(完整版)简谐振动、振动合成
第6章 振动2(振动合成、其它振动)
A0e
−β⋅t
A0e-β t o 阻尼振动曲线
T=
t
2π
ω
=
2π
2 ω0 − β 2
> T0
阻尼振动周期
19
时间常量与品质因数: 时间常量与品质因数: 在欠阻尼情况下, 在欠阻尼情况下, 振幅 振动能量E: 振动能量 : E = E0e−2β⋅t 时间常量
A = A0e
−βt
(QE ∝ A2 )
1 τ= 2β
1
旋转矢量法处理谐振动的合成 1. 分振动 x1 = A cos(ω t +ϕ1) 1 x2 = A2 cos(ω t +ϕ2 ) 2. 合振动
O
ω
A2
ϕ2
x2
ϕ
A ϕ −ϕ 2 1 A1
x = x1 + x2 = Acos(ω t +ϕ)
2 A = A2 + A2 + 2A A2 cos(ϕ2 −ϕ1) 1 1
(5)ϕ2 −ϕ1 = 其 值 它
15
二、李萨如图: 李萨如图:
如果两个振动的频率相差较大,但有简单的整数比, 如果两个振动的频率相差较大,但有简单的整数比,则合成运 动具有稳定的封闭的运动轨迹。 动具有稳定的封闭的运动轨迹。
Tx : Ty =1: 2
Tx : Ty = 2 : 3
Tx : Ty = 3: 4
ω2 −ω1
2
)t
x
ω=
ω2 +ω 1
2
t
拍的现象: 3.拍的现象:
合振动忽强忽弱的现象. 合振动忽强忽弱的现象.
拍频 : 单位时间内强弱变化的次数
ν =|ν2-ν1|
ω拍 = ω2 −ω1 或: = T
简谐运动的合成
ν 2 −ν 1
2
t ) cos 2 π
ν 2 +ν1
2
t
振幅部分 振动频率 ν = (ν 1 + ν 2 ) 2 振幅 A = 2 A1 cos 2 π
合振动频率
ν 2 −ν 1
2
振 动
Amax = 2A1
t
Amin = 0
15
第九章
物理学
第五版
9-5
简谐运动的合成
y
ϕ (1) 2 −ϕ1 = 0或 2 π ) A2 y= x A1
A2
A1
o
x
ϕ (2) 2 − ϕ1 = π ) A2 y=− x A1
第九章 振 动
y
A2
A1
o
x
7
物理学
第五版
9-5
简谐运动的合成
x 2 y 2 2 xy 讨 + 2− cos(ϕ 2 − ϕ1 ) = sin 2 (ϕ 2 − ϕ1 ) 论 A12 A2 A1 A2
A
ϕ1
ϕ
A 1
O
x2
x1
xx
两个同方向同频率简谐运动合成后仍 两个同方向同频率简谐运动合成后仍 合成 频率的简谐 简谐运动 为同频率的简谐运动
第九章 振 动
2
物理学
第五版
9-5
简谐运动的合成
(1)相位差 ∆ϕ = ϕ 2 − ϕ1 = 2k π (k = 0,1,2,⋯ ) ± ± )
x
ϕ
A2
x
o
y = A2 cos(ωt + ϕ 2 )
椭圆方程) 质点运动轨迹 (椭圆方程)
x 2 y 2 2 xy + 2− cos(ϕ 2 − ϕ1 ) = sin 2 (ϕ 2 − ϕ1 ) 2 A1 A2 A1 A2
第2节_简谐振动的合成
x = ( A1 cosϕ1 + A2 cosϕ2 ) cosωt − ( A1 sinϕ1 + A2 sinϕ2 ) sinωt = A cos ϕ ⋅ cos ωt − A sin ϕ ⋅ sin ωt = A cos(ωt + ϕ ) ∴ x = A cos(ωt + ϕ )
两个同方向、 两个同方向、同频率的简谐振动合成后仍然是一个 简谐振动,且频率不变。 简谐振动,且频率不变。 由
若 A1 = A2 , A = 2A1
= A1 + A2
合振动振幅最大。 合振动振幅最大。
( ) 2.当 ∆ϕ=ϕ2 −ϕ1 = 2k +1 π ( k = 0,±1,±2,⋯) 时, 当
2 2 A = A1 + A2 + 2A1A2 cos( 2 −ϕ1 ) ϕ
A2
=| A1 − A2 |
A
A2 A1
2 2
ϕ 2 − ϕ1 = π / 2
2 2
x y + =1 A1 A2
•当 当
16
A1 = A2 ,
x +y =A
2
为圆方程
2.
∆ϕ = π / 2
y
8
1 2
y
7 6 5
4
7 6 5
4
8
1 2 2 1
x
3
3
4
播 放 动 画
17
3
5 6 7
x
8
4.
3π (ϕ 2 − ϕ1 ) = 2
9
由于余弦函数绝对值的周期为π。 ω 2 − ω1 t ) 的频率的两倍。 所以, 的频率的两倍。 所以,拍频是振动 cos( 2 即拍频为: 即拍频为:
16 简谐振动能量 振动合成
x x1 x2 A cos( t )
由几何关系得:
x1 A1 cos( t 1 ) x2 A2 cos( t 2 ) A A1 A2
合振动的初相: A sin 1 A2 sin 2 arctan 1 A1 cos1 A2 cos2 用旋转矢量法推导: A2
x A1 cos( t 1 ) y A2 cos( t 2 )
x
讨论: 1) 2 1 kπ 时
x 2 y 2 2 xy 2 0 2 A1 A2 A1 A2
2) 2 1
x y 0 A A 2 1
2
y
A2 x, A1
1
1.相位差 2 1 2k
k=0, ±1, ±2, ±3, ……
x 合振幅加强: A A1 A2
x2
x A A1 A2 x x1 x2 A cos( t )
A A A 2A1A2 cos(1 2 )
2 1 2 2
第5章 机械振动
§5.4 简谐运动的能量 系统势能:
Ep 1 2 1 2 kx kA cos 2 ( t ) 2 2
1 2 kA sin 2 (t ) 2 m 2 k
谐振动系统的机械能:
1 1 2 2 2 E Ek Ep m A kA 2 2
5.5.3 相互垂直的简谐运动的合成 1. 相互垂直同频率简谐运动的合成
质点运动轨迹为直线
A2 ; A1 A 2 1 π,斜率 2 A1 y
2 1 0,斜率
x cos t cos 1 sin t sin 1 A1 y cos t cos 2 sin t sin 2 A2 x 2 y 2 2 xy 2 cos( 2 1 ) sin 2 ( 2 1 ) A12 A2 A1 A2
大学物理学课件-振动的合成与分解
大学物理学
章目录
节目录
上一页
下一页
4.2 振动的合成与分解
分析:
A A12 A22 2 A1 A2 cos(2 1 )
(1)若两分振动同相:
2 1 2 k
A A1 A2
k 0,1, 2,
两分振动相互加强
(2)若两分振动反相:
2 1 ( 2 k 1)
×
×
−
()
()
得
−
= ( − )
大学物理学
章目录
节目录
上一页
下一页
4.2 振动的合成与分解
三、两个相互垂直的同频率简谐振动的合成
分振动
x A1 cos( t 1 )
y A2 cos( t 2 )
= 0
= /4
P
.
·
= /2
= 3/4
= 3/2
= 7/4
Q
=
= 5/4
0 时,逆时针方向转动。
0 时,顺时针方向转动。
大学物理学
章目录
节目录
上一页
下一页
四、两个相互垂直不同频率的简谐振动的合成
两振动的频率成整数比
2
1
2
2
A1 A2
A1 A2
(1)2 1 0
x
y 2
(
) 0
A1 A2
y
A2
y
x
A1
x
质点离开平衡位置的位移
S
大学物理学
x2 y2
A12 A2 2 cos( t )
振动合成与分解
从数学上讲 任何形式的周期函数都可通过付里叶级数分解 成一系列不同频率、不同振幅的谐振动之和; 成一系列不同频率、不同振幅的谐振动之和;而非 周期振动可通过傅里叶积分把它展成无数个频率连 续分布的谐振动。 续分布的谐振动。 将任一周期性振动 x(t +T) = x(t) 按付立叶级数展开 a0 ∞ x (t ) = + ∑ (an cos nω t + bn sin nω t ) 2 n=1 2 π 若周期振动的频率为: 若周期振动的频率为:ν ω =2 = πν T 则各分振动的频率为:ν、2ν、3ν、… 则各分振动的频率为: (基频 , 二次谐频 , 三次谐频 , …) ) 由于所包含的频率取分立值,这类频谱称为离散谱。 由于所包含的频率取分立值,这类频谱称为离散谱。
二. 同方向不同频率简谐振动的合成 分振动 合振动
x2 = Acos(ω2t +ϕ2)
x = x + x2 1
1 1 x = 2 A cos [(ω 2 − ω1 )t + (ϕ 2 − ϕ1 )] ⋅ cos [(ω 2 + ω1 )t + (ϕ 2 + ϕ1 )] 2 2
x = Acos(ω t +ϕ1) 1 1
图(a) 中实线所代表的周期性振动可分解为基频 倍频的两个简谐振动的叠加。 和3倍频的两个简谐振动的叠加。 倍频的两个简谐振动的叠加 而图(b)则是一种“方波”振动信号, 而图 则是一种“方波”振动信号,它所包含 则是一种 的简谐振动成分就多了。 的简谐振动成分就多了。 这里用竖直线段在横坐标上的位置代表所包含 简谐振动的频率,竖直线高度代表所对应振幅, 简谐振动的频率,竖直线高度代表所对应振幅,该 称为振动频谱 图(c)称为振动频谱。 称为振动频谱。
振动的合成——精选推荐
二、振动的合成实际生活中,一个系统往往会同时参与两个或更多的振动。
例如悬挂在颠簸船舱中的钟摆,两列声波同时传入人耳等。
一般的振动合成显然是比较复杂,下面仅讨论几种间单情况的简谐振动合成。
一、同方向同频率简谐振动的合成若两个同方向的简谐振动,频率都是,它们的运动方程分别为因振动是同方向的,所以这两个谐振动在任意时刻的和位移应在同一直线上,且等于这两个振动位移的代数和,即合位移仍为简谐振动二、两个同方向不同频率简谐振动的合成拍如果两个简谐振动的振动方向相同而频率不同,那么合成后的振动仍与原振动方向相同但不再是简谐振动。
现设两简谐振动的振幅都为A,初相位为零,它们的振动方程分别为合成振动方程为若两个分振动的频率都较大且其差很小时,即,合振动可看作为振幅随时间缓慢变化的近似谐振动,振幅随时间变化且具有周期性,表现出振动或强或弱的现象,称拍,变化的频率称拍频,变化的振幅为变化的频率为三、相互垂直的简谐振动的合成李萨如图如果两个简谐振动分别在x轴和y轴上进行,他们的振动方程分别为合成后,可得质点的轨迹为椭圆方程若两分振动有不同的频率,且两频率之比为有理数时,则合成后的质点运动具有稳定、封闭的轨迹。
称其为李萨如图形。
程序编写我们已经在第一讲中体验了matlab的编程,可是你一定会生出这样的问号,辛辛苦苦在命令窗口写的一大堆代码怎么不保留?不用担心,matlab程序和其他编程工具一样,也有专门的文件格式,称m文件,文件名形式为“文件名.m”。
你可以用matlab自带的编辑器来输入你的程序代码,当然你也可以用其它编辑器或最经济的文本编辑器,不过别忘记添加文件名的后缀“.m”。
下面,请跟我一起用m文件编辑器来编写matlab程序。
例题:两个振动方向相同而频率不同的简谐振动方程分别为合成后的方程是请用matlab程序描述合成波和拍频现象。
编程:第一步:点击matlab图标,打开程序窗口。
第二步:选file—new—m-file,打开编辑器。
简谐振动振动合成
振动:一个物理量随时间作周期性变化
简谐振动是最简单的振动,任何复杂的振动都 是简谐振动的线性迭加。
一、简谐振动 定义:物体运动时,离开平衡位置的位移(或 角位移)随时间t按余弦(或正弦)规律变化, 这类运动称简谐振动。
x(t) Acos(t )
二、简谐振动的速度、加速度
x Acos t
A cos t π
2
dx dt
A
sin
t
a A 2cos t π
a
d
dt
A
2cos t
2x
速度与加速度也都是周期变化的。
三、谐振动的振幅、周期、(频率)和相位
1、振幅A x A cos(t )
物体离开平衡位置的最大距离。 单位:米,m
2、周期 T
a
d 2x dt 2
F弹 m
k x m
d2x k x 0 dt 2 m
F弹 x
令
2 k
m
ox
有
d 2x 2x 0 简谐振动微分方程
dt 2
解微分方程 x A cos(t )
其中A为振幅,为圆频率,只与弹簧振子性质有关。
1.圆频率 k
x0 / A
x0
五、相位差
1.相位差和初相差 相位差---相位之差 对两同频率的简谐振动,相位差等于初相差
= (t + 2) - (t + 1)
= 2 - 1
2.同相和反相
当 = 2k, ( k = 0,1,2,…),两振动步调相同,
称同相
当 = (2k+1), ( k= 0,1,2,…),两振动步调
T 2
2 2
T
大学物理-12第十二讲简谐振动的合成、阻尼、受迫振动(001)
解得 ω = ωr = ω02 − 2β 2
则
A=
2mβ
F0
ω02 − β 2
= Amax
A
β2 β3
β1
ω
β1 > βω2 0> β3
23
2.速度共振—使速度振幅达最大值的状态
v = dx = − Aω sin(ωt − δ )
dt
速度振幅 vm = Aω
而 Aω =
F0ω
m (ω02 − ω2 ) + 4β 2ω2
●合振幅A的大小由两个分振动的初相差决定。
当 Δϕ = ϕ2 − ϕ1 = ±2kπ
(k = 0,1,2") 同相
Y ωK
A2
ωK
A ωK
A = A1 + A2 = Amax
θ2
Δθ θ1
A1
合振动加强
x2 θ x1 x x
4
当 Δϕ = ϕ2 −ϕ1 = ±(2k +1)π 反相
(k = 0,1,2")
ϕ =0
t
19
2. β =ω0(临界阻尼) x = e −βt (C1 + C 2t)
●在临界阻尼时,质点到达平衡位置时速度即减为 零,振动不可能发生。
◆原理常用于阻尼天平等,以减少摆动时间.
3. β >ω0(过阻尼)
x = e − βt (C 1e ω1t + C 2 e −ω1t )
●过阻尼时,质点的速度 x
F强 = F0 cosωt
v = dx = Aω cos ωt v与强迫力同位相。
dt
●在整个周期内外力的方向和物体运动方向一致, 不断对物体作正功,使振动最强。 ◆外力的周期性变化与物体的固有振动“合拍”。
同方向、不同频率的简谐振动的合成
的仍 简然 谐是 振同 动频 。率
Acos(t )
3
式中:
A A12 A22 2A1A2 cos(2 1)
arctg A1 sin1 A2 sin2 A1 cos1 A2 cos2
可见:
2 1 2k
k 0,1,2,
A A1 A2
2Acos (2 1)t cos[ (2 1)t ]
2
2
当1与2 都很大,且相差甚微时,可将
| 2Acos(2 1)t / 2 | 视为振幅变化部分,
合成振动是以 (2 1) / 2 为角频率的谐振动。
其振幅变化的周期是由振幅绝对值变化来决定, 即振动忽强忽弱,所以它是近似的谐振动.
这种合振动忽强忽弱的现象称为拍。 10
arctg A1 sin 1 A2 sin 2
讨论一:
A1 cos1 A2 cos2
2 1 2k k 0,1,2,
A A1 A2 合振幅最大。
当 A1 A2 称为干涉相长。
A A2
A 2A1
A1
6
讨论二:
2 1 (2k 1)
k 0,1,2,
A2
A | A1 A2 |
A
1动、的2相位1 差0在视缓为慢同地频变率化的,合所成以,质不点过运两动个的振轨
道将不断地从下图所示图形依次的循环变化。
当 0 2 1 时是顺时针转;
sin(
20
10 )
x2 A12
y2 A22
2 xy A1 A2
cos
sin2
上式是个椭圆方程,具体形状由
(20 10) 相位差决定。
质点的运动方向与 有关。当 0 时,
简谐振动的合成
(A1 sin1 A2 sin2 )sint
合振幅
令: A1 cos1 A2 cos2 Acos 代入上式:
A1 sin1 A2 sin2 Asin
2
x ( A1 cos1 A2 cos2)cost (A1 sin1 A2 sin2 )sint
Acos cost Asin sint Acos(t ) x Acos(t )
x1(t) a cost
M aN
x2 (t) a cos(t ) x3(t) a cos(t 2 )
C
R N
A
a3
xN (t) a cos[t (N 1) ]O a1 P
在COM中:A 2R sin(N / 2)
上两式相除得:
在OCP中: a 2Rsin( / 2)
7
A a sin(N / 2) sin / 2
若 A1 A2, A 2A1
2.当 2 1 (2k 1) (k 0,1,2, ) 时,
A
A12
A
2 2
2 A1
A2
cos(
2
1
)
| A1 A2 | 合振动振幅最小。
若 A1 A2, A 0
A2
3.一般情况 | A1 A2 | A | A1 A2 |
5
A A2 A1
A2 A A1 A A1
第二节
简谐振动的合成
1
一、同方向同频率简谐振动的合成
在同一直线上同频率的两个简谐振
动分别为:
x1 A1 cos(t 1),
x2 A2 cos( t 2 )
• 代数方法: 振动合成
x x1 x2 A1 cos(t 1) A2 cos(t 2 )
(A1 cos1 A2 cos2) cost
4-(4)振动合成
3) 2k 2 1 (2k 1) ,
k 0, 1, 2
A1 A2 A A1 A2
15 – 8
例、N个同方向、同频率的谐振动,振幅相等 相位依次相差,求合振动的振幅与相位。 设:(N=5)
多普勒效应
第十五章 机械波
x1 a cos t x2 a cos(t ) x3 a cos(t 2 ) x4 a cos(t 3 ) x5 a cos(t 4 )
A2 , v20 0 2 2 2
3
15 – 8
2 x1 5cos( t ) 2 3 2 x2 5cos( t ) 2 3
2 A12 A2 2 A1 A2 cos(2 1 ) 2 2
多普勒效应
第十五章 机械波
(2)A
4 5 5 2 5 5 cos 5cm 3 A1 sin 1 A2 sin 2 0 arctan arctan A1 cos 1 A2 cos 2 1
第十五章 机械波
2 1 / 2
2 1 / 2
x2 y 2 2 1 2 A1 A2
Y X
Y
X
15 – 8
多普勒效应
第十五章 机械波
2、作图法 依次描出坐标值
15 – 8
例、 两个同方向、同频率的谐振动,其位移曲 线如图,求(1)分别求出两个谐振动方程;2)合 振动方程。
1
第十五章 机械波
A2
A
对边 A1 sin1 A2 sin 2
2
O
A1 cos 1
A1 2
1
A2 sin 2
邻边 A1 cos 1 A2 cos 2
8.5 简谐运动的合成
ν 2 ν 1
2
t ) cos( 2 π
ν 2 +ν 1
2
t +)
振幅部分 振动频率 振幅
合振动频率
ν = (ν 1 + ν 2 ) 2
A = 2 A1 cos 2π
ν 2 ν 1
2
t
Amax = 2A1
Amin = 0
振幅是随时间变化的, 振幅是随时间变化的,由于振幅的改变也是周期 性的,因此就出现振动忽强忽弱的现象。 性的,因此就出现振动忽强忽弱的现象。
y A2
A2 y= x A1
o
A1
x
x 2 y 2 2 xy + 2 cos( 2 1 ) = sin 2 ( 2 1 ) 2 A1 A2 A1 A2
2) 2 1 = π
3) 2 1 = ± π 2
2 2
A2 y= x A1
o
y
A2
x y + 2 =1 2 A1 A2
π y = A2 cos(ωt + ) 2
合成振动为: 合成振动为: x = x1 + x2 = A1 cos(ω1t + ) + A2 cos(ω 2 t + ) 利用三角函数公式可得
x = 2 A cos(
ω2 ω1
2
t ) cos(
ω2 + ω1
2
t +)
= 2 A cos( 2 π
ν 2 ν 1
2
t ) cos( 2 π
ν 2 +ν 1
两个同方向不同频率简谐运动的合成
频率相近的两个同方向简谐振动的合振动是振幅随 频率相近的两个同方向简谐振动的合振动是振幅随 相近的两个同方向简谐振动的合振动是 时间周期性变化的特殊简谐振动 称为拍振动 的特殊简谐振动, 拍振动。 时间周期性变化的特殊简谐振动,称为拍振动。 单位时间内振动加强或减弱的周期数叫拍频。 单位时间内振动加强或减弱的周期数叫拍频。 拍频 由
振动的合成与分解
合振动的轨迹为通过原点且 在第一、第三象限内的直线
A2 斜率 A1
y
x
质点离开平衡位置的位移
S x y
2 2
A1 A2 cos( t )
2 2
x2 y2 x y 2 2 cos( ) sin ( 2 1 ) 2 1 2 2 A1 A2 A1 A2 A2 x y 2 x ) 0 y (2) 2 1 ( A1 A1 A2
x2 A2 cos(2t 2 )
设 1 2 但: 1 2 1
为简单: 令A1 A2 A 先用函数曲线叠加:
1 2
分振动
x1 A cos( 1t ) x2 A cos( 2 t )
合振动
x x1 x2
y
x
y
x
= 0
= /4
P
·Q
.
= /2
= 3/4
=
= 5/4
= 3/2
= 7/4
0 时,逆时针方向转动。 0 时,顺时针方向转动。
四、两个相互垂直不同频率的简谐振动的合成
两振动的频率成整数比 轨迹称为李萨如图形
合振动
r ( t ) x ( t )i y ( t ) j
合振动质点的轨迹方程
x2 y2 x y 2 2 cos( ) sin ( 2 1 ) 2 1 2 2 A1 A2 A1 A2
x2 y2 x y 2 2 cos( ) sin ( 2 1 ) 2 1 2 2 A1 A2 讨论 A1 A2 A2 x y 2 x ) 0 y (1) 2 1 0 ( A1 A1 A2
2 振动合成
合振动仍是一个简谐振动,表达式为:
x A cost
2. 推导 (1)解析法
x x1 x2 A1 cos( t 1 ) A2 cos( t 2 )
A1 cos1 cost A1 sin 1 sin t A2 cos 2 cost A2 sin 2 sin t
2. 分振动的振幅和初相位都相等
为简单,设两分振动的振幅和初相位都相等,当两 分振动的频率都很大,且相差甚微时,合振动为: x2 A cos 2t x1 A cos1t
x x1 x2 2 A cos
2 1
2
t cos
1 2
2
t
由于 2 1 2 1 ,则因子2 A cos 化周期比另一个因子的周期长得多。
2 1
2
2 1
2
t 的变
将 2 A cos
变化时,质点按 cos
2 1 快速地振动。 t
2
t 看成是振幅,则在此振幅缓慢
一拍
由图可见,合成振动的振幅出现时强时弱现象,周 期性变化,这种现象称为拍。合振幅每变化一周叫做 一拍,单位时间出现的拍次数叫拍频。拍的频率为两 个分振动的频率之差。
(2)图解法
两分振动对应的旋 转矢量A1、A2,转动 角速度ω
因为转动角速度相等,所以A1和A2相对位置不变, 可以合成而得到一个新的旋转矢量A,其角速度仍为ω, 这个新矢量A的投影就是合成振动,所以合振动仍是一个 角频率为ω的简谐振动。
3. 讨论
(1)同相 当相位差 2 1 2k , k 0,1,2
A
2 A12 A2 2 A1 A2 cos( 2 1 ) A1 A2
振动合成
A
A1
由矢量图: π
2
x
A2
A1
cos( 2π t π ) T2
2. 两个同方向不同频率简谐运动的合成
A2相对于 A1的转动角速度:
2 1
两矢量同向重合时:
合振动振幅 A极大
两矢量反向重合时:
合振动振幅 A极小 2 源自1 A2 A A1A
O
1 A1
x Ae t cos t
周期: T 2 02 2
角频率: 02 2
x
A
O
t
A
2 02
x Ae t cos 02 2t
讨论: 1.AA阻ee尼较tt 小随时时(间按2指2数02规)2 律,迅振速动减为少减。幅阻振尼动越,大振,幅减
0 时,速度幅极大
在速度共振条件下稳态振动的初相位为 π
2
v Acos t
结论:速度和驱动力有相同的相位。即策动力对
振动系统始终做正功。
速度共振又称能量共振!
1940年,Tacoma Narrows大桥在通车4个月零6 天后因大风引起扭转振动,又因振动频率接近于大 桥的共振频率而突然坍塌。
讨论: 2 1 0 (或 2kπ )时
x2 y2 2xy 0 A12 A22 A1 A2
x A1
y A2
2
0
y A2 x 斜率 A2 0
A1
A1
y x
x2 A12
y2 A22
2xy A1 A2
cos(2
1 )
sin 2 (2
1 )
一同频率同一直线上的简谐振动的合成
一.同频率、同一直线上的简谐振动的合成 分振动:x1 =A1cos( t+1 ) x2 =A2cos( t+2 )
合振动: x= x1+x2 = Acos( t+ )
A A1 A2 2 A1 A2cos( 2 1 )
2
2
A1sin1 A2sin 2 tg A1cos1 A2cos 2
x y 2 1 2 A1 A2
y
2
2
合振动不再是谐振动。
y
x
x 左旋
右旋
2 -1=/2
2 -1=-/2
21
两个频率相同、 振幅不同的互
相垂直简谐
Δ=0 Δ=/4 Δ=/2 Δ=3/4
振动的合成
Δ=
Δ=5/4
Δ=3/2
Δ=7/4
22
四.不同频率垂直谐振动的合成 李萨如图形 x =A1cos(1 t+1 ) y =A2cos(2 t+2 )
2, = 0 (临介阻尼)
x e t C1 C 2 t
3, < 0 (欠阻尼)
xe
e
t
t
C cos
1
C e
1
i 0 2 2 t
C2 e
2
i 0 2 2 t
2 2
0 t C2 sin 0 t
2
2 2
( 2 1 )
2
o
x
10
例题4.17 求同方向、同频率、同振幅、依次间相 位差均为的N个谐振动的合振动方程。 光的衍射 解
选择适当的计时起点,使某个简谐振动的初 相为零,则有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 mA 2 2 sin 2 (t )
2
Ek
1 m 2 A 2 sin
2
2 (t
)
2 k
Ek
m
m2 k
o
t
Ek
1 kA 2
2 sin
2 (t
)
Ek
1 kA 2
2 sin
2 (t
)
二、谐振动的势能
Ep
1 kx 2
2
Ek E p
1 k[ A cos(t )]2
2
1 kA 2 cos2 (t ) o
表达式中的余弦函数的综量 (t )
而旋转矢量图
可直观地显示该综量
A t x
用图代替了文字的叙述 0 x t
如 文字叙述说 t 时刻弹簧振子质点 • 在正的端点 旋矢与轴夹角为零
t 0 意味 x A
• 质点经二分之一振幅处 向负方向运动
A
x
oA
t π
意味
x A 2
3
< 0
x
21
•质点过平衡位置向负方向运动
0 0
2 sin 2 cos
/3 /3
3 5
0.33
合振动方程 x 2 7 cos( 3t 0.33 )
二、多个同方向、同频率谐振动合成
合成后仍为谐振动。
x A cos(t )
1、解析法:先将 x1,x2合成,再与x3 合成。…… 2、矢量合成法: x1,x2,x3 ……首尾相 接。
x0 / A
x0
五、相位差
1.相位差和初相差 相位差---相位之差 对两同频率的简谐振动,相位差等于初相差
= (t + 2) - (t + 1)
= 2 - 1
2.同相和反相
当 = 2k, ( k = 0,1,2,…),两振动步调相同,
称同相
当 = (2k+1), ( k= 0,1,2,…),两振动步调
7π
6
7π 6k
m
引:
-
一、同(振动)方向、同频率有恒定相位差 的两个谐振动的合成
质点同时参与两个振动,研究两 个同方向同频率的振动合成。
分振动 x1 A1 cos( t 1 )
x 2 A2 cos( t 2 ) 振动合成 x x1 x 2
合成后仍为谐振动,角速度不变。
x A cos(t )
dt 2
解微分方程 x A cos(t )
其中A为振幅,为圆频率,为初相位。
圆频率 k 单位:rad/s
m 只与弹簧振子性质有关。
1.圆频率 k
m
F弹 x
ox
2.周 期 T 2 2 m
k
3.频 率 1 1 k T 2 m
x Acos t
A cos t π
二、物理模型与数学模型比较
谐振动
A
振幅
t+
初相 相位
圆频率
T 谐振动周期
旋转矢量 半径
初始角坐标 角坐标 角速度
圆周运动周期
三、用旋转矢量表示弹簧、单摆运动初相
1.初始条件
t 0 x0 A v0 0
A A cos
cos 1 0
x oA
y
x
A
A 0
o
x
o
l
t
2.初始条件
x
t 0
x1 A1 cos( t 1 ) x 2 A2 cos( t 2 )
x2 2 cos( 3t / 3)
解:合成后不变, x A cos(3t )
A
A12
A
2 2
2 A1 A2
cos( 2
1 )
42 22 2 4 2 cos( / 3 0) 2 7
tg
A1 A1
sin 1 cos 1
A2 A2
sin 2 cos 2
4 4
sin cos
t + 0 /2 3/2 2
x(t) A 0 -A (t) 0 -A 0 a(t) -2A 0 2A
0A A 0 0 -2A
初相(initial phase)是t = 0时刻的相位
(t =0称时间零点,是开始计时的时刻,不 一定是开始运动的时刻)
反映t = 0时刻的振动状态(x0,0 )
要熟记典型 值所对应的振动情况和振动 曲线(如图)
相反,称反相
x
A1
A2
o
- A2
x1 x2
同相
x
A1
A2
T o
t
- A2
x1
反相
T t
x2
-A1
-A1
(a) 两同相振动的振动曲线
(b) 两反相振动的振动曲线
3.领先和落后
若 = 2-1> 0,则x2比x1较早达到正最大,称x2
比x1领先(或x1比x2落后)
领先、落后以 < 的相位角(或以< T/2的时间间隔) 来判断
l
o
x0 0 v0 0
0 A cos
cos 0
y
A
o
x
2 xA
o
t
/ 2 , 3 / 2
v0 A sin 0, sin 0取 / 2
3.初始条件
t 0
x
l
x0 A v0 0
o A
y
x
A A cos A
cos 1
A
o
xo
A
4.初始条件
x
l
取逆时针为 张角
T
正向,以悬点为轴,
只有重力产生力矩。
M mgl sin
mg
“ – ”表示力矩与 张角方向相反。
M mgl sin
M
J
J
d 2
dt 2
J
d 2
dt 2
mgl
sin
当 5 时
sin
d 2
dt 2
mgl J
0
l
T
mg
d 2
dt 2
mgl J
0
J ml 2
T 2
2 2
T
2秒内的振动次数 (单位:1/S或rad./S)
x Acos(t ) Acos( 2 t ) Acos(2 t )
T
4、相位与初相φ
x A cos(t )
(t + )是t 时刻的相位
t时刻的相位反映t时刻的振动状态
由x =Acos(t + )
v A sin( t ) a A2 cos(t )
建立坐标系,o点选在弹簧平衡位置处。
F弹 x
3.振动位移
ox
振动位移:从 o 点指向物体所在位置的矢量。
回复力: 一维振动
F弹 k x F弹 kx ma
a
d 2x dt 2
F弹 m
k x m
d2x k x 0 dt 2 m
F弹 x
令
2 k
m
ox
有
d 2x 2x 0 简谐振动微分方程
d 2
dt 2
g
l
0
令 2 g
l
d 2
dt 2
2
0
谐振动微分方程
圆频率
g
l
周期 T 2 2 l
g
与质量无关。
频率 1 1 g T 2 l
l
T
mg
简谐振动过程即有动能又有势能,Ek、Ep交
替变化。
一、谐振动的动能
Ek
1 mv 2
2
x oA
1 m[A sin( t )]2
2、方便地比较振动步调
x Acos t
A cos t π
2
a A 2cos t π
A
2A
A
a
x
由图看出:速度超前位移 π 加速度超前速度 2
位移与加速度 Δ π 称两振动反相
若 0 称两振动同相
3、方便计算 用熟悉的圆周运动代替三角函数的运算 例:质量为m的质点和劲度系数为k的弹簧
t
2
Ek 最大时, Ep最小, Ek 、Ep交替变化.
Ek
1 kA 2
2 sin
2 (t
)
Ep
1 kA 2
2
cos2 (t
)
三、谐振动的能量
Ek E p
E
E
Ek
Ep
1 kA 2 2
o
t
•机械能守恒,谐振过程保守力作功。
•谐振能量与振幅的平方成正比。
旋转矢量
一、旋转矢量
将物理模型转变成数学模型。
A0
-A 0
A
0
0 -A 0
A 0
5、振幅与初相的确定
初始条件:x t0 x0 , V t0 V0
x A cos(t ) v A sin( t )
x0 A cos ① v0 A sin ②
①2+(②/)2
有
x
2 0
(v0
/ )2
A2
A
x02
v0
2
②/①有
tg v0 / A v0
组成的弹簧谐振子 t = 0时 质点过平衡位置且向正方向运动 求:物体运动到负的二分之一振幅处时 所用的最短时间
解:设 t 时刻到达末态
由已知画出t = 0 时刻的旋矢图
再画出末态的旋矢图 由题意选蓝实线所示的位矢
o
x
设始末态位矢夹角为
t 0
因为 t
得 t
繁复的三角函数的运算用匀速
圆周运动的一个运动关系求得
用匀速圆周运动 几何地描述 S H V y
矢量 A 以角速度 逆时针
作匀速圆周运动,