空间中点线面位置关系(经典)

合集下载

第三节空间点线面的位置关系ppt课件

第三节空间点线面的位置关系ppt课件

C.不可能平行 是异面直线相矛盾.
答案:C
D.不可能
相交
2.(2013· 东北三校联考)下列命题正确的个数为 ①经过三点确定一个平面; ②梯形可以确定一个平面;
(
)
③两两相交的三条直线最多可以确定三个平面;
④如果两个平面有三个公共点,则这两个平面重合. A.0 C.2 B.1 D.3
解析:①④错误,②③正确. 答案:C
第三节空间点 线面的位置关 系
考纲要求: 点、直线、平面之间的位置关系 ①理解空间直线、平面位置关系的定义, 并了解如下可以作为推理 依据的公理和定理。 ◆公理 1:如果一条直线上的两点在一个平面内,那么这条直线上 所有的点在此平面内。 ◆公理 2:过不在同一直线上的三点,有且只有一个平面。 ◆公理 3:如果两个不重合的平面有一个公共点,那么它们有且只 有一个过该点的公共直线。 ◆公理 4:平行于同一条直线的两条直线互相平行。 ◆定理: 空间中如果一个角的两边与另一个角的两边分别平行, 那 么这两个角相等或互补。 ② 以立体几何的上述定义、公理和定理为出发点,认识和理 解空间中线面平行、垂直的有关性质与判定定理。
P∈α,
且P∈β⇒
_____
α∩ β = l
该点的公共直线
___________ 且P∈l
二、空间直线的位置关系 相交直线:同一平面内,有且只有一个公共点; 共面直线 平行直线:同一平面内, 没有 公共点; 1.位置关系的分类 异面直线:不同在 任何 一个平面内,没有 公共点.
1.异面直线的判定常用的是反证法,先假设
两条直线不是异面直线,即两条直线平行或相交,
由假设的条件出发,经过严格的推理,导出矛盾,
从而否定假设肯定两条直线异面.此法在异面直

数学空间几何中的点线面的位置关系

数学空间几何中的点线面的位置关系

数学空间几何中的点线面的位置关系【教案】数学空间几何中的点线面的位置关系【引言】学习几何学是理解和应用数学的重要组成部分。

几何学通过研究点、线、面等几何概念的位置关系,揭示了空间的奥秘。

本节课将重点讲解数学空间几何中点、线、面的位置关系,以培养学生的几何直观和几何推理能力。

【第一部分】点的位置关系点在空间中是没有大小的,但它可以有位置。

掌握点的位置关系是几何学的基础。

下面将介绍点的各种位置关系。

1.1 同一平面上的点的位置关系在同一平面上,两个点可以处于以下三种基本位置关系:(1)重合:两个点重合,表示它们的位置一样。

(2)相离:两个点没有交集,表示它们的位置不同。

(3)相邻:两个点相互靠近,可以通过一条直线连接。

1.2 不在同一平面上的点的位置关系当两个点不在同一平面上时,它们的位置关系将更加复杂。

需要通过构建虚拟的平面或者直线来判断它们的位置关系。

【第二部分】线的位置关系线是由无数个点组成的,线的位置关系可以通过线的交叉情况来判断。

下面将介绍线的各种位置关系。

2.1 交于一点的线的位置关系当两条线交于一个点时,它们的位置关系有以下几种情况:(1)相交:两条线交于一个点,并且没有其他交点。

(2)重合:两条线完全重合,表示它们是同一条线。

(3)异面相交:两条线处于不同的平面上,交于一个点。

2.2 平行的线的位置关系当两条线没有任何交点时,它们的位置关系可以是以下几种情况:(1)平行:两条线永远不会相交。

(2)异面平行:两条线分别在不同的平面上,且这两个平面永远平行。

【第三部分】面的位置关系面是由无数个点和线组成的,面的位置关系可以通过面的交叉情况来判断。

下面将介绍面的各种位置关系。

3.1 交于一条线的面的位置关系当两个面交于一条线时,它们的位置关系有以下几种情况:(1)相交:两个面交于一条线,并且没有其他交点。

(2)重合:两个面完全重合,表示它们是同一个面。

3.2 平行的面的位置关系当两个面没有任何交点时,它们的位置关系可以是以下几种情况:(1)平行:两个面永远不会相交。

空间点、线、面之间的位置关系

空间点、线、面之间的位置关系

空间点、线、面之间的位置关系1.线与线的位置关系:平行、相交、异面(特别注意一下:垂直只是相交与异面当中的特殊情况,我们说相交有相交垂直,异面有异面垂直)2.线与面的位置关系:线在面内(选择题时一定要考虑)、线面平行、线面相交3.如何确定一个平面?方法(1)三个不共线的点可以确定一个平面方法(2)两条相交线可以确定一个平面方法(3)两条平行线可以确定一个平面4.如何证明三点共线?具体的做法:就是把其中两点确定的直线作为两个面的交线,证明剩下这一点是这两个面的交点,那么交点必在交线上,则三点共线。

5.如何证明线线平行?方法(1)利用三角形或梯形的中位线方法(2)利用平行四边形方法(3)利用线段对应成比例(通常题目中会出现三等份点或四等份点)方法(4)垂直于同一个面的两条直线互相平行方法(5)借助一个性质:两个面相交,其中一个面内的一条直线平行于另一个面,则这条线平行于两个面的交线(利用这个性质来证明在以往的高考中出现过若干次,同学们需要注意一下)6.如何证明线面平行?方法(1)只需证明这条直线与平面内的一条直线平行即可,简称线线平行推出线面平行。

方法(2)只需把这条直线放入一个合适的平面内,然后证明这个平面与已知平面平行即可,简称面面平行推出线面平行。

特别注意:直线平行于平面,可以得出直线与平面内无数条直线平行,但得不出与平面内任意一条直线平行。

7.如何证明面面平行?只需证明其中一个面内的两条相交线分别平行于另一个面即可。

8.如何证明线面垂直?只需证明这条直线分别与平面内的两条相交线互相垂直即可。

特别注意:直线垂直于平面,可以得出直线与平面内任意一条直线都垂直。

9.如何证明面面垂直?只需证明其中一个面内的一条直线垂直与另一个面即可。

特别注意:面面垂直,既得不出两个面内的任意两条直线互相垂直,也得不出其中一个面内的任意一条直线都垂直于另一个面。

10.异面直线的夹角范围是多少?如何求出异面直线的夹角?夹角范围是:0°~ 90°在求异面直线的夹角时,要把两条异面直线平移使它们出现交点,有时只需平移一条,有时两条都需要平移,这个过程中用得比较多的是中位线,当平移后两条直线出现交点时,复杂些的在三角形中利用余弦定理来求。

1.空间点线面之间的位置关系

1.空间点线面之间的位置关系

空间点线面之间的位置关系一.平面的基本性质:公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论1:经过一条直线和直线外的一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.二.空间直线与平面之间的位置关系:1.直线与平面的位置关系可分为:直线在平面内;直线与平面平行;直线成平面相交;2.平面与平面之间位置关系分为:面面平行;面面相交;面面重合;3.空间直线之间的位置关系:相交,平行,异面;三.等角定理、平行公理:定理:如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补;推论:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等;平行公理:平行与同一条直线的两条直线平行;空间平行具有传递性,空间平行平面也具有传递性;四.证明方法:1.证明三点共线的常用方法:(1)首先找出两个平面,然后证明这三点都是这两个平面的公共点。

由公理三得证;(2)选择其中两点确定一条直线,然后证明另一点也在其上;2.证明直线共面通常的方法:()1先由其中两条直线确定一个平面,再证明其余的直线都在此平面内(纳入法);()2分别过某些点作多个平面,然后证明这些平面重合(重合法);()3也可利用共面向量定理来证明.3.证明三线共点的方法:先证两条直线交于一点,再证明第三条直线经过这点,转化为证明点在线上的问题;()1如果A、B是交点,那么AB是交线;()2如果两个不同平面有三个或者更多的交点,那么它们共面;()3如果lαβ=∈,点P是α、β的一个公共点,那么P l4.证明几点共面的问题可以先取三点(不共线的三点)确定一个平面,再证其余各点都在这个平面内;1.分别和两条异面直线平行的两条直线的位置关系是: A .一定平行 B.一定相交 C.一定异面 D.相交或异面2.如果在两个平面内分别各有一条直线,这两条直线互相平行,那么这两个平面的位置关系为: A .平行 B.相交 C.平行或相交 D.垂直或相交3.已知下列命题:其中真命题的个数为: ; (1)若直线l 平行于α内无数条直线,则 l α;(2)若直线l 在平面α外,则 l α; (3)若直线 a b ,直线⊂b α,则 a α; (4)若直线 a b ,⊂b α,那么直线a 平行于平面α内的无数条直线;4.空间三条直线互相平行,由每两条平行直线确定一个平面,则可确定平面的个数为:5.若三个平面两两相交,且三条交线互相平行,则这三个平面将空间分成 部分;6.如果两条异面直线称为一对,那么在正方体的十二条棱中,共有异面直线 对;7.空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的; .A 充分非必要条件;.B 必要非充分条件;.C 充要条件;.D 非充分非必要条件.8.不共面的四个定点到平面α的距离都相等,这样的平面α共有.A 3个 .B 4个 .C 6个 .D 7个9.已知两个不同的平面α、β和两条不重合的直线,m 、n ,有下列四个命题 ①若α⊥m n m ,//,则α⊥n ②若βαβα//,,则⊥⊥m m③若βαβα⊥⊂⊥则,,//,n n m m ④若n m n m //,,,//则=βαα其中正确命题的个数是 A .0个 B .1个 C .2个 D .3个 10.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ∥α,n ∥α,则m ∥n ;④若α⊥γ,β⊥γ,则α∥β.其中正确命题的序号是 A .①和② B .②和③ C .③和④ D .①和④ 11.已知直线a 、b 、c 和平面M ,则可以得到a//b 的是 : ;A.a//M ,b//MB.a ⊥c ,b ⊥cC.a 、b 与平面M 成等角D.a ⊥M ,b ⊥M . 12.已知直线m 、n 平面βα,,下列命题中正确的是A.若直线m 、n 与平面α所成的角相等,则m//nB.若m ⊥α,n ⊥β,α⊥β,则m ⊥nC.若m ⊂α,β⊂n ,m//n ,则α//βD.若m//α,,//,//βαβn 则m//n13.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖14.已知βα,是相异两平面,n m ,是相异两直线,则下列命题中不正确...的是 ( ) A.若m ∥α⊥m n ,,则α⊥n B.若⊥m βα⊥m ,,则α∥β C.若⊥m βα⊂m ,,则⊥αβ D.若m ∥n =⋂βαα,,则m ∥n 15.设有直线m 、n 和平面α、β.下列四个命题中,正确的是( )A.若m ∥α,n ∥α,则m ∥n ;B.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC.若α⊥β,m ⊂α,则m ⊥β;D.若α⊥β,m ⊥β,m ⊄α,则m ∥α 16.已知n m ,是两条不同的直线,βα,为两个不同的平面,有下列四个命题: ①若βα⊥⊥n m ,,m ⊥n ,则βα⊥;②若n m n m ⊥,//,//βα,则βα//; ③若n m n m ⊥⊥,//,βα,则βα//;④若βαβα//,//,n m ⊥,则n m ⊥. 其中正确的命题是(填上所有正确命题的序号)_______________.17.正方体1111ABCD A B C D -中,P 、Q 、R 分别是AB 、AD 、11B C 的中点. 那么,正方体的过P 、Q 、R 的截面图形是.A 三角形.B 四边形.C 五边形.D 六边形18.如图,l αβ= ,A 、B α∈,C β∈,且C l ∉,直线AB l M = ,过A 、B 、C 三点 的平面记作γ,则γ与β的交线必通过.A 点A ; .B 点B ; .C 点C 但不通过点M ; .D 点C 和点MAB CD 1A 1B 1C 1D PD RαβlM A B C题型二:证明点共线,线共点,点共面,线共面问题 例1.点共面:1.(07江苏)如图,已知1111ABCD A B C D -是棱长为3的正方体,点E 在1AA 上,点F 在1CC 上,且11AE FC ==.求证:1,,,E B F D 四点共面;2.(08四川)如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,90BAD FAB ∠=∠=︒,BC ∥12AD ,BE ∥12AF .证明:C 、D 、F 、E 四点共面;例3.线共面:1.已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面。

空间中点线面的位置关系

空间中点线面的位置关系

空间中点、线、面的位置关系一、平面的基本性质(1)点和直线的基本性质:连接两点的线中,最短;过两点一条直线,并且一条直线。

(2)平面的基本性质:1如果一条直线的点在一个平面内,那么这条直线上的所有点在这个平面内。

这时我们就说或。

作用:判断直线在平面内。

2经过不在同一直线的三点,有且只有个平面。

也可以简单地说成:的三点确定一个平面。

过不共线的三点A、B、C的平面,通常记作:。

3如果不重合的两个平面有个公共点,那么它们有且只有条过这个点的公共直线。

如果两个平面有一条公共直线,则称这两个平面。

这条公共直线叫做这两个平面的(3)平面的基本性质的推论:1经过一条直线和直线的一点,有且只有个平面。

2经过两条直线,有且只有个平面。

3经过两条直线,有且只有个平面。

(4)共面与异面直线:共面:空间中的几个点或几条直线,如果都在,我们就说它们共面。

共面的两条直线的位置关系有和两种。

异面直线:既又的直线叫异面直线。

判断两条直线为异面直线的方法:与一平面相交于一点的直线与这个平面内任一不过该点的直线是异面直线。

(5)符号语言:点A在平面α内,记作;点A不在平面α内,记作。

直线l在平面α内,记作;直线l不在平面α内,记作。

平面α与平面β相交于直线a, 记作 .直线l和直线m相交于点A,记作,简记作:。

基本性质01可以用集合语言描述为:如果点A α,点B α,那么直线AB α。

例1. 已知三条直线a、b、c两两相交但不共点,求证:a、b、c共面。

例2.已知三条平行线a 、b 、c 都与直线d 相交.求证:它们共面.例 3.正方体1111D C B A ABCD -中,对角线C A 1与平面1BDC 交于AC O ,、BD 交于点M . 求证:点1C 、O 、M 共线.例4.已知三个平面α、β、γ两两相交,且α⋂β=c ,β⋂γ=a ,γ⋂α=b , 且直线a 和b 不平行.求证: a 、b 、c 三条直线必相交于同一点._1_ B _二、空间中的平行关系1.空间平行直线的本性质(空间平行线的传递性): 平行于同一直线的两条直线 。

点线面的位置关系和判定方法

点线面的位置关系和判定方法

点线面的位置关系和判定方法在几何学中,点、线段和平面是最基本的图形元素,它们之间的位置关系和判定方法对于几何问题的解决至关重要。

本文将探讨点线面的位置关系以及相应的判定方法。

一、点与线段的位置关系和判定方法1. 点在线段上的情况:一个点可以在线段的两端点之间,也可以在线段上,或者在线段外。

要判断一个点是否在线段上,可以使用如下方法:(1)距离判定法:计算点到线段两个端点的距离,如果两个距离之和等于线段长度,那么点就位于线段上。

(2)向量判定法:将线段的两个端点视为向量A和向量B,将点与线段的一个端点视为向量C。

如果向量C可以表示为向量A与向量B的线性组合,且系数的和等于1,那么点就位于线段上。

2. 点在线段的延长线上的情况:当一个点在线段的延长线上时,意味着可以无限延长线段,点位于线段的一侧。

判定方法如下:(1)向量判定法:同样将线段的两个端点视为向量A和向量B,将点与线段的一个端点视为向量C。

如果向量C可以表示为向量A与向量B的线性组合,且系数的和大于1,那么点在线段的延长线上。

3. 点在线段的左侧或右侧的情况:若点位于线段的左侧(或右侧),则该点与线段的两个端点所形成的线段组合为逆时针(或顺时针)方向。

判定方法如下:(1)向量叉积法:将线段的一个端点与点构成的向量记为向量A,将线段的一个端点与线段另一端点构成的向量记为向量B。

计算向量A和向量B的叉积,若叉积大于0,则点在线段的左侧;若叉积小于0,则点在线段的右侧;若叉积等于0,则点在线段上。

二、点与平面的位置关系和判定方法1. 点在平面上的情况:一个点可以位于平面上,也可以位于平面外部。

判定方法如下:(1)向量法:选择平面上的三个非共线点A、B、C,将点与这三个点分别构成向量。

如果点与向量A、B、C共面,那么点就位于平面上。

2. 点在平面的一侧或另一侧的情况:当一个点在平面的一侧时,意味着通过该点可以画出与平面垂直的直线。

判定方法如下:(1)点法向量法:选择平面上的一个点P,计算向量AP与平面的法向量N的点积。

点线面关系

点线面关系
线、面关系
直线在平面内:有无数个公共点.
平行:没有公共点.
相交:只有一个公共点.
斜交
垂直
面、面关系
平行:没有公共点.
相交:有且只有一条公共直线.
斜交
垂直
二、平面的基本性质
公理
文字语言
符号语言
图形语言
公理1
如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
公理2
过不在一条直线上的三点,有且只有一个平面.
推论①经过一条直线和这条直线外的一点,有且只有一个平面.
推论②经过两条相,有且只有一个平面.
公理3
如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理4
平行于同一条直线的两条直线平行.
等角
定理
空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补.
一、空间中点、线、面的位置关系
类别
文字语言
符号语言
图形语言
点、线关系
点在直线上
(或说直线经过点).
点在直线外.
点、面关系
点在平面内
(或说平面经过点).
点在平面外
线、线关系
平行:在同一个平面内,没有公共点.
共面直线
相交:在同一个平面内,只有一个公共点.
异面:不同在任何一个平面内,没有公共点。
(即:既不平行,也不相交)

空间点线面之间的位置关系

空间点线面之间的位置关系

空间点线面之间的位置关系一、平面1.平面的概念:平面是一个不加定义,只需理解的原始概念.立体几何里所说的的平面是从现实生活中常见的平面抽象出来的.常见的桌面、平静的水面等都给我们以平面的局部形象.平面是理想的、绝对的平且无大小,无厚度,不可度量. 2.平面的表示方法:(1)一个平面: 当平面是水平放置的时候,通常把平行四边形的锐角 画成45,横边画成邻边的2倍长,如右图. (2)两个相交平面:画两个相交平面时,通常要化出它们的交线,当一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画(如下图)3. 运用集合观点准确使用图形语言、符号语言和文字语言空间图形的基本元素是点、直线、平面从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此还可借用集合中的符号语言来表示点、线、面的基本位置关系如下表所示:b A =a α⊂α=∅ αBAβαABαβαβBAAβαBAα=l β= 二、平面的基本性质1. 公理1 如果一条直线的两点在一个平面内,那么这条直线在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 或者:∵,A B αα∈∈,∴AB α⊂ 公理1的作用:①判定直线是否在平面内;②判定点是否在平面内; ③检验面是否是平面.2. 公理2 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面; 推论2:经过两条相交直线,有且只有一个平面; 推论3:经过两条平行直线,有且只有一个平面.(1)以上是确定平面的四个不同的条件,是判断两个平面重合的依据,是证明点线共面的依据,也是作截面、辅助面的依据.(2)“有且只有一个”的含义要准确理解.这里的“有”是说图形的存在,“只有一个”是说图形唯一.因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 2. 公理3 如果两个不重合的平面有一个公共点,有且只有一条过该点的公共直线推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭如图示:或者:∵,A A αβ∈∈,∴,l A l αβ=∈公理3的作用:(1)判断两个平面是否相交及交线位置; (2)判断点是否在线上 1、证明空间三点共线问题通常证明这些点都在两个平面的交线上,即先确定出某两点在两个平面的交线上,再证明第三点既在第一个平面内,又在第二个平面内。

高三数学 空间点线面之间的位置关系

高三数学 空间点线面之间的位置关系

课堂互动讲练
【名师点评】 题中是先说明D1、 E、F确定一平面,再说明B在所确定 的平面内,也可证明D1E∥BF,从而 说明四点共面.
课堂互动讲练
考点四 异面直线的判定
证明两直线为异面直线的方法: 1.定义法(不易操作). 2.反证法:先假设两条直线不 是异面直线,即两直线平行或相交, 由假设的条件出发,经过严密的推理, 导出矛盾,从而否定假设肯定两条直 线异面.此法在异面直线的判定中经 常用到.
A.A∈l,A∈α,B∈l, B∈α⇒l⊂α
B.A∈α,A∈β,B∈α, B∈β⇒a∩β=AB
C.l⊄α,A∈l⇒A∉α D.A∈α,A∈l,l⊄α⇒l∩α=A 答案:C
三基能力强化
4.如图所示,在正方体ABCD-
A1B1C1D1中,异面直线AC与B1C1
所成的角为
.
答案:45°
5.三条直线两两相交,可以确 定3进一步反映了平面的延展 性.其作用是:(1)判定两平面相交;(2) 作两平面相交的交线(当知道两个平面 的两个公共点时,这两点的连线就是交 线);(3)证明多点共线(如果几个点都是 某两个平面的公共点,则这几个点都在 这两个平面的交线上).
随堂即时巩固
点击进入
课时活页训练
PQ、CB的延长线交于M,RQ、DB的延
长线交于N,RP、DC的延长线交于K.求
证:M、N、K三点共线.
课堂互动讲练
【思路点拨】 要证明M、N、K 三点共线,由公理3可知,只要证明M、 N、K都在平面BCD与平面PQR的交 线上即可.
课堂互动讲练
【证明】
PQ∩CB=M
RQ∩DB=N⇒
RP∩DC=K
课堂互动讲练
解:选取平面BCF,该 平面有以下两个特点:①该 平面包含直线CF;②该平面 与DE相交于点E.在平面BCF 中,过点E作CF的平行线交 BF于点N,连结ND,可以看 出:EN与ED所成的角即为 异面直线FC与ED所成的角. 10分

点线面位置关系例题与练习(含答案)

点线面位置关系例题与练习(含答案)

点、线、面的位置关系● 知识梳理 (一).平面公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。

公理2:不共线...的三点确定一个平面. 推论1:直线与直线外的一点确定一个平面. 推论2:两条相交直线确定一个平面. 推论3:两条平行直线确定一个平面.公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线 (二)空间图形的位置关系1.空间直线的位置关系:相交,平行,异面1.1平行线的传递公理:平行于同一条直线的两条直线互相平行。

1.2等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

1.3异面直线定义:不同在任何一个平面内的两条直线——异面直线;1.4异面直线所成的角:(1)范围:(]0,90θ∈︒︒;(2)作异面直线所成的角:平移法.2.直线与平面的位置关系: 包含,相交,平行3.平面与平面的位置关系:平行,相交(三)平行关系(包括线面平行,面面平行) 1.线面平行:①定义:直线与平面无公共点.②判定定理:////a b a a b ααα⎫⎪⊄⇒⎬⎪⊂⎭③性质定理:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭ 2.线面斜交: ①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。

范围:[]0,90θ∈︒︒ 3.面面平行:①定义://αβαβ=∅⇒;②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行; 符号表述:,,,//,////a b ab O a b ααααβ⊂=⇒判定2:垂直于同一条直线的两个平面互相平行.符号表述:,//a a αβαβ⊥⊥⇒.③面面平行的性质:(1)////a a αββα⎫⇒⎬⊂⎭;(2)////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭(四)垂直关系(包括线面垂直,面面垂直)1.线面垂直①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。

空间点线面的位置关系及四个公理(4)

空间点线面的位置关系及四个公理(4)

高考专题:空间点、直线、平面的位置关系及四个公理一.空间点、直线、平面的位置关系 1.空间点、直线、平面之间的位置关系2.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的 锐角(或直角) 叫做异面直线a 与b 所成的角(或夹角).即,异面直线的平行线的夹角就是两异面直线所成的角。

(2)范围:⎝⎛⎦⎤0,π2. 3.异面直线判定定理:经过平面外一点和平面内一点的直线,与这个平面内不经过该点的直线是异面直线.即,若l B l B A ∉⊂∈∉,,,ααα 则AB 与l 异面。

4.异面直线所成的角的求解方法:方法一,定义法: 异面直线所成的角,根据定义,以“运动”观点,用“平移转化”的方法,使之成为两相交直线所成的角,当异面直线垂直时,应用线面垂直定义或三垂线定理及逆定理判定所成的角为。

90,也是不可忽视的方法。

其求解步骤为:做平移找出或做出有关的角-----证明它符合定义即认定----通过解三角形求角。

简言之,“一做,二证,三算”注意:第二步认定的表述为:Λ∠或其补角就是异面直线----与----所成的角。

方法二,三弦公式法:如图,已知PA 与PB 分别是平面α的垂线和斜线,在平面α内过斜足B 任意引一直线BC ,设θθθ=∠=∠=∠PBC ABC PBA ,,21,有21cos cos cos θθθ⋅=。

【真题再现】1.(2014全国二):正方体1111D C B A -ABCD 中,若E 、F 分别为11B A 和1BB 的中点,则AE 与CF 所成角的余弦值是 .2.(2017理科全国三)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°;其中正确的是 ________ .(填写所有正确结论的编号)推论:最小角定理:平面外的一条斜线和它在平面内的射影所成的锐角(即,线面角)是这条斜线和平面内所有直线所成的一切角中的最小角。

知识讲解_空间点线面的位置关系(基础)

知识讲解_空间点线面的位置关系(基础)

空间点线面的位置关系【考纲要求】(1)理解空间直线、平面位置关系的定义;(2)了解可以作为推理依据的公理和定理;(3)能运用公理、定理和已经获得的结论证明一些空间图形的位置关系的简单命题。

【知识网络】空间点线面位置关系【考点梳理】考点一、平面的基本性质1、平面的基本性质的应用(1)公理1 :可用来证明点在平面内或直线在平面内;(2)公理2:可用来确定一个平面,为平面化作准备或用来证明点线共面;(3)公理3:可用来确定两个平面的交线,或证明三点共线,三线共点。

2、平行公理主要用来证明空间中线线平行。

3、公理2的推论:(1)经过一条直线和直线外一点,有且只有一个平面;(2)经过两条相交直线,有且只有一个平面;(3)经过两条平行直线,有且只有一个平面。

4、点共线、线共点、点线共面(1) 点共线问题证明空间点共线问题,一般转化为证明这些点是某两个平面的公共点,再根据公理 3证明这些点都在这两个平面的交线上。

(2) 线共点问题证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过这点, 把问题转化为证明点在直线上。

要点诠释:证明点线共面的常用方法① 纳入平面法:先确定一个平面,再证明有关点、线在此平面内; ② 辅助平面法:先证明有关的点、线确定平面a, 再证明其余元素确定平面最后证明平面a 、B 重合。

考点二、直线与直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b 是两条异面直线, 经过空间中任一点 0作直线a // a,b // b,把a 与b 所成的锐角(或直角)叫做异面直线 a 与b 所成的角(或夹角).②范围:0,—2要点诠释:证明两直线为异面直线的方法:1、 定义法(不易操作)2、 反证法:先假设两条直线不是异面直线,即两直线平行或相交,由假设的条件出发, 经过严密的推理,导出矛盾,从而否定假设肯定两条直线异面。

此法在异面直线的判定中经 常用到。

空间点线面位置关系整理(ppt)

空间点线面位置关系整理(ppt)
详细描述
在二维平面中,一个点可以确定一条 直线,但直线本身不能确定一个具体 的点。同样,在三维空间中,一个点 也可以确定一个平面,但平面本身不 能确定一个具体的点。
点与面之间的关系
总结词
点与面之间的关系是相对复杂的,一个点可以位于一个平面上,但不能确定一个平面。
详细描述
在二维平面中,一个点可以位于一个平面上,但这个平面本身不能被一个单独的点所确 定。在三维空间中,一个点也可以位于一个曲面上,但这个曲面本身不能被一个单独的
详细描述
线在面上的变换通常涉及到直线的平移、旋 转或倾斜等操作。这种变换可以用来描述一 个物体在平面上的运动或变化,例如桥梁的 伸缩、建筑物的旋转等。此外,这种变换还 可以用来研究几何图形在平面上的运动规律 和性质。
06
空间点线面位置关系的证明
点在线上的证明
定义法
根据点的定义,如果一个点在直线上 ,则该点满足直线的方程。通过验证 点的坐标是否满足直线的方程,可以 证明该点在线上。
3
线可以用来确定建筑物的空间形态和方向感。
点线面在建筑学中的应用
01
面在建筑学中的应用
02
面可以表示建筑物的立面、屋顶、地面等。
面可以用来确定建筑物的空间大小、形状和功能分区等。
03
点线面在计算机图形学中的应用
01
02
03
点在计算机图形学中的 应用
点可以表示像素的位置 和颜色信息。
点可以用来实现图像的 缩放、旋转和平移等变
点在面上的变换
总结词
点在面上的变换是指一个点在一个平面 上的位置变化。
VS
详细描述
与点在线上的变换类似,点在面上的变换 也可以通过平移、旋转或缩放等操作来实 现。这种变换可以用来描述一个物体在平 面上的运动或变化,例如飞行器在空中的 飞行轨迹。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲:空间中的点线面一,生活中的问题?生活中课桌面、黑板面、教室墙壁、门的表面都给我们以“平面”形象.如果想把一个木棍钉在墙上,至少需要几个钉子?教室的门为什么可以随意开关?插上插销后为什么不能开启?房顶和墙壁有多少公共点?通过本节课学习,我们将从数学的角度解释以上现象.二,概念明确1,点构成线,线构成面,所以点线面是立体几何研究的主要对象。

所以:点与线的关系是_____________________,用符号______________。

线与面的关系是_____________________,用符号______________。

点与面的关系是_____________________,用符号______________。

2,高中立体几何主要研究内容:点,线,面的位置关系和几何量(距离,角)3,直线是笔直,长度无限的;平面是光滑平整,向四周无限延伸,没有尽头的。

点,线,面都是抽象的几何概念。

不必计较于一个点的大小,直线的长度与粗细。

4,平面的画法与表示描述几何里所说的“平面”是从生活中的一些物体抽象出来的,是无限的画法通常把水平的平面画成一个,并且其锐角画成45°,且横边长等于其邻边长的倍,如图a所示,如果一个平面被另一个平面遮挡住,为了增强立体感,被遮挡部分用画出来,如图b所示记法(1)用一个α,β,γ等来表示,如图a中的平面记为平面α(2)用两个大字的(表示平面的平行四边形的对角线的顶点)来表示,如图a中的平面记为平面AC或平面BD(3)用三个大写的英文字母(表示平面的平行四边形的不共线的顶点)来表示,如图a中的平面记为平面ABC或平面等(4)用四个大写的英文字母(表示平面的平行四边形的)来表示,如图a中的平面可记作平面ABCD检验检验:下列命题:(1)书桌面是平面;(2)8个平面重叠起来要比6个平面重叠起来厚;(3)有一个平面的长是50m,度是20m;(4)平面是绝对的平、无厚度、可以无限延展的抽象的数学概念.其中正确命题的个数为()A.1B.2C.3D.4三,点,线,面的位置关系和表示A是点,l,m是直线,α,β是平面.文字语言符号语言图形语言A在l上A在l外A在α内A在α外文字语言符号语言图形语言l在α内l与α平行l ,m 相交于Al ,m 都在平面α内且平行l ,m 异面(不同在任何一个平面内,且没有交点)α,β相交于lα,β平行(没有交点)熟悉熟悉:如图所示,平面ABEF 记作平面α,平面ABCD 记作平面β,根据图形填写: (1)A ∈α,B ________α,E ________α,C ________α,D ________α; (2)α∩β=________;(3)A ∈β,B ________β,C ________β,D ________β,E ________β,F ________β; (4)AB ________α,AB ________β,CD ________α,CD ________β,BF ________α,BF ________β.四,立体几何的公理与定理1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。

,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩ 公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。

若A ,B ,C 不共线,则A ,B ,C 确定平面α lBAα B AαC推论1:过直线的直线外一点有且只有一个平面 若A l ∉,则点A 和l 确定平面α推论2:过两条相交直线有且只有一个平面若mn A =,则,m n 确定平面α推论3:过两条平行直线有且只有一个平面若m n ,则,m n 确定平面α公理2及其推论的作用:确定平面;判定多边形是否为平面图形的依据。

3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

,P P l P l αβαβ∈∈⇒=∈且公理3作用:(1)判定两个平面是否相交的依据;(2)证明点共线、线共点等。

4、公理4:也叫平行公理,平行于同一条直线的两条直线平行.,a b c b a c ⇒公理4作用:证明两直线平行。

5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

,1212a a b b ''∠∠⇒∠∠且与方向相同=,1212180a a b b ''∠∠⇒∠+∠︒且与方向相反= 作用:该定理也叫等角定理,可以用来证明空间中的两个角相等。

6,线面平行的定义与判定1)若直线和平面没有交点,则称直线和平面平行。

2)线面平行判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

(只需在平面内找一条直线和平面外的直线平行就可以)////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭lαAlm αAm nαP· αL βa b b a b 'a '方向相反则∠1+∠2=180°方向相同则∠1=∠22121a 'b '五,典型例题【例1】下列命题正确的是( )A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共线的三点确定一个平面 【练习】1.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。

⑵两条直线没有公共点,则这两条直线平行。

⑶两条直线都和第三条直线垂直,则这两条直线平行。

⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。

其中正确的个数为( )A .0B .1C .2D .3 2.下列命题:⑴平面α与平面β相交,他们只有有限个公共点⑵经过一条直线和这条直线外一点,有且只有一个平面. ⑶经过两条相交直线有且仅有一个平面.⑷如果两个平面有三个不共线的公共点,那么这两个平面重合. 其中正确的个数为( )A.0 B .1 C .2 D .3点金秘笈:此类题可以由公理和定理经过综合判断;也可以利用你手边的一切资源比划比划,不要忘记了变换一下空间位置,或是旋转一下下。

【例2】2如图所示,用符号语言可表达为( ) A.α∩β=m ,n ⊂α,m∩n=A B.α∩β=m ,n∈α,m∩n=AC.α∩β=m ,n∈α,A∈m,A∈nD.α∩β=m ,n ⊂α,A ⊂m ,A ⊂n【练习】1.下面推理过程,错误的是( ) A.αα∉⇒∈A l A l ,//B ααα⊂⇒∈∈∈l B A l A ,,C. AB B B A A =⋂⇒∈∈∈∈βαβαβα,,,D. βαβα=⇒∈∈不共线并且C B A C B A C B A ,,,,,,,,ABC DOO 1A 1B 1C 1D 1AEFD BG H C P2.如图, 在长方体ABCD-A 1B 1C 1D 1中, 下列命题是否正确? 并说明理由. ①AC 1在平面CC 1B 1B 内;②若O 、O 1分别为面ABCD 、A 1B 1C 1D 1的中心, 则平面AA 1C 1C 与平面B 1BDD 1的交线为OO 1 .③由点A 、O 、C 可以确定平面;④由点A 、C 1、B 1确定的平面与由点A 、C 1、D 确定的平面是同一个平面.点金秘笈:类比集合的知识,通过类比来记忆。

【例3】已知E 、F 、G 、H 分别为空间四边形(四个顶点不共面的四边形)ABCD 各边AB 、AD 、BC 、CD 上的点, 且直线EF 和GH 交于点P, 求证: B 、D 、P 在同一条直线上.思维点拔:证明多点共线,通常利用公理2,即两相交平面交线的唯一性;证明点在相交平面的交线上,必须证明这些点分别在两个平面内。

A BCD D 1C 1B 1A 1EF AB D Clα 【练习】如图, 在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别为AB,AA 1中点,求证CE,D 1F,DA 三条直线交于一点。

注意:证明题的逻辑要清晰而严密,书写要规范而有据。

不能凭想当然,不能混乱。

【例4】已知: 如图l D l C l B l A ∉∈∈∈,,,, 求证: 直线AD 、BD 、CD 共面.思维点拔:简单的点线共面的问题,一般是先由部分点或线确定一个平面,然后证明其他的点线也在这个平面内,这种证明点线共面的方法称为"落入法"【练习】如图, 已知正方体ABCD-A 1B 1C 1D 1中, E 、F 分别为D 1C 1、B 1C 1的中点, AC ∩BD=P , A 1C 1∩EF=Q , 求证:(1) D 、B 、F 、E 四点共面(2)若A 1C 交平面DBFE 于R 点, 则P 、Q 、R 三点共线 .点金秘笈:证明共点,共线,共面可以用落入法,也可以用同一法,还可以用反证法。

AB CD D 1 C 1B 1A 1六,课后作业1.一条直线和这条直线之外不共线的三点所能确定的平面的个数是( )(A ) 1个或3个 (B ) 1个或4个(C ) 3个或4个 (D ) 1个、3个或4个 2.以下命题正确的有( )(1)若a ∥b ,b ∥c ,则直线a ,b ,c 共面;(2)若a ∥α,则a 平行于平面α内的所有直线; (3)若平面α内的无数条直线都与β平行,则α∥β;(4)分别和两条异面直线都相交的两条直线必定异面。

(A ) 1个 (B ) 2个 (C ) 3个 (D )4个 3.正方体的一条体对角线与正方体的棱可以组成异面直线的对数是( )(A ) 2 (B ) 3 (C ) 6 (D ) 12 4.以下命题中为真命题的个数是( )(1)若直线l 平行于平面α内的无数条直线,则直线l ∥α; (2)若直线a 在平面α外,则a ∥α; (3)若直线a ∥b ,α⊂b ,则a ∥α;(4)若直线a ∥b ,α⊂b ,则a 平行于平面α内的无数条直线。

(A ) 1个 (B ) 2个 (C ) 3个 (D )4个 5.若三个平面两两相交,则它们的交线条数是( )(A ) 1条 (B ) 2条 (C ) 3条 (D )1条或3条6.若直线l 与平面α相交于点O ,l B A ∈,,α∈D C ,,且BD AC //,则O,C,D 三点的位置关系是 。

7.在空间中,① 若四点不共面,则这四点中任何三点都不共线。

② 若两条直线没有公共点,则这两条直线是异面直线。

以上两个命题中为真命题的是 (把符合要求的序号填上)8.已知△ABC 在平面α外,AB ∩α=P ,AC ∩α=R ,BC ∩α=Q ,如图.求证:P 、Q 、R 三点共线.。

相关文档
最新文档