spss分类变量统计描述
SPSS软件学习_spss统计描述过程
11
分布曲线形状:偏度的含义
偏度:
大于0表示=正偏=右偏=均值在中位数的右边
左偏
右偏
均值 中位数 众数
众数 中位数 均值
63
12
分布曲线形状:峰度的布
峰度大于0
13
二、描述统计量过程
Frequency
Horsepower
70
60
50
40
30
20
10
Std. Dev = 38.52
Mean = 104.8
0
N = 400.00
50.0 70.0 90.0 110.0 130.0 150.0 170.0 190.0 210.0 230.0
60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 220.0
中位数适用于任意分布类型的资料。用中 位数来描述连续变量会损失很多信息,对于 对称分布资料,优先考虑使用均数,仅仅均 数不能使用时才用中位数加以描述;
中位数对于定序变量、连续变量均可以使 用。对定序变量通常采用中位数(不是众数) 来反映更多、更精确的信息。
36
4.2.3 其它集中趋势描述指标
1. 截尾均数 数据排序 去掉最两端的数据(常用的截尾均数有5% 截尾均数,即两端去掉5%的数据,在SPSS 中Explore中可以实现)
如果截尾均数与原均数相差不大,说明 数据不存在极端值,反之相反。
37
2.几何平均数
常用于计算百分比、比率、指数、增长率等 指标的平均数
几何平均数 算术平均数 公式(要求 xi > 0 )
SPSS数据库变量的分类
SPSS数据库变量的分类数据分析通常会涉及到定量(quantitative)数据和定性(qualititative)数据,其在分析过程中的作用及相应的分析方法不尽相同。
因此在定义数据库结构时,必须明确数据库中使用的各种变量的类型(type)。
一、根据数据的运算类型不同划分1、数值型变量(numeric)在spss分析软件中,数值型是变量定义的缺省类型,可以进行所有的数值运算与统计分析。
为了更清楚地表达长数据,数值型变量可进一步划分为以下几类:1)逗号变量(comma),以逗号为三位分割符号,将数据分割开来,如123,123。
2)句点变量(dot),以逗号为小数点,以圆点为三位分割符号,如123.123,26。
3)科学计数变量(scientific notal),以10的指数形式表示,分两个部分,第一个部分为有效数字,第二个部分为10的指数值,用e表示,正指数用+号,负指数用-号,如1.23e+02代表的数值为123。
科学计数主要用于一些整数位较长的数据。
数值型变量在数据库中是最常用的,大多数的数据在没有特别要求的情况下,通常采用数值型变量定义,当数值过大,超过了定义的宽度,就会自动转变为科学计数。
2、日期型变量(date)根据年月日时分秒的组合方式不同,日期型变量有多种不同格式,在spss 中,当日期型变量定义之后,只有输入相应格式的日期数据才能被接受。
如dd.mm.yy分别代表日月年,hh:mm:ss分别代表时、分、秒。
日期型变量通常用来反映对应数据产生的日期或时间,当需要了解数据产生的日期或时间特点时,通常会定义这一数据,数据的录入可以自动产生,也可以手工录入。
3、自定义货币变量(custom currency)可以根据使用的货币单位定义货币变量的前缀(prefix)与后缀(suffix),显示方式为有效数字带定义货币变量的前缀或后缀,如0。
此变量为数值型变量,在使用多种货币销售或采购货物时,可使用此类变量。
第四讲.SPSS之数据描述
同济大学社会学系 2011年
本讲内容
各种变量的描述及在SPSS中的实现 SPSS统计图表 多分类变量的统计描述 对变量分布的检验 列联表交叉分析
各种变量的描述及在SPSS中的实现
集中趋势
在一组统计数据中,往往用其中一个数值来 代表本组数据的平均状况。
不同类型变量的集中趋势数值表示方法不同。 定类变量一般用众值(mode)来表示它的 集中趋势,定序变量用中位值(median), 定距变量和定比变量用平均值来表示 (mean)。
% within 受访者性别
116.0 2.0%
1077.0 18.3%
否
2030 2261.2 71.6%
2671 2439.8 87.3%
4701 4701.0 79.8%
T otal 2835
2835.0 100.0%
3059 3059.0 100.0%
5894 5894.0 100.0%
卡方检验结果
多分类变量即是问卷中的多选题。根据固定选或不 定选的差异,在定义多分类变量时方法稍有差异。
在固定选的多分类变量定义中,主要是累计所有可 能的取值,累积的范围是该变量的所有编码。
在不定选的多分类变量定义中,主要是累计被访者 选中的变量(编码是1的部分)。
新定义的多分类变量,不能保存,关闭数据库之后 会丢失相关信息。下次分析时需重新定义。
小结
描述性分析主要是对单维数据进行的初步统 计分析,方便研究者对数据收集的质量做总 体的了解和判断,为未来分析做准备。
列联交叉分析涉及二维或以上变量之间的相 关分析,具有一定的解释功能,具有一定的 推论性。
练习
根据自己的分析目的和要求,输出各个变量 的频次分析结果;
《SPSS数据分析与应用》第4章 描述分析
3. 基本描述统计量的SPSS实现
第三步:在“描述”对话框中, 单击【选项(O)】按钮,弹出“描述: 选项”对话框,在该对话框中指定计 算表示集中趋势、离散程度、分布形 态的基本描述统计量,同时,可以设 置【显示顺序】。勾选【平均值(M)】 【标准差(I)】【最小值(N)】【最大 值(X)】【峰度(K)】【偏度(W)】,并 选择【变量列表(B)】,如图所示。
3. 基本描述统计量的SPSS实现
第四步:如果需要对数据进行标准化处理,勾选“描述”到家了中左下角 的【将标准化值另存为变量(Z)】,将会在SPSS数据编辑器窗口保留标准化后 的新变量。此处选择对“平均薪资”进行标准化处理并保存标准化值,如图所 示。
3. 基本描述统计量的SPSS实现
第五步:解读SPSS描述统计量的计算结果。
“奇葩”直方图
锯齿型
孤岛型
(3)锯齿型:直方图内出现高度参差不齐,但整体图形保持了中间高、两边低、两 边基本对称的形状。一般是由于做直方图时,分组过多或者测量仪器误差造成的。
(4)孤岛型:在远离主分布的地方出现小的直方图,犹如孤岛,一般是业务上的非 异常因素在起作用,比如工程零部件出了问题、产品出现了某Bug等,是很值得关注的 现象。
• 它是用一系列宽度相等、高度不等 的长方形表示数据的图。
• 长方形的宽度表示数据范围的间 隔,长方形的高度表示在给定间隔 内的频数。
集中趋势、离散程度、分布形态
“奇葩”直方图
陡坡型
双峰型
(1)陡坡型:往往是数据源缺失,或者被剔除一部分后,造成断崖式的折断。用户可以适当地调整 组数,或者利用对数变换,再做出对数直方图。 (2)双峰型:直方图的图形出现了两个高峰。双峰直方图的数据来自两个总体,一般是混合了多种 数据源或者类别数据造成的。
SPSS应用二 描述统计
列合计 n j f ij , j 1 , 2 , , c . 而样本容量 n f ij
r i 1
i 1 j 1
r
c
r × c 列联表
列 行 1 2 … 1 2 … … … … c 合计
f11 f 21
…
f 12
f 22
…
f1c
f r2
…
n1
n2
…
r
合计
P25
P0
偏度和峰度系数
偏态是指大部份的数值落在平均数的哪一边, 若分配較多集中在低数值方面,是为正偏态分配 (或称右偏态分配);若分配较多集中在高数值方面, 是为负偏态分配(或称左偏态分配),正态分布的偏 态为0,SPSS计算公式为:
n SKewness (n 2)
s ( xi x )2
计算
公式: n为奇数时
MX
(
n 1 ) 2
n为偶数时
1 M X n X n ( 1) 2 (2) 2
中位数的特征
1. 计算时只利用了位置居中的测量值 优点:对极值不敏感 缺点:并非考虑到每个观测值 2. 适用于各种分布类型的资料, 特别适合于:大样本偏态分布资料 或者一端或两端无确切数值的资料
580 560 540 520 500 480 460 440 420
560 540 500 460 440
2500
520 510 500 490 480
2500
510 505 500 495 490
2500
均数
500
500
500
甲
乙 丙
离散与变异性指标
全距 四分位间距 方差 标准差 变异系数
spss-统计描述
23
SPSS12.0统计软件
例
题
数据背景:调查对象为某大专院校的大学生,文件名student.sav。主要调查 内容代码如下:性别( 1 男、 2 女),出生年、月、日(具体数字),身高 (cm),体重(kg),血型(A、AB、B、O),血型代码(1A、2B、3AB、 4O),教育背景(1重点大学本科、2普通大学本科、3大专、4中专/职校),学
Sum:求和
Dispersion:离散程度统计量 Std. deviation:标准差 Variance:方差 Minimum :最小值 Maximum:最大值
Range:全距
Distribution:分布指标 Skewness:偏度系数 Kurtosis:峰度系数 Display Order:输出排列方式 Variable list:按变量选择清单的顺序 Alphabetic:按变量的字母顺序
10
SPSS12.0统计软件
连续变量的统计描述
11
SPSS12.0统计软件
连续变量的统计描述概况
1、集中趋势 如均数、中位数、几何均数、众数、调和均数等 2、离散趋势 如全距、方差和标准差、百分位数、四分位数和四分位间 距、变异系数等
12
SPSS12.0统计软件
Descriptive过程
Analyze->Descriptive Statistics->Descriptive… 可对资料进行简单统计描述;
Lev ene Statistic d f1 1 1 1 1 d f2 2 13 2 13 2 08 .85 5 2 13 Sig. .7 60 .8 08 .8 08 .7 64
身 高
Based on Mean Based on Median Based on Median an d with ad ju sted df Based on trimmed mean
SPSS数据分析—描述性统计分析
描述性统计分析是针对数据本身而言,用统计学指标描述其特征的分析方法,这种描述看似简单,实际上却是很多高级分析的基础工作,很多高级分析方法对于数据都有一定的假设和适用条件,这些都可以通过描述性统计分析加以判断,我们也会发现,很多分析方法的结果中,或多或少都会穿插一些描述性分析的结果。
描述性统计主要关注数据的三大内容:1.集中趋势2.离散趋势3.数据分布情况描述集中趋势的指标有均值、众数、中位数,其中均值包括截尾均值、几何均值、调和均值等。
描述离散趋势的指标有频数、相对数、方差、标准差、标准误、全距、四分位间距、四分位数、百分位数、变异系数等。
注意:连续型变量和离散型变量的指标有所不同。
由于很多统计分析都有一个正态分布的假设,因此我们经常也会关注数据的分布特征,常用峰度系数和偏度系数来描述数据偏离正态分布的程度,也可以使用Bootstrap方法计算出结果与经典统计学方法计算出的结果进行对比,如果差异明显,则说明原数据呈偏态分布或存在极值SPSS用于描述性统计分析的过程大部分都在分析—描述统计菜单中,另有一个在比较均值—均值菜单,虽然这几个过程用途不同,但是基本上都可以输出常用的指标结果。
一、分析—描述统计—频率此过程可以输出连续型变量集中趋势和离散趋势的主要指标,还可以输出判断分布的直方图、峰度值和偏度值,此外,该过程最主要的作用是输出频数表,结果举例如下:二、分析—描述统计—描述看起来似乎这个过程才是正统的描述统计分析过程,实际上该过程输出的内容并不多,也没有统计图可以调用,唯一特别的是该过程可以对数据进行标准化变换,并保存为新变量。
三、分析—描述统计—探索探索性分析是对原有数据进行描述性统计的基础上,更进一步的描述数据,和前两种过程相比,它能提供更详细的结果。
四、分析—描述统计—比率该过程主要用于对两个连续变量间的比率进行描述分析输出的结果比较简单,只是指标的汇总表格,在此略去五、分析—描述统计—交叉表分类变量的描述性统计比较简单,主要就是看频数分布和构成比,基本用交叉表一个过程就可以完成,该过程虽然放在描述统计中,但是由于功能丰富,也经常被用来做列联表的推断分析。
spss描述性统计分析实验总结(3篇)
spss描述性统计分析实验总结(3篇)为期半个学期的统计学试验就要完毕了,这段以来我们主要通过excl软件对一些数据进展处理,比方抽样分析,方差分析等,经过这段时间的学习我学到了许多,把握了许多应用软件方面的学问,真正地学与实践相结合,加深学问把握的同时也熬炼了操作力量,回忆整个学习过程我也有许多体会。
统计学是比拟难的一个学科,作为工商专业的一名学生,统计学对于我们又是相当的重要。
因此,每次试验课我都坚持按时到试验室,试验期间仔细听教师讲解,看教师操作,然后自己独立操作数遍,不懂的问题会请教教师和同学,有时也跟同学商议找到更好的解决方法。
几次试验课下来,我感觉我的力量的确提高了不少。
统计学是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观看系统的数据,进展量化的分析、总结,并进而进展推断和猜测,为相关决策供应依据和参考。
它被广泛的应用在各门学科之上,从物理和社会科学到人文科学,甚至被用来工商业及政府的情报决策之上。
可见统计学的重要性,仔细学习显得相当必要,为以后进入社会有更好的竞争力,也为多把握一门学科,对自己对社会都有好处。
几次的试验课,我每次都有不一样的体会。
个人是理科出来的,对这种数理类的课程原来就很感兴趣,经过书本学问的学习和试验的实践操作更加加深了我的兴趣。
每次做试验后回来,我还会不定时再独立操作几次为了不遗忘操作方法,这样做可以加深我的记忆。
依据记忆曲线的理论,学而时习之才能保证对学问和技能的真正以及把握更久的把握。
就拿最近一次试验来说吧,我们做的是“平均进展速度”的问题,这是个比拟简单的问题,但是放到软件上进展操作就会变得麻烦,书本上只是直接给我们列出了公式,但是对于其中的原理和意义我了解的还不够多,在做试验的时候难免会有许多问题。
不惊奇的是这次试验好多人也都是不明白,操作不好,不像以前几次试验教师讲完我们就差不多把握了,但是这次好像遇到了大麻烦,由于内容比拟多又是一些没接触过的东西。
第 章 SPSS 基本统计量的描述
存 (取 )款 金 额
直方图
二、计算基本描述统计量
目的:精确把握变量的总体分布状况。 基本操作: ✓ 描述统计-频率过程:统计 ✓ 描述统计- 描述过程 ✓ 描述统计- 探索过程 ✓ 均值比较-均值 过程(分组显示) 用途:计算变量的集中趋势、离散趋势、偏度、
峰度等指标,绘制统计图。
几个过程的基本描述统计量比较
农村户口
户口
城镇户口
饼图
Frequency
100
0 0.0
Std. Dev = 10945.57 Mean = 4738.1 10000.0 20000.0 30000.0 40000.0 50000.0 60000.0 70000.0 80000.0 90000.0N10=000208.02.00
McNemar:配对计数资料的卡方检验。零假设
为两变量的阳性率无差别源自2(bc 1)2
bc
Kappa一致性检验:系数取值-1~1。测量同 一观测对象在两变量(两变量服从二项分布) 上取值的一致性程度。其绝对值越接近1,说明 一致性程度越高。一般来说:
✓ 系数>=0.7,一致性程度较高;
✓ 0.4~0.7,一致性程度一般;
卡方检验操作:统计量选项
【单元格】:用于定义列联表单元格中需 要计算的指标:
计数:是否输出实际观察数和理论数;
百分比:是否输出行百分数、列百分数以及合 计百分数;
残差:选择残差的显示方式;
【格式】:用于选择行变量是升序还是降 序排列。
结果:城乡储户的收入水平没有明显差异。
Pearson卡方值的影响因素
C
2 2 n
A11A22A12A21
R1R2C1C2
2
统计分析与Spss应用第五章(描述性统计分析)
选入需要描述的 变量,可选入多个
确定是否将原始数 据的标准正态变换 结果存为新变量。
变量列表顺序 字母顺序 均数升序 均数降序。
Descriptive Statistics N 血清总胆固醇 Valid N (listwise) Minimum Maximum 101 2.70 7.22 101 Mean Std. Deviation 4.6995 .86162
5.1.1 对话框界面及 各部分选项说明 【Display frequency tables复选框】确定是 否在结果中输出频数 表。 【Statistics钮】单击 后弹出Statistics对话 框,用于定义需要计 算的其他描述统计量。
集中趋势指标
百分位数指标
计算百分数时选此项
离散趋势指标 分布指标
1
.002
.000
Hale Waihona Puke .006.002b
.000
.005
639 61.974 d 65.957 55.621 9.398
e
40 40
.014 .006
.016b .009b .011b .003
b
.008 .003 .004 .000
.025 .016 .018 .006 .001
b
1
.002
.000
.002
descriptive statistics菜单主要内容
(1)频数分布表分析(Frequencies):其特色就是产生 频数表,对分类数据和定量资料都适用。 (2)统计描述分析(Descriptive)进行一般性描述,适 用于服从正态分布的定量资料。 (3) Explore 过程:用于对数据分布状况不清楚时的 探索性分析,它会杂七杂八给出一大堆可能用到的 统计指标和统计图,让研究者参考。 (4)Crosstabs 过程则完成计数资料和等级资料的统计 描述和一般的统计检验我们常用的X2 检验也在其中 完成 (5)Ratio过程;用于对两个连续性变量计算相对比指 标,它可以计算出一系列非常专业的相对比描述指 标。
SPSS统计分析数据特征的描述统计分析
24
Report栏的Layout对话框
所输数值表示报告的每一页输 出从第几行开始
所输数值表示报告的每一页输 出在第几行结束
规定每一页输出的左边间距 规定每一页输出的右边间距 选择报告输出内容的对齐方式
设置页面的标题、脚注和 页面的距离:
设置标题与报告的距离 设置注脚与报告的距离
设置列标题的输出格式: 在标题下添加下划线 设置列标题下的空白行(默
2021/7/16
18
表4-5
分组统计量
HEIGHT SEX 男
女 Total
GRADE 4 5 6 Totห้องสมุดไป่ตู้l 5 Total 4 5 6 Total
Cas e Sum marie s
N 5 6 4
15 15 15
5 21
4 30
Mean 133.440 131.333 134.575 132.900 134.000 134.000 133.440 133.238 134.575 133.450
表4-3
少 儿 身高 分 层 报告
性别: Total
身高
Sum 4003.5
Mean 133.450
Median 133.750
表4-3是分层报告,输出了总和、均值和中位数。
2021/7/16
12
2 、观测值摘要分析过程
Ⅰ、主要功能 计算指定变量的分组统计量,分组变量 可能是一个,也可以有多个。如是多个, 则将所有水平进行交叉分组。每个组中, 变量值可以显示或不显示。
Report栏的Titles 对话框
按Next进入下一行的设置,
按 Previous返回上一行
选择特殊变量的值作 为标题与注脚
SPSS统计分析—描述性统计分析
2.卡方检验方法的适用条件
• 吸烟习惯与患病率的关系
调查339名50岁以上吸烟习惯与患慢性气管炎病的关系,如上表所示。试 问吸烟者与不吸烟者慢性气管炎患病率是否有所不同。 数据的预处理: WEIGHT CASE
• 执行【Analyze】/【Descriptive Statistics】/【Crosstabs】命 令, 弹出如图所示对话框
• ① Frequencies: 产生变量值的频数分布表,并可计算 常见描述性统计量和绘制相对应的统计图。
• ② Descriptives: 计算一般的描述性统计量。 • ③ Explore: 探索性分析,使用户能够从大量的分析结
果之中挖掘到所需要的统计信息。
• ④ Crosstabs: 对分类变量进行统计推断,包括卡方检验、确切 概率等,是SPSS重要的过程。
点功能: • 1、产生详细的频数表 • 2、按要求给出某个分位点 • 3.绘制常用的条图、饼图等统计图 • 适用范围:更适用于对分类变量以及不服从正态分布的连续性变量
进行描述。
• 学生身高频数表: 已知有某地120名12岁男童身高数据,编制其传统 的简易频数表。
• 执行【Analyze】/【Descriptive Statistics】/【Frequencies】 • 命令,弹出如下所示对话框
• 学生身高的探索性分析
• 执行【Analyze】/【Descriptive Statistics】/【Explore】命令, 弹出如图所示对话框
• 结果解读 • 1.描述性统计分析表
其中,5% Trimmed Mean: 去掉5%极端数之后的均值。
2.M-均值估计——检验异常数据。
3.分位点表
2.标准正态分布变化
spss统计分析方法简述
如果采用的是配对(或配比)设计,研究多个因素对二分类因变量的影响则可以采用条件logistic回归。
案例:有研究者采用1:1匹配,研究感冒与接种流感疫苗、吸烟的关系,尝试进行统计分析
47、
寿命表法适用于大样本资料且事先按照时间段划分区间,再进行分析。
某医院对304例胃癌患者术后生存情况进行11年随访,据此计算胃癌患者术后各年的生存率。
35、
比较两组或多组多变量均数向量的轮廓是否相等。
案例:
为比较两个产地某中草药的有效成分,对两产地中草药各随机抽取10份标本进行5种有效成分检测,请问两产地中草药成分有无差异?
多变量检验中因子1*产地F=2.899a,p=0.058,可以认为两总体的轮廓相互平行。即两种产地的调查结果轮廓基本相同。
主体间效应检验F24.938,P=0.000<0.01,可见两总体的轮廓没有重合。
结果显示身高与体重的Pearson相关系数r=0.868,P=0.000<0.05,说明身高与体重的相关性是真实存在的,而且呈现显著相关。
37、
在上述案例基础上,增加一个变量——肺呼量(Z),我们知道身高和体重均和肺呼量有关系,如果想知道身高和体重之间的偏相关系数。
意即扣除肺活量影响后,身高和体重之间的净相关还是有意义的,但比简单相关系数小了一点点。
49、
当影响结局发生的因素较多,并且我们不仅仅想知道不同因素各水平之间是否有差异,而且想知道每个因素对结局发生的风险。
案例:某研究者想研究肺癌四种亚型的生存时间有无差别,收集了一些肺癌病例的数据。要求列出Cox回归模型的主要分析结果并能合理地解释结果。
50、
分析因素在不同时间,所发生的作用发生变化,如年龄变量,年龄本身随着时间的变化而变化,同时不同年龄人群其发生疾病的风险是不一样的。因此就需要特定的模型进行分析,就是本节要讲解的时间依存变量Cox回归模型。
SPSS软件中几种常用的统计方法
SPSS应用
操作步骤
按照顺序:分析 → 比较均值 → 单样本T检验,进入单一 样本T检验 “单样本T检验”对话框中,将左侧“右2:4”变 量选入到检验变量“检验变量”框中。右下角检验值“检 验值”框用于输入已知的总体均值,在本例中假设为“1”。 如图所示
OR值等于1,表示该因素对疾病的发生不 起作用;
OR值大于1,表示该因素是危险因素;
OR值小于1,表示该因素是保护因素。
SPSS应用
操作步骤: 在“变量视图”栏中输入相应的变量类别。
SPSS应用
在各变量的值标签中输入相应的值
SPSS应用
返回“数据视图”栏输入相应的数据。
操作步骤(2)
单击定义组别“定义组”按钮,弹出“定义组” 对话框,如图所示,分别为组1和组2输入1,2。 (1代表男性,2代表女性)
输出结果(1)
结果解释
此表给出了独立样本均值检验的描述性统计量, 包括两个样本的均值、标准差和均值标准误差。
输出结果(2)
结果解释
对于方差齐性检验,其p值为0.731>0.05,认为两样本来自的总体 的方差相等。
输出结果(1)
结果解释:
此表给出了单一样本均值检验的描述性统计量, 包括均值、标准差和均值标准误差。右手指长 2D:4D的均值为0.93632,接近假设总体均值 1,但还不能就此下结论。
输出结果(2)
结果解释 此表是单一样本均值检验的结果列表,给出了t 统计量、自由度、双尾概率、显著水平及置信 区间。双尾概率P=0.000<0.05,故本研究样本 2D:4D比值与假设的总体均值具有显著性差异。
统计分析分类以及SPSS分析方法
统计分析分类以及SPSS分析方法一、统计分析内容的分类人类对客观事物的理解是多种多样的,这些理解能够是企业生产的规模,能够是企业生产机器的稳定性,能够是一个地区的教学质量,能够是市场经济的规律,也能够是一个时期的经济形势或环境等等。
撇开这些形形色色的形式内容,人们对客观事物的理解从目的来看可分为表面理解和本质理解两种。
本文将这种从形式内容中抽象出来的对客观事物的理解称之为统计分析内容。
表面理解就是对客观事物表面特征的理解;本质理解是从客观事物表面特征出发,最终得到超越客观事物表面特征的本质特征的理解。
同样,与统计分析内容相对应的统计分析(方法)就可分为表面分析和本质分析两种。
在统计分析方法的使用上,形式内容的理解与统计分析方法的关联不大,反而是在统计分析内容理解(对客观事物表面理解和本质理解)上,分析方法的使用差别较大,所以本文主要从统计分析方法的角度对统计分析内容加以细分。
在SPSS中,横向叫个案,所有个案组成样本;纵向叫变量,一个变量代表客观事物的某方面特征。
表面理解在SPSS中主要对应于样本理解,目的是理解样本所代表的具体事物的特征(当然样本的特征离不开变量,但目的不在变量)。
本质理解则以样本数据为基础,总结出同类事物的普遍特征,这些特征就是变量自身的特征(它从样本出发,但又超越样本),所以本质理解能够认为就是对变量的理解。
统计分析内容的划分与人们对客观事物的理解规律也密不可分。
人类对客观事物的理解都是由浅入深、由外及里的。
这种由浅入深、由外及里的理解过程正好体现了表面理解和本质理解两个过程。
统计分析的两种内容既是人们对客观事物理解的两个方面,也是人们对客观事物理解的两个过程,但它们能够是相互独立的。
因为人类出于理解目的的需要能够只理解客观事物的表面,也能够只理解客观事物的规律。
(一)表面理解表面理解是一种以理解具体客观事物表面特征为目的的理解。
对具体客观事物表面特征的理解,从定量和定性两个角度出发,还能够分为事物描述理解和事物评价理解两种。
用SPSS作图表描述
1. 在SPSS中打开数据文件。
2. 选择“图形”菜单,然后选择“3D 散点图”。
3. 选择适当的变量作为x轴、y轴和z 轴。
4. 调整图表属性,如颜色、标签等, 以完善图表的可视化效果。
雷达图
01
适用场景:用于展示多个变量的相对大小或强度,特别是 在比较不同个体的多个特征时非常有用。
02
03
饼图
用于展示数据的比例关系,可以显示 各部分在整体中所占的比重。
箱线图
用于展示数据的分布情况,可以显示 数据的集中趋势、离散程度和异常值。
05
04
点图
用于展示两个变量之间的关系,可以 显示变量之间的相关性。
图表制作流程
2. 在菜单栏中选择 “图形”选项,选 择需要的图表类型 。
4. 点击“确定”按 钮,SPSS将自动生 成所选类型的图表 。
03
02
制作步骤
04
2. 选择“图形”菜单,然后选择“热力图 ”。
3. 选择适当的变量作为行和列。
05
06
4. 调整图表属性,如颜色、标签等,以完 善图表的可视化效果。
05 SPSS图表优化
调整图表元素
01
02
03
添加数据标签
在图表上直接显示数据, 有助于更直观地了解数据 分布和变化趋势。
调整坐标轴
03 制作双变量图表
散点图
描述两个变量之间的关系,通过点的分布情况展 示变量间的关联程度。
可以添加线性拟合线,判断变量间是否存在线性 关系。
适用三个变量的 值,同时展示两个变量之间的关
系。
气泡图可以更直观地展示多维数 据之间的关系。
适用于展示三个变量之间的关系, 其中第三个变量对其他两个变量
SPSS软件的操作与应用第2讲 描述性统计 (1)
直方图
1. 用面积表示各组频数的多少,矩形的高度表示每一组的频数或频率 宽度表示各组的组距; 2. 由于分组数据具有连续性,各矩形通常是连续排列; 3. 主要用于展示数值型数据。
二、频数分析
4. SPSS操作及案例 例一:各门成绩统计 结果保存为:3-StudentScore.spo
二、频数分析
5. SPSS操作及案例分析 根据方差齐性检验结果可以看出,语文成绩按照男女分开的样 本显著性水平Sig.值都大于0.05,表明方差的差异不显著,也就是 说方差是齐性的。
四、探索性分析
5. SPSS操作及案例分析 例五:操作步骤(数据文件:4-Explore.sav ) Analyze→Descriptive Statistics→Explore...
平均值(Mean):即算术平均值(=(X1+X2+…+Xn)/n)。 易受极端值影响。 中位数(Median):把变量的值有序排列,位于中间位置的值即中位数。 是位置平均置,不易受极端值的影响。 众数(Mode):样本中出现次数最多的值,代表数据的集中程序。 求和(Sum):所有变量之和,反映变量的总体水平。
三、基本描述统计量
4. 描述分布形态的统计量 考察数据分布形态特征的统计量,例如,数据分布是否对称、偏 斜程度以及陡缓程度,主要有如下两种统计量: 偏度(Skewness):
偏度值>0,为正偏或右偏;偏度值<0,为负偏或左偏。偏度绝对值越大,偏斜越大。
峰度(Kurtosis):
峰度值>0,数据分布比标准正态分布更陡峭,为尖峰分布;峰度值<0,数据分布比 标准正态分布更平缓,为平峰分布。
四、探索性分析
2. 通过茎叶图(Stem-and-Leaf Plots)描述频度分布
spss分类变量统计描述
3
精选课件
4
精选课件
5
精选课件
6
精选课件
7
精选课件
8
精选课件
9
学生自己试一下把S2加入列里考察一下结果
精选课件
10
应该把S2加入层变量中
精选课件
11
精选课件
12
精选课件
13
用透视托盘方便阅读
精选课件
14
精选课件
15
精选课件
34
精选课件
35
精选课件
36
16
精选课件
17
精选课件
18
多选题变量集的指定-方法一
精选课件
19
精选课件
20
精选课件
21
精选课件
22
精选课件
23
精选课件
24
精选课件
25
精选课件
26
精选课件
27
精选课件
28
精选课件
29
精选课件
30
多选题变量集的设定—方法二
精选课件
31
精选课件
32
精选课件
33
精选课件