七年级解不等式与方程组计算题

合集下载

初中数学方程与不等式25道典型题(含答案和解析)

初中数学方程与不等式25道典型题(含答案和解析)

初中数学方程与不等式25道典型题(含答案和解析)1. 楠楠老师在解方程2x−13=x +a 2−1去分母时,因为手抖发作,将方程右侧的-1漏乘了,因而求得的方程的解为x =2,请帮助楠楠老师求出正确的解. 答案:x =-3. 解析:漏乘后方程为:2(2X -1)=3(x +a )-1. 4x -2=3x +3a -1. x =3a +1 .∵ x =2.∴ a =13.∴ 原方程去分母后得: 2(2X -1)=3(x +13)-6. 4x -2=3x +1-6. X =-3.考点:方程与不等式—一元一次方程—含字母参数的一元一次方程—错解方程.2. 已知关于x 的方程3[x −2(x −a2)]=4x 与3x +a 12−1−5x 8=1有相同的解,求 a 的值及方程的解.答案:a =2711,方程的解为x =8177.解析:把a 当作常数,方程3[x −2(x −a2)]=4x 的解为x =37a .方程3x +a 12−1−5x 8=1的解为x =27−2a 21.故37a =27−2a 21.解得a =2711,所以x =8177.考点:方程与不等式—一元一次方程—同解方程—同解方程求参数.3. 解方程组.(1){m +n3−n−m4=24m +n 3=14 (2){1−0.3(y −2)=x +15y−14=4x +920−1答案:(1){m =185n =−65.(2){x =4y =2.解析:(1)化简方程组得,{7m +n =2412m +n =42,加减消元可解得答案为{m =185n =−65.(2)化简方程组得,{2x +3y =144x −5y =6,加减消元可解得答案为{x =4y =2.考点:方程与不等式—二元一次方程组—解二元一次方程组.4. 回答下列小题.(1)当k = 时,方程组{4x +3y =1kx +(k −1)y =3的解中,x 与y 的值相等.(2)关于x ,y 的方程组{ax +by =2cx −7y =8,甲正确的解得{x =3y =−2,乙因为把c 看错了,解得{x =−2y =2,求a ,b ,c 的值. (3)若方程组{2x +3y =7ax −by =4与方程组{ax +by =64x −5y =3有相同的解,则a ,b 的值为( ).A.{a =2b =1B. {a =2b =−3C. {a =2.5b =1D. {a =4b =−5 答案:(1)11.(2)a =4,b =5,c =-2. (3)C .解析:(1)因为x 和y 的值相等,所以x =y ,代入1式可得x =y =17,再代入2式可得k =11.(2)乙看错了c ,说明乙的解只满足1式;甲是正确的解,说明甲的解满足两个等式.将解代入方程可得{3a −2b =23c +14=8−2a +2b =2,解得a =4,b =5,c =-2.(3)由题中条件:有相同的解可知,这两个方程组可以联立,即{2x +3y =7ax−by =4ax +by =64x−5y =3,由1式和4式可以解得{x =2y =1,代入2式和3式可得{2a −b =42a +b =6. 解得{a =2.5b =1,故选C.考点:方程与不等式—二元一次方程组—同解方程组.5. 台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.答案:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 解析:设北京故宫博物院约有x 万件藏品,台北故宫博物院约有y 万件藏品.依题意,列方程组得:{x +y =245x =2y +50.解得{x =180y =65.答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 考点:方程与不等式—二元一次方程组—二元一次方程(组)的解.6.如图所示,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为 cm2.答案:400.解析:设一个小长方形的长为x,宽为y,则可列方程组{x+y=50x+4y=2x.解得{x=40y=10.则一个小长方形的面积=40cm×10cm=400cm2.考点:方程与不等式—二元一次方程组—二元一次方程(组)的应用.7.高新区某水果店购进800千克水果,进价每千克7元,售价每千克12元,售出总量一半后,发现剩下的水果己经有5﹪受损(受损部分不可出售),为尽快售完,余下的水果准备打折出售.(1)若余下的水果打6折出售,则这笔水果生意的利润为多少元?(2)为使总利润不低于2506元,在余下的水果的销售中,营业员最多能打几折优惠顾客(限整数折,例如:5折、6折等)?答案:(1)这笔水果生意的利润为1936元.(2)营业员最多能打8折优惠顾客.解析:(1)根据题意得:400×12+(400-400×5﹪)×0.6×12-800×7=1936(元).答:这笔水果生意的利润为1936元.(2)设余下的水果应按原出售价打x折出售,根据题意列方程:400×12+(400-400×5﹪)×0.1x×12-800×7=2506.解方程得:x=7.25.答:营业员最多能打8折优惠顾客.考点:方程与不等式—一元一次方程—一元一次方程的应用.打折销售问题—经济利润问题.8. 二轮自行车的后轮磨损比前轮要大,当轮胎的磨损度(﹪)达到100时,轮胎就报废了,当两个轮的中的一个报废后,自行车就不可以继续骑行了.过去的资料表明:把甲、乙两个同质、同型号的新轮胎分别安装在一个自行车的前、后轮上后,甲、乙轮胎的磨损度(﹪)y1、y2与自行车的骑行路程x (百万米)都成正比例关系,如图(1)所示.(1)线段OB 表示的是 (填“甲”或“乙”),它的表达式是 (不必写出自变量的取值范围).(2)求直线OA 的表达式,根据过去的资料,这辆自行车最多可骑行多少百万米. (3)爱动脑筋的小聪,想了一个增大自行车骑行路程的方案:如图(2),当自行车骑行a百万米后,我们可以交换自行车的前、后轮胎,使得甲、乙两个轮胎在b 百万米处,同时报废,请你确定方案中a 、b 的值. 答案:(1)1.甲.2.y =20x. (2)OA 的解析式是y =1003x ,这辆自行车最多可骑行3百万米.(3){a =158b =154.解析:(1)∵ 线段OB 表示的是甲,设OB 的解析式是y =kx.∴ 1.5k =30. ∴ 解得:k =20. ∴ OB 的表达式是y =20x. ∴ 答案是:甲,y =20x .(2)∵ 设直线OA 的表达式为y =mx.∴ 根据题意得:1.5m =50. ∴ 解得:m =1003.∴ 则OA 的解析式是y =1003x .∵ 当y =100时,100=1003x .∴ 解得:x =3.答:这辆自行车最多可骑行3百万米.(3)∵ 根据题意,得:{1003a +20(b −a )=10020a +1003(b −a )=100. ∴ 解这个方程组,得{a =158b =154.考点:方程与不等式—二元一次方程组—解二元一次方程组.函数—一次函数—待定系数法求正比例函数解析式—一次函数的应用—一次函数应用题.9. 若关于x 的一元二次方程(x +1)2=1-k 无实根,则k 的取值范围为 .答案:k >1.解析:若方程(x +1)2=1-k 无实根,则1-k >0.∴k >1.考点:方程与不等式—一元二次方程—一元二次方程的定义—一元二次方程的相关概念.10. 小明在探索一元二次方程2x2-x -2=0的近似解时作了如下列表计算.观察表中对应的数据,可以估计方程的其中一个解的整数部分是( ).A.4B.3C.2D.1答案:D.解析:根据表格中的数据,可知:方程的一个解x的范围是:1<x<2.所以方程的其中一个解的整数部分是1.考点:方程与不等式—一元二次方程—估算一元二次方程的近似解.11.已知m、n、p分别是Rt△ABC的三边长,且m≤n<p.(1)求证:关于x的一元二次方程mx2+√2px+n=0必有实数根.(2)若x=-1是一元二次方程mx2+√2px+n=0的一个根,且Rt△ABC的周长为√2+2,求Rt△ABC的面积.答案:(1)证明见解析.(2)1.解析:(1)∵ m、n、p分别是Rt△ABC的三边长,且m≤n<p.∴ p2=m2+n2.∴ b2-4ac=2p2-4mn=2(m2+n2)-4mn=2(m-n)2≥0.∴关于x的一元二次方程mx2+√2px+n=0必有实数根.(2)∵ x=-1是一元二次方程mx2+√2px+n=0的一个根.∴ m-√2p+n=0 ①.∵ Rt△ABC的周长为2√2+2.∴ m+n+p=2√2+2②.由①、②得:m+n=2√2,p=2.∴(m+n)2=8.∴ m2+2mn+n2=8.又∵ m2+n2=p2=4.∴ 2mn=4.∴1=mn=1.2∴ Rt△ABC的面积是1.考点:方程与不等式—一元二次方程—根的判别式—判断一元二次方程根的情况.根与系数的关系—韦达定理应用.三角形—三角形基础—三角形面积及等积变换.12.关于x的方程(k-3)x2+2x+1=0有两个不等的实数根,则k的取值范围为.答案:k<4且k≠3.解析:∵关于x的方程(k-3)x2+2x+1=0有两个不等的实数根.∴ {k−3≠0△=4−4(k−3)>0.∴ k<4且k≠3.考点:方程与不等式—一元二次方程—一元二次方程的定义—根据一元二次方程求参数值.根的判别式—已知一元二次方程根的情况,求参数的取值范围.13.设a、b是方程x2+x-9=0的两个实数根,则a2+2a+b的值为.答案:8.解析:∵ a是方程x2+x-9=0的根.∴ a2+a==9.由根与系数的关系得:a+b=-1.∴ a2+2a+b=(a2+a)+(a+b)=9+(-1)=8.考点:方程与不等式—一元二次方程—根与系数的关系—韦达定理应用.14.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12cm的住房墙.另外三边用25cm长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门.(1)所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?(2)能否围成一个面积为100 m2的矩形猪舍?如能,说明了围法;如不能,请说明理由.答案:(1)矩形猪舍的长为10m,宽为8m.(2)不能围成一个面积为100 m2的矩形猪舍.解析:(1)设矩形猪舍垂直于房墙的一边长为xm,则矩形猪舍的另一边长为(26-2x)m.由题意得:x(26-2x)=80.解得:x1=5,x2=8,当x=5时,26-2x=16>12(舍去).当x=8时,26-2x=10<12.答:矩形猪舍的长为10m,宽为8m.(2)由题意得:x(26-2x)=100.整理得:x2-13x+50=0.∵△=(-13)2-4×1×50=-31<0.∴方程无解.故不能围成一个面积为100 m2的矩形猪舍.考点:方程与不等式—一元二次方程—根的判别式—判断一元二次方程根的情况.一元二次方程的应用.15.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为 120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售__________件,每件盈利__________元(用x的代数式表示).(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想每天赢利2000元,可能吗?请说明理由.答案:(1)(20+2x),(40-x).(2)20元或10元.(3)不可能,理由见解析.解析:(1)根据题意得:每天可销售(20+2x);每件盈利(40-x).(2)根据题意得:(40-x)(20+2x)=1200.解得:x1=20,x2=10.答:每件童装降价20元或10元时,平均每天赢利1200元.(3)(40-x)(20+2x)=2000.整理得:x2-30x+600=0.△=62-4ac=(-30)2-4×1×600=900-2400<0.∴方程无解.答:不可能做到平均每天赢利2000元.考点:式—整式—代数式.方程与不等式—一元二次方程—一元二次方程的解.根的判别式—判断一元二次方程根的情况—一元二次方程的应用.16.若a>b,则下列不等式中正确的是.(填序号)① a-2<b-2 ② 5a<5b ③-2a<-2b ④a3<b3答案:③.解析:不等式的两边同时乘以(或除以)同一个负数,不等号改变方向.考点:方程与不等式—不等式与不等式组—不等式的基础—不等式的性质.17.解不等式:2−x+23>x+x−12.答案:x<1.解析:12-2(x+2)>6x+3(x-1).12-2x-4>6x+3x-3.-11x>-11.X<1.考点:方程与不等式—不等式与不等式组—解一元一次不等式.18.解不等式组{2x+4≤5(x+2)x−1<23x,把它的解集在数轴上表示出来,并求它的整数解.答案:原不等式组的整数解为-2,-1,0,1,2.解析:由2x+4≤5(x+2)得x≥-2.由x−1<23x得x<3.不等式组的解集在数轴上表示如下.∴原不等式组的解集为-2≤x<3.∴原不等式组的整数解为-2,-1,0,1,2.考点:方程与不等式—不等式与不等式组—在数轴上表示不等式的解集—一元一次不等式组的整数解.19.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表.已知可供建造沼气池的占地面积不超过370m2,该村农户共有498户.(1)满足条件的方案共有哪几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱?造价最低是多少万元?答案:(1)方案共三种:分别是A型6个,B型14个.A型7个,B型13个.A型8个,B型12个.(2)A型建8个的方案最省,最低造价52万元.解析:(1)设A型的建造了x个,得不等式组:{15x+20(20−x)≤370 18x+30(20−x)≥498.解得:6≤x≤8.5.三方案:A型6个,B型14个.A型7个,B型13个.A型8个,B型12个.(2)当x=6时,造价2×6+3×14=54.当x=7时,造价2×7+3×13=53.当x=8时,造价2×8+3×12=52.故A型建8个的方案最省,最低造价52万元.考点:方程与不等式—不等式与不等式组—一元一次不等式组的应用—最优化方案.20.服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?答案:(1)甲种服装最多购进75件.(2)当0<a<10时,购进甲种服装75件,乙种服装25件.当a=10时,按哪种方案进货都可以.当10<a<20时,购进甲种服装65件,乙种服装35件.解析:(1)设购进甲种服装x件,由题意可知.80x+60(100-x)≤7500,解得:x≤75.答:甲种服装最多购进75件.(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75.W=(40-a)x+30(100-x)=(10-a)x+3000.方案1:当0<a<10时,10-a>0,w随x的增大而增大.所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件.方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以.方案3:当10<a<20时,10-a<0,w随x的增大而减小.所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.考点:方程与不等式—不等式与不等式组—一元一次不等式的应用—一元一次不等式组的应用—最优化方案.21.解答下列问题:(1)计算:2xx+1−2x+6x2−1÷x+3x2−2x+1.(2)解分式方程:3x+1+1x−1=6x2−1.答案:(1)2x+1.(2)x=2.解析:(1)原式=2xx+1−2(x+3)(x+1)(x−1)÷(x−1)2x+3.=2xx+1−2(x−1)x+1=2x+1.(2)3(x-1)+x+1=6.3x-3+x+1=6.4x=8.x=2.检验:当x=2时,x2+1≠0.故x=2是该分式方程的解.考点:式—分式—分式的加减法—简单异分母分式的加减.方程与不等式—分式方程—解分式方程—常规法解分式方程.22.解下列方程:(1)5x−4x−2=4x+103x−6−1.(2)x−2x+2−x+2x−2=8x2−4.答案:(1)x=2是方程的增根,原方程无解.(2)x=-1.解析:(1)等式两边同乘以3(x-2)得,3(5x-4)=4x+10.解得x=2.检验x=2时,2(x-2)=0.∴ x=2是方程的增根,原方程无解.(2)两边同乘x2-4.得:-8x=8.X=-1.经检验x=-1是原方程的解.考点:方程与不等式—分式方程—解分式方程—常规法解分式方程.分式方程解的情况—分式方程有解—分式方程有增根.23.若分式方程2xx+1−m+1x2+x=x+1x产生增根,则m的值为.答案:-2或1.解析:方程两边都乘x(x+1).得x2-(m+1)=(x+1)2.∵原方程有增根.∴最简公分母x(x+1)=0.解得x=0或-1.当x=0时,m=-2.当x=-1时,m=0.故m的值可能是-2或0.考点:方程与不等式—分式方程—分式方程解的情况—根据增根求参数.24.在“春节”前夕,某花店用13000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的12,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?答案:第二批鲜花每盒的进价是 120元.解析:设第二批鲜花每盒的进价是x元.依题意有:6000x =12×13000x+10.解得x=120.经检验:x=120是原方程的解,且符合题意.答:第二批鲜花每盒的进价是120元.考点:方程与不等式—分式方程—分式方程的应用.25.甲、乙两个工程队共同承担一项筑路任务,甲队单独完成此项任务比乙队单独完成此项任务多用10天,且乙队每天的工作效率是甲队每天工作效率的1.5倍.(1)甲、乙两队单独完成此项任务各需要多少天?(2)若甲、乙两队共同工作4天后,乙队因工作需要停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,如果要完成任务,那么甲队再单独施工多少天?答案:(1)甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天.(2)甲队再单独施工10天.解析:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天.由题意可得:1x = 1.5x+10.解得:x=20.经检验,x=20是原方程的解.∴x+10=30(天).答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天.(2)设甲队再单独施工a天,由题意可得:(130+120)×4+230×a=1.解得:a=10.答:甲队再单独施工10天.考点:方程与不等式—一元一次方程—一元一次方程的应用—工程问题.分式方程—分式方程的应用.。

初一数学方程组与不等式组试题答案及解析

初一数学方程组与不等式组试题答案及解析

初一数学方程组与不等式组试题答案及解析1.已知x +4y-3z = 0,且4x-5y + 2z = 0,x:y:z 为…………()A.1:2:3;B.1:3:2;C.2:1:3;D.3:1:2【答案】A【解析】联立得:,①×5+②×4得:21x=7z,解得:x=z,代入①得:y=z,则x:y:z=z:z:z==1:2:3.故选A2.(本题满分9分,第(1)小题4分,第(2)小题5分)(1)解方程:;(2)解方程组: .【答案】【解析】略3.在中央电视台2套“开心辞典”节目中,有一期的某道题目是:如图所示,天平中放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的()A.倍B.倍C.倍D.倍【答案】B【解析】设一个苹果的重量为x、一个香蕉的重量为y、一个砝码的重量为z,先用含z的代数式表示x,y,即解关于x,y的方程组,再求即可.解:设一个苹果的重量为x、一个香蕉的重量为y、一个砝码的重量为z,由题意得,解得x=2z,y=z,故=故选B.本题先通过解三元一次方程组,求得用z表示的x,y的值后而求解.4.比较大小:____;0____.【答案】> <【解析】此题考查有理数比较大小两个负数比较大小,绝对值大的反而小。

所以。

答案 >,<5.若不等式组的解集为-1≤x≤3,则图中表示正确的是()【答案】D.【解析】x≥-1是在表示-1的点实心圆点往右画,x≤3是在表示3的点实心圆点往左画,故选D.【考点】在数轴上表示不等式组的解集.6.已知关于x的不等式组无解,则a的取值范围是.【答案】a≥3【解析】解5-2x≥-1,得x≤3;解x-a>0,得x>a,因为不等式组无解,所以a≥3.【考点】不等式组的解集.7.不等式的解集是.【答案】【解析】解不等式x+1>0得x>-1;解不等式1-2x<0得x>;根据不等式组的解集的求法:都大取较大,都小取较小,大小小大取中间,大大小小无解.不等式组的解集为x>.【考点】不等式组的解集8.一个三角形的3边长分别是xcm、(x+2)cm、(x+4)cm,它的周长不超过20cm,则x的取值范围是()A.2<x<B.2<x≤C.2<x<4D.2<x≤4【答案】B【解析】根据题意可知x+(x+2)+(x+4)≤20,求得x≤,且根据三角形的三边关系可知x+(x+2)<x+4,解得x>2,因此可知x的取值范围为2<x≤.故选B【考点】三角形的三边关系,三角形的周长9.(本题满分10分)为支援灾区学生,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?【答案】(1)A型400件,B型600件(2)800【解析】(1)设购买A型学习用品x件,B型学习用品y件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论;(2)设最多可以购买B型产品a件,则A型产品(1000-a)件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.试题解析:(1)设购买A型学习用品x件,B型学习用品y件,由题意,得,解得:答:购买A型学习用品400件,B型学习用品600件。

七年级数学下册不等式与不等式组练习题

七年级数学下册不等式与不等式组练习题

七年级数学下册不等式与不等式组练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.关于x 的不等式ax <-b 的解集x <2,则关于y 的不等式by >a 的解集为____2.已知关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根,那么实数m 的取值范围是__________. 3.已知3a ≤,则负整数=a _____.4.已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩满足0x y ->,则a 的取值范围是____. 5.已知函数y =(2m ﹣4)x +m 2﹣9(x 是自变量)的图象只经过二、四象限,则m =_____. 6.若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________.二、单选题7.在二元一次方程12x +y =8中,当y <0时,x 的取值范围是( ).A .23x <B .23x >-C .23x >D .23x <- 8.已知x a <的解中最大的整数解为3,则a 的取值范围为( )A .34x <<B .34x <≤C .34x ≤<D .34x ≤≤9.下列结论:①一个数和它的倒数相等,则这个数是±1和0;①若﹣1<m <0,则21m m m <<;①若a +b <0,且0b a>,则33a b a b +=--;①若m 是有理数,则|m |+m 是非负数;①若c <0<a <b ,则(a ﹣b )(b ﹣c )(c ﹣a )>0;其中正确的有( )A .1个B .2个C .3个D .4个10.下列解方程变形:①由3x +4=4x -5,得3x +4x =4-5;①由1132x x +-=,去分母得2x -3x +3=6; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;①由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个11.若关于x 的一元二次方程2210ax x -+=有实数根,则a 应满足( )A .1a ≤B .1a ≥C .1a ≥-且0a ≠D .1a ≤且0a ≠ 12.已知方程3a 1a a 44a --=--,且关于x 的不等式a x b <≤只有4个整数解,那么b 的取值范围是( ) A .23b <≤ B .34b <≤ C .23b ≤< D .34b ≤<三、解答题13.在数轴上有A ,B 两点,其中点A 所对应的数是a ,点B 所对应的数是1.已知A ,B 两点的距离小于3,请你利用数轴.(1)写出a 所满足的不等式;(2)数﹣3,0,4所对应的点到点B 的距离小于3吗.14.解方程:-314x x +=.15.比较大小:和4;和12.参考答案:1.12y <- 【分析】根据不等式的性质可得b a-2=,0a >,进而可得0b <,据此即可求解. 【详解】解:①关于x 的不等式ax <-b 的解集x <2,①b x a<-,b a -2=,0a >, 0b ∴<,∴关于y 的不等式by >a 的解集为a y b<, 2b a=-, ①1=2a b - ∴关于y 的不等式by >a 的解集为12y <-. 【点睛】本题考查了解一元一次不等式,确定a b ,的符号以及2b a=-是解题的关键. 2.m <94且m ≠0##m ≠0且m <94 【分析】根据判别式①>0时一元二次方程有两个不相等的实数根求解不等式即可.【详解】解:①关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根,①①=(2m -3)2-4m (-2+m )=-4m +9>0,且m ≠0,解得:m <94且m ≠0, 故答案为:m <94且m ≠0. 【点睛】本题考查一元二次方程根的判别式、解一元一次不等式,熟练掌握一元二次方程根与判别式的关系是解答的关键,注意二次项系数不为0.3.1-,2-,3-.【分析】直接根据绝对值的概念可得a 的取值范围,然后列举出负整数即可.【详解】①3a ≤,①33a -≤≤.①a 为负整数,①a 为1-,2-,3-.故答案为:1-,2-,3-.【点睛】此题主要考查绝对值的概念及一元一次不等式组的整数解,正确理解绝对值的概念是解题关键. 4.1a >.【分析】根据题目中方程组的的特点,将两个方程作差,即可用含a 的代数式表示出x y -,再根据0x y ->,即可求得a 的取值范围,本题得以解决.【详解】解:235423x y a x y a +=⎧⎨+=+⎩①②①-①,得33x y a -=-①0x y ->①330a ->,解得1a >,故答案为:1a >.【点睛】本题考查解一元一次不等式,二元一次方程组的解,熟悉相关性质是解答本题的关键. 5.-3【分析】根据解析式是关于x 的一次函数,只经过二、四象限可知函数为正比例函数,k <0,b =0,列方程与不等式求解即可.【详解】解:函数y =(2m ﹣4)x +m 2﹣9是关于x 的一次函数,①函数y =(2m ﹣4)x +m 2﹣9(x 是自变量)的图象只经过二、四象限,①224090m m -⎧⎨-=⎩<, 解得23m m ⎧⎨=±⎩<, ①m =3>2舍去,m =-3<2,满足条件,①m=-3,故答案为-3.【点睛】本题考查一次函数的性质,正比例函数,解不等式,直接开平方法解一元二次方程,掌握一次函数的性质,正比例函数,解不等式,直接开平方法解一元二次方程是解题关键.6.1a <-【分析】先解分式方程得1x =,再把1x =代入不等式计算即可. 【详解】33122x x x-+=-- 去分母得:323x x -+-=-解得:1x =经检验,1x =是分式方程的解把1x =代入不等式()230-->a x 得:230a -->解得1a <-故答案为:1a <-【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则. 7.C【解析】略8.B【分析】根据x a <的解中最大的整数解为3,则3x =是不等式的解,则3a >,同时4x =不是不等式的解,则4a ≤,从而求解.【详解】解:①x a <的解中最大的整数解为3,①3x =是不等式的解,则3a >,又①同时4x =不是不等式的解,则4a ≤,①34a <≤,故选B .【点睛】本题主要考查了不等式的整数解,解题的关键在于能够熟练掌握相关知识进行求解.9.C【分析】根据绝对值的性质,倒数的性质,不等式的性质,有理数的运算法则依次判断即可.【详解】①0没有倒数,①①错误.①﹣1<m <0, ①1m<0,2m >0, ①①错误.①a +b <0,且0b a>,①a <0,b <0,①a +3b <0,①|a +3b |=﹣a ﹣3b .①①正确.①|m |≥﹣m ,①|m |+m ≥0,①①正确.①c <0<a <b ,①a ﹣b <0,b ﹣c >0,c ﹣a <0,①(a ﹣b )(b ﹣c )(c ﹣a )>0正确,①①正确.故选:C .【点睛】本题考查绝对值,倒数,不等式的性质,有理数的运算法则,正确掌握相关法则是求解本题的关键.10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:①由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;①由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;①由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是①,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11.D【分析】方程为一元二次方程,故a ≠0,再结合根的判别式:当24b ac -≥0时,方程有实数根;即可求解.【详解】解:①原方程为一元二次方程,且有实数根,①a ≠0,24b ac -≥0时,方程有实数根;①2(2)40a --≥,解得:a ≤1,①1a ≤且0a ≠,故选:D【点睛】本题主要考查了一元二次方程根的判别式,熟练地掌握根的判别式与根的关系是解题的关键.当24b ac -≥0时,方程有实数根,当24b ac -<0时,方程无实数根.12.D【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a 的值,代入不等式组确定出b 的范围即可.【详解】解:分式方程去分母得:3-a -a 2+4a =-1,即a 2-3a -4=0,分解因式得:(a -4)(a +1)=0,解得:a =-1或a =4,经检验a =4是增根,分式方程的解为a =-1,当a =-1时,由a <x ≤b 只有4个整数解,得到3≤b <4.故选:D .【点睛】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键. 13.(1) −2<a<4;(2) 小于3【分析】根据数轴上两点之间的距离为这两个数差的绝对值,列出不等式并解出结果.【详解】解:(1)根据题意得:|a −1|<3,得出−2<a <4,(2)由(1)得:到点B 的距离小于3的数在−2和4之间,①在−3,0,4三个数中,只有0所对应的点到B 点的距离小于3.【点睛】本题考查了数轴上两点之间的距离为两个数差的绝对值,以及解不等式,难度适中.14.x =32 或x =﹣54【分析】利用绝对值的性质,将方程转化为314xx +﹣=或314x x +﹣=﹣,再分情况讨论: 当3x +1>0时可得到|3x +1|=3x +1;当3x +1<0时可得到|3x +1|=-3x -1,分别求出对应的方程的解即可. 【详解】解:原方程式化为-314x x +=或31-4xx +﹣=, 当3x +1>0时,即x >﹣13, 由-314x x +=得-3-14x x =,①x =﹣52与x >﹣13 不相符,故舍去; 由-31-4x x +=得314x x﹣﹣=﹣,①x=32,符合题意;当3x+1<0时,即x<﹣13,由-314x x+=得314x x++=,①x=34与x<﹣13不相符,故舍去;由-31-4x x+=得314x x++=﹣,①x=﹣54,符合题意;故原方程的解是x=32或x=﹣54.【点睛】本题主要考查的是含有绝对值符号的一元一次方程的解法.分类讨论是解题的关键.15.412<【分析】(1)根据无理数的估算即可得;(22,由此即可得.(1)解:1216<,4.(2)解:34<,<2,121<-11<,12<.【点睛】本题考查了实数的大小比较、无理数的估算,熟练掌握无理数的估算是解题关键.。

不等式与不等式组精选计算题100道.doc

不等式与不等式组精选计算题100道.doc

不等式与不等式组(100 道)用不等式表示:1、a与 1 的和是正数;2、x的1与 y 的1的差是非负数;233、x的 2 倍与 1 的和大于3;4、a的一半与 4 的差的绝对值不小于 a .5、x的 2 倍减去 1 不小于x与 3 的和;6、a与b的平方和是非负数;7、 y 的 2 倍加上 3 的和大于- 2 且小于 4;8、a减去 5 的差的绝对值不大于解不等式(组),并在数轴上表示它们的解集9、x1 (x-1) ≥ 1;3 210、x4 2311、3x 1 2x 12x 812、2x 1 32x 3 3x13、2(3x 1) 3(4 x 5) x 4( x 7) ;14、x 5x7 1 7 x 2 ;2 3 415、x 2 1 3x 1 816、3x 2 x 25x 5 2x 717、2x 2 3x 1 1 2x 4 x18、3x 2 2x 819、3 2 x 9 4x20、2(2x 3) 5( x 1) 22、2x 2x 12 323、x5 1 3x 22 224、3x 2 2 x 525、x4 2326、3( y 2) 1 8 2( y 1)27、mm 1 13 228、3[ x 2( x 2)] x 3(x 2)29、3x2 9 2x 5x 13 3 230、3( x1) 2 3 x 18 431、1[ x1( x 1)]2( x 1)2 2 532、6x1 2 x 2433、6x1 2x 12 x434、5( x 2) 8 6(x 1) 735、5 2( x 3) 6 x 436、2x1 5x 1 13 237、x2 2x 12 338、3x 2 2 x 839、3 2x 9 4 x40、2( 2 x 3) 5( x 1)41、19 3( x 7) 042、2x 2x 12 343、x5 1 3x 22 244、5( x 2) 8 6(x 1) 721、193( x 7) 045、3[ x2( x 2)] x 3(x 2)46、2 x 15x 1 13 247、 3x 2 9 2x 5x 133248、 1( x 1)1 2 x 2 3 49、 1 [ x 1 ( x 1)] 2 ( x 1)2 25 50、3(x1)2 3 x 18451、 0.4 x 0.90.03 0.02.x x50.50.03252、 2x 10,4 x 0.3x 0, 53、4x 7 0.11 x,54、x22x4 3x 3.55、- 5< 6- 2x < 3.2x 5 3x, 56、x 2 x2 3x x1,57、 232( x 3) 3( x 2)6.x4 1,58、 2x 8 2( x 2).59、 2x 1 x 5 43x.25x 3 2x (1) 60、 3x1 4(2)22x 7 3x 1,61、x 2 0.512x x 1,62、 34(x 1) 3x 4. 63、12 3x 1464、 -(x+1)<6+2(x-1)65、66、xx1132x-13(x+1)67、 3- 4 ≥2+8 68、x 36 x 1 336 69、 9-11x>x +24370、 x - 3x-2 ≥ 2(1+x) - 1432x 1>x 1 71、x 8< 4 x 12x3 1172、 2x5 1< 2 x373、- 7≤2(1 3x)≤ 974 x 10 0,74、 5x4x,11 2x 13x.>1)75、2 14 3xx5x 2>(3 x 1) 76、2 14 3xx77、 5(x+2) ≥ 1-2(x-1)2 y 73 y 178、y 2579、x4 -3< 5x 22 23x2 2x 80、 4x 2x 5x 3981、x 取什么值时 , 代数式1 5x的值不小于代数式23 2x4 的值382、K 取何值时 , 方程 2x3k =5(x-k)+1 的解是非3负数k283、k 为何值时 , 等式 |-24+3a|+ 3ab0 2中的 b 是负数 ? 3a-18 是多少?84、若方程组 x 2 y1的解 x 、 y 的值都不大x 2 y m于 1,求 m 的取值范围 85、若 a 同时满足不等式 2a 4 0 和 3a 1 2 ,化简1 a a2 .xy7a86、已知方程组的解,x 为非正数,x y 1 3ay 为负数(1) 求 a 的取值范围(2) 化简| a-3 | +| a+2| (3) 在 a 的取值范围中,当 a 为何整数时,不等式2ax+x > 2a+1 的解为 x < 187、求不等式组3x 5 6x4x 6 7 x 的自然数解。

人教版七年级下册数学第九章不等式与不等式组精选计算题100道

人教版七年级下册数学第九章不等式与不等式组精选计算题100道

不等式与不等式组(100道)用不等式表示:1、a 与1的和是正数;2、x 的21与y 的31的差是非负数;3、x 的2倍与1的和大于3;4、a 的一半与4的差的绝对值不小于a .5、x 的2倍减去1不小于x 与3的和;6、a 与b 的平方和是非负数;7、y 的2倍加上3的和大于-2且小于4; 8、a 减去5的差的绝对值不大于解不等式(组),并在数轴上表示它们的解集9、213-x (x-1)≥1;10、234-≥--x11、⎩⎨⎧>+>-821213x x x12、⎩⎨⎧<-<-x x x 332312 13、)7(4)54(3)13(2-->+--x x x x ; 14、42713752--≥+-x x x ; 15、⎩⎨⎧<+>-81312x x16、⎩⎨⎧-≥++<-7255223x x x x17、 ⎩⎨⎧->++>+x x x x 421132218、8223-<+x x19、x x 4923+≥-20、)1(5)32(2+<+x x 21、0)7(319≤+-x22、31222+≥+x x 23、223125+<-+x x 24、5223-<+x x 25、234->-x 26、)1(281)2(3--≥-+y y 27、1213<--m m 28、)2(3)]2(2[3-->--x x x x29、215329323+≤---x x x 30、41328)1(3--<++x x 31、 )1(52)]1(21[21-≤+-x x x 32、22416->--x x33、x x x 212416-≤-- 34、7)1(68)2(5+-<+-x x 35、46)3(25->--x x36、1215312≤+--x x 37、31222-≥+x x 38、8223-<+x x 39、x x 4923+≥-40、)1(5)32(2+<+x x41、0)7(319≤+-x 42、31222+≥+x x 43、 223125+<-+x x 44、7)1(68)2(5+-<+-x x45、)2(3)]2(2[3-->--x x x x46、1215312≤+--x x 47、 215329323+≤---x x x 48、11(1)223x x -<- 49、)1(52)]1(21[21-≤+-x x x 50、41328)1(3--<++x x 51、⋅->+-+2503.0.02.003.05.09.04.0x x x 52、⎩⎨⎧≥-≥-.04,012x x53、⎩⎨⎧>+≤-.074,03x x54、⎪⎩⎪⎨⎧+>-<-.3342,121x x x x55、-5<6-2x <3.56、⎪⎩⎪⎨⎧⋅>-<-322,352x x x x57、⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx58、⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x59、.234512x x x -≤-≤- 60、532(1)314(2)2x x x -≥⎧⎪⎨-<⎪⎩61、⎪⎩⎪⎨⎧≥--+.052,1372x x x φ62、⎪⎩⎪⎨⎧-<-->+.43)1(4,1321x x x x63、14321<--<-x64、-(x+1)<6+2(x-1)65、()31x 2221x ->- 66、1132x x +-<67、3-x-14≥2+3(x+1)868、361633->---x x 69、9-411x>x +3270、x -3x-24 ≥2(1+x)3-171、⎩⎨⎧-++-148112x <x >x x72、⎪⎩⎪⎨⎧--+≤+x <x x 21352113273、-7≤2(13)7x +≤9 74、4100,54,11213.x x x x x -<⎧⎪+>⎨⎪-≥+⎩75、⎩⎨⎧-≤-+-x x x >x 31421325)(76、⎩⎨⎧-≤-+-xx x >x 31421325)(77、5(x+2)≥1-2(x-1) 78、2731205y y y +>-⎧⎪-⎨≥⎪⎩79、42x --3<522x +80、32242539x x x x x +>⎧⎪->-⎨⎪->-⎩81、x 取什么值时,代数式251x-的值不小于代数式4323+-x的值 82、K 取何值时,方程k x 332-=5(x-k)+1的解是非负数83、k 为何值时,等式|-24+3a|+0232=⎪⎭⎫⎝⎛--b k a 中的b 是负数? 3a-18是多少? 84、若方程组212x y x y m +=⎧⎨-=⎩的解x 、y 的值都不大于1,求m 的取值范围85、若a 同时满足不等式042<-a 和213>-a ,化简 21---a a .86、已知方程组⎩⎨⎧+=---=+a y x ay x 317的解,x 为非正数,y 为负数(1)求a 的取值范围(2)化简|a-3|+|a+2|(3)在a 的取值范围中,当a 为何整数时,不等式2ax+x >2a+1的解为x <1 87、求不等式组⎩⎨⎧-≥--<-15764653x x xx 的自然数解。

人教版数学七年级下册第九章不等式与不等式组测试卷附解析

人教版数学七年级下册第九章不等式与不等式组测试卷附解析

人教版数学七年级下册第九章不等式与不等式组测试卷附解析一、单选题(共10题;共30分)1.x =3是下列不等式( )的一个解.A. x +1<0B. x +1<4C. x +1<3D. x +1<5 2.下列不等式求解的结果,正确的是( )A. 不等式组 {x ≤−3x ≤−5 的解集是 x ≤−3B. 不等式组 {x >−5x ≥−4 的解集是 x ≥−5C. 不等式组 {x >5x <−7 无解 D. 不等式组 {x ≤10x >−3 的解集是 −3≤x ≥103.在数轴上表示-2≤x <1正确的是( ) A.B.C. D.4.关于x 的不等式 2x +m >−6 的解集是 x >−3 ,则m 的值为( ) A. 1. B. 0. C. -1. D. -25.若m >n ,则下列不等式正确的是( )A. m -4<n -4B. m4>n4 C. 4m <4n D. -2m >-2n 6.已知关于x 、y 的方程组 {x +y =1−a x −y =3a +5 ,满足 x ≥12y ,则下列结论:① a ≥−2 ;② a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组 {x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( )A. 1个B. 2个C. 3个D. 4个 7.若代数式4x - 32 的值不大于代数式3x +5的值,则x 的最大整数值是( ) A. 4 B. 6 C. 7 D. 88.如果关于x 的不等式组 {5x −2a >07x −3b ≤0 的整数解仅有7,8,9,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有( )A. 4对B. 6对C. 8对D. 9对9.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A. 6折B. 7折C. 8折D. 9折10.运行程序如图所示,从“输入实数 x”到“结果是否<18”为一次程序操作,若输入 x 后程序操作仅进行了三次就停止,那么 x 的取值范围是( )A. x ≥329B. 329≤x ≤143C. 329<x ≤143D. x ≤143二、填空题(共8题;共24分)11.如果关于 x 的不等式 2x −m <0 的正整数解恰有2个,则 m 的取值范围是________. 12.“x 与y 的平方和大于8. ”用不等式表示: ________. 13.若 y =2x −6 ,当 x ________时, y >0 ;14.某校规定把期中考试成绩的40%与期末考试成绩的60%的和作为学生的总成绩.该校李红同学在期中考试中数学考了86分,她希望自己这学期数学总成绩不低于92分,她在期末考试中数学至少应得多少分?设她在期末考试中数学考了 x 分,则可列不等式________.15.关于 x 的不等式 bx <a 的解集为 x >−2 ,写出一组满足条件的实数 a ,b 的值:a= ________,b= ________.16.如果不等式组 {x2+a ≥22x −b <3的解集是 0≤x <1 ,那么 a +b 的值为________.17.按下面的程序计算,若开始输入的值 x 为正整数:规定:程序运行到“判断结果是否大于10”为一次运算,例如当 x =2 时,输出结果等于11,若经过2次运算就停止,则 x 可以取的所有值是________.18.关于 x,y 的方程组 {x −y =1+3mx +3y =1+m 的解 x 与 y 满足条件 x +y ≤2 ,则 4m +3 的最大值是________.三、计算题(共1题;共10分)19.解下列不等式(1)4x-2+1x−5>1x−5+3x +2 (2)7x−62x+3>2四、解答题(共7题;共54分)20.(6分)解不等式组: {x −3(x −2)≥42x−15<x+12 并求该不等式组的非负整数解.21.(7分)解不等式 1−2x 3+x+22≥1 ,并把解集在数轴上表示出来.22.(7分)已知关于x ,y 的二元一次方程组 {3x −y =ax −3y =5−4a 的解满足 x <y ,试求a 的取值范围.23.(7分)某居民小区污水管道里积存污水严重,物业决定请工人清理.工人用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,若工人抽污水每小时的工钱是60元,那么抽完污水最少需要支付多少元?24.(8分)新冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂共同完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天,问至少应安排两个工厂共同工作多少天才能完成任务25.(9分)北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?26(10分).对x,y定义了一种新运算T,规定T(x,y)= ax+by2x+y(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1,已知T(1,﹣1)=﹣2,T(4,2)=1.(1)求a,b的值;(2)若关于m的不等式组{T(2m,5−4m)≤4T(m,3−2m)>p恰好有3个整数解,求p的取值范围.答案解析部分一、单选题 1.【答案】 D【解析】【解答】解:A 、3+1=4>0,故A 不成立; B 、3+1=4,故B 不成立; C 、3+1=4>3,故C 不成立; D 、3+1=4<5,故D 成立; 故答案为:D.【分析】直接将x=3代入各个不等式,不等式成立的即为所选. 2.【答案】 C【解析】【解答】解:A 、不等式组 {x ≤−3x ≤−5 的解集根据“同小取较小”的原则可知,此不等式组的解集为x≤-5;B 、不等式组 {x >−5x ≥−4 的解集是根据“同大取较大”的原则可知,此不等式组的解集为x≥-4;C 、不等式组 {x >5x <−7 根据“大大小小解为空”的原则可知,此不等式组无解;D 、不等式组 {x ≤10x >−3 的解集根据“小大大小中间找”的原则可知,-3<x≤10.故答案为:C .【分析】根据不等式组解集的确定方法分别求出各不等式组的解集即可. 3.【答案】 D【解析】【解答】解:解:x≥-2表示-2右边的部分,含-2这点,应为实心点,x<1表示1左边的部分,不含1这点,应为空心点,则正确的是D .【分析】根据不等式解集的表示法,在数轴上表示出两个不等式即可. 4.【答案】 B【解析】【解答】解: 2x +m >−6 , 2x >−6−m ,x >−6+m2由题知x >-3, 则 −6+m 2=−3 ,解得:m=0, 故答案为:B .【分析】解不等式求出 x >−6+m 2,结合 x >−3 ,从而得出 −6+m 2=−3 ,解之可得.5.【答案】 B【解析】【解答】解:A 、∵m >n ∴m-4>n-4,故A 不符合题意; B 、∵m >n ∴m4>n4 , 故B 符合题意; C 、∵m >n∴4m >4n ,故C 不符合题意; D 、∵m >n∴-2m <-2n ,故D 不符合题意; 故答案为:B.【分析】利用不等式的性质1,可对A 作出判断;利用不等式的性质2可对B ,C 作出判断,利用不等式的性质3,可对D 作出判断。

人教版数学七年级上册一元一次不等式(组)专项训练50题

人教版数学七年级上册一元一次不等式(组)专项训练50题

方程与不等式(组)计算练习1.﹣=2﹣2.3.解方程:(I)4x+3(2x﹣3)=12﹣(x﹣4)(II)2x﹣(x+3)=﹣x+3(III)4.解方程组:5.解方程组:(1)(2)(3)(4)6.(Ⅰ)﹣=﹣1(Ⅱ)7.解下列方程组:(1)(2)8.解方程(组):(1)﹣=2﹣(2)9.解下列方程组:(1)(2)10.解下列方程组(1)(2)11.解下列方程组:(1)(2)12.解方程组(1)(2)13.解下列方程组:(1)(2)14.解下列方程组:(1)(2)15.解方程组(1)(2)(3)(4)16.解方程组:(1)(2)17.解方程组:(1)(2)18.解下列方程组(1)(2)19.(1)计算:(2)(3)20.解方程.(1)(2)21.解方程组(1)(2)22.解方程组:(1)(2)23.解方程(1)(2)24.解方程组:(1)(2)(3)25.解不等式组26.(1)解不等式5x+15>3x﹣1(2)解不等式组27.解方程(组)或不等式(组)并把第(4)的解集表示在数轴上(1)(2)(3)(4)28.解不等式组29.解不等式组30.解不等式组:,并把它的解集在数轴上表示出来31.解方程(组)或不等式(组)(1)(2)(3)并把解在数轴上表示出来并把解在数轴上表示出来(4)32.解不等式组(1)(2)33.解不等式和不等式组并用数轴表示其解集(1)(2)34.解不等式或不等式组,并把解集在数轴上表示出来(1)﹣(x﹣1)<1(2)(3)35.解下列不等式:(1)7x﹣2<9x+4(2)不等式组并将其解集在数轴上表示出来36.解下列方程组或不等式组37.求下列不等式(组)的解集(1)(2)+2<3﹣38.解下列方程组或不等式组,并将不等式组的解集表示在数轴上(1)(2)39.解不等式组40.解不等式组:,并把它的解集在数轴上表示出41.解不等式组(在数轴上表示解集)42.解不等式组,并在数轴上表示出解集43.不等式组的解集是0<x<2,求ab的值44.解不等式(组)(1)﹣(x﹣3)>4(2)45.解不等式组,并把解集表示在数轴上46.解不等式组:(1)3x﹣3≤2(2x﹣1)(2)46.解不等式组,并把解集在如图所示的数轴上表示出来47.解不等式组,并把解集在数轴上表示出来49.(1)解方程组:(2)解不等式组(并把解集在数轴上表示出来)50.解下列不等式(组),并把解集在数轴上表示出来(1)1﹣(2)。

七年级数学解二元一次方程组与不等式练习题

七年级数学解二元一次方程组与不等式练习题

、基础过关解二元一次方程组专题训练4x ■ 3y = 6,1.用加、减法解方程组,若先求x的值,应先将两个方程组相'4x —3y = 2.;若先求y的值,应先将两个方程组相__________ .2x + 3y = 12. 解方程组7'用加减法消去3x -6y =7.A .①X 2-②B .①X 3-②X 23. 已知两数之和是36,两数之差是12,A y,需要()C .①X 2+②则这两数之积是(D . -1244.已知A .5.已知266 B . 288 C . -2882x 亠5y = 9,x、y满足方程组,则x: y的值是()[-2x + 7y =1711: 9 B . 12: 7 C . 11: 8x、y互为相反数,且(x+y+4) (x-y )D=4,1 x ,21 y2 a+2b=3-m 且2a+b=-m+4,则a-b 的值为( 1B . -1C . 0D . m-13 3y 与—x y4 &用加减法解下列方程组:l3m 2n =16,(1)3m -n =1;6.已知A . 7•若!x=2,B .Jy —2 y=2.-11 : 8则x、y的值分别为()f 1x ,21y Y2 5m+2n+2x36 3m-2n-1的和是单项式,则m= n=⑵2X 3厂4,[4x_4y =3;(3)次"3,x 6y =11; (4)1x 3 y 52 3x -4 2y _3.3 5二、综合创新”3x + 5y = m + 29.已知关于x、y的方程组'的解满足x+y=-10,求代数m2-2m+1的值._2x +3y = m10 . (1)今有牛三头、羊二只共1900元,牛一头、羊五只共850元,?问每头牛和每只羊各多少元?(2 )将若干只鸡放入若干个鸡笼中,若每个鸡笼放4只,则有一只鸡无笼可放;?若每个鸡笼放5只,则有一个笼无鸡可放,那么有鸡多少只?有鸡笼多少个?ax+bv = 2 「x = 3 …. \x = -211. 在解方程组y '时,哥哥正确地解得',弟弟因把c写错而解得',求a+b+cJ cx - 7 v = 8J v =—2. ] y = 2.的值.x y 1 =112. (1)解方程组2 一3 -,3x 2y =10.(2)已知等式(2A-7B) x+ ( 3A-8B) =8x+10对一切实数x都成立,?求A、B的值.三、培优训练2005x-2006y =2004,13. (探究题)解万程组2004x-2005y =2003.自我小结:成功之处:不足之处:一元一次不等式专题训练一、填空题:1.用不等式表示:① a 大于0 __________________ ;②x + y 是负数 ________________③5与x 的和比x 的3倍小 __________________________ .I 叮2 •不等式 空 -1的解集是 _________________________ .3•用不等号填空:若 .■- - _______ ■ 亠.■ ■ I __ -1' _____4•当x ________ 时,代数代 2-3x\4x <3X +15 •不等式组{兰 >壬二!的解集是 ______________________ .V 36 •不等式 3x-10<0 的正整数解是 ______________________________ . 7..[二一的最小值是 a , .1 _.■的最大值是 b ,贝U ' -■___________&生产某种产品,原需 a 小时,现在由于提高了工效,可以节约时间 8腕15%若现在所需要的时间为 b小时,贝y _________ < b < ______________ . 9•编出解集为2的一元一次不等式为 ______________________________ .10 •若不等式组 的解集是空集,贝y a 、b 的大小关系是 ________________二、选择题:11 •下列不等式中,是一元一次不等式的是( A . 2x — 1 > 0 B • -1 V 2 12.不等式 -4x<5 的解集是()15 .下列两个不等式是同解不等式的是 (A. 一 彳厂-=; ;与一 - c. -.■:. ■:-与 1 匸554A. x < ----B X 》 ——C . x w44513 .、怜—^厶口 '2x-l<3的解集是 (元 次不等式组2x-3 >A. -2 V x v 3 B . -3 v x v 2 C . x v -34D . x >~5)D .1nJ <2 -1 0 114 •如图1,在数轴上所表示的是哪一个不等式的解集( A.^>-3 2.x+1 > -1) D . -2x > 4C • 3x-2y V -1D • y 2+3> 5)B .二—与二二「D• --■.Il 2(2)当m 取何值时,这个方程组的解中, x 大于1, y 不小于一1.a17.若 .,则a 只能是(22. 已知关于x 、y 的方程组•16.解下列不等式组,结果正确的是 ( A.不等式组 fx >7的解集是x >3< x>3 Jfx<-3C.不等式组的解集是x v -1)B .不等式组的解集z > -2-3 v x v -2D .不等式组 <的解集是 x <2-4 v x v 2A. a w -1 C . a A -118•关于x 的方程一「、二「的解是非负数,那么 a 满足的条件是(A. a >3B . a < 3D . a w 0)D . a > 3三、解一元一次不等式(或不等式组) 19. 6x v 7x-2,并把它们的解集在数轴上表示出来[2^+3 <9 —x — 1 2 I 220 .四、解答题: 21 .x 为何值时,代数式 ’宀-2的值比代数式八|「:的值大.V(1)求这个方程组的解; x+2y = }7:-2y=m(2)当m取何值时,这个方程组的解中,x大于1, y不小于一1.23. 已知方程组J2x-\-y=5k + 6的解为负数,求k的取值范围. 「2尹=_1 丁24. 某种植物适宜生长在温度为18C〜20C的山区,已知山区海拔每升高100米,在测出山脚下的平均气温为22C,问该植物种在山的哪一部分为宜?(假设山脚海拔为成功之处:不足之处: 气温下降0。

初一数学方程组与不等式组试题答案及解析

初一数学方程组与不等式组试题答案及解析

初一数学方程组与不等式组试题答案及解析1.如图2,天秤中的物体a、b、c使天秤处于平衡状态,则物体a与物体c的重量关系是A.2a=3c B.4a=9c C.a=2c D.a=c【答案】B【解析】根据图形得出2a=3b,2b=3c,根据等式性质得出4a=6b,6b=9c,推出4a=6b=9c,即可求出答案.解:∵由图可知:2a=3b,2b=3c,∴4a=6b,6b=9c,∴4a=6b=9c,即4a=9c,故选B.本题考查了对等式的性质的应用,关键是能根据等式的性质得出4a=6b,6b=9c,题目比较好,但是一道比较容易出错的题目.2.下图是一个数值转换机的示意图,若输入的值为3,的值为-2时,则输出的结果为:________.【答案】5【解析】略3.(1)化简(2)先化简,再求值:,其中,【答案】(1)(2)12【解析】(1)化简2分4分5分(2)先化简,再求值:,其中,1分2分3分4分="12 " 5分解方程4.的与7的差不小于3,用不等式表示为:.【答案】【解析】的与7的差不小于3,用不等式表示为:.【考点】列不等式.5.解方程组(每题5分,共10分)(1)(2)【答案】(1);(2)【解析】按照解二元一次方程组的解法求解即可.试题解析:(1)由②×2-①×3得6x-16y-10-6x+21y+24=0.解得y=把y=代入①得x=;故方程组的解为:(2)化简得解得:【考点】解二元一次方程组6.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对题.【答案】22.【解析】设他至少要答对x题,则5x-(30-x)>100,解得x>,即至少要答对22题.故答案为:22.【考点】列不等式解应用题.7.如果x=2是方程x+a=-1的解,那么a的值是.【答案】—2.【解析】把x值代入此式,解关于a的一元一次方程,1+a=-1,所以a=-2.【考点】解简单的一元一次方程.8.不等式组的解集是()A.x<-3B.x<-2C.-3<x<-2D.无解【答案】A.【解析】解不等式-x>3得:x<-3,小小取较小,故取解集x<-3,或者在数轴上表示出两个解集,取公共部分,为x<-3,故选A.【考点】确定不等式组的解集.9.解方程组和不等式(组):(9分,每题3分)(1)(2)解不等式2x-1<4x+13,并将解集在数轴上表示出来:(3)【答案】(1)(2)>-7 (3)<【解析】(1)用加减消元法或代入消元法均可;(2)先移项,然后合并同类项,系数化为1时注意是否改变不等号的方向,最后在数轴上表示解集;(3)把两个不等式都解出来,取他们的公共部分,如没有公共部分,则无解.试题解析:(1)用加减消元法:将方程①两边同时乘以3得:3x-3y=9,③,③-②得:5y=-5,∴y=-1,把y=-1代入①得:x=2,∴此方程组的解是:;(2)移项:2x-4x<13+1,合并同类项:-2x<14,系数化为1时要变号:x>-7.(3)解不等式①得:x<,解不等式②得:x≤15;∴此不等式组的解集是x<.【考点】1.解二元一次方程组;2.解一元一次不等式并在数轴上表示解集;3.解不等式组.10.(本题满分10分)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==2b-1.(1)已知T(1,﹣1)=﹣2,T(4,2)=3.①求a,b的值;②若关于m的不等式组恰好有2个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?【答案】(1)①a=,b=;②;(2)a="2b" ;【解析】(1)①按题意的运算可得方程组,即可求得a、b的值;②按题意的运算可得不等式组,即可求得p的取值范围;(2)由题意可得ax+2by-1= ay+2bx-1,从而可得a="2b" ;试题解析:(1)①由题意可得,解得;②由题意得,解得,因为原不等式组有2个整数解,所以,所以;(2)T(x,y)="ax+2by-1," T(y,x)="ay+2bx-1" ,所以ax+2by-1= ay+2bx-1,所以(a-2ba)x-(a-2b)y=0,(a-2b)(x-y)=0,所以a="2b" ;【考点】1.新定义题;2.阅读理解题.11.已知x、y满足方程组,则x-y的值是()A.-1B.0C.1D.2【答案】A【解析】②-①得:x-y=7-8=-1,故选A.【考点】解二元一次方程组.12.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5 %,则至多可打折.【答案】七【解析】设至多打x折,则1200×- 800≥800×5%,解得x≥7,即最多可打7折.故答案为:7.【考点】一元一次不等式的应用.13.电脑公司销售一批计算机,第一个月以5 500元/台的价格售出60台,第二个月起降价,以5 000元/台的价格将这批计算机全部售出,销售总额超过55万元,这批计算机至少有台.【答案】104.【解析】设这批计算机有x台,由题意得,5500x×60+5000(x-60)>550000,解得x≥104,所以这批计算机至少有104台.故答案为:104.【考点】一元一次不等式的应用.14.解方程:.【答案】x=-3【解析】按照解方程的基本步骤:去分母,去括号,移项、合并同类项,系数化为1计算即可.试题解析:去分母,得:2(2x+1)﹣(5x﹣1)=6去括号,得:4x+2﹣5x+1=6移项、合并同类项,得:﹣x=3方程两边同除以﹣1,得:x=﹣3.【考点】解一元一次方程.15. 2015年2月1日宿迁市最高气温是8℃,最低气温是-2℃,则当天宿迁市气温变化范围t (℃)是()A.t>8B.t<2C.-2<t<8D.-2≤t≤8【答案】D【解析】根据题意可知,最高气温为8℃,最低气温为-2℃,因此当天宿迁市气温变化范围为-2≤t≤8.故选D【考点】不等式16.如果不等式组无解,那么m的取值范围是()A.m>8B.m≥8C.m<8D.m≤8【答案】B【解析】根据不等式组的解集的求法:都大取较大,都小取较小,大小小大取中间,大大小小无解.由不等式组无解可知m≥8.故选B【考点】不等式组的解集17.一个三角形的3边长分别是xcm、(x+2)cm、(x+4)cm,它的周长不超过20cm,则x 的取值范围是()A.2<x<B.2<x≤C.2<x<4D.2<x≤4【答案】B【解析】根据题意可知x+(x+2)+(x+4)≤20,求得x≤,且根据三角形的三边关系可知x+(x+2)<x+4,解得x>2,因此可知x的取值范围为2<x≤.故选B【考点】三角形的三边关系,三角形的周长18.在方程2x+y=3中,用含x的代数式表示y为_________________.【答案】y=-2x+3.【解析】移项即可得答案.【考点】二元一次方程的变形.19.(1)(2)【答案】(1)(2)【解析】本题根据加减消元法进行求二元一次方程组.试题解析:(1)①、②,①+②得:7m=14,解得:m=2将m=2代入②得:8+2n=9 解得:n=∴原方程组的解为:(2)①②①×2+②×5得:26x=39 解得:x=将x=代入①得:3×-5y=7解得:y=-∴原方程组的解为:【考点】解二元一次方程组.20.如图,两根铁棒直立于桶底水平的木桶,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,求此时木桶中水的深度.如果设一根铁棒长xcm,另一根铁棒长ycm,则可列方程组为()A.B.C.D.【答案】B.【解析】设较长铁棒的长度为xcm,较短铁棒的长度为ycm.因为两根铁棒之和为220cm,所以可得方程x+y=220,又知两棒未露出水面的长度相等,又可得方程,把两个方程联立,组成方程组即可.故答案选B.【考点】二元一次方程组的应用.21.已知是方程2x+ay=6的解,则a= .【答案】2【解析】将x和y的值代入方程,列出关于a的一元一次方程,从而求出a的值.【考点】解一元一次方程.22.(本题满分10分)学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车1辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总的租车费用不超过2300元,求最省钱的租车方案.【答案】(1)大、小车每辆的租车费分别是400元和300元.(2)最省钱的租车方案是大车4辆小车2辆,总租车费用2200元.【解析】(1)此题用二元一次方程组求解,设租用一辆大车的租车费是x元,租用一辆小车的租车费是y元,根据租用1辆大车2辆小车共需租车费1000元,租用2辆大车1辆小车共需租车费1100元,建立方程组求解;(2)由题意可知,若每辆车上至少要有一名教师,学校6名教师,最多有6台车,共有240人,又因为240÷45=,即使全租大车也超过5台,所以共租6台车,根据6台车所载的人数不能少于240人,6台车的费用不超过2300元,列不等式组求解集,讨论其正整数解及最省钱的租车方案.试题解析:(1)此题用二元一次方程组求解,设租用一辆大车的租车费是x元,租用一辆小车的租车费是y元,根据租用1辆大车2辆小车共需租车费1000元,租用2辆大车1辆小车共需租车费1100元,建立方程组得:,解得:.∴大、小车每辆的租车费分别是400元和300元;(2)由题意可知,若每辆车上至少要有一名教师,学校6名教师,最多有6台车,又因为240÷45=,即使全租大车也超过5台,所以共租6台车,根据6台车所载的人数不能少于240人,6台车的费用不超过2300元,列不等式组求解集,,解之得:4≤x≤5.∵x是正整数,∴x=4或5,于是有两种租车方案,方案1:大车4辆小车2辆,总租车费用:400×4+300×2=2200元,方案2:大车5辆小车1辆,总租车费用=400×5+300×1=2300元,2300元>2200元,可见最省钱的是方案1.∴最省钱的租车方案是大车4辆小车2辆,总租车费用2200元.【考点】1.二元一次方程组的实际应用;2.讨论一元一次不等式组的正整数解.23.(3分)小亮解方程组的解为由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为.【答案】—2,8.【解析】把x=5代入2x﹣y=12得2×5﹣y=12,解得y=﹣2,再把x=5,y=﹣2代入2x+y=●,可得●=8,所以这两个数分别为—2,8.【考点】二元一次方程组的解.24.解不等式组:.【答案】3<x≤5【解析】求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.首先分别求出两个不等式的解集,然后根据原则求出方程组的公共解.试题解析:解不等式(1)得:x>3.解不等式(2)得:x≤5.∴原不等式组的解为3<x≤5.【考点】解一元一次不等式组25.(8分)解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【答案】不等式组的解集为:﹣1≤x<3.数轴表示见解析;不等式组的非负整数解为2,1,0.【解析】分别计算出两个不等式的解集,再确定不等式组的解集即可,再找出解集范围内的非负整数即可.试题解析:由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.【考点】1.解一元一次不等式组;2.在数轴上表示不等式的解集;3.一元一次不等式组的整数解.26.若方程ax﹣5y=3的一个解是,则a的值是()A.﹣13B.13C.7D.﹣7【答案】A【解析】把x与y的值代入方程计算,即把代入方程得:﹣a﹣10=3,解得:a=﹣13,故选A.【考点】二元一次方程的解27.(10分)解方程组:(1);(2).【答案】(1)(2)【解析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.试题解析:(1),把①代入②得:3y﹣6+2y=﹣1,解得:y=1,把y=1代入①得:x=﹣1,则方程组的解为;(2),①×5+②×3得:22x=55,即x=,把x=代入①得:y=﹣2,则方程组的解为.【考点】解二元一次方程组.28.(10分)商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折,现有27元钱,最多可以购买该商品多少件?【答案】10件【解析】易得27元可购买的商品一定超过了5件,关系式为:5×原价+超过5件的件数×打折后的价格≤27,把相关数值代入计算求得最大的正整数解即可.设可购买该商品x件。

初一数学方程组与不等式组试题

初一数学方程组与不等式组试题

初一数学方程组与不等式组试题1.如果,那么++= 。

【答案】10【解析】解:由题意得,,解得,则2.若一个二元一次方程的一个解为,则这个方程可以是_______________(只要求写出一个).【答案】x+y=1,答案不唯一【解析】方程的解是,把x=2,y=1代入方程,方程的左右两边一定相等,这个方程可能是:x+y=1,答案不唯一.3.下图是一个数值转换机的示意图,若输入的值为3,的值为-2时,则输出的结果为:________.【答案】5【解析】略4.若关于x的方程2x+a﹣4=0的解是x=﹣2,则a= .【答案】8【解析】因为方程2x+a﹣4=0的解是x=﹣2,所以把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得a=8,【考点】一元一次方程的解.5.已知是二元一次方程组的解,求m+3n的立方根.【答案】2.【解析】把x,y值代入这个方程组,观察发现两方程相加能求出m+3n的值,进而求其立方根.试题解析:把代入方程组,得,两个方程相加得:m+3n=8,∴= ="2" .【考点】1.解二元一次方程组;2.求一个数的立方根.6.(9分)关于x的不等式组有21个整数解,则a的取值范围是.【答案】<a≤1【解析】分别解两个不等式,然后根据不等式组解集的求法:都大取较大,都小取较小,大小小大取中间,大大小小无解,确定出解集,再根据整数解的个数确定出a的范围.试题解析:解:解不等式①得x<21解不等式②得x>2-3a所以不等式组的解集为2-3a<x<21由于不等式组有21个整数解,因此-1≤2-3a<0因此<a≤1【考点】不等式组的解集7.(本题满分10分)小明参加学校组织的知识竞赛,共有道题.答对一题记分,答错(或不答)一题记分,小明参加本次竞赛要超过分,他至少要答对多少道题?【答案】14【解析】根据题意可设小明答对了x道题,答错或不答有(20-x)道题,根据二者得分超过100分,可列不等式解决.试题解析:解:设小明答对了x道题,则:解之得:因为x为整数,所以x≥14答:小明至少要答对14道题。

初一数学不等式与不等式组30道典型题(含答案和解析及相关考点)

初一数学不等式与不等式组30道典型题(含答案和解析及相关考点)

初一数学不等式与不等式组30道典型题(含答案和解析)1、在式子 -3<0,x ≥2,x=a,x 2-2x,x ≠3,x+1>y 中,是不等式的有( ).A. 2个B. 3个C. 4个D. 5个 答案:C.解析:式子 -3<0,x ≥2,x ≠3,x+1>y 这四个是不等式.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的定义.2、下列结论正确的有 (填序号).①如果a >b,c <d,那么a-c >b-d. ②如果a >b,那么ab >1.③如果a >b,那么1a <1b.④如果a c2<bc2,那么a <b.答案:①④.解析:①∵c <d,∴-c >-d,∵a >b,∴a-c >b-d, 故①正确.②当b <0时,ab <1, 故②错.③若a=2,b= -1,满足a >b,但1a >1b , 故③错. ④∵ac2<bc 2,∴c 2>0,∴a <b.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.3、若0<m <1,m ,m 2,1m的大小关系是( ).A. m <m 2<1m B. m 2<m <1m C. 1m <m <m 2D. 1m <m 2<m答案:B.解析:可用特殊值.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.4、若a <b,则下列各式中一定成立的是( ).A.a-1<b-1B. a 3>b3 C.-a <-b D.ac <bc 答案:A.解析:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方不变.A. a-1<b-1,故A 选项是正确的.B.a >b,不成立,故B 选项是错误的.C. a >-b,不一定成立,故 选项是错误的.D. C 的值不确定,故D 选项是错误的.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.5、下列式子中,是一元一次不等式的有( ).①x 2+x <1 ②1x +2>0 ③x-3>y+4 ④2x+3<8 A.1个 B.2个 C.3个 D.4个 答案:A.解析:①不是,因为它的未知数的最高次数是2.②不是,因为不等式的左边是1x +2,它不是整式.③不是,因为不等式中含有两个未知数.④是,因为它符合一元一次不等式定义中的三个条件. 故答案为A.考点:方程与不等式——不等式与不等式组——一元一次不等式的定义.6、如果(m+1)x >2是一元一次不等式,则m = . 答案:1. 解析:∵(m+1)x∣m ∣>2是一元一次不等式.∴m+1≠0.︱m ︱=1,解得:m=1.考点:数——有理数——绝对值——方程与不等式——不等式与不等式组——一元一次不等式的定义.7、解不等式3-4(2x-3)≥3(3-2x),并把它的解集在数轴上表示出来.答案:原不等式的解集为x≤3.画图见解析.解析:去括号,得3-8x+12≥9-6x.移项,得-8x+6x≥9-3-12.合并同类项,得-2x≥-6.系数化1 ,得x≤3.把它的解集在数轴上表示为:考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.8、当a<3时,不等式ax≥3x+7的解集是..答案:x≤7a−3解析:ax≥3x+7.ax-3x≥7.(a-3)x≥7.∵a<3.∴a-3<0..∴x≤7a−3考点:方程与不等式-不等式与不等式组-含参不等式(组)-解含参不等式.(x-5)-1>x+m的解集为x<2,则m的值为.9、已知不等式12答案:-4.5.解析:1(x-5)-1>x+m.212x-52-1-x >m.-12x >m+72. x <-2m-7. ∵解集为x <2. 则-2m-7=2. m=-4.5.考点:方程与不等式——不等式与不等式组——含参不等式(组)——已知解集反求参数.10、若不等式4x-a <0只有三个正整数解,则 的取值范围 . 答案:12<a ≤16.解析::将4x-a <0变形为x <a4.不等式只有三个正整数解.即x 的正整数解为1,2,3,所以3<a4≤4,解得a 的取值范围为12<a ≤16.考点:方程与不等式——不等式与不等式组——一元一次不等式的整数解.11、若关于x 的不等式mx-n >0的解集是x <15,则关于x 的不等式(m+n )x >n-m 的解集是( ).A. x <-23B. x >-23C. x <23D. x >23答案:A.解析:∵不等式mx-n >0的解集是x <15.∴m <0且n m= 15.∴m=5n,n <0.∴不等式(m+n )x >n-m 可整理为6nx >-4n 的解集是x <-23.考点:方程与不等式——不等式与不等式组——解一元一次不等式.12、若方程3(x+1)-m = 3m-5x 的解是负数,则 的取值范围是( ).A. m <34 B. m >34 C. m <−34 D. m >−34答案:A.解析:3(x+1)-m = 3m-5x.3x+5x = 3m+m-3. 8x = 4m-3. ∵解是负数. ∴8x <0. ∴4m-3<0. m <34.考点:方程与不等式—一元一次方程—含字母参数的一元一次方程—含参一元一次方程.不等式与不等式组—一元一次不等式的应用.13、若关于x ,y 的二元一次方程组 {3x +y =1+ax +3y =3的解满足x+y <2,则a 的取值范围是 . 答案:a <4.解析:将二元一次方程组两个等式相加,得4x+4y=a+4,即x+y=a+44.∵x+y <2. ∴a+44<2.∴a <4.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.14、关于x,y 的二元一次方程组{3x −y =ax −3y =5−4a的解满足x <y,则a 的取值范围是( ).A. a >35B. a <13C. a <53D. a >53答案:D. 解析:解法一:解不等式组得{x =7a−58y =13a−158.∵x <y.∴7a−58<13a−158.解得a >53. 解法二:两式相加得4(x-y )=5-3a. ∵x <y. ∴x-y <0. ∴5-3a <0. ∴a >53.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.15、解不等式2x−13-5x+12≥1,并把它的解集在数轴上表示出来.答案:不等式的解集为x ≤-1,在数轴上表示如图所示:解析:去分母,得2(2x-1)-3(5x+1)≥6.去括号,得4x-2-15-3≥6. 移项合并同类项,得-11x ≥11. 系数化为1,得x ≤-1.∴此不等式的解集为x ≤-1,在数轴上表示如图所示:考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.16、解不等式12(x+1)≤23x-1,并把它的解集表示在数轴上,再写出它的最小整数解. 答案:最小整数解为x=9. 解析:12(x+1)≤23x-1.3(x+1)≤4x-6.3x+3≤4x-6.3x-4x≤-6-3.-x≤-9.x≥9.将它的解集表示在数轴上:∴它的最小整数解为x=9.考点:方程与不等式——不等式与不等式组——解一元一次不等式.17、若m>6,则(6-m)x<m-6的解集为.答案:x>-1.解析:∵m>6.∴(6-m)x<m-6.∴x>-1.考点:方程与不等式——不等式与不等式组——含参不等式(组)——解含参不等式. 18、关于x的不等式2x-a≤-1的解集如图所示,则a的值是( ).A.4B.3C.2D.1答案:B.解析:解不等式2x-a≤-1得,x≤a−1,根据数轴可知x≤1.2=1,即a=3.∴a−12考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.19、已知a、b为常数,若ax+b>0的解集是x<1,则bx-a<0的解集是( ).4A.x >-4B.x <-4C.x >4D.x <4 答案:B.解析:∵ax+b >0的解集x <14.∴x <-ba . 则-ba = 14. ∴a <0. 又∵a=-4b. ∴b >0. ∴bx-a <0. ∴bx+4b <0. ∴x+4<0. ∴x <-4.考点:方程与不等式——不等式与不等式组——含参不等式(组)——解含参不等式.20、已知方程组{2x +3y =3m +72x +y =4m +1的解满足x+y >0,求m 的取值范围.答案:m >-87.解析:{2x +3y =3m +7①2x +y =4m +1 ②.解:①+②得. 4x+4y=7m+8. 4(x+y)=7m+8. x+y=7m+84.∵x+y >0. ∴7m+84>0.∴7m+8>0. ∴7m >-8. ∴m >-87.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.不等式与不等式组——一元一次不等式的应用.21、解不等式组{2(x +8)≤10−4(x −3)x+12−4x+16<1,并写出该不等式组的整数解. 答案:-4<x ≤1,整数解有-3,-2,-1,0,1. 解析:{2(x +8)≤10−4(x −3)①x+12−4x+16<1 ②. 由①得:x ≤1. 由②得:x >-4. ∴-4<x ≤1.整数解有-3,-2,-1,0,1.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.22、解不等式组:{7(x −5)+2(x +1)>−152x+13−3x−12<0答案:x >2.解析:{7(x −5)+2(x +1)>−15①2x+13−3x−12<0②. 解①得:x >2. 解②得:x >1. ∴x >2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.23、解不等式组:{2(x +1)>5x −7x+103>2x 答案:x <2.解析:解不等式2(x+1)>5x-7得.2x+2>5x-7. 3x <9.x <3. 解不等式x+103>2x 得.x+10>6x. 5x <10. x <2.∴原不等式的解集为x <2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.24、不等式组{x +9<5x +1x >m +1的解集是x >2,则m 的取值范围是 .答案:m ≤1.解析:由不等式组可得{x >2x >m +1,其解集为x >2,则m+1≤2,m ≤1.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.25、若关于x 的不等式组{x −2<5x −a >0无解,则 的取值范围是 .答案:a ≥7.解析:解不等式组得{x <7x >a,由不等式组无解可知a ≥7.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.26、已知关于x 的不等式组{x −a ≥b 2x −a <2b +1的解集为3≤x <5,则ba 的值为 .答案:-2.解析::由x-a ≥b 得x ≥a+b.由2x-a <2b+1得x <a+2b+12.∵解集为3≤x <5. ∴{a +b =3a+2b+12=5.解b=6,a=-3.∴ba = 6−3= -2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.27、已知方程组{x+y=m+3x−y=3m−1的解是一对正数,试化简∣2m+1∣+∣2-m∣.答案:化简得:m+3.解析:{x+y=m+3①x−y=3m−1②.①+②:2x=4m+2.x=2m+1.①-②:2y=-2m+4.y=-m+2.∵方程组的解是一对正数.∴{x>0 y>0.∴{2m+1>0−m+1>0.解得:-12<m<2.∴∣2m+1∣+∣2-m∣.=2m+1+2-m.=m+3.考点:数——有理数——绝对值化简——已知范围化简绝对值.方程与不等式——二元一次方程组——含字母参数的二元一次方程组——含参方程组解的分类讨论.不等式与不等式组——含参不等式(组)——方程根的取值范围.28、若关于x的不等式组{x−m<07−2x≤1的整数解有且只有4个,则m的取值范围是( ).A.6<m <7B.6≤m <7C.6≤m ≤7D.6<m ≤7 答案:D解析:{x −m <07−2x ≤1.由x-m <0得:x <m . 有7-2x ≤1得:x ≥3. ∴不等式的解集为:3≤x <m .∴不等式的整数解为:3 、4 、5 、6 . ∴m 的取值范围是6<m ≤7.考点:方程与不等式——不等式与不等式组——解一元一次不等式组——一元一次不等式组的整数解.29、对x,y 定义一种新运算T,规定:T(x,y )= ax+by2x+y (其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1 = b .(1) 已知T(1,-1)= -2,T(4,2)= 1.① 求 a,b 的值.② 若关于m 的不等式组{T(2m,5−4m )≤4T(m,3−2m )>p恰好有3个整数解,求实数p 的取值范围.(2) 若T(x,y )=T(y,x )对任意实数x,y 都成立(这里T(x,y )和T(y,x )均有意义),则a,b 应满足怎样的关系式?答案: (1) ① a=1,b=3 .② -2≤p <−13 . (2) a=2b .解析: (1)① 根据题意得:T(1,-1)=a−b 2−1=-2,即a-b=-2.T(4,2)=4a+2b 8+2=1,即2a+b=5.解得: a=1,b=3.② 根据题意得:{2m+(5−4m )4m+(5−4m )≤4 ①m+3(3−2m )2m+3−2m>p ②.由①得:m ≥−12. 由②得:m <−9−3p 5.∴不等式组的解集为−12≤m <−9−3p 5.∵不等式组恰好有3个整数解,即m=0,1,2. ∴2<9−3p 5≤3.解得: -2≤p <-13.(2) 由T(x,y )=T(y,x ),得到ax+by 2x+y = ay+bx2y+x .整理得:(x 2-y 2)(2b-a )=0.∵T(x,y )=T(y,x )对任意实数x,y 都成立. ∴2b-a=0,即 a=2b.考点:式——探究规律——定义新运算.方程与不等式——不等式与不等式组——解一元一次不等式组.30、如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1) 在方程① 3x-1=0,② 23x+1=0,③ x-(3x+1)=-5中,不等式组{−x +2>x −53x −1>−x +2的关联方程是 .(填序号) (2)若不等式组{x −12<11+x >−3x +2的一个关联方程的根是整数,则这个关联方程可以是 (写出一个即可).(3)若方程3-x=2x,3+x=2(x+12)都是关于x 的不等式组{x <2x −m x −2≤m的关联方程,直接写出m 的取值范围.答案: (1) ③.(2)2x-1=1.(3)m 的取值范围为0≤m <1 .解析: (1)解不等式组{−x +2>x −53x −1>−x +2.解−x +2>x −5得x <312. 解3x −1>−x +2得x >34. ∴不等式的解为34<x <312.解方程① 3x-1=0得x=13,② 23x+1=0得x=-32 ,③ x-(3x+1)=-5得x=2. 根据一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. ∴关联方程为③. (2) 解不等式{x −12<11+x >−3x +2.解x −12<1,得x <112. 解1+x >−3x +2,得x >14. ∴不等式得解集为14<x <112.∵关联方程的根是整数,∴方程的根为1. ∵2x-1=1的方程的解为1. ∴2x-1=1满足.答案不唯一,只要解为1一元一次方程即可. (3) 解方程3-x=2x,得x=1.解方程3+x=2(x+12),得x=2.∵方程3-x=2x,3+x=2(x+12),都是关于x 的不等式组{x <2x −m x −2≤m的关联方程.∴满足{1<2×1−m 1−2≤m ,即-1<m <1.且{2<2×2−m 2−2≤m ,即0≤m <2.∴m 的取值范围为0≤m <2.考点:方程与不等式——一元一次方程——一元一次方程的解.不等式与不等式组——解一元一次不等式组.。

人教版七年级数学下册 第九章:不等式(组)和方程(组)的综合应用(含答案)

人教版七年级数学下册 第九章:不等式(组)和方程(组)的综合应用(含答案)

不等式(组)与方程(组)的综合应用1.方程组或不等式出现字母系数时可将字母当数字,解方程组成不等式的参数解。

2.解决不等式(组)或方程(组)的问题可运用整体思想、转化思想、消元思想。

【例1】若方程组3133x y k x y +=+⎧⎨+=⎩解为x ,y ,且2<k <4,则x -y 的取值范围是( ) A.102x y -<<B.01x y -<<C.31x y ---<<D.11x y --<<【例2】若关于x ,y 的二元一次方程组323225x y m x y m -=+⎧⎨-=-⎩的解满足x >y ,求m 的取值范围。

【例3】若2a +b =12,其中a ≥0,b ≥=0,又P=3a +2b ,试确定P 的最小值和最大值。

【例4】若关于x ,y 的二元一次方程组25x y a x y +=⎧⎨-=⎩的解满足1x >,1y ≤,其中a 是满足条件的最小整数,求a 2+1的值。

【例5】已知关于x,y的方程组2232 4x y mx y m-=⎧⎨+=+⎩①②的解满足不等式组3050x yx y+≤⎧⎨+⎩>,求满足条件的m的整数值。

1.已知关于x,y的方程组2121x y ax y a-=+⎧⎨+=-⎩的解满足不等式21x y->,求a的取值范围。

2.已知x、y同时满足三个条件:①324x y p-=-,②4x-3y=2+p,③x>y,则()A.p>-1B.p<1C.1p-< D.1p>3.若30x y z++=,350x y z+-=,x、y、z皆为非负数,求M=5x+4y+2z的取值范围。

4.在关于x ,y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值在数轴上应表示为( )5.已知关于x ,y 的方程组213252x y k x y k +=+⎧⎨-=-⎩的解满足5035x y x y -⎧⎨-+≥-⎩>,求整数k 的值。

《方程(组)与不等式相结合的解集问题》专题(含解析)

《方程(组)与不等式相结合的解集问题》专题(含解析)

《方程(组)与不等式相结合的解集问题》专题姓名:__________________ 班级:______________ 得分:_________________ 1.(2020春•常熟市期末)已知关于x、y的方程组(m是常数).(1)若x+y=1,求m的值;(2)若1≤x﹣y≤15.求m的取值范围;(3)在(2)的条件下,化简:|2m+1|﹣|m﹣7|=.2.(2020春•鼓楼区期末)已知4x+y=1.(1)y=.(用含x的代数式表示)(2)当y为非负数时,x的取值范围是.(3)当﹣1<y≤2时,求x的取值范围.3.(2020春•仪征市期末)已知关于x、y的方程组.(1)求该方程组的解(用含a的代数式表示);(2)若方程组的解满足x<0,y>0,求a的取值范围.4.(2020春•张家港市期末)已知关于x、y的方程组.(1)求方程组的解(用含m的代数式表示);(2)若方程组的解满足x≤0,y<0,且m是正整数,求m的值.5.(2020春•相城区期末)已知方程组的解x、y的值均大于零.(1)求a的取值范围;(2)化简:|2a+2|﹣2|a﹣3|.6.(2020春•汕尾期末)已知关于x,y的二元一次方程组(1)用含有m的代数式表示方程组的解;(2)如果方程组的解x,y满足x+y>0,求m的取值范围.7.(2020春•东丽区期末)已知方程组的解x,y满足x+y<1,且m为非负数,求m的取值范围.8.(2020春•高州市期末)已知关于x,y的二元一次方程组的解满足不等式x+y为非负数,求实数m的取值范围.9.(2020春•定襄县期末)已知关于x、y的方程组.(1)若a=2,求方程组的解;(2)若方程组的解x、y满足x>y,求a的取值范围.10.(2019春•三门县期末)已知关于x,y的二元一次方程组.(1)当a=2时,求方程组的解;(2)当a为何值时,y≥0?11.(2020春•张家港市校级月考)已知关于x,y的方程组.(1)求方程组的解(用含a的代数式表示);(2)若方程组的解满足xy<0,求a的取值范围.12.(2018春•开福区校级期中)已知关于x、y的方程组的解满足不等式x+y <3.(1)求实数a的取值范围;(2)在(1)的条件下,解关于a的方程|a﹣1|2.13.(2019春•新野县期中)已知关于x的二元一次方程组(k为常数).(1)求这个二元一次方程组的解(用k的代数式表示).(2)若方程组的解满足x+y>5,求k的取值范围.14.(2018春•宽城区期中)感知:解方程组,下列给出的两种方法中,最佳的方法是(A)由①,得x代入②,先消去x,求出y,再代入求解;(B)将①代入②,得4×7﹣y=27,解得y=1,再代入求解.探究:利用最佳的方法解方程组应用:若关于x、y的二元一次方程组的解中x的值是正数,则a的取值范围为.15.(2019春•房山区期中)关于x,y的二元一次方程组的解满足x+y >5.求m的取值范围.16.(2016春•衡阳县校级期末)已知x=1满足不等式组,求a的取值范围.17.(2019春•雁江区期末)已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解集为x>1.18.(2020春•南关区月考)感知:解方程组,下列给出的两种方法中,方法简单的是.(A)由①,得x,代入②,先消去x,求出y,再代入求解.(B)将①代入②,得4×7﹣y=27,解得y=1,再代入求解.探究:解方程组.应用:若关于x,y的二元一次方程组的解中的x是正数,则a的取值范围为.19.(2020春•荔城区校级月考)已知关于x、y的方程组.(1)若此方程组的解是二元一次方程2x+3y=16的一组解,求m的值;(2)若此方程组的解满足不等式x+3y>6,求m的取值范围.20.(2020春•宝应县期末)已知关于x,y的二元一次方程组.(1)若满足方程x﹣2y=k,请求出此时这个方程组的解;(2)若该方程组的解满足x>y,求k的取值范围.21.(2020春•万州区期末)已知方程组的解满足x﹣2y<8.(1)求m的取值范围;(2)当m为正整数时,求代数式2(m2﹣m+1)﹣3(m2+2m﹣5)的值.22.(2020春•叙州区期末)若关于x、y的二元一次方程组.(1)若方程组的解满足x﹣y=1,求k的值;(2)若x+y≤﹣1,求k的取值范围.23.(2014春•福清市校级期末)已知不等式组(1)当k=﹣2时,不等式组的解集是:;当k=3时,不等式组的解集是:(2)由(1)可知,不等式组的解集随k的值变化而变化,若不等式组有解,求k的取值范围并求出解集.24.(2020春•海淀区校级期中)已知关于x,y的方程组的解满足x<y,求p的取值范围?25.(2020春•沭阳县期末)关于x、y的方程组的解满足x+y.(1)求k的取值范围;(2)化简:|5k﹣1|﹣|4﹣5k|.1.(2020春•常熟市期末)已知关于x、y的方程组(m是常数).(1)若x+y=1,求m的值;(2)若1≤x﹣y≤15.求m的取值范围;(3)在(2)的条件下,化简:|2m+1|﹣|m﹣7|=3m﹣6.【分析】(1)①+②,化简得出x+y,由x+y=1列出关于m的方程,解之可得答案;(2)①﹣②,得:x﹣y=2m+2,结合1≤x﹣y≤15得出关于m的不等式组,解之可得;(3)利用绝对值的性质去绝对值符号,再去括号、合并即可得.【解析】(1),①+②,得:3x+3y=8m﹣2,则x+y,∵x+y=1,∴1,解得m;(2)①﹣②,得:x﹣y=2m+2,∵1≤x﹣y≤15,∴1≤2m+2≤15,解得2m+2≥1,得:m≥﹣0.5,解2m+2≤15,得m≤6.5,则﹣0.5≤m≤6.5;(3)∵﹣0.5≤m≤6.5,∴2m+1≥0,m﹣7≤﹣0.5,则原式=2m+1﹣(7﹣m)=2m+1﹣7+m=3m﹣6,故答案为:3m﹣6.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集和等式、不等式的基本性质、绝对值的性质是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(2020春•鼓楼区期末)已知4x+y=1.(1)y=1﹣4x.(用含x的代数式表示)(2)当y为非负数时,x的取值范围是x.(3)当﹣1<y≤2时,求x的取值范围.【分析】(1)根据等式的性质移项即可;(2)根据题意得出不等式,求出不等式的解集即可;(3)根据题意得出不等式组,求出不等式组的解集即可.【解析】(1)4x+y=1,移项得:y=1﹣4x,故答案为:1﹣4x;(2)∵y为非负数,∴y=1﹣4x≥0,解得:x,故答案为:x;(3)∵﹣1<y≤2,∴﹣1<﹣4x+1≤2,∴﹣2<﹣4x≤1,∴x,即x的取值范围是:x.【点评】本题考查了解二元一次方程,解一元一次不等式,解一元一次不等式组等知识点,能根据等式的性质进行变形是解(1)的关键,能得出不等式或不等式组是进而(2)(3)的关键.3.(2020春•仪征市期末)已知关于x、y的方程组.(1)求该方程组的解(用含a的代数式表示);(2)若方程组的解满足x<0,y>0,求a的取值范围.【分析】(1)利用加减消元法求解可得;(2)根据题意列出关于a的不等式组,解之可得.【解析】(1),②﹣①,得:x=﹣2a+1,将x=﹣2a+1代入①,得:﹣2a+1﹣y=﹣a﹣1,解得y=﹣a+2,所以方程组的解为;(2)根据题意知,解不等式﹣2a+1<0,得,解不等式﹣a+2>0,得a<2,解得:.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(2020春•张家港市期末)已知关于x、y的方程组.(1)求方程组的解(用含m的代数式表示);(2)若方程组的解满足x≤0,y<0,且m是正整数,求m的值.【分析】(1)利用加减消元法求解可得;(2)根据题意列出不等式组,解之求出m的取值范围,从而得出答案.【解析】(1),由①,得2x+2y=2m﹣18.③,由②+③,得5x=10m﹣20,x=2m﹣4;将x=2m﹣4代入①,得y=﹣m﹣5,∴原方程组的解为;(2)∵,∴,解得﹣5<m≤2,且m是正整数,∴m=1或m=2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2020春•相城区期末)已知方程组的解x、y的值均大于零.(1)求a的取值范围;(2)化简:|2a+2|﹣2|a﹣3|.【分析】(1)把a看做已知数表示出方程组的解,根据x与y同号求出a的范围即可;(2)由a的范围判断绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【解析】(1),①+②得:5x=15﹣5a,即x=3﹣a,代入①得:y=2+2a,根据题意得:解得﹣1<a<3;(2)∵﹣1<a<3,∴|2a+2|﹣2|a﹣3|=2a+2+2a﹣6=4a﹣4.【点评】此题考查了二元一次方程组的解,解一元一次不等式组,绝对值的性质,是基础题,难度不大.6.(2020春•汕尾期末)已知关于x,y的二元一次方程组(1)用含有m的代数式表示方程组的解;(2)如果方程组的解x,y满足x+y>0,求m的取值范围.【分析】(1)将m看做已知数求出方程组的解即可;(2)根据已知不等式求出m的范围即可.【解析】(1)①﹣②,得3y=12﹣3m,解得y=4﹣m.将y=4﹣m代入②,得x﹣(4﹣m)=3m,解得x=2m+4.故方程组的解可表示为;(2)∵x+y>0,∴2m+4+4﹣m>0,解得m>﹣8.故m的取值范围是m>﹣8.【点评】此题考查了解一元一次不等式,二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.7.(2020春•东丽区期末)已知方程组的解x,y满足x+y<1,且m为非负数,求m的取值范围.【分析】根据消元法,得出x、y的值,再根据x+y<1,且m为非负数,可得答案.【解析】,①+②,得:3x+3y=2+2m,∴x+y,∵x+y<1,即1,解得,m,又∵m≥0,∴.【点评】本题考查了二元一次方程组的解,先求出二元一次方程组的解,再求出m的取值范围.8.(2020春•高州市期末)已知关于x,y的二元一次方程组的解满足不等式x+y为非负数,求实数m的取值范围.【分析】解此题时可以解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a的取值范围.【解析】方程组中两个方程相加得3x+3y=3+m,即x+y=1m,又x+y≥0,即1m≥0,解一元一次不等式得m≥﹣3.【点评】本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.9.(2020春•定襄县期末)已知关于x、y的方程组.(1)若a=2,求方程组的解;(2)若方程组的解x、y满足x>y,求a的取值范围.【分析】(1)将a=2代入,解利用加减消元法求解可得;(2)解方程组得出x、y,再根据x>y得出关于a的不等式,解之可得.【解析】(1)当a=2时,,①﹣②,得:3y=6,y=2,将y=2代入①,得:x+2=11,x=9,则方程组的解为;(2)解方程组得,∵x>y,∴,解得a.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.10.(2019春•三门县期末)已知关于x,y的二元一次方程组.(1)当a=2时,求方程组的解;(2)当a为何值时,y≥0?【分析】(1)用加减消元法求解即可;(2)解出二元一次方程组中y关于a的式子,然后即可解出a的范围.【解析】(1)当a=2时,方程组为,②×3﹣①×2得,17y=17,解得y=1,把y=1代入①得,3x﹣4=2,解得x=2,所以,方程组的解是;(2)①×2﹣②×3得,﹣17y=5a﹣27,即y,解0,得,a,∴当a时,y≥0.【点评】此题考查的是二元一次方程组和解一元一次不等式,明确解题步骤是关键.11.(2020春•张家港市校级月考)已知关于x,y的方程组.(1)求方程组的解(用含a的代数式表示);(2)若方程组的解满足xy<0,求a的取值范围.【分析】(1)利用加减消元法解之可得;(2)根据xy<0得出关于a的不等式组,解之可得.【解析】(1)两个方程相加,得:3x=6a+3,解得x=2a+1,将x=2a+1代入2x+y=5a,得:4a+2+y=5a,解得y=a﹣2,∴方程组的解为;(2)根据题意,得:或,解得a<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.(2018春•开福区校级期中)已知关于x、y的方程组的解满足不等式x+y <3.(1)求实数a的取值范围;(2)在(1)的条件下,解关于a的方程|a﹣1|2.【分析】(1)先用a表示出x、y的值,再代入不等式x+y<3即可得出关于a的不等式,进而得出a的取值范围.(2)先取绝对值,再解一元一次方程即可求解.【解析】,①+②得3x=6a+3,解得x=2a+1;把x=2a+1代入①得2a+1﹣y=3,解得y=2a﹣2,∵x+y<3,∴2a+1+2a﹣2<3,解得a<1.故实数a的取值范围为a<1;(2)∵a<1,∴|a﹣1|2可以变形为﹣a+12,解得a.【点评】本题考查的是解二元一次方程组及一元一次不等式,先根据题意用a表示出x、y的值是解答此题的关键.13.(2019春•新野县期中)已知关于x的二元一次方程组(k为常数).(1)求这个二元一次方程组的解(用k的代数式表示).(2)若方程组的解满足x+y>5,求k的取值范围.【分析】(1)利用加减消元法求解可得;(2)由方程组的解满足x+y>5,得5,解之可得.【解析】(1)①+②得4x=2k﹣1,∴,代入①得,所以方程组的解为;(2)方程组的解满足x+y>5,所以5,∴.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(2018春•宽城区期中)感知:解方程组,下列给出的两种方法中,最佳的方法是(B)(A)由①,得x代入②,先消去x,求出y,再代入求解;(B)将①代入②,得4×7﹣y=27,解得y=1,再代入求解.探究:利用最佳的方法解方程组应用:若关于x、y的二元一次方程组的解中x的值是正数,则a的取值范围为a>4.【分析】感知:根据题目中的解答过程可知(B)种方法简答;探究:根据感知中的解答方法可以解答此方程组;应用:根据感知中的方法,可以用含a的代数式表示出x,再根据方程组的解中x是正数,从而可以求得a的取值范围.【解析】感知:由题目中的解答过程可知,最佳的方法是(B),故答案为:(B);探究:,将①代入②,得2×2018﹣5y=3951,解得,y=17,将y=17代入①,得x=2001,故原方程组的解是;应用:,将①代入②,得,解得,x,∵关于x、y的二元一次方程组的解中x的值是正数,∴0,解得,a>4,故答案为:a>4.【点评】本题考查解一元一次不等式、解二元一次方程组,解答本题的关键是明确它们各自的解答方法.15.(2019春•房山区期中)关于x,y的二元一次方程组的解满足x+y >5.求m的取值范围.【分析】将两个方程相加得出3x+3y=﹣2m+2,结合x+y>5知3x+3y>15,据此列出关于m的不等式,解之可得.【解析】两个方程相加可得3x+3y=﹣2m+2,∵x+y>5,∴3x+3y>15,则﹣2m+2>15,解得m.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.(2016春•衡阳县校级期末)已知x=1满足不等式组,求a的取值范围.【分析】首先对不等式组进行化简,根据不等式的解集的确定方法,就可以得出a的范围.【解析】将x=1代入3x﹣5≤2x﹣4a,得4a≤4,解得a≤1;将x=1代入3(x﹣a)<4(x+2)﹣5,得a.不等式组解集是a≤1,a的取值范围是a≤1.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17.(2019春•雁江区期末)已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解集为x>1.【分析】首先对方程组进行化简,根据方程的解满足x为非正数,y为负数,就可以得出m的范围,然后再化简(2),最后求得m的值.【解析】(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m,∴﹣2<m,∴m=﹣1.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).18.(2020春•南关区月考)感知:解方程组,下列给出的两种方法中,方法简单的是B.(A)由①,得x,代入②,先消去x,求出y,再代入求解.(B)将①代入②,得4×7﹣y=27,解得y=1,再代入求解.探究:解方程组.应用:若关于x,y的二元一次方程组的解中的x是正数,则a的取值范围为a>4.【分析】感知:根据题目中的解答过程可知(B)种方法简答;探究:根据感知中的解答方法可以解答此方程组;应用:根据感知中的方法,可以用含a的代数式表示出x,再根据方程组的解中x是正数,从而可以求得a的取值范围.【解析】感知:由题目中的解答过程可知,最佳的方法是(B),故答案为:(B);探究:,将①代入②,得1009﹣5y=1094,解得,y=﹣17,将y=﹣17代入①,得x=2035,故原方程组的解是;应用:,将①代入②,得,解得,x,∵关于x,y的二元一次方程组的解中的x是正数,∴0,解得,a>4,故答案为:a>4.【点评】本题考查解一元一次不等式、解二元一次方程组,解答本题的关键是明确它们各自的解答方法.19.(2020春•荔城区校级月考)已知关于x、y的方程组.(1)若此方程组的解是二元一次方程2x+3y=16的一组解,求m的值;(2)若此方程组的解满足不等式x+3y>6,求m的取值范围.【分析】(1)根据方程组的解法解答即可;(2)根据不等式的解法解答即可.【解析】(1),①﹣②得:3y=﹣6m,解得:y=﹣2m,①+②×2得:3x=21m,解得:x=7m,将x=7m,y=﹣2m代入2x+3y=16得:14m﹣6m=16,解得m=2;(2)由(1)知:x=7m,y=﹣2m,代入x+3y>6,得(﹣6m)>6,∴m.【点评】此题考查解一元一次不等式问题,关键是根据一元一次不等式的解法解答.20.(2020春•宝应县期末)已知关于x,y的二元一次方程组.(1)若满足方程x﹣2y=k,请求出此时这个方程组的解;(2)若该方程组的解满足x>y,求k的取值范围.【分析】(1)把x与y的值代入已知方程求出k的值,进而求出方程组的解即可;(2)表示出方程组的解,根据x>y,求出k的范围即可.【解析】(1)把代入x﹣2y=k得:k=3+4=7,方程组为,①﹣②×2得:y=﹣9,把y=﹣9代入①得:x=﹣11,则方程组的解为;(2),①﹣②得:x﹣y=5﹣k,∵x>y,即x﹣y>0,∴5﹣k>0,解得:k<5.【点评】此题考查了解一元一次不等式,解二元一次方程组,熟练掌握各自的解法是解本题的关键.21.(2020春•万州区期末)已知方程组的解满足x﹣2y<8.(1)求m的取值范围;(2)当m为正整数时,求代数式2(m2﹣m+1)﹣3(m2+2m﹣5)的值.【分析】(1)解方程组得出x=2m+1,y=1﹣2m,代入不等式x﹣2y<8,可求出m的取值范围;(2)根据题意求出m=1,化简原式即可得出答案.【解析】(1)解方程组得,,∵x﹣2y<8,∴2m+1﹣2(1﹣2m)<8,解得,m.(2)∵m,m为正整数,∴m=1,∴原式=2m2﹣2m+2﹣3m2﹣6m+15=﹣m2﹣8m+17.当m=1时,原式=﹣1﹣8+17=8.【点评】本题考查了解二元一次方程组和一元一次不等式的解法,熟练掌握二元一次方程组的解法是解题的关键.22.(2020春•叙州区期末)若关于x、y的二元一次方程组.(1)若方程组的解满足x﹣y=1,求k的值;(2)若x+y≤﹣1,求k的取值范围.【分析】(1)先利用加减消元法解方程组得到,则利用x﹣y=1得到﹣17k﹣15﹣(9k+10)=1,然后解关于k的方程即可;(2)利用x+y≤﹣1得到﹣17k﹣15+9k+10≤﹣1,然后解关于k的不等式即可.【解析】(1)解方程组得,∵x﹣y=1,∴﹣17k﹣15﹣(9k+10)=1,∴k=﹣1;(2)∵x+y≤﹣1,∴﹣17k﹣15+9k+10≤﹣1,∴k.【点评】本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式.也考查了解二元一次方程组.23.(2014春•福清市校级期末)已知不等式组(1)当k=﹣2时,不等式组的解集是:﹣1<x<1;当k=3时,不等式组的解集是:无解(2)由(1)可知,不等式组的解集随k的值变化而变化,若不等式组有解,求k的取值范围并求出解集.【分析】(1)把k=﹣2和k=3分别代入已知不等式组,分别求得三个不等式的解集,取其交集即为该不等式组的解集;(2)当k为任意有理数时,要分1﹣k<﹣1,1﹣k>1,﹣1<1﹣k<1三种情况分别求出不等式组的解集.【解析】(1)把k=﹣2代入,得,解得﹣1<x<1;把k=3代入,得,无解.故答案是:﹣1<x<1;无解;(2)若k为任意实数,不等式组的解集分以下三种情况:当1﹣k≤﹣1即k≥2时,原不等式组可化为,故原不等式组的解集为无解;当1﹣k≥1即k≤0时,原不等式组可化为,故原不等式组的解集为﹣1<x<1;当﹣1<1﹣k<1即0<k<2时,原不等式组可化为,故原不等式组的解集为﹣1<x<1﹣k.【点评】本题考查的是不等式的解集,特别注意在解(2)时要分三种情况求不等式组的解集.24.(2020春•海淀区校级期中)已知关于x,y的方程组的解满足x<y,求p的取值范围?【分析】解不等式组求出,再根据x<y得出关于p的不等式,解之可得答案.【解析】解方程组,得:,∵x<y,∴p+5<﹣p﹣7,解得p<﹣6.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.25.(2020春•沭阳县期末)关于x、y的方程组的解满足x+y.(1)求k的取值范围;(2)化简:|5k﹣1|﹣|4﹣5k|.【分析】(1)两方程相加、化简得出x+y,结合x+y知,解之可得答案;(2)根据绝对值的性质去绝对值符号,再去括号、合并即可得.【解析】(1)将两个方程相加可得3x+3y=k+1,则x+y,∵x+y,∴,解得k;(2)原式=5k﹣1﹣(5k﹣4)=5k﹣1﹣5k+4=3.【点评】本题主要考查解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.。

七年级数学不等式练习题及参考答案【人教版】

七年级数学不等式练习题及参考答案【人教版】

七年级数学《不等式与不等式(组)》练习题班级_______姓名________成绩_________A 卷 ·基础知识(一)一、选择题(4×8=32)1、下列数中是不等式x 32>50的解的有( ) 76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个 B、6个 C、7个 D、8个2、下列各式中,是一元一次不等式的是( )A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a ,则下列不等式中正确的是( )A、b a +-+-33 B、0 b a - C、b a 3131D、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( )A、2-- e d B、2-- e d C、e d -≥2- D、e d -≤2-5、不等式组⎩⎨⎧22 x x 的解集为( ) A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D 、x <21 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个8、下图所表示的不等式组的解集为( )-234210-1A 、x 3B 、32 x -C 、 2- xD 、32 x -二、填空题(3×6=18)9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a1 b 1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42 -x ②105 x -③ ⎩⎨⎧-21 x x 13、不等式03 +-x 的最大整数解是14、某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是三、解下列不等式,并把它们的解集在数轴上表示出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档