的直径∴ ∠ACB = 90︒∴ AC ∥OD(2) 证明:∵D 为弧 BC 的中点∴ CD = B D ∴ ∠DCB = ∠DAC∴ ∆DCE ∽∆DAC∴ DC = DE DA DC即 DE ⋅ DA = DC 2(3) 解:∵ ∆DCE ∽∆DAC , tan ∠CAD = 12∴ CD = DE = CE = 1 DA DC AC 2设 CD = 2a ,则 DE = a , DA = 4a又∵ AC ∥OD∴ ∆AEC ∽DEF∴ CE = AE = 3 EF DE所以 BC = 8 CE3又 AC = 2CE∴ AB = 10 CE3即sin ∠CDA = sin ∠CBA = CA = 3AB 53. (2019 年河南省)如图,在△ABC 中,BA =BC ,∠ABC =90°,以 AB 为直径的半圆 O 交AC 于点 D ,点 E 是上不与点 B ,D 重合的任意一点,连接 AE 交 BD 于点 F ,连接 BE 并延长交 AC 于点 G .(1) 求证:△ADF ≌△BDG ;(2) 填空: ①若 AB =4,且点 E 是的中点,则 DF 的长为 ; ②取的中点 H ,当∠EAB 的度数为 时,四边形 OBEH 为菱形.2【考点】圆的性质、垂径定理、等腰直角三角形的性质、菱形的性质、解直角三角形、特殊角的三角函数值【解答】解:(1)证明:如图 1,∵BA =BC ,∠ABC =90°,∴∠BAC =45°∵AB 是⊙O 的直径,∴∠ADB =∠AEB =90°,∴∠DAF +∠BGD =∠DBG +∠BGD =90°∴∠DAF =∠DBG∵∠ABD +∠BAC =90°∴∠ABD =∠BAC =45°∴AD =BD∴△ADF ≌△BDG (ASA );(2)①如图 2,过 F 作 FH ⊥AB 于 H ,∵点 E 是的中点,∴∠BAE =∠DAE∵FD ⊥AD ,FH ⊥AB∴FH =FD∵=sin ∠ABD =sin45°= ,∴ ,即 BF = FD ∵AB =4,∴BD =4cos45°=2,即 BF +FD =2 ,( +1)FD =2 ∴FD ==4﹣ 故答案为 .②连接 OE ,EH ,∵点 H 是的中点, ∴OH ⊥AE ,∵∠AEB=90°∴BE⊥AE∴BE∥OH∵四边形OBEH 为菱形,∴BE=OH=OB=AB∴sin∠EAB==∴∠EAB=30°.故答案为:30°4.(2019 年浙江省温州市)如图,在△ABC 中,∠BAC=90°,点E 在BC 边上,且CA=CE,过A,C,E 三点的⊙O 交AB 于另一点F,作直径AD,连结DE 并延长交AB 于点G,连结CD,CF.(1)求证:四边形DCFG 是平行四边形.(2)当BE=4,CD=AB 时,求⊙O 的直径长.【考点】三角形的外接圆与外心、平行四边形的判定和性质、勾股定理、圆周角定理【解答】(1)证明:连接AE,∵∠BAC=90°,∴CF 是⊙O 的直径,∵AC=EC,∴CF⊥AE,∵AD 是⊙O 的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD 是⊙O 的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG 是平行四边形;(2)解:由CD=AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB==8=8x,∴x=1,在Rt△ACF 中,AF=10,AC=6,∴CF==3 ,即⊙O 的直径长为3 .5.(2019 年湖北省宜昌市)已知:在矩形ABCD 中,E,F 分别是边AB,AD 上的点,过点F 作EF 的垂线交DC 于点H,以EF 为直径作半圆O.(1)填空:点A (填“在”或“不在”)⊙O 上;当=时,tan∠AEF 的值是;(2)如图1,在△EFH 中,当FE=FH 时,求证:AD=AE+DH;(3)如图2,当△EFH 的顶点F 是边AD 的中点时,求证:EH=AE+DH;(4)如图3,点M 在线段FH 的延长线上,若FM=FE,连接EM 交DC 于点N,连接FN,当AE=AD 时,FN=4,HN=3,求tan∠AEF 的值.【考点】圆的有关性质、全等三角形的判定和性质、相似三角形的判定和性质、三角函数【解答】解:(1)连接AO,∵∠EAF=90°,O 为EF 中点,∴AO=EF,∴点A 在⊙O 上,当=时,∠AEF=45°,∴tan∠AEF=tan45°=1,故答案为:在,1;(2)∵EF⊥FH,∴∠EFH=90°,在矩形ABCD 中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∠AFE+∠DFH=90°,∴∠AEF=∠DFH,又FE=FH,∴△AEF≌△DFH(AAS),∴AF=DH,AE=DF,∴AD=AF+DF=AE+DH;(3)延长EF 交HD 的延长线于点G,∵F 分别是边AD 上的中点,∴AF=DF,∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),∴AE=DG,EF=FG,∵EF⊥FG,∴EH=GH,∴GH=DH+DG=DH+AE,∴EH=AE+DH;(4)过点M 作MQ⊥AD 于点Q.设AF=x,AE=a,∵FM=FEEF⊥FH,∴△EFM 为等腰直角三角形,∴∠FEM=∠FMN=45°,∵FM=FE,∠A=∠MQF=90°,∠AEF=∠MFQ,∴△AEF≌△QFM(ASA),∴AE=EQ=a,AF=QM,∵AE=AD,∴AF=DQ=QM=x,∵DC∥QM,∴,∵DC∥AB∥QM,∴,∴,∵FE=FM,∴,∠FEM=∠FMN=45°,∴△FEN~△HMN,∴,∴.AC=2 ,弦BM 平分∠ABC 交AC 于点D,连接MA,MC.(1)求⊙O 半径的长;(2)求证:AB+BC=BM.【考点】圆内有关性质、全等三角形的判定和性质、等边三角形的判定和性质【解答】解:(1)连接OA、OC,过O 作OH⊥AC 于点H,如图1,∵∠ABC=120°,∴∠AMC=180°﹣∠ABC=60°,∴∠AOC=2∠AMC=120°,∴∠AOH=∠AOC=60°,∵AH=AC=,∴OA=,故⊙O 的半径为2.(2)证明:在BM 上截取BE=BC,连接CE,如图2,∵∠MBC=60°,BE=BC,∴△EBC 是等边三角形,∴CE=CB=BE,∠BCE=60°,∴∠BCD+∠DCE=60°,∵∠∠ACM=60°,∴∠ECM+∠DCE=60°,∴∠ECM=∠BCD,∵∠ABC=120°,BM 平分∠ABC,∴∠ABM=∠CBM=60°,∴∠CAM=∠CBM=60°,∠ACM=∠ABM=60°,∴△ACM 是等边三角形,∴AC=CM,∴△ACB≌△MCE,∴AB=ME,∵ME+EB=BM,∴AB+BC=BM.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
(全国通用)中考数学难点攻克:数学文化题型分类解析及18道针对练习题
中考数学重难考点突破——数学文化题型分类解析数学文化指数学的思想、精神、方法、观点、语言,以及它们的形成和发展。
数学作为一种文化现象,早已是人们的常识。
在近几年的中考中,以数学文化为载体的数学题越来越多,只要我们平时注意积累和了解这方面的常识,解题时注意审题,实现载体与考点的有效转化,透过现象看本质,问题便可迎刃而解.考点1以数学名著为题材例1《九章算术》中,将两底面是直角三角形的棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,主视图中的虚线平分矩形的面积,则该“堑堵”的侧面积为()A.2 B.4+2 2C.4+4 2 D.6+4 2例题分层分析(1)通过阅读,你知道“堑堵”是什么样的图形吗?(2)根据“堑堵”的定义,你能推断出该几何体的底面是什么图形?侧面又是什么图形?【解答】C[解析]依题意得,该几何体为三棱柱,且底面为等腰直角三角形,两直角边长均为2,高为2,所以其侧面积为S=2×2+2 2×2=4+4 2,故选C.[赏析] 该题以我国古代数学名著《九章算术》中所描述的特殊几何体“堑堵”为背景,是一道新概念信息的信息迁移题.试题以三视图为依托,在考查空间想象能力的同时传播数学文化.|针对训练|1.《九章算术》是人类科学史上应用数学的最早巅峰,在研究比率方面的应用十分丰富,其中有“米谷粒分”问题:粮仓开仓收粮,粮农送来1534石,验其米内杂谷,随机取米一把,数得254粒内夹谷28粒,则这批米内夹谷约()A.134石B.169石C.268石D.338石2.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为()A.x2-6=(10-x)2B.x2-62=(10-x)2C.x2+6=(10-x)2D.x2+62=(10-x)23.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸.问井深几何?”这是我国古代数学著作《九章算术》中的“井深几何”问题,它的题意可以由图,则井深为()A .1.25尺B .57.5尺C .6.25尺D .56.5尺4.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国目前已知最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V≈136L2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈275L2h 相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.3551135. 我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x 、y 人,则可以列方程组为________.6. 明代数学家程大位的《算法统宗》中有这样一个问题(如图Z11-11),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两.请问:所分的银子共有________两.(注:明代时1斤=16两,故有“半斤八两”这个成语)7. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:S 矩形NFGD =S △ADC -(S △ANF +S △FGC),S 矩形EBMF =S △ABC -(________+________).易知,S △ADC =S △ABC ,________=________,________=________.可得S 矩形NFGD =S 矩形EBMF.8.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x 的值为________.9. 阅读:能够成为直角三角形三条边长的三个正整数a ,b ,c ,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为: ⎩⎪⎨⎪⎧a =12()m2-n2,b =mn ,c =12()m2+n2.其中m>n>0,m ,n 是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.10.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.考点2以科技或数学时事为题材例2“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图1,图Z2中四边形是为体现其直观性所作的辅助线.其实际直观图中四边形不存在,当其主视图和左视图完全相同时,它的主视图和俯视图分别可能是()图1图2A.a,b B.a,c C.c,b D.b,d例题分层分析(1)根据题目所给的直观图,你发现“牟合方盖”有哪些特征?(2)“牟合方盖”的主视图和俯视图分别是什么?【解答】A[解析]当主视图和左视图完全相同时,“牟合方盖”相对的两个曲面正对前方,主视图为一个圆,俯视图为一个正方形,且对角线为两条实线.故选A.[赏析]“牟合方盖”是我国古代利用立体几何模型和数学思想方法解决数学问题的代表之一.本题取材于“牟合方盖”,通过添加解释和提供直观图的方式降低了理解题意的难度.试题从识“图”到想“图”,再到构“图”,要经历分析、判断的逻辑过程.另外,我国古代数学中的其他著名几何体,如“阳马”、“鳖臑”和“堑堵”等的三视图问题都有可能在中考中考查,值得我们注意.|针对训练|11.七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图3所示的七巧板拼成的,则不是小明拼成的那幅图是()图3图412.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形(如图5).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cosθ的值等于________.图5 图613.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图Z11-6,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为________.14. 阅读理解:如图7①,⊙O 与直线a ,b 都相切.不论⊙O 如何转动,直线a ,b 之间的距离始终保持不变(等于⊙O 的直径).我们把具有这一特性的图形称为“等宽曲线”.图②是利用圆的这一特性的例子.将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力就可以推动物体前进.据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.图7拓展应用:如图8①所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图②,夹在平行线c ,d 间的莱洛三角形无论怎么滚动,平行线间的距离始终不变.若直线c ,d 之间的距离等于2 cm ,则莱洛三角形的周长为________cm.图8考点3 以数学名人为题材例3 古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n.记第n 个k 边形数为N(n ,k )(k≥3), 以下列出了部分k 边形数中第n 个数的表达式.三角形数 N(n ,3)=12n 2+12n ,正方形数 N(n ,4)=n 2,五边形数 N(n ,5)=32n 2-12n ,六边形数 N(n ,6)=2n 2-n ,……可以推测,N(n ,k)的表达式,由此计算N(10,24)=________.【解答】1000[解析] 由N(n ,4)=n 2,N(n ,6)=2n 2-n ,…,可以推测:当k 为偶数时,N(n ,k)=⎝ ⎛⎭⎪⎫k 2-1n 2-⎝ ⎛⎭⎪⎫k 2-2n , 于是N(n ,24)=11n 2-10n ,故N(10,24)=11×102-10×10=1000.|针对训练|15. 我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用图中的三角形解释二项和(a +b)n 的展开式的各项系数,此三角形称为“杨辉三角”.(a +b)0…………… ①(a +b)1……………① ①(a +b)2…………① ② ①(a +b)3………① ③ ③ ①(a +b)4……① ④ ⑥ ④ ①(a +b)5…① ⑤ ⑩ ⑩ ⑤ ①…… ……根据“杨辉三角”请计算(a +b)20的展开式中第三项的系数为( )A .2017B .2016C .191D .19016. 正如我们小学学过的圆锥体积公式V =13πr 2h(π表示圆周率,r 表示圆锥的底面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9 3π,则这个圆锥的高等于()A.5 3πB.5 3 C.3 3πD.3 317.如图,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)由法国数学家和数学教育家克洛尔(A.L.Crelle 1780-1855)于1816年首次发现,但他的发现并未被当时的人们所注意.1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845-1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°.若Q为△DEF的布洛卡点,DQ=1,则EQ+FQ的值为()A.5 B.4 C.3+ 2 D.2+ 218.庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图①,按此图分割的方法,可得到一个等式(符号语言):1=12+122+123+…+12n+….图②也是一种无限分割:在△ABC中,∠ACB=90°,∠B=30°,过点C作CC1⊥AB于点C1,再过点C1作C1C2⊥BC于点C2,又过点C2作C2C3⊥AB于点C3,如此无限继续下去,则可将△ABC分成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、△Cn-2Cn-1Cn、….假设AC =2,这些三角形的面积和可以得到一个等式是__________.针对训练答案解析1.【答案】B[解析] 设这批米内夹谷约为x石,根据随机抽样事件的概率得x1534=28254,解得x≈169.故选B.2.【答案】D[解析]如图,折断处离地面的高度为x尺,则AB=10-x,BC=6, 在Rt△ABC中,AC2+BC2=AB2,即x2+62=(10-x)2.3.【答案】B[解析]如图,由题意,得BC∥DE,从而△ABF∽△ADE,因此BFDE=ABAD,即0.45=55+BD,解得BD=57.5,所以井深为57.5尺.4.【答案】B[解析] 由题意知275L2h≈13πr2h,∴275L2≈13πr2,而L≈2πr,代入得π≈258.5.【答案】⎩⎪⎨⎪⎧x+y=100,3x+y3=100[解析] 根据“大、小和尚共有100人”可得x +y =100;由“大和尚一人分3个”可知x 个大和尚共分得3x 个馒头,由“小和尚3人分一个”可知y 个小和尚共分得y3个馒头,根据“大、小和尚分100个馒头”可得3x +y3=100,故可列方程组为⎩⎪⎨⎪⎧x +y =100,3x +y3=100. 6.【答案】46[解析] 设这群人人数为x ,根据题意得7x +4=9x -8,解得x =6,银子的数量为46两. 7.【答案】S △AEF ;S △CFM ;S △ANF ;S △AEF ;S △FGC ;S △CFM 8. 【答案】1.6[解析] 由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得:(5.4-x)×3×1+π·⎝ ⎛⎭⎪⎫122x =12.6.解得x =1.6.9. 解:当n =1时,a =12(m 2-1)①,b =m②,c =12(m 2+1)③, 因为直角三角形有一边长为5,分情况如下:情况1:当a =5时,即12(m 2-1)=5,解得m =±11(舍去);情况2:当b =5时,即m =5,再将它分别代入①③得a =12×(52-1)=12,c =12×(52+1)=13;情况3:当c =5时,即12(m 2+1)=5,m =±3,因m>0,所以m =3,把m =3分别代入①②得a =12×(32-1)=4,b =3.综上所述,直角三角形的另两边长为12,13或3,4.10.解:设鸡有x 只,兔有y 只. 依题意,得⎩⎨⎧x +y =35,2x +4y =94,解得⎩⎨⎧x =23,y =12.答:鸡有23只,兔有12只. 11.【答案】C 12.【答案】45 [解析] 如图,∵大正方形的面积为25,小正方形的面积为1,∴大正方形边长AD =5,小正方形的边长EF =1.设DE =AF =x ,在Rt △ADE 中,由勾股定理,得AE 2+DE 2=AD 2,∴(x +1)2+x 2=52,解得x 1=-4(舍去),x 2=3,即DE =3,AE =3+1=4,∴cos θ=cos ∠DAE =AE AD =45. 13.【答案】-3[解析] 根据题意可知正放表示正数,斜放表示负数,组合在一起表示相加,由正放2根,斜放5根组合在一起表示(+2)+(―5)=-3. 14.【答案】2π[解析] 由题意知,莱洛三角形周长是半径为2,圆心角是60°的三段弧长的和,60π×2180×3=2π.15.【答案】D[解析] 观察可得(a +b)n 的展开式中第三项的系数为n (n -1)2,因此,可得(a +b)20的展开式中第三项的系数为190.16.【答案】D[解析] 如图,∵圆锥的侧面展开图是个半圆,∴设这个半圆的半径为R ,则AC =R ,∴这个半圆的弧长为πR ,设圆锥底面圆的半径为r ,则2πr =πR ,得:R =2r ,∴AC =2r.由圆锥的母线AC =2r ,OC =r 得在Rt △AOC 中,h =AO =3r ,∵圆锥的体积等于9 3π,∴13πr2·3r =93π,∴r =3,h =AO =3r =33.17.【答案】D[解析] 因为Q 是△EDF 的布洛卡点,所以∠QDF =∠QFE =∠QED ,又因为∠QFD =45°-∠QFE ,∠QEF =45°-∠QED ,所以∠QFD =∠QEF ,所以△QDF ∽△QFE ,所以QF ∶EQ =DQ ∶QF =DF ∶EF =1∶2(△EDF 是等腰直角三角形),所以DQ ∶QF =1∶2,其中DQ =1, 所以QF =2,且QF ∶EQ =1∶2,所以EQ =2,所以EQ +FQ =2+ 2.故选D. 18.【答案】23=32[1+34+(34)2+(34)3+…+(34)n +…][解析] 根据三角形的面积来列出等式.由∠ACB =90°,∠B =30°,AC =2,可得三角形的面积为12×AC ×BC =12×2×2 3=23.又因为三角形的面积可表示为n 个三角形的面积和,则可得到12×1×3+12×32×32+12×34×3 34+…+12×⎝ ⎛⎭⎪⎫12n ×3×⎝ ⎛⎭⎪⎫32n+…=32⎣⎢⎡⎦⎥⎤1+34+⎝ ⎛⎭⎪⎫342+⎝ ⎛⎭⎪⎫343+…+⎝ ⎛⎭⎪⎫34n+….所以根据面积相等得2 3=32⎣⎢⎡⎦⎥⎤1+34+⎝ ⎛⎭⎪⎫342+⎝ ⎛⎭⎪⎫343+…+⎝ ⎛⎭⎪⎫34n+…。
2019年全国中考解析 北京中考数学试题(精品文档)
2019年北京市初中毕业、升学考试数学(满分100分,考试时间120分钟)一、选择题:本大题共8小题,每小题2分,共16分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019北京市,1题,2分)4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米.将439000用科学记数法表示应为A.64.39100.43910 B.6C.54.3910 D.343910【答案】C∴50901;故选C.439004.3【知识点】科学记数法——表示较大的数2.(2019北京市,2题,2分)下列倡导节约的图案中,是轴对称图形的是A. B. C.D.【答案】C【解析】将一个图形沿一条直线折叠,直线两旁的部分能够完全重合;这样的图形叫轴对称图形.故选C.【知识点】图形变换——轴对称图形.3.(2019北京市,3题,2分)正十边形的外角和为A.180 B.360 C.720 D.1440【答案】B【解析】根据多边形的外角和等于360°易得B正确;故选B.【知识点】多边形的外角和等于360°.4.(2019北京市,4题,2分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为A.-3 B. -2 C. -1 D. 1【答案】A【解析】由题意知,点B表示的数是2,由CO=BO,可得点C表示的数为2或-2,将点C 向左平移1个单位长度可得到点A ,故点A 表示的数为1或-3; 又∵点A ,B 在原点O 的两侧;∴点A 表示的数-3. 【知识点】有理数——数轴、分类讨论. 5.(2019北京市,5题,2分)已知锐角∠AOB ,如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是 A .∠COM=∠COD B .若OM=MN ,则∠AOB=20°C .MN ∥CDD .MN=3CD【答案】D【解析】由作图知,CM CD DN == ,OM=OC=OD=ON ;A .在⊙中,由CM CD =得∠COM=∠COD ;故选项A 正确.B .由OM=MN ,结合OM=ON 知△OMN 为等边三角形;得∠MON=60°.又由CM CD DN ==得∠COM=∠COD=∠DON ;∴∠AOB=20°.故选项B 正确.C .由题意知OC=OD ,∴1802CODOCD ︒-∠∠=.设OC 与OD 与MN 分别交于R ,S.易得△MOR ≌△NOS (ASA ) ∴OR=OS ∴1802CODORS ︒-∠∠=∴OCD ORS ∠=∠ ∴MN ∥CD. 故选项C 正确.D .由CM CD DN ==得CM=CD=DN=3CD ;而由两点之间线段最短得CM+CD+DN>MN ,即MN<3CD ;∴MN=3CD是错误的;故选D.【知识点】全等三角形的性质和判定、圆的有关性质、等边三角形的性质和判定. 6.(2019北京市,6题,2分)如果1m n +=,那么代数式()22221m nm n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为A .3-B .1-C .1D .3B【答案】D【解析】()22221m nm n m mn m +⎛⎫+⋅- ⎪-⎝⎭= ()()()()2m n m n m n m n m m n m m n ⎡⎤+-++-⎢⎥--⎢⎥⎣⎦=()()()2m mm n m n m m n ++--=()3m n +又∵1m n +=∴原式=313⨯=.故选D.【知识点】分式的运算、整体思想. 7.(2019北京市,7题,2分) 用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为A .0B .1C .2D .3【答案】D【解析】本题共有3个命题: 命题①,如果a b >,0ab >,那么11a b<. ∵a b >,∴0a b ->.又∵0ab >;∴0a b ab ->,化简得11a b<,该命题为真命题. 命题②,如果a b >,11a b<;那么0ab >. ∵11a b <,∴110a b-<,0b aab -<. ∵a b >,∴0b a -<,∴0ab >.该命题为真命题. 命题③,如果0ab >,11a b<,那么a b >. ∵11a b <,∴110a b-<,0b aab -<. ∵0ab >,∴0b a -<, ∴b a <.该命题为真命题. 选D.【知识点】真假命题、不等式的性质. 8.(2019北京市,8题,2分)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是A .①③B .②④C .①②③D .①②③④【答案】C 【解析】①由条形统计图可得男生人均参加公益劳动时间为24.5h ,女生为52.5h ,则平均数一定在24.5——25.5之间,故①正确.②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20——30之间,故②正确. ③由统计表类别栏计算可得,初中学生各时间段人数分别为25,36,44,11;共有116人,∴初中生参加公益劳动时间的中位数在对应人数为36的那一栏;即 中位数在20——30之间;故③正确.④由统计表类别栏计算可得,高中学段栏各时间段人数分别为15,35,15,18,1;共有84人,∴中位数在对应人数为35人对应的时间栏,即中位数在10——20之间;故④错误. 【知识点】条形统计图、统计表、统计量——平均数、中位数.二、填空题:本大题共8小题,每小题2分,共16分.不需写出解答过程,请把最后结果填在题中横线上. 9.(2019北京市,9题,2分)若分式1x x-的值为0,则x 的值为_______. 【答案】1【解析】方法一、分式值为0的条件是分子等于0,且分母不为0.即10x x -=⎧⎨≠⎩,∴1x =.方法二、解分式方程10x x-=,解得1x =;经检验1x =是原分式方程的解. 【知识点】分式的值为0、解分式方程. 10.(2019北京市,10题,2分)学生类别51020如图,已知ABC ,通过测量、计算得ABC 的面积约为_______cm 2.(结果保留一位小数)【答案】由测量结果计算. 【解析】如图10-1,测量三角形的底和高时,长度精确定mm ,测量图中AC 和BD 的长度. 【知识点】三角形的面积、动手测量、求近似数. 11.(2019北京市,11题,2分)在如图所示的几何体中,其三视图中有矩形的是_______.(写出所有正确答案的序号)【答案】①②.【解析】长方体的三种视图都是矩形,圆柱的主视图、左视图都是矩形,而俯视图是圆;圆锥的主视图、左视图都是三角形;圆锥的俯视图为带圆心的圆.故选①②. 【知识点】三视图、矩形的判定. 12.(2019北京市,12题,2分) 如图所示的网格是正方形网格,则PAB PBA ∠∠+=____________°(点A ,B ,P 是网格线交点).【答案】45°第10题图CBA第11题图③圆锥②圆柱①长方体第12题图【解析】如图12-1,延长AP 至C ,连结BC.设图中小正方形的边长为1,由勾股定理得222125PC =+=,222125BC =+=,2221310PB =+=; ∴222,PC BC PB PC BC +==且.即△PBC 为等腰直角三角形,∴∠BPC=45°. 由三角形外角的性质得45PAB PBA MPC ∠∠=∠=︒+. 【知识点】勾股定理及逆定理、三角形外角的性质. 13.(2019北京市,13题,2分) .在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为_______.【答案】0【解析】∵A 、B 两点关于x 轴对称,∴B 点的坐标为(),a b -.又∵A ()a b ,、B (),a b -两点分别在又曲线1k y x =和2ky x=上; ∴12,ab k ab k =-=. ∴120k k +=;故填0.【知识点】关于x 轴对称的点的坐标特点、双曲线ky x=上点的坐标与k 的关系. 14.(2019北京市,14题,2分)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为_______.【答案】12图3图2图1【解析】设图1中小直角三角形的两直角边长分别为a ,b (a>b );则由图2和图3列得方程组51a b a b +=⎧⎨-=⎩,由加减消元法得32a b =⎧⎨=⎩,∴菱形的面积1144321222S ab =⨯=⨯⨯⨯=.故填12.【知识点】菱形的性质、二元一次方程组的解法.15.(2019北京市,15题,2分)小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s _______20s . (填“>”,“=”或“<”)【答案】=【解析】数据92,90,94,86,99,85的平均数929094869985916x +++++==;新数据2,0,4,-4,9,-5的平均数为()()204495`16x +++-++-==;∴()()()()()()2222222016892919091949186919991859163S ⎡⎤=-+-+-+-+-+-=⎣⎦; ()()()()()()2222222116821014141915163S ⎡⎤=-+-+-+--+-+--=⎣⎦; ∴2201S S =.事实上由“将一组数据中的每个数加上或减去同一个数后,所得的新数据的方差与原数据的方差相同”易得2201S S =.【知识点】方差的计算和性质、平均数.16.(2019北京市,16题,2分)在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合).对于任意矩形ABCD ,下面四个结论中,①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是_______.【答案】①②③【思路分析】如图16-1,经矩形ABCD 对角线交点O ,① 任画两条和矩形对边分别相交的直线,顺次连接交点得到的四边形为平行四边形,显然有无数个四边形; ②任画两条和矩形对边分别相交且相等的直线,顺次连接交点得到的四边形为矩形,显然有无数个四边形; ③任画两条和矩形对边分别相交且垂直的直线,顺次连接交点得到的四边形为菱形,显然有无数个四边形;④画两条和矩形对边分别相交,并且垂直且相等的直线,顺次连接交点得到的四边形为正方形,显然只有一个四边形.【解题过程】如图16-1,O 为矩形ABCD 对角线的交点,① 图中任过点O 的两条线段PM ,QN ,则四边形MNPQ 是平行四边形;显然有无数个.本结论正确. ② 图中任过点O 的两条相等的线段PM ,QN ,则四边形MNPQ 是矩形;显然有无数个.本结论正确. ③ 图中任过点O 的两条垂直的线段PM ,QN ,则四边形MNPQ 是菱形;显然有无数个.本结论正确. ④ 图中过点O 的两条相等且垂直的线段PM ,QN ,则四边形MNPQ 是正方形;显然有一个.本结论错误. 故填:①② ③.【知识点】三角形全等的性质和判定、矩形的性质和判定、平行四边形和菱形、正方形的判定.三、解答题(本大题共12小题,满分68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分;解答应写出文字说明、证明过程或演算步骤) 17.(2019北京市,17题,5分) 计算:()011342604sin π----+︒+() 【思路分析】根据()010a a =≠,()110a a a -=≠,3sin 60︒=代入计算即可解答. 【解题过程】解:()011342604sin π----+︒+()3131214=-+3134==23+3【知识点】实数的混和运算、绝对值、零指数、负指数、特殊角的函数值. 18.(2019北京市,18题,5分)解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩ 【思路分析】先求出每个不等式的解集,再取两个不等式解集的公共部分,就是不等式组的解集.取公共部分按照“大大取大,小小取小,大小小大取中间,大大小小无处找”原则即可. 【解题过程】解:4(1)273x x x x -<+⎧⎪⎨+>⎪⎩①②由①得442x x -<+ 36x <2x < 由②得73x x +> 72x >72x <①和②的公共部分由“小小取小”得原不等式组解集为2x <.【知识点】一元一次不等式组的解法. 19.(2019北京市,19题,5分)关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.【思路分析】先由原一元二次方程有实数根得判别式240b ac -≥进而求出m 的范围;结合m 的值为正整数,求出m 的值,进而得到一元二次方程求解即可.【解题过程】解:∵关于x 的方程22210x x m -+-=有实数根,∴()()22424121484880b ac m m m ∆=-=--⨯⨯-=-+=-≥ ∴1m ≤又∵m 为正整数,∴m=1,此时方程为2210x x -+=解得根为121x x ==, ∴m=1,此方程的根为121x x ==【知识点】一元二次方程根的判别式、 20.(2019北京市,20题,5分)如图20-1,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF . (1)求证:AC ⊥EF ;(2)如图20-2,延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O ,若BD=4,tanG=12,求AO 的长.【思路分析】)(1)由四边形ABCD 为菱形易得AB=AD ,AC 平分∠BAD ,结合BE=DF ,根据等腰△AEF 中的三线合一,证得AC ⊥EF.(2)菱形ABCD 中有AC ⊥BD ,结合AC ⊥EF 得BD ∥EF.进而有1tan tan 22OC OCODC G OD ∠=∠===;得出OA 的值. 【解题过程】(1)证明:∵四边形ABCD 为菱形 ∴AB=AD ,AC 平分∠BAD ∵BE=DF∴AB BE AD DF -=-∴AE=AF∴△AEF是等腰三角形∵AC平分∠BAD∴AC⊥EF(2)解:∵菱形ABCD中有AC⊥BD,结合AC⊥EF.∴BD∥EF.又∵BD=4,tanG=1 2∴1tan tan22OC OC ODC GOD∠=∠===∴AO=12AC=OC=1.【知识点】菱形的性质、等腰三角形的性质、正切的定义.21.(2019北京市,21题,5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:/万元d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第_______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“○”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为_______万美元;(结果保留一位小数)(4)下列推断合理的是_______.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.【思路分析】(1)由条形统计图知,创新指数在70≤x<80,80≤x<90,90≤x≤100国家个数分别为12,2,2;共16个,而中国的创新指数为69.5;进而求出中国的国家创新指数的世界排名.(2)由中国的国家创新指数得分为69.5,结合中国的对应的点位于虚线1l的上方即可求得.(3)如图21-1,先画一条过69.5的水平线,该线上方的点都是国家创新指数得分比中国高的国家;然后找除中国以外的,最左边的点进而求出该国的人均国内生产总值.(4)【解题过程】(1)解:∵由条形统计图知,创新指数在70≤x<80,80≤x<90,90≤x≤100国家个数分别为12,2,2;共16个,且中国的创新指数为69.5;∴中国的国家创新指数的世界排名为17.故填17.(2)解:由中国的国家创新指数得分为69.5,结合中国的对应的点位于虚线1l的上方求得. 如下图,(3)如图21-1,易求得在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.7万美元.故填:2.7. (4)①②【知识点】 22.(2019北京市,22题,6分)在平面内,给定不在同一条直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD . (1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数.【思路分析】 【解题过程】(1) ∵BD 平分ABC ∠CBA∴ABD CBD ∠=∠∴AD=CD(2)直线DE 与图形G 的公共点个数为1. 【知识点】 23.(2019北京市,23题,6分)小云想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有i x 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;③每天最多背诵14首,最少背诵4首.解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_______; (3)7天后,小云背诵的诗词最多为_______首.【思路分析】【解题过程】(1)如下图(2)4,5,6 (3)23【知识点】24.(2019北京市,24题,6分) 如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PC 交弦AB 于点D .小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整: (1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度的几组值,如下表:在PC ,PD ,AD 的长度这三个量中,确定_______的长度是自变量,_______的长度和_______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD 时,AD 的长度约为_______cm .【思路分析】(1)三个变量中,分析哪两个变量均随某个变量的变化而变化,哪两个量就是函数.观察表格中的AB数据,当AD 的长度发生变化时,PC ,PD 也随之变化.(2)以AD 为自变量,分别以PC ,PD 为函数,画函数图像即可. (3)找到图象中满足PC=2PD 时,对应点的横坐标即可解答.【解题过程】(1)观察表格中的数据可知:PC ,PD 都随AD 的变化而变化.故AD 为自变量,PC ,PD 均为AD 的函数. 故填:AD , PC ,PD ;(2)以AD 为自变量,分别以PC ,PD 为函数,画出的函数图像如下图,(3)观察图象可得,当AD=2.29或者3.98时,有PC=2PD.故填:2.29或者3.98. 【知识点】函数与自变量、画函数图形及应用函数图象. 25.(2019北京市,25题,5分)在平面直角坐标系xOy 中,直线l :()10y kx k =+≠与直线x k =,直线y k =-分别交于点A ,B ,直线x k =与直线y k =-交于点C .(1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA ,,围成的区域(不含边界)为W . ①当2k =时,结合函数图象,求区域W 内的整点个数; ②若区域W 内没有整点,直接写出k 的取值范围.【思路分析】(1)当0x =时,由()10y kx k =+≠求得y 的值,即得直线 与 轴的交点坐标. (2)①当2k =时画出图象分析有关区域中整点个数. ②由图象分析解答即可.【解题过程】(1)当0x =时,由()101y kx k =+≠=;∴直线l 与y 轴的交点坐标为()0,1. (2)①如下图,当k=2时,直线l :21y x =+,把2x =代入直线l ,则5y =.∴()2,5A ; 把2y =-代入直线l , 221x -=+ ∴32x =-, ∴3,22B ⎛⎫-- ⎪⎝⎭. ()2,2C -.画出函数21y x =+的图象及直线 2x =,直线2y =-组成的区域,显然区域中整数点有(0,-1)、(0,0)、(1,-1)、(1,0)、(1,1)、(1,2);显然区域W 内的整点个数有6个.② 由类似①分析图象知区域W 内没有整点时有10k -≤<或2k =-.【知识点】一次函数的图象与性质 26.(2019北京市,26题,6分)在平面直角坐标系xOy 中,抛物线21y ax bxa与y轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点11(,)2P a,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.【思路分析】(1)先求出A 点的坐标为10,a ⎛⎫- ⎪⎝⎭,由平移规律求得点B 的坐标.(2)由A 、B 两点的纵坐标相同,得A 、B 为对称点进而求出抛物线对称轴方程.(3)根据a 的符号分类讨论分析解答即可.【解题过程】(1)∵当x=0时,抛物线211y ax bxa a; ∴抛物线与y 轴交点A 点的坐标为10,a ⎛⎫- ⎪⎝⎭,∴由点A 向右平移2个单位长度得点B 的坐标为12,a ⎛⎫- ⎪⎝⎭;即1(2,)B a .(2)∵由A 10,a ⎛⎫- ⎪⎝⎭、B 12,a ⎛⎫- ⎪⎝⎭两点的纵坐标相同,得A 、B 为对称点.∴抛物线对称轴方程为0212x +==;即直线1x .(3)①当0a >时,10a-<. 分析图象可得,根据抛物线的对称性,抛物线不可能同时经过点A 和点P ;也不可能同时经过点B 和点Q ,所以线段PQ 和抛物线没有交点.②当0a <时,10a->. 分析图象可得,根据抛物线的对称性,抛物线不可能同时经过点A 和点P ;但当点Q在点B 上方或与点B 重合时,抛物线与线段PQ 恰好有一个公共点,此时12a -≤,即12a ≤-.综上所述:当12a ≤-时,抛物线与线段PQ 恰好有一个公共点.【知识点】二次函数图象及性质、点的坐标平移规律、27.(2019北京市,27题,7分)已知30AOB ∠=︒,H 为射线OA上一定点,1OH ,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1; (2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.【思路分析】(1)作∠MPN=180°-∠AOB,用圆规截得PM=PN ;可补全图形. (2)借助△OPM 的内角和为180°及∠AOB=30°和∠MPN=150°即可得证, (3)【解题过程】(1)见下图(2)证明:∵30AOB ∠=︒∴在△OPM 中,=180150OMP POM OPM OPM ︒-∠-∠=︒-∠∠ 又∵150MPN ∠=︒,∴150OPN MPN OPM OPM ∠=∠-∠=︒-∠ ∴OMP OPN ∠=∠.(3)如下图,过点P 作PK ⊥OA 于K ,过点N 作NF ⊥OB 于F备用图图1BAO∵∠OMP=∠OPN ∴∠PMK=∠NPF在△NPF 和△PMK 中,90NPF PMK NFO PKM PN PM ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△NPF ≌△PMK (AAS ) ∴PF=MK ,∠PNF=∠MPK ,NF=PK 又∵ON=PQ在Rt △NOF 和Rt △PKQ 中,ON PQNF PK=⎧⎨=⎩∴Rt △NOF ≌Rt △PKQ (HL ) ∴KQ=OF设,MK y PK x == ∵∠POA=30°,PK ⊥OQ ∴2OP x =∴,OK OM y ==- ∴2OF OP PF x y =+=+,)1MH OH OM y =---,1KH OH OK =-.∵M 与Q 关于H 对称 ∴MH=HQ ∴KQ=KH+HQ11y -++=2y -+ 又∵KQ=OF∴22y x y -+=+∴(22x =+ ∴1x =,即PK=1 又∵30POA ∠=︒ ∴OP=2.【知识点】尺规作图、旋转、三角形的内角和、方程思想、30°锐角的性质、中心对称的性质. 28.(2019北京市,28题,7分) 在△ABC 中,D ,E 分别是ABC 两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC的中内弧.例如,下图中是△ABC 的一条中内弧.(1)如图,在Rt △ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出△ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在△ABC 中,D E ,分别是AB AC ,的中点. ①若12t =,求△ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围; ②若在△ABC 中存在一条中内弧,使得所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.【思路分析】(1)当与BC 相切时,△ABC 的中内弧最长,结合勾股定理进而求得结果. (2)①分以下两种情况讨论,Ⅰ、当P 为DE 的中点时; Ⅱ、当⊙P 与AC 相切时.②分以下两种情况讨论,Ⅰ、PE ⊥AC 时,△EFC ∽△PEF ;Ⅱ、PFC ABC ∆∆∽时.【解题过程】(1)如下图:当与BC 相切时,中内弧最长.ABCDE AED CB1801180180n r l πππ⨯=== (2)解:①当12t =时,C (2,0),D (0,1),E (1,1) Ⅰ、如下图, 当P 为DE 的中点时,DE 是中内弧,∴1,12P ⎛⎫⎪⎝⎭Ⅱ、 如下图,当⊙P 与AC 相切时,2,AC BE y x y x =-+=. 当12x =时,12y =,∴11,22P ⎛⎫ ⎪⎝⎭.综上所述,P 的纵坐标112P P y y ≤≥或②中,Ⅰ、PE ⊥AC 时,△EFC ∽△PEF, 得EFFC PF FE =,即121tt =. ∴()2102t t =>,∴t =∴02t <≤.0t <≤Ⅱ、∵PFC ABC ∆∆∽, ∴PFFCAB BC =,324PF=, ∴32PF =.如下图,DP PF r==,12PE=,32DP=∴t∴0t<≤综上所述,0t<≤【知识点】弧长公式、三角形相似性质与判定、圆的有关性质、点的坐标.。
中考精品:2019年中考数学真题分类汇编全套(解析版试卷版)
中考精品:2019年中考数学真题分类汇编全套(解析版试卷版)中高考真题,永远是中高考备考的蓝本,中高考分类汇编,让真题渗透进每一个考点和三年学习的每一个课题每一个单元,化整为零,对中高考的把握会更加醇熟!!2019年中高考真题分类汇编系列,让真题回归课本,让同步学就能积累备考经验,是中高考备考更有效的方式。
本套资源含:最新2019年中考数学全国各省市中考真题,按中考考点分类汇编,教师版带详解分析,学生版可直接打印测试,让同学们无忧练,自信学不懂看解析,化整为零的全盘把握中考。
全套资料带教师解析版和学生试卷版双版本设计,是教师、培训机构教学参考,学生中考冲刺练习的极佳资料!初一初二同步学适用,初三中考复习适用,全学段中考备考都适用!2019年中考数学真题分类汇编目录及截图:2019年中考真题数学试题分项汇编:专题01 数与式(第01期)(原卷版).docx专题01 数与式(第01期)(解析版).docx专题01 数与式(第02期)(解析版).docx专题01 数与式(第02期)(原卷版).docx专题02 方程及其应用(第01期)(解析版).docx专题02 方程及其应用(第01期)(原卷版).docx专题02 方程及其应用(第02期)(解析版).docx专题02 方程及其应用(第02期)(原卷版).docx专题03 不等式(组)及其应用(第01期)(解析版).docx专题03 不等式(组)及其应用(第01期)(原卷版).docx专题03 不等式(组)及其应用(第02期)(解析版).docx专题03 不等式(组)及其应用(第02期)(原卷版).docx专题04 平面直角坐标系与函数(第01期)(解析版).docx 专题04 平面直角坐标系与函数(第01期)(原卷版).docx 专题04 平面直角坐标系与函数(第02期)(解析版).docx 专题04 平面直角坐标系与函数(第02期)(原卷版).docx 专题05 一次函数(第01期)(解析版).docx专题05 一次函数(第01期)(原卷版).docx专题05 一次函数(第02期)(解析版).docx专题05 一次函数(第02期)(原卷版).docx专题06 反比例函数(第01期)(解析版).docx专题06 反比例函数(第01期)(原卷版).docx专题06 反比例函数(第02期)(解析版).docx专题06 反比例函数(第02期)(原卷版).docx专题07 二次函数(第01期)(解析版).docx专题07 二次函数(第01期)(原卷版).docx专题07 二次函数(第02期)(解析版).docx专题07 二次函数(第02期)(原卷版).docx专题08 几何图形初步(第01期)(解析版).docx专题08 几何图形初步(第01期)(原卷版).docx专题08 几何图形初步(解析版).docx专题08 几何图形初步(原卷版).docx专题09 三角形(解析版).docx专题09 三角形(原卷版).docx专题09 三角形(第01期)(解析版).docx专题09 三角形(第01期)(原卷版).docx专题10 四边形(第01期)(解析版).docx专题10 四边形(第01期)(原卷版).docx专题10 四边形(解析版).docx专题10 四边形(原卷版).docx专题11 圆(第01期)(解析版).docx专题11 圆(第01期)(原卷版).docx专题11 圆(第02期)(解析版).docx专题11 圆(第02期)(原卷版).docx专题12 图形的变换(第01期)(解析版).docx专题12 图形的变换(第01期)(原卷版).docx专题13 图形的相似(第01期)(解析版).docx专题13 图形的相似(第01期)(原卷版).docx专题14 锐角三角函数(第01期)(解析版).docx专题14 锐角三角函数(第01期)(原卷版).docx专题15 尺规作图、投影与视图(第01期)(解析版).docx专题15 尺规作图、投影与视图(第01期)(原卷版).docx专题16 统计与概率(第01期)(解析版).docx专题16 统计与概率(第01期)(原卷版).docx专题17 规律探索题(第01期)(解析版).docx专题17 规律探索题(第01期)(原卷版).docx专题18 新定义与阅读理解题(第01期)(解析版).docx专题18 新定义与阅读理解题(第01期)(原卷版).docx专题19 几何探究型问题(第01期)(解析版).docx专题19 几何探究型问题(第01期)(原卷版).docx专题20 二次函数综合题(第01期)(解析版).docx专题20 二次函数综合题(第01期)(原卷版).docx 2019年中考数学母题探源:专题01 一元二次方程根的判别式、根与系数的关系(第二篇)(原卷版).docx专题01 实数(第一篇)(解析版).docx专题01 实数(第一篇)(原卷版).docx专题01 一元二次方程根的判别式、根与系数的关系(第二篇)(解析版).docx专题01 中考中与“化简求值型”相关的探索性问题(第三篇)(解析版).docx专题01 中考中与“化简求值型”相关的探索性问题(第三篇)专题02 代数式与因式分解(第一篇)(解析版).docx专题02 代数式与因式分解(第一篇)(原卷版).docx专题02 方案设计问题(第二篇)(解析版).docx专题02 方案设计问题(第二篇)(原卷版).docx专题02 中考中与“多结论判断型”相关的探索性问题(第三篇)(解析版).docx专题02 中考中与“多结论判断型”相关的探索性问题(第三篇)(原卷版).docx专题03 分式与二次根式(第一篇)(解析版).docx专题03 分式与二次根式(第一篇)(原卷版).docx专题03 解直角三角形的应用(第二篇)(解析版).docx专题03 解直角三角形的应用(第二篇)(原卷版).docx专题03 中考中与“探索规律型”相关的探索性问题(第三篇)(解析版).docx专题03 中考中与“探索规律型”相关的探索性问题(第三篇)(原卷版).docx专题04 方程与方程组(第一篇)(解析版).docx专题04 方程与方程组(第一篇)(原卷版).docx专题04 切线的判定与性质(第二篇)(解析版).docx专题04 切线的判定与性质(第二篇)(原卷版).docx专题04 中考中与“图形关系猜想证明型”相关的探索性问题(第三篇)(解析版).docx专题04 中考中与“图形关系猜想证明型”相关的探索性问题(第三篇)(原卷版).docx专题05 不等式与不等式组(第一篇)(解析版).docx专题05 不等式与不等式组(第一篇)(原卷版).docx专题05 圆综合题(第二篇)(解析版).docx专题05 圆综合题(第二篇)(原卷版).docx专题05 中考中与“操作探究型”相关的探索性问题(第三篇)专题05 中考中与“操作探究型”相关的探索性问题(第三篇)(原卷版).docx专题06 翻折变换(第二篇)(解析版).docx专题06 翻折变换(第二篇)(原卷版).docx专题06 一次函数(第一篇)(解析版).docx专题06 一次函数(第一篇)(原卷版).docx专题06 中考中与“动态型”相关的探索性问题(第三篇)(解析版).docx专题06 中考中与“动态型”相关的探索性问题(第三篇)(原卷版).docx专题07 反比例函数综合题(第二篇)(解析版).docx专题07 反比例函数综合题(第二篇)(原卷版).docx专题07 反比例函数(第一篇)(解析版).docx专题07 反比例函数(第一篇)(原卷版).docx专题08 二次函数综合题(第二篇)(解析版).docx专题08 二次函数综合题(第二篇)(原卷版).docx专题10 四边形(第一篇)(解析版).docx专题10 四边形(第一篇)(原卷版).docx专题11 圆(第一篇)(解析版).docx专题11 圆(第一篇)(原卷版).docx专题12 图形的变换与相似(第一篇)(解析版).docx专题12 图形的变换与相似(第一篇)(原卷版).docx专题13 锐角三角函数、视图与投影(第一篇)(解析版).docx专题13 锐角三角函数、视图与投影(第一篇)(原卷版).docx专题14 统计与概率(第一篇)(解析版).docx专题14 统计与概率(第一篇)(原卷版).docx资源截图:中考真题分类汇编系列,教师解析版+学生试卷版双版本设计,高清word可编辑修改打印,教师同学必备精品!。
2019年全国中考数学试卷-四川省成都市中考试题(解析版)
2019年四川省成都市中考试题解析(满分150分,考试时间120分钟)一、选择题(本大题共10题,每小题3分,共30)1.(2019四川成都,1,3分)比﹣3大5的数是()A.﹣15B.﹣8C.2D.8【答案】C【解析】解:﹣3+5=2.故选:C.【知识点】有理数的加法2.(2019四川成都,2,3分)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()【答案】B【解析】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:【知识点】简单组合体的三视图3.(2019四川成都,3,3分)2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示为()A.5500×104B.55×106C.5.5×107D.5.5×108【答案】C【解析】解:科学记数法表示:5500万=5500 0000=5.5×107,故选:C.【知识点】科学记数法—表示较大的数4.(2019四川成都,4,3分)在平面直角坐标系中,将点(﹣2,3)向右平移4个单位长度后得到的点的坐标为()A.(2,3)B.(﹣6,3)C.(﹣2,7)D.(﹣2.﹣1)【答案】A【解析】解:点(﹣2,3)向右平移4个单位长度后得到的点的坐标为(2,3).故选:A.【知识点】坐标与图形变化﹣平移5.(2019四川成都,5,3分)将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为()A .10°B .15°C .20°D .30°【答案】B【解析】解:∵AB ∥CD ,∴∠1=∠ADC =30°,又∵等腰直角三角形ADE 中,∠ADE =45°,∴∠1=45°﹣30°=15°,故选:B .【知识点】平行线的性质;等腰直角三角形6.(2019四川成都,6,3分)下列计算正确的是( ) A .5ab ﹣3a =2b B .(﹣3a 2b )2=6a 4b 2C .(a ﹣1)2=a 2﹣1D .2a 2b ÷b =2a 2【答案】D【解析】解:5ab 与3b 不属于同类项,不能合并,选项A 错误, 积的乘方(﹣3a 2b )2=(﹣3)2a 4b 2=9a 4b 2,选项B 错误, 完全平方公式(a ﹣1)2=a 2﹣2a +1,选项C 错误 单项式除法,选项D 计算正确 故选:D .【知识点】整式的混合运算7. (2019四川成都,7,3分)分式方程x−5x−1+2x=1的解为( )A .x =﹣1B .x =1C .x =2D .x =﹣2【答案】A【解析】解:方程两边同时乘以x (x ﹣1)得,x (x ﹣5)+2(x ﹣1)=x (x ﹣1), 解得x =﹣1,把x =﹣1代入原方程的分母均不为0,故x =﹣1是原方程的解. 故选:A .【知识点】解分式方程8. (2019四川成都,8,3分)某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是( )A.42件B.45件C.46件D.50件【答案】C【解析】解:将数据从小到大排列为:42,45,46,50,50,∴中位数为46,故选:C.【知识点】中位数9.(2019四川成都,9,3分)如图,正五边形ABCDE内接于⊙O,P为DÊ上的一点(点P不与点D重命),则∠CPD的度数为()A.30°B.36°C.60°D.72°【答案】B【解析】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD=360°5=72°,∴∠CPD=12∠COD=36°,故选:B.【知识点】圆周角定理;正多边形和圆10.(2019四川成都,10,3分)如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是()A .c <0B .b 2﹣4ac <0C .a ﹣b +c <0D .图象的对称轴是直线x =3 【答案】D【解析】解:由于二次函数y =ax 2+bx +c 的图象与y 轴交于正半轴,所以c >0,故选项A 错误; 二次函数y =ax 2+bx +c 的图象与x 轴由2个交点,所以b 2﹣4ac >0,故选项B 错误; 当x =﹣1时,y <0,即a ﹣b +c <0,故选项C 错误; 因为A (1,0),B (5,0),所以对称轴为直线x =1+52=3,故选项D 正确. 故选:D .【知识点】二次函数图象与系数的关系二、填空题(本大题共46小题,每小题4分,共16分)11. (2019四川成都,11,3分)若m +1与﹣2互为相反数,则m 的值为 . 【答案】1【解析】解:根据题意得:m +1﹣2=0,解得:m =1,故答案为:1. 【知识点】相反数;解一元一次方程12. (2019四川成都,12,3分)如图,在△ABC 中,AB =AC ,点D ,E 都在边BC 上,∠BAD =∠CAE ,若BD =9,则CE 的长为 .【答案】9【解析】解:∵AB =AC ,∴∠B =∠C , 在△BAD 和△CAE 中, {∠BAD =∠CAEAB =AC ∠B =∠C,∴△BAD ≌△CAE , ∴BD =CE =9, 故答案为:9.【知识点】等腰三角形的性质13. (2019四川成都,13,3分)已知一次函数y =(k ﹣3)x +1的图象经过第一、二、四象限,则k 的取值范围是 .【答案】k<3【解析】解:y=(k﹣3)x+1的图象经过第一、二、四象限,∴k﹣3<0,∴k<3;故答案为k<3【知识点】一次函数图象与系数的关系14.(2019四川成都,14,3分)如图,▱ABCD的对角线AC与BD相交于点O,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AO,AB于点M,N;②以点O为圆心,以AM长为半径作弧,交OC于点M';③以点M'为圆心,以MN长为半径作弧,在∠COB内部交前面的弧于点N';④过点N'作射线ON'交BC于点E.若AB=8,则线段OE的长为.【答案】4【解析】解:由作法得∠COE=∠OAB,∴OE∥AB,∵四边形ABCD为平行四边形,∴OC=OA,∴CE=BE,∴OE为△ABC的中位线,∴OE=12AB=12×8=4.故答案为4.【知识点】平行四边形的性质;作图三、解答题(本大题共6小题,满分54分,各小题都必须写出解答过程)15.(2019四川成都,15,12分)(1)计算:(π﹣2)0﹣2cos30°−√16+|1−√3|.(2)解不等式组:{3(x−2)≤4x−5,①5x−24<1+12x.②【思路分析】(1)本题涉及零指数幂、平方根、绝对值、特殊角的三角函数4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)先求出两个不等式的解集,再求其公共解.【解题过程】解:(1)原式=1﹣2×√32−4+√3−1,=1−√3−4+√3−1,=﹣4.(2){3(x−2)≤4x−5,①5x−24<1+12x.②由①得,x≥﹣1,由②得,x<2,所以,不等式组的解集是﹣1≤x<2.【知识点】实数的运算;零指数幂;特殊角的三角函数值;解一元一次不等式组16.(2019四川成都,16,6分)先化简,再求值:(1−4x+3)÷x2−2x+12x+6,其中x=√2+1.【思路分析】可先对1−4x+3进行通分,x2−2x+12x+6可化为(x−1)22(x+3),再利用除法法则进行计算即可【解题过程】解:解:原式=(x+3x+3−4x+3)×2(x+3)(x−1)2=x−1 x+3×2(x+3) (x−1)2=2x−1将x=√2+1代入原式=2√2+1−1=√2【知识点】分式的化简求值17.(2019四川成都,17,8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.【思路分析】(1)根据在线答题的人数和所占的百分比即可求得本次调查的人数,然后再求出在线听课的人数,即可将条形统计图补充完整;(2)根据统计图中的数据可以求得扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)根据统计图中的数据可以求得该校对在线阅读最感兴趣的学生人数.【解题过程】解:(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90﹣24﹣18﹣12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×1290=48°,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×2490=560(人),答:该校对在线阅读最感兴趣的学生有560人.【知识点】用样本估计总体;扇形统计图;条形统计图18.(2019四川成都,18,8分)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD的顶部C的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【思路分析】作CE⊥AB于E,根据矩形的性质得到CE=AB=20,CD=BE,根据正切的定义求出AE,结合图形计算即可.【解题过程】解:作CE⊥AB于E,则四边形CDBE为矩形,∴CE=AB=20,CD=BE,在Rt△ADB中,∠ADB=45°,∴AB=DB=20,在Rt△ACE中,tan∠ACE=AE CE,∴AE=CE•tan∠ACE≈20×0.70=14,∴CD=BE=AB﹣AE=6,答:起点拱门CD的高度约为6米.【知识点】解直角三角形的应用﹣仰角俯角问题19.(2019四川成都,19,10分)如图,在平面直角坐标系xOy中,一次函数y=12x+5和y=﹣2x的图象相交于点A,反比例函数y=kx的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=12x+5的图象与反比例函数y=kx的图象的另一个交点为B,连接OB,求△ABO的面积.【思路分析】(1)联立方程求得A的坐标,然后根据待定系数法即可求得;(2)联立方程求得交点B的坐标,进而求得直线与x轴的交点,然后利用三角形面积公式求得即可.【解题过程】解:(1)由{y=12x+5y=−2x得{x=−2y=4,∴A (﹣2,4),∵反比例函数y =kx 的图象经过点A , ∴k =﹣2×4=﹣8,∴反比例函数的表达式是y =−8x ; (2)解{y =−8x y =12x +5得{x =−2y =4或{x =−8y =1,∴B (﹣8,1),由直线AB 的解析式为y =12x +5得到直线与x 轴的交点为(﹣10,0), ∴S △AOB =12×10×4−12×10×1=15. 【知识点】反比例函数与一次函数的交点20. (2019四川成都,20,10分)如图,AB 为⊙O 的直径,C ,D 为圆上的两点,OC ∥BD ,弦AD ,BC 相交于点E .(1)求证:AĈ=CD ̂; (2)若CE =1,EB =3,求⊙O 的半径;(3)在(2)的条件下,过点C 作⊙O 的切线,交BA 的延长线于点P ,过点P 作PQ ∥CB 交⊙O 于F ,Q 两点(点F 在线段PQ 上),求PQ 的长.【思路分析】(1)由等腰三角形的性质和平行线的性质可得∠OBC =∠CBD ,即可证AC ̂=CD ̂; (2)通过证明△ACE ∽△BCA ,可得AC CE=CB AC,可得AC =2,由勾股定理可求AB 的长,即可求⊙O 的半径;(3)过点O 作OH ⊥FQ 于点H ,连接OQ ,通过证明△APC ∽△CPB ,可得PA PC=PC PB=AC BC=24=12,可求P A =2√53,即可求PO 的长,通过证明△PHO ∽△BCA ,可求PH ,OH 的长,由勾股定理可求HQ 的长,即可求PQ 的长.【解题过程】解:(1)∵OC =OB ∴∠OBC =∠OCB∵OC∥BD∴∠OCB=∠CBD∴∠OBC=∠CBD∴AĈ=CD̂(2)连接AC,∵CE=1,EB=3,∴BC=4∵AĈ=CD̂∴∠CAD=∠ABC,且∠ACB=∠ACB ∴△ACE∽△BCA∴ACCE=CBAC∴AC2=CB•CE=4×1∴AC=2,∵AB是直径∴∠ACB=90°∴AB=√AC2+BC2=2√5∴⊙O的半径为√5(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA=∠BCO=∠CBO,且∠CPB=∠CP A ∴△APC∽△CPB∴PAPC=PCPB=ACBC=24=12∴PC=2P A,PC2=P A•PB ∴4P A2=P A×(P A+2√5)∴P A=2√5 3∴PO=5√5 3∵PQ∥BC∴∠CBA=∠BPQ,且∠PHO=∠ACB=90°∴△PHO∽△BCA∴ACOH=BCPH=ABPO即2OH=4PH=2√55√53=65∴PH=103,OH=53∴HQ=√OQ2−OH2=2√5 3∴PQ=PH+HQ=10+2√53【知识点】切线的性质;相似三角形的判定和性质;勾股定理一、B卷填空题(本大题共5小题,每小题4分,共20分)21.(2019四川成都,21,4分)估算:√37.7≈(结果精确到1)【答案】6【解析】解:∵√36<√37.7<√49,∴6<√37.7<7,∴√37.7≈6.故答案为:6【知识点】近似数和有效数字;算术平方根22.(2019四川成都,22,4分)已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13,则k的值为.【答案】﹣2【解析】解:根据题意得:x1+x2=﹣2,x1x2=k﹣1,x12+x22−x1x2=(x1+x2)2−3x1x2=4﹣3(k﹣1)=13,k=﹣2,故答案为:﹣2.【知识点】一元二次方程根与系数的关系23. (2019四川成都,23,4分)一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为57,则盒子中原有的白球的个数为【答案】20【解析】解:设盒子中原有的白球的个数为x 个, 根据题意得:x+510+x+5=57,解得:x =20,经检验:x =20是原分式方程的解; ∴盒子中原有的白球的个数为20个. 故答案为:20. 【知识点】概率公式24. (2019四川成都,24,4分)如图,在边长为1的菱形ABCD 中,∠ABC =60°,将△ABD 沿射线BD 的方向平移得到△A 'B 'D ',分别连接A 'C ,A 'D ,B 'C ,则A 'C +B 'C 的最小值为 .【答案】√3【解析】∵在边长为1的菱形ABCD 中,∠ABC =60°, ∴AB =1,∠ABD =30°,∵将△ABD 沿射线BD 的方向平移得到△A 'B 'D ', ∴A ′B ′=AB =1,∠A ′B ′D =30°, 当B ′C ⊥A ′B ′时,A 'C +B 'C 的值最小,∵AB ∥A ′B ′,AB =A ′B ′,AB =CD ,AB ∥CD , ∴A ′B ′=CD ,A ′B ′∥CD , ∴四边形A ′B ′CD 是矩形, ∠B ′A ′C =30°,∴B ′C =√33,A ′C =2√33, ∴A 'C +B 'C 的最小值为√3, 故答案为:√3.【知识点】等边三角形的判定与性质;菱形的性质;轴对称﹣最短路线问题;平移的性质25. (2019四川成都,25,4分)如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点为“整点”,已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为152,则△OAB 内部(不含边界)的整点的个数为 .【答案】4或5或6【解析】解:设B (m ,n ), ∵点A 的坐标为(5,0), ∴OA =5,∵△OAB 的面积=12×5•n =152, ∴n =3,结合图象可以找到其中的一种情况:(以一种为例) 当2<m <3时,有6个整数点; 当3<m <92时,有5个整数点; 当m =3时,有4个整数点; 可知有6个或5个或4个整数点; 故答案为4或5或6;【知识点】坐标与图形性质;三角形的面积二、解答题(本大题共3小题,满分30分,各小题都必须写出解答过程)26.(2019四川成都,26,8分)随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x (x 为正整数)个销售周期每台的销售价格为y 元,y 与x 之间满足如图所示的一次函数关系. (1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p =12x +12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?【思路分析】(1)根据函数图象上的两点坐标,用待定系数法求出函数的解析式便可;(2)设销售收入为w 万元,根据销售收入=销售单价×销售数量和p =12x +12,列出w 与x 的函数关系式,再根据函数性质求得结果.【解题过程】解:(1)设函数的解析式为:y =kx +b (k ≠0),由图象可得, {k +b =70005k +b =5000,解得{k =−500b =7500, ∴y 与x 之间的关系式:y =﹣500x +7500; (2)设销售收入为w 万元,根据题意得, w =yp =(﹣500x +7500)(12x +12),即w =﹣250(x ﹣7)2+16000, ∴当x =7时,w 有最大值为16000, 此时y =﹣500×7+7500=4000(元)答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元. 【知识点】二次函数的应用27. (2019四川成都,27,10分)如图1,在△ABC 中,AB =AC =20,tan B =34,点D 为BC 边上的动点(点D 不与点B ,C 重合).以D 为顶点作∠ADE =∠B ,射线DE 交AC 边于点E ,过点A 作AF ⊥AD 交射线DE 于点F ,连接CF .(1)求证:△ABD ∽△DCE ;(2)当DE ∥AB 时(如图2),求AE 的长;(3)点D 在BC 边上运动的过程中,是否存在某个位置,使得DF =CF ?若存在,求出此时BD 的长;若不存在,请说明理由.【思路分析】(1)根据两角对应相等的两个三角形相似证明即可.(2)解直角三角形求出BC,由△ABD∽△CBA,推出ABCB=DBAB,可得DB=AB2CB=20232=252,由DE∥AB,推出AE AC =BDBC,求出AE即可.(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH=90°,由△AFN∽△ADM,可得ANAM =AFAD=tan∠ADF=tan B=34,推出AN=34AM=34×12=9,推出CH=CM﹣MH=CM﹣AN=16﹣9=7,再利用等腰三角形的性质,求出CD即可解决问题.【解题过程】解:(1)证明:∵AB=AC,∴∠B=∠ACB,∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,∴∠BAD=∠CDE,∴△BAD∽△DCE.(2)解:如图2中,作AM⊥BC于M.在Rt△ABM中,设BM=4k,则AM=BM•tan B=4k×34=3k,由勾股定理,得到AB2=AM2+BM2,∴202=(3k)2+(4k)2,∴k=4或﹣4(舍弃),∵AB=AC,AM⊥BC,∴BC=2BM=2•4k=32,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△CBA,∴ABCB=DBAB,∴DB=AB2CB=20232=252,∵DE∥AB,∴AEAC=BDBC,∴AE=AC⋅BDBC=20×25232=12516.(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH=90°,∴四边形AMHN为矩形,∴∠MAN=90°,MH=AN,∵AB=AC,AM⊥BC,∴BM=CM=12BC=12×32=16,在Rt△ABM中,由勾股定理,得AM=√AB2−BM2=√202−162=12,∵AN⊥FH,AM⊥BC,∴∠ANF=90°=∠AMD,∵∠DAF=90°=∠MAN,∴∠NAF=∠MAD,∴△AFN∽△ADM,∴ANAM=AFAD=tan∠ADF=tan B=34,∴AN=34AM=34×12=9,∴CH=CM﹣MH=CM﹣AN=16﹣9=7,当DF=CF时,由点D不与点C重合,可知△DFC为等腰三角形,∵FH⊥DC,∴CD=2CH=14,∴BD=BC﹣CD=32﹣14=18,∴点D在BC边上运动的过程中,存在某个位置,使得DF=CF,此时BD=18.【知识点】相似形三角形的判定和性质;解直角三角形;锐角三角函数等;等腰三角形的判定和性质28.(2019四川成都,28,12分)如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.【思路分析】(1)根据待定系数法,把点A(﹣2,5),B(﹣1,0),C(3,0)的坐标代入y=ax2+bx+c得到方程组求解即可;(2)设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),BH=2,由翻折得C′B=CB=4,求出C′H的长,可得∠C′BH=60°,求出DH的长,则D坐标可求;(3)由题意可知△C′CB为等边三角形,分两种情况讨论:①当点P在x轴的上方时,点Q在x轴上方,连接BQ ,C ′P .证出△BCQ ≌△C ′CP ,可得BP 垂直平分CC ′,则D 点在直线BP 上,可求出直线BP 的解析式,②当点P 在x 轴的下方时,点Q 在x 轴下方.同理可求出另一直线解析式. 【解题过程】解:(1)由题意得:{4a −2b +c =5,a −b +c =09a +3b +c =0,解得{a =1b =−2c =−3,∴抛物线的函数表达式为y =x 2﹣2x ﹣3.(2)∵抛物线与x 轴交于B (﹣1,0),C (3,0), ∴BC =4,抛物线的对称轴为直线x =1,如图,设抛物线的对称轴与x 轴交于点H ,则H 点的坐标为(1,0),BH =2, 由翻折得C ′B =CB =4,在Rt △BHC ′中,由勾股定理,得C ′H =√C′B 2−BH 2=√42−22=2√3,∴点C ′的坐标为(1,2√3),tan ∠C ′BH =C′HBH =2√32=√3, ∴∠C ′BH =60°,由翻折得∠DBH =12∠C ′BH =30°,在Rt △BHD 中,DH =BH •tan ∠DBH =2•tan30°=2√33, ∴点D 的坐标为(1,2√33).(3)取(2)中的点C ′,D ,连接CC ′, ∵BC ′=BC ,∠C ′BC =60°,∴△C ′CB 为等边三角形.分类讨论如下:①当点P 在x 轴的上方时,点Q 在x 轴上方,连接BQ ,C ′P . ∵△PCQ ,△C ′CB 为等边三角形,∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°,∴∠BCQ=∠C′CP,∴△BCQ≌△C′CP(SAS),∴BQ=C′P.∵点Q在抛物线的对称轴上,∴BQ=CQ,∴C′P=CQ=CP,又∵BC′=BC,∴BP垂直平分CC′,由翻折可知BD垂直平分CC′,∴点D在直线BP上,设直线BP的函数表达式为y=kx+b,则{0=−k+b2√33=k+b,解得{k=√33b=√33,∴直线BP的函数表达式为y=√33x+√33.②当点P在x轴的下方时,点Q在x轴下方.∵△PCQ,△C′CB为等边三角形,∴CP=CQ,BC=CC′,∠CC′B=∠QCP=∠C′CB=60°.∴∠BCP=∠C′CQ,∴△BCP≌△C′CQ(SAS),∴∠CBP=∠CC′Q,∵BC′=CC′,C′H⊥BC,∴∠CC′Q=12∠CC′B=30°.∴∠CBP=30°,设BP与y轴相交于点E,在Rt△BOE中,OE=OB•tan∠CBP=OB•tan30°=1×√33=√33,∴点E的坐标为(0,−√3 3).设直线BP的函数表达式为y=mx+n,则{0=−m+n−√33=n,解得{m=−√33n=−√33,∴直线BP的函数表达式为y=−√33x−√33.综上所述,直线BP的函数表达式为y=√33x+√33或y=−√33x−√33.【知识点】待定系数法求二次函数解析式;待定系数法求一次函数解析式;轴对称的性质;全等三角形的判定和性质;等边三角形的判定与性质;锐角三角函数。
2019全国中考数学真题分类含答案解析-知识点49 规律问题
一、选择题 10.(2019 ·河南)如图,在△OAB 中,顶点O (0,0),A (-3,4),B (3,4).将△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为( )A. (10,3)B. (-3,10)C. (10,-3)D. (3,-10)【答案】D【思路分析】由A 、B 两点的坐标可知线段AB 的长度和它与x 轴的关系,由正方形的性质可知AD=AB ,延长DA交x 轴于点M,则DA ⊥x 轴,Rt △DMO 中,MO=3,DM=10,将△OAB 和正方形ABCD 绕点O 每次顺时针旋转90°,Rt △DMO 也同步绕点O 每次顺时针旋转90°,D 点的落点坐标可由Rt △DMO 的旋转得到。
仔细观察图形得到点D 坐标的变化规律,每旋转四次完成一个循环,从而可得到第70次旋转后的坐标. 【解题过程】延长DA 交x 轴于点M ∵A (-3,4),B (3,4) ∴AB=6,AB ∥x 轴∵四边形ABCD 为正方形 ∴AD=AB=6,∠DAB=90° ∴∠DM0=∠DAB=90°连结OD,Rt △DMO 中,MO=3 DM=10 则D 点的坐标为(-3,10)将△OAB 和正方形ABCD 绕点O 每次顺时针旋转90°,Rt △DMO 也同步绕点O 每次顺时针旋转90° 当图形绕点O 顺时针第一次旋转90°后, D 点的坐标为(10,3), 当图形绕点O 顺时针第二次旋转90°后, D 点的坐标为(3,-10), 当图形绕点O 顺时针第三次旋转90°后, D 点的坐标为(-10,-3), 当图形绕点O 顺时针第四次旋转90°后, D 点的坐标为(-3,10), 当图形绕点O 顺时针第五次旋转90°后, D 点的坐标为(10,3), ······每四次为一个循环 ∵70÷4=17 (2)∴旋转70次后,D 点的坐标为(3,-10) 故选D【知识点】正方形的性质 图形旋转的性质 点的坐标变化规律yxCDBAO10. (2019·鄂州)如图,在平面直角坐标系中,点A 1、A 2、A 3…A n 在x 轴上,B 1、B 2、B 3…B n 在直线y =√33x上,若A 1(1,0),且△A 1B 1A 2、△A 2B 2A 3…△A n B n A n +1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S 1、S 2、S 3…S n .则S n 可表示为( )A .22n √3B .22n ﹣1√3C .22n ﹣2√3D .22n ﹣3√3【答案】D【解析】 ∵△A 1B 1A 2、△A 2B 2A 3…△A n B n A n +1都是等边三角形,∴A 1B 1∥A 2B 2∥A 3B 3∥…∥A n B n ,B 1A 2∥B 2A 3∥B 3A 4∥…∥B n A n +1,△A 1B 1A 2、△A 2B 2A 3…△A n B n A n +1都是等边三角形,∵直线y =√33x 与x 轴的成角∠B 1OA 1=30°,∠OA 1B 1=120°, ∴∠OB 1A 1=30°, ∴OA 1=A 1B 1, ∵A 1(1,0), ∴A 1B 1=1,同理∠OB 2A 2=30°,…,∠OB n A n =30°, ∴B 2A 2=OA 2=2,B 3A 3=4,…,B n A n =2n ﹣1, 易得∠OB 1A 2=90°,…,∠OB n A n +1=90°, ∴B 1B 2=√3,B 2B 3=2√3,…,B n B n +1=2n √3,∴S 1=12×1×√3=√32,S 2=12×2×2√3=2√3,…,S n =12×2n ﹣1×2n √3=22n−3√3; 故选:D .7. (2019·菏泽)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A 1,第二次移动到点A 2……第n 次移动到点A n ,则点A 2019的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1)【答案】C【解析】A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,1),A 6(3,1),…, 2019÷4=504…3,所以A 2019的坐标为(504×2+1,0),则A 2019的坐标是(1009,0),故选C . 【知识点】点的坐标规律 10.(2019·毕节)下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是( )A .上方B .右方C .下方D .左方【答案】C【解析】如图所示:每旋转4次一周,2019÷4=504…3,则第2019个图案中箭头的指向与第3个图案方向一致,箭头的指向是下方.故选C . 【知识点】规律型:图形的变化类;生活中的旋转现象.二、填空题16.(2019·海南)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两个数的和,如果第一个数是0,第二个数是1,那么前6个数的和是______,这2019个数的和是______. 【答案】0,2【思路分析】由题中规则进行列举,找到规律后进行计算即可.【解题过程】根据题目的规则,0,1,1,0,-1,-1,0,1,1,0,-1,-1,……,每6个数是一个循环单位,∴前6个数的和是0,2019÷6=336…3,∴这2019个数的和=0+1+1=2. 【知识点】找规律17.(2019·齐齐哈尔) 如图,直线l :y=133x 分别交x 轴、y 轴于点A 和点A 1,过点A 1作A 1B 1⊥l ,交x 轴于点B 1,过点B 1作B 1A 2⊥x 轴,交直线L 于点A 2;过点A 2作A 2B 2⊥l ,交x 轴于点B 2,过点B 2作B 2A 3⊥x 轴,交直线L 于点A 3;依此规律...若图中阴影△A 1OB 1的面积为S 1,阴影△A 2B 1B 2的面积S 2,阴影△A 3B 2B 3的面积S 3...,则Sn=【答案】191663-n )( 【解析】由题意知OA=1,则OB 1=33,∴S 1=63; ∴A 2(33,34),∴A 2B 1=34,B 1B 2=394,∴S 2=63916⨯; ∴A 3(937,916),∴A 2B 1=916,B 1B 2=32716,∴S 2=632916)(⨯;... ∴Sn=191663-n )(【知识点】一次函数图像,锐角三角函数,直角三角形, 16.(2019·黄石)将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵147101316192225283134374043则第20行第19个数是_____________________ 【答案】625【思路分析】根据题目中的数据和各行的数字个数的特点,可以求得第20行第19个数是多少。
2019年全国中考解析 四川乐山中考数学试题(精品文档)
2019年四川省乐山市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2019四川省乐山市,1,3) 3-的绝对值是 ( ) A .3 B .-3C .13D .31-【答案】A【解析】本题考查了有理数的绝对值求法,()333-=--=,故选A.【知识点】有理数的绝对值 2.(2019四川省乐山市,2,3)下列四个图形中,可以由如图通过平移得到的是( )第2题图A .B .C .D .【答案】D【解析】本题考查了平移的定义,已知原图到A 、B 、C 三个选项的图形都是旋转只有原图到D 选项的图形是平移,故选D.【知识点】平移的定义3.(2019四川省乐山市,3,3)小强同学从1-,0,1,2,3,4这六个数中任选一个数,满足不等式21<+x 的概率是 ( ) A .15B .24C .13D .12【答案】C【解析】本题考查了概率的计算与不等式解法的综合,21<+x 的解集为x<1,1-,0,1,2,3,4这六个数中有1-,0两个符合,故满足不等式21<+x 的概率是21=63,故选C. 【知识点】一元一次不等式的解法;概率的计算 4.(2019四川省乐山市,4,3) a -一定是 ( ) A .正数 B .负数 C .0 D .以上选项都不正确 【答案】D当a 为0,则a -一定是0;当a 为负数,则a -一定是正数. 【知识点】有理数的相反数5.(2019四川省乐山市,5,3)如图,直线a ∥b ,点B 在a 上,且BC AB ⊥.若︒=∠351,那么2∠等于( ) A .45°B .50°C .55°D .60°第5题图【答案】C【解析】本题考查了平行线的性质,∵BC AB ⊥,∴∠ABC=90°,∴ ∠3=180°-∠ABC -∠1=55°,∵直线a ∥b ,∴ 2∠=∠3=55°,故选C.【知识点】垂直的定义;平行线的性质6.(2019四川省乐山市,6,3) 不等式组⎪⎩⎪⎨⎧≥--+<-04152362x x x x 的解集在数轴上表示正确的是( )A .013﹣6 B .013﹣6C .D .013﹣6【答案】B【解析】本题考查了一元一次不等式组的解法与解集的表示,由第1个不等式解得x>-6,由第2个不等式解得x ≤13,故选B【知识点】一元一次不等式组的解法;不等式组解集的表示; 7.(2019四川省乐山市,7,3)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。
2019年全国中考解析 湖北黄石中考数学试题(精品文档)
2019年湖北省黄石市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019湖北省黄石市,1,3分值) 下列四个数:-3,-0.5,23A. -3B.-0.5C.23【答案】A【解析】根据绝对值的意义求出各个数的绝对值,再比较它们的大小. 【知识点】绝对值2.(2019湖北省黄石市,2,3)国际行星命名委员会将紫金山天文台于2007年9月11日发现的编号为171448的小行星命名为“谷超豪星”,则171448用科学计数法可表示为A. 60.17144810⨯B. 51.7144810⨯C. 50.17144810⨯D. 61.7144810⨯ 【答案】B【解析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.将7760000用科学记数法表示为:1.71448×105.故选:B . 【知识点】科学记数法3.(2019湖北省黄石市,3,3)下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.【答案】D【解析】根据轴对称图形和中心对称图形的概念对各选项分析判断.A 、是轴对称图形,不是中心对称图形,故本选项错误;B 、不是轴对称图形,是中心对称图形,故本选项错误;C 、是轴对称图形,不是中心对称图形,故本选项错误;D 、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D . 【知识点】轴对称图形;中心对称图形4.(2019湖北省黄石市,4,3)如图,该正方体的俯视图是A B C D【答案】A【解析】俯视图是从物体上面看所得到的图形,正方体从上面看,所得到的图形是正方形,故选:A.【知识点】简单几何体的三视图5.(2019湖北省黄石市,5,3)化简1 (93)2(1)3x x--+的结果是A. 21x- B. 1x+ C. 53x+ D. 3x-【答案】D【解析】原式去括号合并即可得到结果.原式=3x-1-2x-2=x-3,故选:D.【知识点】整式的加减6.(2019湖北省黄石市,6,3)若式子12xx--在实数范围内有意义,则x的取值范围是A. 1x≥且2x≠ B. 1x≤ C. 1x>且2x≠ D. 1x<【答案】A【解析】根据分式有意义,分母不等于零和二次根式的被开方数是非负数得x﹣1≥0且x﹣2≠0,解得x≥1且x ≠2.故选:A.【知识点】分式有意义的条件;二次根式有意义的条件7.(2019湖北省黄石市,7,3)如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB 边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点'B的坐标是A.(-1,2)B.(1,4)C.(3,2)D.(-1,0)xyD CA O B【答案】C【解析】根据旋转可得:CB'=CB=2,∠BCB'=90°,可得B'的坐标,如图,由旋转得:CB'=CB=2,∠BCB'=90°,∵四边形ABCD是正方形,且O是AB的中点,∴OB=1,∴B'(2+1,2),即B'(3,2),故选:C.【知识点】坐标与图形变化﹣旋转;正方形的性质8.(2019湖北省黄石市,8,3)如图,在ABC中,50B∠=︒,CD AB⊥于点D,BCD∠和BDC∠的角平分线相较于点E,F为边AC的中点,CD CF=,则ACD CED∠+∠=A.125°B.145°C.175°D.190°AED BCF【答案】C【思路分析】根据直角三角形的斜边上的中线的性质,即可得到△CDF是等边三角形,进而得到∠ACD=60°,根据∠BCD和∠BDC的角平分线相交于点E,即可得出∠CED=115°,即可得到∠ACD+∠CED=60°+115°=175°.【解题过程】连接DF,∵CD⊥AB,F为边AC的中点,∴DF=AC=CF,又∵CD=CF,∴CD=DF=CF,∴△CDF 是等边三角形,∴∠ACD=60°,∵∠B=50°,∴∠BCD+∠BDC=130°,∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.【知识点】三角形的角平分线;直角三角形的斜边上的中线的性质;等边三角形;9.(2019湖北省黄石市,9,3)如图,在平面直角坐标系中,点B在第一象限,BA x⊥轴于点A,反比例函数kyx=(0x>)的图象与线段AB相交于点C,且C是线段AB的中点,点C关于直线y x=的对称点'C的坐标为(1,n)(1n≠),若OAB的面积为3,则k的值为A.13B.1C.2D.3xyBACC'O【答案】D【思路分析】根据对称性求出C点坐标,进而得OA与AB的长度,再根据已知三角形的面积列出n的方程求得n,进而用待定系数法求得k.【解题过程】∵点C关于直线y=x的对称点C'的坐标为(1,n)(n≠1),∴C(n,1),∴OA=n,AC=1,∴AB =2AC=2,∵△OAB的面积为3,∴,解得,n=3,∴C(3,1),∴k=3×1=3.故选:D.【知识点】反比例函数与一次函数的交点问题10.(2019湖北省黄石市,10,3)如图,矩形ABCD 中,AC 与BD 相交于点E,:AD AB =,将ABD 沿BD 折叠,点A 的对应点为F ,连接AF 交BC 于点G ,且2BG =,在AD 边上有一点H ,使得BH EH +的值最小,此时BHCF =B.C.D.32C【答案】B 【思路分析】利用“将军饮马”模型,作点E 关于AD 在对称点E ′,连接BE ′交AD 于H ,由三角形全等得CF=AB ,最后说明△ABH 是一个含30°角的直角三角形得出它们的比值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年全国中考试题汇编知识点49 数学文化(通用版全解全析)
一、选择题
8.(2019 ·福建)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读
多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( )
A . x +2x +4x =34 685
B .x +2x +3x =34 685
C . x +2x +2x =34 685
D .x +21x +41
x =34 685
【答案】A
【解析】设他第一天读x 个字,则第二天读2x 个字,第三天读4x 个字,由题意可列方程x +2x +4x =34 685.
【知识点】一元一次方程;
9.(2019·兰州)《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,
雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x 斤,一只燕的重量为y 斤,则可列方程组为
A.⎩⎨⎧-=-=+x y y x y x 65165
B.⎩⎨⎧+=+=+x y y x y x 65156
C.⎩⎨⎧+=+=+x y y x y x 54165
D.⎩
⎨⎧-=-=+x y y x y x 54156 【答案】C
【解析】根据题意,得56145x y x y y x +=⎧⎨+=+⎩
,故选C. 【知识点】二元一次方程组的应用
5.(2019·长春)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为
A.⎩⎨⎧=+=+y x y x 166119
B.⎩⎨⎧=-=-y x y x 166119
C.⎩⎨⎧=-=+y x y x 166119
D.⎩
⎨⎧=+=y x y x 16611-9 【答案】D.
【解析】设人数为x ,买鸡的钱数为y ,可列方程组为:9-11616x y x y
=⎧⎨
+=⎩, 故选D .
【知识点】由实际问题抽象出二元一次方程组.
二、填空题
13.(2019·张家界)《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百
六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多步.
答案:12
解析:本题以传统文化为背景考查了一元二次方程的应用,设矩形的长为x步,则宽为(60-x)步,根据题意得x(60-x)=864,解得x1=24(舍去),x2=36,所以60-x=24步,所以36-24=12步,因此本题填12.
17.(2019·邵阳)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾
6
c=,则小正方形ABCD的面积是.
a=,弦10
【答案】4
【解析】Q勾6
c=,
a=,弦10
=,
∴股8
=-=,
∴小正方形的边长862
==
∴小正方形的面积224
故答案是:4
【知识点】数学常识;勾股定理的证明。