2019年高考数学总复习 课时作业(12)函数模型及其应用 理.doc
12、函数模型及其应用(含答案)
12函数模型及其应用1.七类常见函数模型(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型.(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型.(3)解模:求解数学模型,得出数学结论.(4)还原:将数学问题还原为实际问题.以上过程用框图表示如下:4.判断函数图象与实际问题中两变量变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.5.解函数应用题的一般步骤第一步:(审题)弄清题意,分清条件和结论,理顺数量关系;第二步:(建模)将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:(解模)求解数学模型,得到数学结论;第四步:(还原)将用数学方法得到的结论还原为实际问题的意义;第五步:(反思)对于数学模型得到的数学结果,必须验证这个数学结果对实际问题的合理性.2.建模的基本原则(1)在实际问题中,若两个变量之间的关系是直线上升或直线下降或图象为直线(或其一部分),一般构建一次函数模型,利用一次函数的图象与性质求解.(2)实际问题中的如面积问题、利润问题、产量问题或其图象为抛物线(或抛物线的一部分)等一般选用二次函数模型,根据已知条件确定二次函数解析式.结合二次函数的图象、最值求法、单调性、零点等知识将实际问题解决.(3)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解.练习一1.有一组试验数据如表所示:A.y=2x+1-1 B.y=x2-1C.y=2log2x D.y=x3答案 B解析根据表中数据可知,能体现这组数据关系的函数模型是y=x2-1.2.物价上涨是当前的主要话题,特别是菜价,某部门为尽快稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )答案 B解析B中,Q的值随t的变化越来越快.故选B.3.有一批材料可以建成200 m长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形场地的最大面积为________ m2.(围墙厚度不计)答案2500解析设围成的矩形的长为x m,则宽为200-x4m,则S=x·200-x4=14(-x2+200x)=-14(x-100)2+2500.当x=100时,S max=2500 m2.4.高为H,满缸水量为V的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象是( )答案 B解析当h=H时,体积为V,故排除A,C;由H→0过程中,减少相同高度的水,水的体积从开始减少的越来越快到越来越慢,故选B.5.如图,矩形ABCD的周长为8,设AB=x(1≤x≤3),线段MN的两端点在矩形的边上滑动,且MN=1,当N沿A→D→C→B→A在矩形的边上滑动一周时,线段MN的中点P所形成的轨迹为G,记G围成的区域的面积为y,则函数y=f(x)的图象大致为( )答案 D解析 由题意可知点P 的轨迹为图中虚线所示,其中四个角均是半径为12的扇形.因为矩形ABCD 的周长为8,AB =x , 则AD =8-2x2=4-x , 所以y =x (4-x )-π4=-(x -2)2+4-π4(1≤x ≤3), 显然该函数的图象是二次函数图象的一部分, 且当x =2时,y =4-π4∈(3,4),故选D. 6.某校学生研究学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.设f (t )表示学生注意力指标.该小组发现f (t )随时间t (分钟)的变化规律(f (t )越大,表明学生的注意力越集中)如下:f (t )=⎩⎪⎨⎪⎧100a t10-600≤t ≤10,34010<t ≤20,-15t +64020<t ≤40(a >0且a ≠1).若上课后第5分钟时的注意力指标为140,回答下列问题: (1)求a 的值;(2)上课后第5分钟和下课前第5分钟比较,哪个时间注意力更集中?并请说明理由;(3)在一节课中,学生的注意力指标至少达到140的时间能保持多长? 解 (1)由题意得,当t =5时,f (t )=140, 即100·a510-60=140,解得a =4. (2)因为f (5)=140,f (35)=-15×35+640=115, 所以f (5)>f (35),故上课后第5分钟时比下课前第5分钟时注意力更集中. (3)①当0<t ≤10时,由(1)知,f (t )=100·4t 10-60≥140,解得5≤t ≤10;②当10<t ≤20时,f (t )=340>140恒成立; ③当20<t ≤40时,f (t )=-15t +640≥140, 解得20<t ≤1003. 综上所述,5≤t ≤1003. 故学生的注意力指标至少达到140的时间能保持1003-5=853分钟. 7.某市家庭煤气的使用量x (m 3)和煤气费f (x )(元)满足关系f (x )=⎩⎨⎧C ,0<x ≤A ,C +B x -A ,x >A .已知某家庭2019年前三个月的煤气费如下表:月份 用气量 煤气费 一月份 4 m 3 4元 二月份 25 m 3 14元 三月份35 m 319元A .11.5元B .11元C .10.5元D .10元答案 A解析 根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x )=⎩⎨⎧4,0<x ≤5,4+12x -5,x >5,所以f (20)=4+12×(20-5)=11.5,故选A.8.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.答案 24解析 由题意得⎩⎨⎧e b=192,e22k +b=48,即⎩⎨⎧e b =192,e11k=12,所以该食品在33 ℃的保鲜时间是y =e 33k +b =(e 11k )3·e b =⎝ ⎛⎭⎪⎫123×192=24(小时).9.如图,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE =4米,CD =6米.为了合理利用这块钢板,在五边形ABCDE 内截取一个矩形BNPM ,使点P 在边DE 上.(1)设MP =x 米,PN =y 米,将y 表示成x 的函数,并求该函数的解析式及定义域;(2)求矩形BNPM 面积的最大值.解 (1)如图,作PQ ⊥AF 于点Q ,所以PQ =8-y ,EQ =x -4, 在△EDF 中,EQ PQ =EF FD, 所以x -48-y =42,所以y =-12x +10,定义域为{x |4≤x ≤8}. (2)设矩形BNPM 的面积为S ,则S (x )=xy =x ⎝ ⎛⎭⎪⎫10-x 2=-12(x -10)2+50,所以S (x )是关于x 的二次函数,且其图象开口向下,对称轴为直线x =10,所以当x ∈[4,8]时,S (x )单调递增,所以当x =8时,矩形BNPM 的面积取得最大值,最大值为48平方米.10.某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A .2018年 B .2019年 C .2020年 D .2021年答案 B解析 根据题意,知每年投入的研发资金增长的百分率相同,所以从2015年起,每年投入的研发资金组成一个等比数列{a n },其中首项a 1=130,公比q =1+12%=1.12,所以a n =130×1.12n -1.由130×1.12n -1>200,两边同时取对数,得n -1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.30-0.110.05=3.8,则n >4.8,即a 5开始超过200,所以2019年投入的研发资金开始超过200万元,故选B.11.已知一容器中有A ,B 两种菌,且在任何时刻A ,B 两种菌的个数乘积均为定值1010,为了简单起见,科学家用P A =lg n A 来记录A 菌个数的资料,其中n A 为A 菌的个数,现有以下几种说法:①P A ≥1;②若今天的P A 值比昨天的P A 值增加1,则今天的A 菌个数比昨天的A 菌个数多10;③假设科学家将B 菌的个数控制为5万,则此时5<P A <5.5(注:lg 2≈0.3). 则正确的说法为________.(写出所有正确说法的序号)答案 ③解析 当n A =1时,P A =0,故①错误;若P A =1,则n A =10,若P A =2,则n A =100,故②错误;设B 菌的个数为n B =5×104,∴n A =10105×104=2×105,∴P A=lg n A =lg 2+5.又lg 2≈0.3,∴P A ≈5.3,则5<P A <5.5,即③正确.12.某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y =f (x )的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多? 解 (1)当x ≤6时,y =50x -115, 令50x -115>0,解得x >2.3, ∵x 为整数,∴3≤x ≤6,x ∈Z .当x >6时,y =[50-3(x -6)]x -115=-3x 2+68x -115.令-3x 2+68x -115>0,有3x 2-68x +115<0,结合x 为整数得6<x ≤20,x ∈Z .∴y =⎩⎨⎧50x -1153≤x ≤6,x ∈Z ,-3x 2+68x -1156<x ≤20,x ∈Z .(2)对于y =50x -115(3≤x ≤6,x ∈Z ), 显然当x =6时,y max =185; 对于y =-3x 2+68x -115=-3⎝ ⎛⎭⎪⎫x -3432+8113(6<x ≤20,x ∈Z ),当x =11时,y max =270.∵270>185,∴当每辆自行车的日租金定为11元时,才能使一日的净收入最多.13.用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是(参考数据:lg 2≈0.3010)( )A .3B .4C .5D .6答案 B解析 设至少要洗x 次,则⎝ ⎛⎭⎪⎫1-34x ≤1100,∴x ≥1lg 2≈3.322,因此至少需要洗4次,故选B.14.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100xB .y =50x 2-50x +100C .y =50×2xD .y =100log 2x +100答案 C解析 对于A 中的函数,当x =3或4时,误差较大.对于B 中的函数,当x =4时误差较大.对于C 中的函数,当x =1,2,3时,误差为0,x =4时,误差为10,误差很小.对于D 中的函数,当x =4时,据函数式得到的结果为300,与实际值790相差很远.综上,只有C 中的函数误差最小.15.据统计,每年到鄱阳湖国家湿地公园越冬的白鹤数量y (只)与时间x (年)近似地满足关系y =a log 3(x +2),观察发现2014年(作为第1年)到该湿地公园越冬的白鹤数量为3000只,估计到2020年到该湿地公园越冬的白鹤的数量为( )A .4000只B .5000只C .6000只D .7000只答案 C 解析 当x =1时,由3000=a log 3(1+2),得a =3000,所以到2020年冬,即第7年,y =3000×log 3(7+2)=6000,故选C.15.某位股民买入某支股票,在接下来的交易时间内,他的这支股票先经历了3次涨停(每次上涨10%)又经历了3次跌停(每次下降10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .无法判断盈亏情况C .没有盈利也没有亏损D .略有亏损答案 D解析 由题意可得(1+10%)3(1-10%)3=0.993≈0.97<1.因此该股民这只股票的盈亏情况为略有亏损.16.某地区的绿化面积每年平均比上一年增长18%,经过x 年后,绿化面积与原绿化面积之比为y ,则y =f (x )的图象大致为( )答案 D解析 设某地区起始年的绿化面积为a ,因为该地区的绿化面积每年平均比上一年增长18%,所以经过x 年后,绿化面积g (x )=a (1+18%)x ,因为绿化面积与原绿化面积的比值为y ,则y =f (x )=g x a=(1+18%)x =1.18x ,因为y =1.18x 为底数大于1的指数函数,故可排除A ,C ,当x =0时,y =1,可排除B ,故选D.17.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t (单位:min)后的温度是T ,则T -T a =(T 0-T a )⎝ ⎛⎭⎪⎫12t h,其中T a 称为环境温度,h 称为半衰期,现有一杯用85 ℃热水冲的速溶咖啡,放在21 ℃的房间中,如果咖啡降到37 ℃需要16 min ,那么这杯咖啡要从37 ℃降到29 ℃,还需要________ min.答案 8解析 由题意知T a =21 ℃.令T 0=85 ℃,T =37 ℃,得37-21=(85-21)·⎝ ⎛⎭⎪⎫1216h ,∴h =8.令T 0=37 ℃,T =29 ℃,则29-21=(37-21)·⎝ ⎛⎭⎪⎫12t 8,∴t =8.18.候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q 10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于 2 m/s ,则其耗氧量至少要多少个单位?解 (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0. 当耗氧量为90个单位时,速度为1 m/s ,故a +b log 39010=1,整理得a +2b =1. 解方程组⎩⎨⎧ a +b =0,a +2b =1,得⎩⎨⎧ a =-1,b =1.(2)由(1)知,v =a +b log 3Q 10=-1+log 3Q 10.所以要使飞行速度不低于2 m/s ,则有v ≥2,所以-1+log 3Q 10≥2, 即log 3Q 10≥3,解得Q 10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.19.食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P 、种黄瓜的年收入Q 与投入a (单位:万元)满足P =80+42a ,Q =14a +120.设甲大棚的投入为x (单位:万元),每年两个大棚的总收入为f (x )(单位:万元).(1)求f (50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收入f (x )最大? 解 (1)若投入甲大棚50万元,则投入乙大棚150万元,所以f (50)=80+42×50+14×150+120=277.5. (2)由题知,f (x )=80+42x +14(200-x )+120=-14x +42x +250, 依题意得⎩⎨⎧ x ≥20,200-x ≥20,解得20≤x ≤180,故f (x )=-14x +42x +250(20≤x ≤180). 令t =x ,则t 2=x ,t ∈[25,65], y =-14t 2+42t +250=-14(t -82)2+282,当t =82,即x =128时,y 取得最大值282,所以投入甲大棚128万元,乙大棚72万元时,总收入最大,且最大收入为282万元.。
2019版高考数学大复习函数导数及其应用课时达标12函数模型及其应用
课时达标 第12讲 函数模型及其应用[解密考纲]本考点考查函数在实际生活中的应用等.在近几年的高考中选择题、填空题、解答题都出现过.选择题、填空题通常排在中间位置,解答题往往与其他知识综合考查,题目难度中等.一、选择题1.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y (单位:台)与投放市场的月数x 之间关系的是( C )A .y =100xB .y =50x 2-50x +100 C .y =50×2x D .y =100log 2x +100解析 根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得C 项正确.2.某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少( B )A .9天B .10天C .11天D .12天解析 设该厂应每隔x 天购买一次面粉,则购买量为6x 吨,由题意可知,面粉的保管等其他费用为3[6x +6(x -1)+6(x -2)+…+6×1]=9x (x +1), 设平均每天所支付的总费用为y 1元,则y 1=9xx ++900x +1 800×6=900x+9x +10 809≥2900x·9x +10 809=10 989,当且仅当9x =900x,即x =10时取等号.故该厂每隔10天购买一次面粉,才能使平均每天所支付的总费用最少.故选B . 3.国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例⎝ ⎛⎭⎪⎫缴税比例=纳税额年收入为(p +0.25)%,则该公司的年收入是( D )A .560万元B .420万元C .350万元D .320万元解析 设该公司的年收入为x 万元,纳税额为y 万元,则由题意,得y =⎩⎪⎨⎪⎧x ×p %,x ≤280,280×p %+x -p +,x >280,依题意有1x[280×p %+(x -280)×(p +2)%]=(p +0.25)%,解得x =320.4.世界人口在过去40年内翻了一番,则每年人口平均增长率是(参考数据lg 2≈0.301 0,100.007 5≈1.017)( C )A .1.5%B .1.6%C .1.7%D .1.8%解析 设每年世界人口平均增长率为x ,则(1+x )40=2,两边取以10为底的对数,则40lg(1+x )=lg 2,所以lg(1+x )=lg 240≈0.007 5,所以100.007 5=1+x ,得1+x =1.017,所以x =1.7%.5.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份( A )A .甲食堂的营业额较高B .乙食堂的营业额较高C .甲、乙两食堂的营业额相同D .不能确定甲、乙哪个食堂的营业额较高解析 设甲、乙两食堂1月份的营业额均为m ,甲食堂的营业额每月增加a (a >0),乙食堂的营业额每月增加的百分率为x ,由题意可得m +8a =m ×(1+x )8,则5月份甲食堂的营业额y 1=m +4a ,乙食堂的营业额y 2=m ×(1+x )4=mm +8a ,因为y 21-y 22=(m +4a )2-m (m +8a )=16a 2>0,所以y 1>y 2,故本年5月份甲食堂的营业额较高.6.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为( B )A .3 000元B .3 300元C .3 500元D .4 000元解析 由题意,设利润为y 元,租金定为3 000+50x 元(0≤x ≤70,x ∈N ). 则y =(3 000+50x )(70-x )-100(70-x ) =(2 900+50x )(70-x ) =50(58+x )(70-x )≤50⎝⎛⎭⎪⎫58+x +70-x 22,当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润.故选B .二、填空题7.某项研究表明,在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000vv 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为__1_900__辆/小时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加__100__辆/小时. 解析 (1)当l =6.05时, F =76 000vv 2+18v +20×6.05, ∴F =76 000v v 2+18v +121=76 000v +121v+18≤76 0002v ·121v+18=1 900,当且仅当v =121v,即v =11时取等号.∴最大车流量F 为1 900辆/小时. (2)当l =5时,F =76 000v v 2+18v +20×5=76 000v +100v+18,∴F ≤76 0002v ·100v+18=2 000,当且仅当v =100v,即v =10时取等号.∴最大车流量比(1)中的最大车流量增加2 000-1 900=100辆/小时.8.里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为__6__级;9级地震的最大振幅是5级地震最大振幅的__10_000__倍.解析 由lg 1 000-lg 0.001=6,得此次地震的震级为6级.因为标准地震的振幅为0.001,设9级地震最大振幅为A 9,则lg A 9-lg 0.001=9,解得A 9=106,同理5级地震最大振幅A 5=102,所以9级地震的最大振幅是5级地震的最大振幅的10 000倍.9.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据关系如下表.根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q 与上市时间t 的变化关系.Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t .利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是__120__; (2)最低种植成本是__80__(元/100 kg). 解析 根据表中数据可知函数不单调, 所以Q =at 2+bt +c 且开口向上, 对称轴t =-b2a=60+1802=120. 代入数据⎩⎪⎨⎪⎧3 600a +60b +c =116,10 000a +100b +c =84,32 400a +180b +c =116,得⎩⎪⎨⎪⎧b =-2.4,c =224,a =0.01,所以西红柿种植成本最低时的上市天数是120,最低种植成本是14 400a +120b +c =14 400×0.01+120×(-2.4)+224=80.三、解答题10.如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE =4米,CD =6米.为了合理利用这块钢板,在五边形ABCDE 内截取一个矩形块BNPM ,使点P 在边DE 上.(1)设MP =x 米,PN =y 米,将y 表示成x 的函数,求该函数的解析式及定义域; (2)求矩形BNPM 面积的最大值.解析 (1)作PQ ⊥AF 于Q ,所以PQ =8-y ,EQ =x -4,在△EDF 中,EQ PQ =EF FD ,所以x -48-y =42,所以y =-12x +10,定义域为{x |4≤x ≤8}.(2)设矩形BNPM 的面积为S ,则S (x )=xy =x ⎝⎛⎭⎪⎫10-x 2=-12(x -10)2+50,所以S (x )是关于x 的二次函数,且其开口向下,对称轴为x =10,所以当x ∈[4,8],S (x )单调递增,所以当x =8米时,矩形BNPM 面积取得最大值48平方米.11.(2018·甘肃会宁一中月考)某公司对营销人员有如下规定: ①年销售额x (单位:万元)在8万元以下,没有奖金;②年销售额x (单位:万元),x ∈[8,64]时,奖金为y 万元,且y =log a x ,y ∈[3,6],且年销售额越大,奖金越多;③年销售额超过64万元,按年销售额的10%发奖金. (1)求奖金y 关于x 的函数解析式;(2)若某营销人员争取奖金y ∈[4,10] (单位:万元),则年销售额x (单位:万元)在什么范围内?解析 (1)依题意,y =log a x 在x ∈[8,64]上为增函数,所以⎩⎪⎨⎪⎧log a 8=3,log a 64=6,解得a =2,所以y =⎩⎪⎨⎪⎧0,0≤x <8,log 2x ,8≤x ≤64,110x ,x >64.(2)易知x ≥8,当8≤x ≤64时,要使y ∈[4,10],则4≤log 2x ≤10,解得16≤x ≤1 024,所以16≤x ≤64;当x >64时,要使y ∈[4,10],则40≤x ≤100,所以64<x ≤100.综上所述,当年销售额x ∈[16,100](单位:万元)时,奖金y ∈[4,10](单位:万元).12.(2018·广东广州检测)某旅游景点预计2018年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似为p (x )=12x (x +1)·(39-2x )(x ∈N *,且x ≤12).已知第x 个月的人均消费额q (x )(单位:元)与x 的关系近似是q (x )=⎩⎪⎨⎪⎧35-2x ,x ∈N *,且1≤x ≤6,160x,x ∈N *,且7≤x ≤12.(1)写出2018年第x 个月的旅游人数f (x )(单位:人)与x 的函数关系式; (2)试问2018年第几个月的旅游消费总额最大?最大月旅游消费总额为多少元? 解析 (1)当x =1时,f (1)=p (1)=37,当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x-1)=12x (x +1)(39-2x )-12x (x -1)(41-2x )=-3x 2+40x ,经验证x =1时也满足此式,所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12). (2)由题意知第x 个月的旅游消费总额为g (x )=⎩⎪⎨⎪⎧-3x 2+40x -2x ,x ∈N *,且1≤x ≤6,-480x +6 400,x ∈N *,且7≤x ≤12.①当1≤x ≤6,且x ∈N *时,g ′(x )=18x 2-370x +1 400,令g ′(x )=0,解得x =5或x =1409(舍去).当1≤x ≤5时,g ′(x )≥0, 当5<x ≤6时,g ′(x )<0, ∴g (x )max =g (5)=3 125.②当7≤x ≤12,且x ∈N *时,g (x )=-480x +6 400是减函数, ∴g (x )max =g (7)=3 040.综上,2018年5月份的旅游消费总额最大,最大月旅游消费总额为3 125万元.。
2019版高考数学(理)(全国通用版)1轮复习课时分层作业: 12 2.9函数模型及其应用 Word版含解析
8.某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是________小时.
【解析】由 得e11k= .
当x=33时,y=e33k&令 =t,t∈[0,3 ],
则y= (-t2+8t+18)=- (t-4)2+ .
所以当t=4时,ymax= =8.5,
此时x=16,18-x=2.
所以当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.
1.(5分)2005年至2017年某市电影放映场次(单位:万次)的情况如图所示,下列函数模型中,最不适合近似描述这13年间电影放映场次逐年变化规律的是()
所以当x=4时,f(x)有最小值 ,
故当x=4时,关税税率有最大值为500%.
10.(2018·衡水模拟)某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).
(1)分别将A,B两种产品的利润表示为投资的函数关系式.
2.(5分)(2018·秦皇岛模拟)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9 平方米,且高度不低于 米.记防洪堤横断面的腰长为x米,外周长(梯形的上底线段BC与两腰长的和)为y米.要使防洪堤横断面的外周长不超过10.5米,则其腰长x的范围为()
(1)当0<x≤20时,求函数v关于x的函数解析式.
2019大一轮高考总复习文数北师大版课时作业提升12 函数模型及其应用 含解析 精品
课时作业提升(十二)函数模型及其应用A组夯实基础1.下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是()AC.指数函数模型D.对数函数模型解析:选A根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.2.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.在这段时间内,该车每100千米平均耗油量为()A.6 L B.8 LC.10 L D.12 L解析:选B因为每次都把油箱加满,第二次加了48 L油,说明这段时间总耗油量为48 L,而行驶的路程为35 600-35 000=600(km),故每100千米平均耗油量为48÷6=8(L).3.(2018·柳州联考)设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图像为()解析:选D y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,故排除B,故选D.4.(2018·银川月考)国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4 000元的按超过部分的14%纳税;超过4 000元的按全稿酬的11%纳税.若某人共纳税420元,则这个人的稿费为()A.3 000元B.3 800元C .3 818元D .5 600元解析:选B 由题意可建立纳税额y 关于稿费x 的函数解析式为y =⎩⎪⎨⎪⎧0,x ≤800,0.14(x -800),800<x ≤4 000,0.11x ,x >4 000.显然由0.14(x -800)=420,可得x =3 800.5.用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是(参考数据lg 2≈0.301 0)( )A .3B .4C .5D .6解析:选B 设至少要洗x 次,则⎝⎛⎫1-34x ≤1100, ∴x ≥1lg 2≈3. 322,因此需4次,故选B .6.(2018·许昌检测)某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档次产品60件,每提高一个档次将少生产3件产品,则每天获得利润最大时生产产品的档次是( )A .7B .8C .9D .10解析:选C 由题意,当生产第k 档次的产品时,每天可获得利润为y =[8+2(k -1)][60-3(k -1)]=-6k 2+108k +378(1≤k ≤10,k ∈N ),配方可得y =-6(k -9)2+864,所以当k =9时,获得利润最大.选C .7.某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为( )A .10B .11C .13D .21解析:选A 设该企业需要更新设备的年数为x ,设备年平均费用为y ,则x 年后的设备维护费用为2+4+…+2x =x (x +1),所以x 年的平均费用为y =100+0.5x +x (x +1)x =x +100x +1.5.由均值不等式得y =x +100x +1.5≥2x ·100x +1.5=21.5,当且仅当x =100x,即x =10时取等号,所以选A .8.(2018·唐山联考)拟定甲、乙两地通话m 分钟的电话费(单位:元)由f (m )=1.06(0.5[m ]+1)给出,其中m >0,[m ]是不超过m 的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为________元.解析:∵m =6.5,∴[m ]=6,则f (6.5)=1.06×(0.5×6+1)=4.24. 答案:4.249.某生产厂商更新设备,已知在未来x (x >0)年内,此设备所花费的各种费用总和y (万元)与x 满足函数关系y =4x 2+64,欲使此设备的年平均花费最低,则此设备的使用年限x 为________.解析:y x =4x +64x ≥24x ·64x =32,当且仅当4x =64x,即x =4时等号成立.答案:410.“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A (a 为常数),广告效应为D =a A -A .那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)解析:令t =A (t ≥0),则A =t 2,∴D =at -t 2=-⎝⎛⎭⎫t -12a 2+14a 2.∴当t =12a ,即A =14a 2时,D 取得最大值.答案:14a 211.(2018·昆明月考)A ,B 两城相距100 km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电总费用y 最少? 解:(1)由题意知x 的取值范围为[10,90]. (2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25 000=152⎝⎛⎭⎫x -10032+50 0003, 所以当x =1003时,y min =50 0003.故核电站建在距A 城1003km 处,能使供电总费用y 最少.12.(2018·兰州质检)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元.(1)分别写出两类产品的收益与投资额的函数关系;(2)若该家庭有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益?其最大收益是多少万元?解:(1)设两类产品的收益与投资的函数分别为f (x )=k 1x ,g (x )=k 2x . 由已知得f (1)=18=k 1,g (1)=12=k 2,所以f (x )=18x (x ≥0),g (x )=12x (x ≥0).(2)设投资债券产品为x 万元,则投资股票类产品为(20-x )万元. 依题意得y =f (x )+g (20-x )=x 8+1220-x (0≤x ≤20).令t =20-x (0≤t ≤25), 则y =20-t 28+12t =-18(t -2)2+3,所以当t =2,即x =16时,收益最大,y max =3万元.B 组 能力提升1.已知甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某商人持有资金120万元,他可以在t 1至t 4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t 4时刻卖出所有商品,那么他将获得的最大利润是( )A .40万元B .60万元C .120万元D .140万元解析:选C 甲6元时该商人全部买入甲商品,可以买120÷6=20(万份),在t 2时刻全部卖出,此时获利20×2=40万元,乙4元时该商人买入乙商品,可以买(120+40)÷4=40(万份),在t 4时刻全部卖出,此时获利40×2=80万元,共获利40+80=120万元,故选C .2.(2018·湖北八校联考)某人根据经验绘制了2018年春节前后,从12月21日至1月8日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图像,如图所示,则此人在12月26日大约卖出了西红柿________千克.解析:前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析式得⎩⎪⎨⎪⎧10=k +b ,30=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909.答案:19093.一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e-bt(cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.解析:当t =0时,y =a ,当t =8时,y =a e -8b=12a , ∴e -8b=12,容器中的沙子只有开始时的八分之一时,即y =a e -bt =18a ,e -bt =18=(e -8b )3=e-24b,则t =24,所以再经过16 min.答案:164.某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f (x )=p ·q x ;②f (x )=px 2+qx +1;③f (x )=x (x -q )2+p (以上三式中p ,q 均为常数,且q >1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)?(2)若f (0)=4,f (2)=6,求出所选函数f (x )的解析式(注:函数定义域是[0,5],其中x =0表示8月1日,x =1表示9月1日,以此类推);(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月内价格下跌.解:(1)因为上市初期和后期价格呈持续上涨态势,而中期又将出现价格连续下跌,所以在所给出的函数中应选模拟函数f (x )=x (x -q )2+p .(2)对于f (x )=x (x -q )2+p ,由f (0)=4,f (2)=6,可得p =4,(2-q )2=1, 又q >1,所以q =3,所以f (x )=x 3-6x 2+9x +4(0≤x ≤5). (3)因为f (x )=x 3-6x 2+9x +4(0≤x ≤5), 所以f ′(x )=3x 2-12x +9, 令f ′(x )<0,得1<x <3.所以函数f (x )在(1,3)内单调递减,所以可以预测这种海鲜将在9月、10月两个月内价格下跌.5.(2018·汕头模拟)某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:t)满足函数关系式C =3+x ,每日的销售额S (单位:万元)与日产量x 的函数关系式S =⎩⎪⎨⎪⎧3x +k x -8+5(0<x <6),14(x ≥6),已知每日的利润L =S -C ,且当x =2时,L =3. (1)求k 的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值. 解:(1)由题意,得L =⎩⎪⎨⎪⎧2x +k x -8+2(0<x <6),11-x (x ≥6),因为x =2时,L =3,所以3=2×2+k2-8+2.解得k =18.(2)当0<x <6时,L =2x +18x -8+2,所以L =2(x -8)+18x -8+18=-⎣⎡⎦⎤2(8-x )+188-x +18≤-22(8-x )·188-x+18=6.当且仅当2(8-x )=188-x ,即x =5时取得等号.当x ≥6时,L =11-x ≤5. 所以当x =5时,L 取得最大值6.所以当日产量为5 t 时,每日的利润可以达到最大值6万元.。
高考数学课时作业12函数模型及其应用理
幼儿园音乐活动中的情感表达策略1. 引言音乐是幼儿园教育中不可或缺的一部分,它既能培养孩子的审美情感,又能促进其身心健康的全面发展。
在幼儿园的音乐活动中,情感表达是一个重要的方面。
本文将探讨幼儿园音乐活动中的情感表达策略,包括创设情感氛围、选择合适的音乐素材、音乐表演技巧等。
2. 创设情感氛围在幼儿园音乐活动中,创设良好的情感氛围对于培养孩子的情感表达能力尤为重要。
以下是几种创设情感氛围的策略:2.1 营造温馨的环境在音乐活动场景中,可以通过布置温馨的环境来营造情感氛围。
可以挂上彩色的气球、贴上可爱的音乐符号图案,以及使用柔和的灯光等。
这些元素可以帮助孩子感受到音乐的欢乐和温暖。
2.2 创造亲密的互动教师可以利用音乐活动来创造亲密的互动,建立师生之间的情感联系。
例如,教师可以和孩子们一起唱歌、跳舞,或者通过手势和表情与孩子们进行互动。
这样可以增强孩子们的情感体验和表达能力。
3. 选择合适的音乐素材选择合适的音乐素材对于情感表达的成功至关重要。
以下是几种选择音乐素材的策略:3.1 根据情感类型选择曲调不同的曲调和音乐风格可以引发不同的情感体验。
例如,明快欢快的音乐可以让孩子们感到快乐和兴奋,而柔和抒情的音乐则可以引发孩子们内心的温暖和安静。
因此,教师可以根据活动的情感表达目标,选择适合的音乐素材。
3.2 选择具有情感意义的歌词歌曲中的歌词也是情感表达的重要部分。
选择具有情感意义的歌词可以帮助孩子们更好地理解和表达自己的情感。
例如,可以选择表达友爱、感恩、快乐等情感的歌曲,引导孩子们通过歌曲来表达自己的情感。
4. 音乐表演技巧音乐表演技巧是幼儿园音乐活动中情感表达的重要手段。
以下是几种音乐表演技巧的策略:4.1 身体语言的运用身体语言是一种非常有效的情感表达方式。
教师可以通过身体动作、姿态和面部表情来传达情感信息。
例如,在演唱快乐的歌曲时,教师可以跳跃、扭动身体,展现出愉快的情绪。
4.2 声音的运用声音也是情感表达的重要媒介。
2019高考数学(全国、理科)一轮复习课件:第12讲 函数模型及其应用
考试说明
1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上
升、指数增长、对数增长等不同函数类型增长的含义. 2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活
中普遍使用的函数模型)的广泛应用.
栏目 导引
专题一
集合、常用逻辑用语、函数与导数、不等式
教学参考
考情分析
温度 x(单位: ℃)满足函数关系 y=ekx+b(e=2.718…为自 然对数的底数,k,b 为常数).若该食品在 0 ℃的保鲜 时间是 192 小时,在 22 ℃的保鲜时间是 48 小时,则该 食品在 33 ℃的保鲜时间是________小时.
[答案] 24
[解析] 由题意得
b 192=e , 22k+b 即 48 = e ,
t t 1-
即 Q≥2 恒成立,
1 1 2 即 m· 2 +2t≥2 恒成立,即 m≥2 2t-22t
t
(t≥0,且 m>0).若物体的温度总不低于 2
恒成立. 1 令2t=x,则 0<x≤1,所以 m≥2(x-x2), 1 1 由于 x-x2≤4,所以 m≥2. 因此,当物体的温度总不低于 2 摄氏度
60t(0≤t≤2.5), [答案] S=150(2.5<t≤3.5), 325-50t(3.5<t≤6.5)
[解析] 根据速率与时间 的关系可得.
图 2121
[答案] 在[0,t0]时间段内汽车行驶的路程
栏目 导引
专题一
集合、常用逻辑用语、函数与导数、不等式
课前双基巩固
[解析] 物体的温度总不低于 2 摄氏度,
3.已知某物体的温度 Q(单位:摄氏度)随时 间 t(单位:分钟)的变化规律为 Q=m· 2 +2
高考总复习数学(文)课时作业12 函数模型及其应用.pdf
课时作业(十二) 函数模型及其应用 A 级 1.某厂日产手套总成本y(元)与手套日产量x(副)的关系式为y=5x+4 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为( ) A.200副 B.400副 C.600副 D.800副 2.某林区的森林蓄积量每年比上一年平均增长9.5%,要增长到原来的x倍,需经过y年,则函数y=f(x)图象大致为( ) 3.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差( ) A.10元 B.20元 C.30元 D.元 4.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x、y应为( ) A.x=15,y=12 B.x=12,y=15 C.x=14,y=10 D.x=10,y=14 5.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=(A,c为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是( ) A.75,25 B.75,16 C.60,25 D.60,16 6.有一批材料可以建成200 m长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的矩形(如图所示),则围成场地的最大面积为________.(围墙厚度不计) 7.某电脑公司2012年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计2014年经营总收入要达到1 690万元,且计划从2012年到2014年,每年经营总收入的年增长率相同,2013年预计经营总收入为________万元. 8.(2012·杭州模拟)生活经验告诉我们,当水注进容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在下图中请选择与容器相匹配的图象,(A)对应________;(B)对应________;(C)对应________;(D)对应________. 9.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7 000万元,则x的最小值是________. 10.某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车辆每月需要维护费50元. (1)当每辆车的月租金定为3 600元时,能租出多少辆车? (2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 11.一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.(1)求每年砍伐面积的百分比; (2)到今年为止,该森林已砍伐了多少年? B 级 1.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( ) A.略有盈利 B.略有亏损 C.没有盈利也没有亏损 D.无法判断盈亏情况 2.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(xN*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元,则y(万元)与x(件)的函数关系式为__________________,该工厂的年产量为________件时,所得年利润最大.(年利润=年销售总收入-年总投资) 3.(2012·济宁模拟)经过调查发现,某种新产品在投放市场的30天中,前20天其价格直线上升,后10天价格呈直线下降趋势.现抽取其中4天的价格如表所示: 时间第4天第12天第21天第28天价格(元)34424834(1)写出价格f(x)关于时间x的函数表达式(x表示投放市场的第x天). (2)若销售量g(x)与时间x的函数关系式为:g(x)=-x+50(1≤x≤30,xN),问该产品投放市场第几天,日销售额最高? 课时作业(十二) A 级 1.D 利润z=10x-y=10x-(5x+4 000)≥0. 解得x≥800. 2.D 依题意知,ax=a(1+9.5%)y, 所以y=log1.095x,故选D. 3.A 依题意可设sA(t)=20+kt,sB(t)=mt, 又sA(100)=sB(100),100k+20=100m,得k-m=-0.2, 于是sA(150)-sB(150)=20+150k-150m=20+150×(-0.2)=-10, 即两种方式电话费相差10元,选A. 4.A 由三角形相似得=,得x=(24-y),S=xy=-(y-12)2+180, 当y=12时,S有最大值,此时x=15. 5.D 由函数解析式可以看出,组装第A件产品所需时间为=15,故组装第4件产品所需时间为=30,解得c=60,将c=60代入=15得A=16. 6.解析: 设矩形的宽为x m. 则矩形的长为200-4x m(0<x<50), 面积S=x(200-4x)=-4(x-25)2+2 500. 故当x=25时,S取得最大值2 500(m2). 答案: 2 500 m2 7.解析: 设年增长率为x,则有×(1+x)2=1 690,1+x=,因此2013年预计经营总收入为×=1 300(万元). 答案: 1 300 8.解析: A容器下粗上细,水高度的变化先慢后快,故与(4)对应; B容器为球形,水高度变化为快—慢—快,应与(1)对应;C、D容器都是柱形的,水高度的变化速度都应是直线形,但C容器细,D容器粗,故水高度的变化为:C容器快,与(3)对应,D容器慢,与(2)对应. 答案: (4) (1) (3) (2) 9.解析: 七月份的销售额为500(1+x%),八月份的销售额为500(1+x%)2, 则一月份到十月份的销售总额是 3 860+500+2[500(1+x%)+500(1+x%)2], 根据题意有3 860+500+2[500(1+x%)+500(1+x%)2]≥7 000, 即25(1+x%)+25(1+x%)2≥66, 令t=1+x%,则25t2+25t-66≥0, 解得t≥或者t≤-(舍去), 故1+x%≥,解得x≥20.故x的最小值为20. 答案: 20 10.解析: (1)租金增加了600元,所以未租出的车有12辆,一共租出了88辆. (2)设每辆车的月租金为x元(x≥3 000),租赁公司的月收益为y元, 则y=x-×50-×150 =-+162x-21 000 =-(x-4 050)2+307 050, 当x=4 050时,ymax=307 050. 所以每辆车的月租金定为4 050元时,租赁公司的月收益最大为307 050元. 11.解析: (1)设每年降低的百分比为x(0<x<1), 则a(1-x)10=a,即(1-x)10=,解得x=1-. (2)设经过m年剩余面积为原来的,则a(1-x)m=a, 即=,=,解得m=5, 故到今年为止,该森林已砍伐了5年. B 级 1.B 设该股民购这支股票的价格为a,则经历n次涨停后的价格为a(1+10%)n=a×1.1n,经历n次跌停后的价格为a×1.1n× (1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a20时,y=260-100-x=160-x. 故y=(xN*). 当020时,160-x<140,故x=16时取得最大年利润. 答案: y=(xN*) 16 3.解析: (1)由题意知:当1≤x≤20(xN)时,f(x)=k1x+b1且f(4)=34,f(12)=42,解得f(x)=x+30. 当21≤x≤30(xN)时,f(x)=k2x+b2且f(21)=48,f(28)=34,解得f(x)=90-2x. f(x)=. (2)设销售额为y元,则 y=f(x)g(x)=. 当1≤x≤20,xN时,对称轴为x=10, 则当x=10时,ymax=1 600. 当21≤x≤30,xN时,对称轴为x=, 当x=21时,ymax=1 392. 所以当x=10时,ymax=1 600. 答:产品投放市场第10天,日销售额最高,销售额为1 600元.。
2019版高考数学(理)一轮讲义:第12讲函数模型及其应用 Word版含答案
第12讲函数模型及其应用1.三种函数模型性质比较2.几种常见的函数模型3.解决函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型.(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型.(3)解模:求解数学模型,得出数学结论.(4)还原:将数学问题还原为实际意义.1.思维辨析(在括号内打“√”或“×”).(1)函数y=2x的函数值在(0,+∞)上一定比y=x2的函数值大.(×)(2)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=x a(a>0)的增长速度.(√)(3)“指数爆炸”是指数型函数y=a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.(×)(4)指数函数模型一般用于解决变化较快,短时间内变化量较大的实际问题.(√)解析(1)错误.当x∈(0,2)和(4,+∞)时,2x>x2,当x∈(2,4)时,x2>2x.(2)正确.由两者的图象易知.(3)错误.增长越来越快的指数型函数是y=a·b x+c(a>0,b>1).(4)正确.根据指数函数y=a x(a>1)的函数值增长特点易知.2.已知f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是(B)A.f(x)>g(x)>h(x)B.g(x)>f(x)>h(x)C.g(x)>h(x)>f(x)D.f(x)>h(x)>g(x)解析由图象知,当x∈(4,+∞)时,增长速度由大到小依次为g(x)>f(x)>h(x).3.在某个物理实验中,测量得变量x和变量y的几组数据,如下表.则x,y最适合的函数的是(D)A.y=2x B.y=x2-1C.y=2x-2D.y=log2x解析根据x=0.50,y=-0.99,代入计算,可以排除A项;将x=2.01,y=0.98代入计算,可以排除B项,C项;将各数据代入函数y=log2x,可知满足题意,故选D.4.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为下图中的(B)解析 由题意知h =20-5t (0≤t ≤4),故选B .5.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C (x )=12x 2+2x +20(万元).一万件售价是20万元,为获取最大利润,该企业一个月应生产该商品数量为( B )A .36万件B .18万件C .22万件D .9万件解析 利润L (x )=20x -C (x )=-12(x -18)2+142,当x =18时,L (x )有最大值.一 二次函数模型在建立二次函数模型解决实际问题中的最优问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解,解决函数应用问题时,最后还要还原到实际问题.【例1】 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似的表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品的价值为100元.则该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?解析 设该单位每月获利为S ,则S =100x -y =100x -⎝⎛⎭⎫12x 2-200x +80 000 =-12x 2+300x -80 000=-12(x -300)2-35 000,因为400≤x ≤600,所以当x =400时,S 有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损.二 指数函数、对数函数模型一般地,涉及增长率问题、存蓄利息问题、细胞分裂问题等,都可以考虑用指数函数的模型求解.求解时注意指数式与对数式的互化、指数函数值域的影响以及实际问题中的条件限制.【例2】 (1)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( C )A .16小时B .20小时C .24小时D .28小时(2)(2016·四川卷)某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( B )A .2018年B .2019年C .2020年D .2021年解析 (1)由已知条件,得192=e b ,∴b =ln 192. 又∵48=e 22k +b =e 22k +ln 192=192e 22k =192(e 11k )2,∴e 11k =⎝⎛⎭⎫4819212 =⎝⎛⎭⎫1412 =12.设该食品在33℃的保鲜时间是t 小时, 则t =e 33k+ln 192=192e 33k =192(e 11k )3=192×⎝⎛⎭⎫123=24.(2)设第n (b ∈N *)年该公司年投入的研发资金开始超过200万元.根据题意得130(1+12%)n -1>200,则lg[130(1+12%)n -1]>lg 200,∴lg 130+(n -1)lg 1.12>lg 2+2, ∴2+lg 1.3+(n -1)lg 1.12>lg 2+2,∴0.11+(n -1)×0.05>0.30,解得n >245,又∵n ∈N *,∴n ≥5,∴该公司全年投入的研发资金开始超过200万元的年份是2019年,故选B .三 分段函数模型(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.【例3】 已知某公司生产某品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎨⎧10.8-130x 2,0<x ≤10,108x -1 0003x 2,x >10.(1)写出年利润W (万元)关于年产品x (千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?(注:年利润=年销售收入-年总成本)解析 (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10;当x >10时,W =xR (x )-(10+2.7x )=98-1 0003x-2.7x .∴W =⎩⎨⎧8.1x -x 330-10,0<x ≤10,98-1 0003x-2.7x ,x >10.(2)①当0<x ≤10时,令W ′=8.1-x 210=0,得x =9,可知当x ∈(0,9)时,W ′>0,当x∈(9,10]时,W ′<0,∴当x =9时,W 取极大值,即最大值, 且W max =8.1×9-130×93-10=38.6.②当x >10时,W =98-⎝⎛⎭⎫1 0003x +2.7x ≤98-21 0003x ·2.7x =38,当且仅当1 0003x=2.7x ,即x =1009时,W =38,故当x =1009时,W 取最大值38(当1 000x 取整数时,W 一定小于38).综合①②知,当x =9时,W 取最大值,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.四 函数y =x +ax(a >0)模型函数y =x +ax (a >0)在[-a ,0)和(0,a ]上单调递减,在(-∞,-a ]和[a ,+∞)上单调递增(函数单调性定义法、导数方法均可证明),如图所示,函数图象无限趋近于直线y=x,但永不相交.当a在函数的定义域内时,可以使用基本不等式求最小值,当a不在函数的定义域内时,根据函数的单调性求最小值.【例4】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热厚度x(单位:cm)满足关系C(x)=k 3x+5(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.解析(1)由已知得C(0)=8,则k=40,因此f(x)=6x+20C(x)=6x+8003x+5(0≤x≤10).(2)f(x)=6x+10+8003x+5-10≥2(6x+10)·8003x+5-10=70(万元),当且仅当6x+10=8003x+5,即x=5时等号成立.所以当隔热层厚度为5 cm时,总费用f(x)达到最小值,最小值为70万元.1.李华经营了甲、乙两家电动轿车销售连锁店,其月利润(单位:元)分别为L1=-5x2+900x-16 000,L2=300x-2 000(其中x为销售辆数),若某月两连锁店共销售了110辆,则能获得的最大利润为(C)A.11 000元B.22 000元C.33 000元D.40 000元解析设甲连锁店销售x辆,则乙连锁店销售(110-x)辆,故利润L=-5x2+900x-16 000+300(110-x)-2 000=-5x2+600x+15 000=-5(x-60)2+33 000,所以当x=60时,有最大利润33 000元,故选C.2.国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4 000元的按超过部分的14%纳税;超过4 000元的按全部稿费的11%纳税.某人出版了一本书共纳税420元,则他的稿费为(B)A.3 000元B.3 800元C.3 818元D.5 600元解析根据题意,若稿费为4 000元,则纳税部分是3 200元,纳税3 200×14%=448(元),超过了420元,所以他的稿费不足4 000元.根据题意可知其稿费应该为420÷14%+800=3 800(元),故选B.3.某汽车运输公司购买了一批豪华大客车投入客运,据市场分析,每辆客车营运的总利润y (万元)与营运年数x 的关系如图所示(抛物线的一段),则为使其营运年平均利润最大,每辆客车营运年数为( C )A .3B .4C .5D .6解析 由题图,易求得y 与x 的关系式为y =-(x -6)2+11,yx =12-⎝⎛⎭⎫x +25x ≤12-10=2,∴yx有最大值2,此时x =5.4.国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,每人需交费用为900元;若旅行团人数多于30人,则给予优惠:每多1人,人均费用减少10元,直到达到规定人数75人为止.旅行社需支付各种费用共计15 000元.(1)写出每人需交费用y 关于人数x 的函数; (2)旅行团人数为多少时,旅行社可获得最大利润?解析 (1)设旅行团人数为x 人,由题意得0<x ≤75,需交费用为y 元,则y =⎩⎪⎨⎪⎧ 900,0<x ≤30,900-10(x -30),30<x ≤75,即y =⎩⎪⎨⎪⎧900,0<x ≤30,1 200-10x ,30<x ≤75.(2)设利润为W ,则W =xy -15 000=⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,(1 200-10x )x -15 000,30<x ≤75,当x ∈(30,75]时,W =-10(x -60)2+21 000≤21 000, ∴每团人数为60人时,旅行社可获得最大利润21 000元.易错点 函数应用问题错因分析:(1)题意理解偏差,数学模型应用不准确;(2)数学计算不准,回答问题不合实际含义.【例1】 已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万美元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x-40 000x 2,x >40.(1)写出年利润W (万元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.解析 (1)当0<x ≤40时,W =xR (x )-(16x +40)=-6x 2+384x -40; 当x >40时,W =xR (x )-(16x +40)=-40 000x -16x +7 360.所以W =⎩⎪⎨⎪⎧-6x 2+384x -40,0<x ≤40,-40 000x -16x +7 360,x >40.(2)①当0<x ≤40时,W =-6(x -32)2+6 104, 所以W max =W (32)=6 104;②当x >40时,W =-40 000x -16x +7 360,由于40 000x+16x ≥240 000x×16x =1 600, 当且仅当40 000x =16x ,即x =50∈(40,+∞),取等号,所以W 取最大值为5 760.综合①②知,当年产量为32万部时,取得最大利润为6 104万美元.【跟踪训练1】 已知某厂固定成本为3万元,该工厂每生产100台某产品的生产成本为2万元,设生产该产品x (x ∈N ,单位:百台),其总成本为g (x )万元(总成本=固定成本+生产成本),并且销售收入r (x )满足r (x )=⎩⎪⎨⎪⎧-0.5x 2+8x ,0≤x ≤7,24.5+x ,x >7,假定该产品产销平衡,根据上述统计规律求:(1)要使工厂有盈利,生产数量x 应控制在什么范围? (2)工厂生产多少台产品时盈利最大? 解析 依题意,g (x )=2x +3, 设利润为f (x ),则f (x )=r (x )-g (x )=⎩⎪⎨⎪⎧-0.5x 2+6x -3,0≤x ≤7,21.5-x ,x >7.(1)要使工厂有盈利,则有f (x )>0, 当0≤x ≤7时,f (x )=-0.5x 2+6x -3>0,即x 2-12x +6<0⇔6-30<x <6+30,∴6-30<x ≤7;当x >7时,21.5-x >0,∴7<x <21.5, 又x ∈N ,∴1≤x ≤21,故产品数量应控制在大于等于100台小于等于2 100台的范围内. (2)当1≤x ≤7时,f (x )=-0.5(x -6)2+15,f (x )max =f (6)=15; 当8≤x ≤21时,f (x )=21.5-x ,f (x )max =f (8)=13.5, 故当工厂生产600台产品时,盈利最大.课时达标 第12讲[解密考纲]本考点考查函数在实际生活中的应用等.在近几年的高考中选择题、填空题、解答题都出现过.选择题、填空题通常排在中间位置,解答题往往与其他知识综合考查,题目难度中等.一、选择题1.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( C )A .y =100xB .y =50x 2-50x +100C .y =50×2xD .y =100log 2x +100解析 根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得,应选C .2.某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少( B )A .9天B .10天C .11天D .12天解析 设该厂应每隔x 天购买一次面粉,则购买量为6x 吨,由题意可知,面粉的保管等其他费用为3[6x +6(x -1)+6(x -2)+…+6×1]=9x (x +1), 设平均每天所支付的总费用为y 1元,则y 1=9x (x +1)+900x +1 800×6=900x +9x +10 809≥2900x·9x +10 809=10 989, 当且仅当9x =900x,即x =10时取等号.即该厂每隔10天购买一次面粉,才能使平均每天所支付的总费用最少,故选B .3.国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( D )A .560万元B .420万元C .350万元D .320万元解析 设该公司的年收入为x 万元,纳税额为y 万元,则由题意,得y =⎩⎪⎨⎪⎧x ×p %,x ≤280,280×p %+(x -280)×(p +2)%,x >280, 依题意有,280×p %+(x -280)×(p +2)%x =(p +0.25)%,解得x =320(万元).4.世界人口在过去40年内翻了一番,则每年人口平均增长率是(参考数据lg 2≈0.301 0,100.007 5≈1.017)( C )A .1.5%B .1.6%C .1.7%D .1.8%解析 设每年世界人口平均增长率为x ,则(1+x )40=2,两边取以10为底的对数,则40lg(1+x )=lg 2,所以lg(1+x )=lg 240≈0.007 5,所以100.007 5=1+x ,得1+x =1.017,所以x =1.7%.5.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份( A )A .甲食堂的营业额较高B .乙食堂的营业额较高C .甲、乙两食堂的营业额相同D .不能确定甲、乙哪个食堂的营业额较高解析 设甲、乙两食堂1月份的营业额均为m ,甲食堂的营业额每月增加a (a >0),乙食堂的营业额每月增加的百分率为x ,由题意可得,m +8a =m ×(1+x )8,则5月份甲食堂的营业额y 1=m +4a ,乙食堂的营业额y 2=m ×(1+x )4=m (m +8a ),因为y 21-y 22=(m +4a )2-m (m +8a )=16a 2>0,所以y 1>y 2,故本年5月份甲食堂的营业额较高.6.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为( B )A .3 000元B .3 300元C .3 500元D .4 000元解析 由题意,设租金定为(3 000+50x )元(0≤x ≤70,x ∈N ). 则利润为y ,y =(3 000+50x )(70-x )-100(70-x ) =(2 900+50x )(70-x ) =50(58+x )(70-x )≤50⎝⎛⎭⎫58+x +70-x 22,当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B .二、填空题7.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,则截取的矩形面积的最大值为__180__.解析 依题意知:20-x x =y -824-y ,即x =54(24-y ),y ∈[8,24),∴阴影部分的面积S =xy =54(24-y )y =54(-y 2+24y ),∴当y =12时,S 有最大值为180.8.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的矩形(如图所示),则围成场地的最大面积为__2_500_m 2__(围墙厚度不计).解析 设矩形场地的宽度为x m ,则矩形场地的长为(200-4x )m ,面积S =x (200-4x )=-4(x -25)2+ 2 500.故当x =25时,S 取得最大值2 500,即围成场地的最大面积为2 500 m 2.9.(2018·山东潍坊模拟)某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据关系如下表.根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q 与上市时间t 的变化关系.Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t , 利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是__120__. (2)最低种植成本是__80__元/100 kg. 解析 根据表中数据可知函数不单调,所以Q =at 2+bt +c 且开口向上,对称轴t =-b 2a =60+1802=120.代入数据⎩⎪⎨⎪⎧3 600a +60b +c =116,10 000a +100b +c =84,32 400a +180b +c =116,得⎩⎪⎨⎪⎧b =-2.4,c =224,a =0.01,所以西红柿种植成本最低时的上市天数是120,最低种植成本是14 400a +120b +c =14 400×0.01+120×(-2.4)+224=80.三、解答题10.某产品原来的成本为1 000元/件,售价为1 200元/件,年销售量为1万件,由于市场饱和,顾客要求提高,公司计划投入资金进行产品升级.据市场调查,若投入x 万元,每件产品的成本将降低34x 元,在售价不变的情况下,年销售量将减少2x 万件,按上述方式进行产品升级和销售,扣除产品升级资金后的纯利润记为f (x )(单位:万元).(1)求f (x )的函数解析式;(2)求f (x )的最大值,以及f (x )取得最大值时x 的值.解析 (1)依题意,产品升级后,每件的成本为⎝⎛⎭⎫1 000-3x 4元,利润为⎝⎛⎭⎫200+3x4元,年销售量为⎝⎛⎭⎫1-2x 万件, 纯利润为f (x )=⎝⎛⎭⎫200+3x 4⎝⎛⎭⎫1-2x -x =198.5-400x -x4. (2)f (x )=198.5-400x -x4≤198.5-2×400x ×x 4=178.5,当且仅当400x =x4, 即x =40时等号成立.所以f (x )取最大值时的x 的值为40.11.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y 元,已知甲、乙两户该月用水量分别为5x 吨,3x 吨.(1)求y 关于x 的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费. 解析 (1)当甲的用水量不超过4吨时,即5x ≤4,乙的用水量也不超过4吨,y =1.8(5x +3x )=14.4x ;当甲的用水量超过4吨,乙的用水量不超过4吨,即3x ≤4<5x 时, y =4×1.8+3x ×1.8+3(5x -4)=20.4x -4.8. 当乙的用水量超过4吨,即3x >4时,y =2×4×1.8+3×[(3x -4)+(5x -4)]=24x -9.6.所以y =⎩⎪⎨⎪⎧14.4x ,0≤x ≤45,20.4x -4.8,45<x ≤43,24x -9.6,x >43.(2)由于y =f (x )在各段区间上均单调递增,当x ∈⎣⎡⎦⎤0,45时,y ≤f ⎝⎛⎭⎫45<26.4; 当x ∈⎝⎛⎦⎤45,43时,y ≤f ⎝⎛⎭⎫43<26.4; 当x ∈⎝⎛⎭⎫43,+∞时,令24x -9.6=26.4,解得x =1.5.所以甲户用水量为5x =7.5吨,付费S 1=4×1.8+3.5×3=17.70(元); 乙户用水量为3x =4.5吨,付费S 2=4×1.8+0.5×3=8.70(元).12.(2018·湖北重点中学起点考试)A ,B 两城相距100 km ,在两城之间距A 城x km 处建一核电站为A ,B 两城供电,为保证城市安全,核电站与城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距离A 城多远处,才能使供电总费用y 最少? 解析 (1)由题意得,x 的取值范围是{x |10≤x ≤90}. (2)由题易知y =5x 2+52(100-x )2=152x 2-500x +25 000(10≤x ≤90). (3)因为y =152⎝⎛⎭⎫x -10032+50 0003, 所以当x =1003时,y min =50 0003,100故核电站建在距A城3km处,能使供电总费用y最小.。
2019高三数学文二轮复习查漏补缺课时练习(十二)第12讲函数模型及其应用含答案解析
课时作业(十二)第12讲函数模型及其应用时间/45分钟分值/100分基础热身1.下列函数中,随x的增大,y的增大速度最快的是()A.y=1000×2xB.y=1000log2xC.y=x1000D.y=1000×(32) x2.用长度为24米的材料围成一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为()A.8米B.6米C.4米D.3米3.在某个物理实验中,测量得到变量x和变量y的几组数据如下表:x0.500.992.013.98y-0.990.010.982.00则对x,y最适合的拟合函数是()A.y=2xB.y=x2-1C.y=log2xD.y=2x-24.某市出租车的车费计算方法如下:路程在3 km以内(含3 km)为8元,达到3 km后,每增加1 km加收1.4元,达到8 km后,每增加1 km加收2.1元,增加不足1 km按四舍五入计算.若某乘客乘坐该市出租车交了44.4元车费,则该乘客乘坐出租车行驶的路程可以是()A.22 kmB.24 kmC.26 kmD.28 km5.拟定甲、乙两地通话m分钟的电话费(单位:元)由f(m)=1.06×(0.5×[m]+1)给出,其中m>0,[m]是不超过m的最大整数(如[3]=3,[3.9]=3,[3.01]=3),则甲、乙两地通话6.5分钟的电话费为元.能力提升6.我国古代数学名著《九章算术》有“米谷粒分”题:发仓募粮,所募粒中秕不百三则收之(不超过3%).现抽样取米一把,取得235粒米中夹秕n粒,若这批米合格,则n不超过()A.6B.7C.8D.97.我国某部门为尽快稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图K12-1所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是()ABCD图K12-18.某产品的总成本y(万元)与产量x(台)之间满足函数关系式y=3000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,所有生产出来的产品都能卖完,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A.100台B.120台C.150台D.180台9.设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t(t>0)万元.公司决定从原有员工中分流x(0<x<100,x ∈N*)人去从事产品B的生产,分流后,继续从事产品A生产的员工平均每人每年创造产值在原有的基础上增长了1.2x%.若要保证产品A的年产值不减少,则最多能分流的人数是()A.15B.16C.17D.1810.国家对某行业征税的规定如下:年收入在280万元及以下部分的税率为p%,超过280万元的部分按(p+2)%征税.有一公司的实际缴税比例为(p+0.25)%,则该公司的年收入是()A.560万元B.420万元C.350万元D.320万元图K12-211.某厂有许多形状为直角梯形的铁皮边角料(如图K12-2),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,则截取的矩形面积的最大值为.12.某化工厂打算投入一条新的生产线,但需要经环保部门审批后方可投入生产.已知该生产线连续生产n(n∈N*)年的累计n(n+1)(2n+1),当年产量超过150吨时,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产量(单位:吨)为f(n)=12产线拟定最长的生产期限是年.13.某食品的保鲜时间y(单位:h)与储藏温度x(单位:℃)满足函数关系式y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192 h,在22 ℃的保鲜时间是48 h,则该食品在33 ℃的保鲜时间是h.14.(10分)某地上年度电价为0.8元/千瓦时,年用电量为1亿千瓦时.本年度计划将电价调至0.55~0.75元/千瓦时,经测算,若电价调至x元/千瓦时,本年度新增用电量为y亿千瓦时,则y与(x-0.4)成反比例.又当x=0.65时,y=0.8.(1)求y与x之间的函数关系式.(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?(收益=用电量×(实际电价-成本价))15.(10分)一片森林原来的面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到森林剩余面积为原面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的√22.(1)求每年砍伐面积的百分比.(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?难点突破16.(15分)某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益(单位:万元)的范围是[10,100].现准备制定一个对科研课题组的奖励方案,要求奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过5万元,同时奖金不超过投资收益的20%.(1)该公司为制定奖励方案,现建立函数模型y=f(x),请你根据题意,写出函数模型应满足的条件.(2)现有两个函数模型:①y=120x+1;②y=log2x-2.试分析这两个函数模型是否符合公司要求.课时作业(十二)1.A[解析]在对数函数、幂函数、指数函数中,指数函数的增大速度最快,故排除B,C;指数函数中,底数越大,函数的增大速度越快,故选A.2.D[解析]设隔墙的长度为x(0<x<6)米,矩形的面积为y平方米,则y=x×24−4x2=2x(6-x)=-2(x-3)2+18,所以当x=3时,y取得最大值.故选D.3.C[解析]将x=0.50,y=-0.99代入计算,可以排除A;将x=2.01,y=0.98代入计算,可以排除B,D;将各组数据代入函数y=log2x,可知满足题意.故选C.4.A[解析]设该乘客乘坐出租车行驶的路程为x km.根据题意可得8+1.4×5+2.1×(x-8)=44.4,解得x=22.故选A.5.4.24[解析]因为m=6.5,所以[m]=6,则f(6.5)=1.06×(0.5×6+1)=4.24.6.B[解析]由题意得,n235≤3%,解得n≤7.05,所以若这批米合格,则n不超过7.7.B [解析] 单位时间的运输量逐步提高时,运输总量的增长速度越来越快,即图像在某点的切线的斜率随着自变量的增加会越来越大,故函数图像应一直是下凹的.故选B .8.C [解析] 设利润为f (x )万元,则f (x )=25x-(3000+20x-0.1x 2)=0.1x 2+5x-3000≥0,得x ≥150,所以生产者不亏本时的最低产量为150台.故选C .9.B [解析] 由题意,分流前产品A 的年产值为100t 万元,分流x 人后,产品A 的年产值为(100-x )(1+1.2x %)t 万元,则由{0<x <100,x ∈N *,(100-x)(1+1.2x%)t ≥100t,解得0<x ≤503,且x ∈N *,所以x 的最大值为16.故选B .10.D [解析] 设该公司的年收入为x 万元,纳税额为y 万元,则由题意得y={x ·p%,x ≤280,280·p%+(x -280)·(p +2)%,x >280,依题有280·p%+(x -280)·(p+2)%x=(p+0.25)%,解得x=320.故选D .11.180 [解析] 依题意知20−x 20=y -824−8,即x=54(24-y ),所以阴影部分的面积S=xy=54(24-y )·y=54(-y 2+24y )=-54(y-12)2+180,0<y<24,所以当y=12时,S 取得最大值180.12.7 [解析] 设第n (n ∈N *)年的年产量(单位:吨)为a n ,则a 1=12×1×2×3=3.当n ≥2时,a n =f (n )-f (n-1)=12n (n+1)(2n+1)-12n (n-1)(2n-1)=3n 2,又a 1=3也符合a n =3n 2,所以a n =3n 2(n ∈N *).令a n ≤150,即3n 2≤150,解得-5√2≤n ≤5√2,所以1≤n ≤7,n ∈N *,故最长的生产期限为7年. 13.24 [解析] 由已知条件,得192=e b,且48=e22k+b=e b ·(e 11k )2,所以e11k=(48192)12=(14)12=12,设该食品在33 ℃的保鲜时间是t h ,则t=e 33k+b =192e 33k =192·(e 11k )3=192×(12)3=24. 14.解:(1)因为y 与(x-0.4)成反比例,所以设y=kx -0.4(k ≠0,0.55≤x ≤0.75). 把x=0.65,y=0.8代入上式,得0.8=k0.65−0.4,得k=0.2.所以y=0.2x -0.4=15x -2, 即y 与x 之间的函数关系式为y=15x -2(0.55≤x ≤0.75). (2)根据题意,得(1+15x -2)·(x-0.3)=1×(0.8-0.3)×(1+20%), 整理得x 2-1.1x+0.3=0,解得x=0.5或x=0.6. 经检验0.5,0.6都是所列方程的根. 因为0.55≤x ≤0.75,所以x=0.5不符合题意,应舍去,所以x=0.6.所以当电价调至每千瓦时0.6元时,本年度电力部门的收益将比上年度增加20%. 15.解:(1)设每年砍伐面积的百分比为x (0<x<1), 则a (1-x )10=12a ,即(1-x )10=12, 解得x=1-(12)110.故每年砍伐面积的百分比为1-(12)110.(2)设经过m年剩余面积为原来的√22,则a(1-x)m=√22a,即(12)m10=(12)12,即m10=12,解得m=5.故到今年为止,已砍伐了5年.(3)设从今年开始,最多还能砍伐n年,则n年后剩余面积为√22a(1-x)n.令√22a(1-x)n≥14a,即(1-x)n≥√24,即(12)n10≥(12)32,即n10≤32,解得n≤15,故今后最多还能砍伐15年.16.解:(1)由题知,函数模型y=f(x)满足的条件是:(i)当x∈[10,100]时,f(x)是增函数;(ii)当x∈[10,100]时,f(x)≤5恒成立;(iii)当x∈[10,100]时,f(x)≤x5恒成立.(2)对于函数模型①y=120x+1,它在[10,100]上是增函数,满足条件(i);但当x=80时,y=5,因此,当x>80时,y>5,不满足条件(ii).故该函数模型不符合公司要求.对于函数模型②y=log2x-2,它在[10,100]上是增函数,满足条件(i);当x=100时,y max=log2100-2=2log25<5,即f(x)≤5恒成立,满足条件(ii);设h(x)=log2x-2-15x,则h'(x)=log2ex-15,因为x∈[10,100],所以1100≤1x≤110,所以h'(x)≤log2e10-15<210-15=0,所以h(x)在[10,100]上是减函数,因此,h(x)≤h(10)=log210-4<0,即f(x)≤x5恒成立,满足条件(iii).所以该函数模型符合公司要求.综上,对数函数模型y=log2x-2符合公司要求.。
[精品]2019届高考数学一轮复习配餐作业12函数模型及其应用含解析理94
配餐作业(十二) 函数模型及其应用(时间:40分钟)一、选择题1.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100xB .y =50x 2-50x +100 C .y =50×2xD .y =100log 2x +100解析 根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得,故选C 。
答案 C2.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( )A .118元B .105元C .106元D .108元解析 设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108。
故选D 。
答案 D3.物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案。
据预测,这四种方案均能在规定的时间T 内完成预测的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )解析 选项B 中,Q 的值随t 的变化越来越快。
故选B 。
答案 B4.(2017·北京模拟)某地区的绿化面积每年平均比上一年增长18%,经过x 年,绿化面积与原绿化面积之比为y ,则y =f (x )的图象大致为( )解析 设某地区起始年的绿化面积为a ,因为该地区的绿化面积每年平均比上一年增长18%,所以经过x 年,绿化面积g (x )=a (1+18%)x, 因为绿化面积与原绿化面积之比为y , 则y =f (x )=g x a=(1+18%)x =1.18x, 因为y =1.18x为底数大于1的指数函数,故可排除C ,当x =0时,y =1,可排除A ,B ,故选D 。
高中数学课时作业:函数模型及应用
课时作业12函数模型及应用一、选择题1.下表显示出函数值y 随自变量x 变化的一组数据,由此判断它最可能的函数模型是( A ) x4 5 6 7 8 9 10 y 15 17 19 21 23 25 27 A.C .指数函数模型 D .对数函数模型解析:由表中数据知x ,y 满足关系y =13+2(x -3).故为一次函数模型.2.某文具店出售羽毛球拍和羽毛球,球拍每副定价20元,羽毛球每个定价5元,该店制定了两种优惠方法:①买一副球拍赠送一个羽毛球;②按总价的92%付款.现某人计划购买4副球拍和30个羽毛球,两种方法中,更省钱的一种是( D )A .不能确定B .①②同样省钱C .②省钱D .①省钱解析:方法①用款为4×20+26×5=80+130=210(元),方法②用款为(4×20+30×5)×92%=211.6(元),因为210<211.6,故方法①省钱.3.一个人以6 m/s 的速度去追停在交通灯前的汽车,当他离汽车25 m 时,交通灯由红变绿,汽车以1 m/s 2的加速度匀加速开走,那么( D )A .人可在7 s 内追上汽车B .人可在10 s 内追上汽车C .人追不上汽车,其间距最少为5 mD .人追不上汽车,其间距最少为7 m解析:设汽车经过t 秒行驶的路程为s 米,则s =12t 2,车与人的间距d =(s +25)-6t =12t 2-6t +25=12(t -6)2+7,当t =6时,d 取得最小值为7.4.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( D )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-1解析:设第一年年初生产总值为1,则这两年的生产总值为(p +1)(q +1).设这两年生产总值的年平均增长率为x ,则(1+x )2=(p +1)(q +1),解得x =(p +1)(q +1)-1.故选D.5.李冶(1192—1279),真定栾城(今河北省石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)( B )A .10步,50步B .20步,60步C .30步,70步D .40步,80步解析:设圆池的半径为r 步,则方田的边长为(2r +40)步,由题意,得(2r +40)2-3r 2=13.75×240,解得r =10或r =-170(舍),所以圆池的直径为20步,方田的边长为60步.故选B.6.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t 30 ,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln2(太贝克/年),则M (60)=( D )A .5太贝克B .75ln 2太贝克C .150ln 2太贝克D .150太贝克 解析:由题意M ′(t )=M 02-t 30 ⎝ ⎛⎭⎪⎫-130ln2,M ′(30)=M 02-1×⎝ ⎛⎭⎪⎫-130ln2=-10ln2,∴M 0=600,∴M (60)=600×2-2=150.故选D.二、填空题7.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是108元.解析:设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.8.某人根据经验绘制了2017年春节前后,从1月21日至2月8日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象,如图所示,则此人在1月26日大约卖出了西红柿1909千克.解析:前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析式得⎩⎪⎨⎪⎧10=k +b ,30=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909.9.已知某驾驶员喝了m 升酒后,血液中酒精的含量f (x )(毫克/毫升)随时间x (小时)变化的规律近似满足表达式f (x )=⎩⎨⎧ 5x -2,0≤x ≤1,35·⎝ ⎛⎭⎪⎫13x ,x >1,《酒后驾车与醉酒驾车的标准及相应的处罚》规定:驾驶员血液中酒精含量应不超过0.02毫克/毫升.则此驾驶员至少要过4小时后才能开车.(精确到1小时)解析:驾驶员醉酒1小时血液中酒精含量为5-1=0.2,要使酒精含量≤0.02毫克/毫升,则35⎝ ⎛⎭⎪⎫13x ≤0.02,∴x ≥log 330=1+log 310>1+log 39=3,故至少要4个小时后才能开车.三、解答题10.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为y =x 25-48x +8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解:(1)每吨平均成本为y x (万元).则y x =x 5+8 000x -48≥2x 5·8 000x -48=32,当且仅当x 5=8 000x ,即x =200时取等号.所以年产量为200吨时,每吨产品的平均成本最低,为32万元.(2)设年获得总利润为R (x )万元,则R (x )=40x -y =40x -x 25+48x -8 000=-x 25+88x -8 000=-15(x -220)2+1 680(0≤x ≤210).因为R (x )在[0,210]上是增函数,所以x =210时,R (x )有最大值,为-15(210-220)2+1 680=1 660.所以年产量为210吨时,可获得最大利润1 660万元.11.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超过4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.(1)写出每户每月用水量x (吨)与支付费用y (元)的函数关系;(2)该地一家庭记录了去年12个月的月用水量(x ∈N *)如下表:);(3)今年干旱形势仍然严峻,该地政府号召市民节约用水,如果每个月水费不超过12元的家庭称为“节约用水家庭”,随机抽取了该地100户的月用水量作出如下统计表:解:(1)y关于x的函数关系式为y=⎩⎪⎨⎪⎧2x,0≤x≤4,4x-8,4<x≤6,6x-20,x>6.(2)由(1)知:当x=3时,y=6;当x=4时,y=8;当x=5时,y=12;当x=6时,y=16;当x=7时,y=22.所以该家庭去年支付水费的月平均费用为112×(6×1+8×3+12×3+16×3+22×2)≈13(元).(3)由(1)和题意知:当y≤12时,x≤5,所以“节约用水家庭”的频率为77100=77%,据此估计该地“节约用水家庭”的比例为77%.12.(2017·北京卷)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.①记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是Q1;②记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是p2.解析:①设线段A i B i的中点为C i(x i,y i),则Q i=2y i(i=1,2,3).因此只需比较C1,C2,C3三个点纵坐标的大小即可.不难发现y1最大,所以Q1最大.②由题意,知p i=y ix i(i=1,2,3).故只需比较三条直线OC1,OC2,OC3的斜率即可,发现p2最大.13.牛奶保鲜时间因储藏时温度的不同而不同.假定保鲜时间y(单位:h)与储藏温度x (单位:℃)间的关系为指数型函数y =k ·a x (k ≠0).若牛奶在0 ℃的冰箱中,保鲜时间约是192 h,而在22 ℃的厨房中,保鲜时间约是42 h.(1)写出保鲜时间y 关于储藏温度x 的函数解析式.(2)如果把牛奶分别储藏在10 ℃和5 ℃的两台冰箱中,哪一台冰箱储藏牛奶保鲜时间较长?为什么?(参考数据:22732≈0.93)解:(1)保鲜时间y 与储藏温度x 间的关系符合指数型函数y =k ·a x (k ≠0),则⎩⎪⎨⎪⎧ ka 0=192,ka 22=42,解得⎩⎪⎨⎪⎧ k =192,a =22732≈0.93,故所求函数解析式为y =192×0.93x .(2)设f (x )=192×0.93x ,因为f (x )是减函数,且10>5,所以f (10)<f (5),所以把牛奶储藏在5 ℃的冰箱中,牛奶保鲜时间较长.尖子生小题库——供重点班学生使用,普通班学生慎用14.我们定义函数y =[x ]([x ]表示不大于x 的最大整数)为“下整函数”;定义y ={x }({x }表示不小于x 的最小整数)为“上整函数”;例如[4.3]=4,[5]=5;{4.3}=5,{5}=5.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为x 小时,则李刚应付费为(单位:元)( C )A .2[x +1]B .2([x ]+1)C .2{x }D .{2x }解析:如x =1时,应付费2元,此时2[x +1]=4,2([x ]+1)=4,排除A 、B ;当x =0.5时,付费为2元,此时{2x }=1,排除D,故选C.15.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:时间t60 100 180 种植成本Q116 84 116 Q 与上市时间t 的变化关系.Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t .利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是120;(2)最低种植成本是80(元/100 kg).解析:根据表中数据可知函数不单调,所以Q =at 2+bt +c ,且开口向上,对称轴t =-b 2a =60+1802=120,代入数据⎩⎪⎨⎪⎧ 3 600a +60b +c =116,10 000a +100b +c =84,32 400a +180b +c =116,解得⎩⎪⎨⎪⎧ b =-2.4,c =224,a =0.01.所以西红柿种植成本最低时的上市天数是120,最低种植成本是14 400a +120b +c =14 400×0.01+120×(-2.4)+224=80.。
2019届高三数学一轮复习:第12讲 函数模型及其应用
2019年7月10日
你是我今生最美的相遇遇上你是我的缘
14
课前双基巩固
7.一枚炮弹被发射后,其升空高度 h 与时间 t 的函数关系为
h=130t-5t2,则该函数的定义域是
.
[答案] [0,26]
2019年7月10日
第12讲 PART 2
函数模型及其 应用
教学参考│课前双基巩固│课堂考点探究│教师备用例题
你是我今生最美的相遇遇上你是我的缘
1
考试说明
1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指 数增长、对数增长等不同函数类型增长的含义. 2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍 使用的函数模型)的广泛应用.
2019年7月10日
你是我今生最美的相遇遇上你是我的缘
20
课堂考点探究
变式题 [2017·连云港模拟] 如图 2-12-3,在∠ABC=60°,∠C=90°,BC=40 米的直角三角 形地块中划出一块矩形 CDEF 地块进行绿化. (1)若要使矩形地块的面积不小于 300 3平方米,求 CF 长度的取值范围;
C.2020 年
D.2021 年
2019年7月10日
你是我今生最美的相遇遇上你是我的缘
5
课前双基巩固
知识聚焦
1.三种函数模型的性质的比较
性质
函数
y=ax(a>1)
在(0,+∞) 上的增减性
单调
递增
增长速度
越来越快
y=logax(a>1)
高三数学(理)一轮复习课时作业(十二) 函数模型及其应用 Word版含解析
.向一杯子中匀速注水时,杯中水面高度h随时间t
)
从题图看出,在时间段[0,t1],[t1,t2]内水面高度是匀速上升的,在
上升快,故选A.
某电信公司推出两种手机收费方式:A 种方式是月租与电话费s (元)的函数关系如图所示,当通话D.40
元
的鱼缸截面如图所示,其底部破了一个小洞,满缸水从洞时的水的体积为v ,则函数
=0可排除①、③;由于鱼缸中间粗两头细,∴当时,增加越来越快,h 大于H
2
时,增加越来越慢.×
取得最小值为57.5万元.
米的正方形钢板有一个角被锈蚀,其中
ABCDE内截取一个矩形
表示成x的函数,求该函数的解析式及定义域;
-y)米,EQ=(x-4)。
2019年高考数学文科一轮复习课时作业 12函数模型及其
距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降得
效,则第二次服药最迟的时间应为()
.中午12:00
.下午6:00
时,设y=k1x,把(4,320)
,则其边长x为______(m)
设矩形花园的宽为y m,则
x 40=
=-x2+40x=-(
11.(2018·广东汕头模拟)一水池有两个进水口,一个出水口,每个进水口的进水速度如图甲所示.出水口的出水速度如图乙所示,某天0点到6点,该水池的蓄水量如图丙所示.
给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则一定正确的是() A.①B.①②
C.①③D.①②③
解析:由甲、乙两图可知进水速度为1,出水速度为2,结合丙图中直线的斜率,只进水不出水时,蓄水量增加速度是2,故①正确;不进水只出水时,蓄水量减少速度是2,故②不正确;两个进水一个出水时,蓄水量减少速度也是0,故③不正确.
答案:A
12.(2018·贵州省适应性考试)
某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示,已知该年的平均气温为10 ℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t之间的函数关系的是()
解析:若增加的数大于当前的平均数,则平均数增大;若增加的数小于当前的平均数,则平均数减小.因为12个月的平均气温为10 ℃,所以当t=12时,平均气温应该为10 ℃,故排除B;因为在靠近12月份时其温度小于10 ℃,因此12月份前的一小段时间内的。
高考数学复习课时作业12函数模型及其应用理新人教A版 389
课时作业(十二)第12讲函数模型及其应用时间/ 45分钟分值/ 90分基础热身1.某公司招聘员工,面试对象人数按拟录用人数分段计算,计算公式为y=其中x代表拟录用人数,y代表面试对象人数.若面试对象人数为60,则该公司拟录用人数为 ()A.15B.40C.25D.702.某汽车销售公司在A,B两地销售同一种品牌的车,在A地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆).若该公司在两地共销售16辆这种品牌的车,则能获得的最大总利润是()A.10.5万元B.11万元C.43万元D.43.025万元3.在某种新型材料的研制中,实验人员获得了一组实验数据(如下表),现准备用下列四个函数中的一个来近似地表示这些数据的规律,其中最接近的一个是()A.y=2x-2B.y=(x2-1)C.y=log2xD.y=lo x4.某工厂产生的废气经过过滤后排放,在过滤过程中,污染物的含量p(单位:毫克/升)不断减少,已知p与时间t(单位:小时)满足p=p0,其中p0为t=0时的污染物含量.又测得当t从0到30时,污染物含量的平均变化率是-10ln 2,则当t=60时,p=()A.150B.300C.150ln 2D.300ln 25.[2018·成都七中模拟]某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系式y=e kx+b(e为自然对数的底数,k,b为常数).若该食品在0 ℃时的保鲜时间是192小时,在22 ℃时的保鲜时间是48小时,则该食品在33 ℃时的保鲜时间是小时.能力提升6.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总收益R与产量x的关系式为R=则总利润最大时,生产的产品为()A.100单位B.150单位C.200单位D.300单位7.气象学院用32万元购置了一台天文观测仪,已知这台观测仪从启动的第1天开始连续使用,第n天的维修保养费为4n+46(n∈N*)元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器平均每天耗资最少)为止,则一共要使用()A.300天B.400天C.600天D.800天8.一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量(单位:cm3)为y=a e-bt,经过8 min后发现容器内还有一半的细沙,则当容器内的细沙只有开始时的八分之一时,又经过的时间为()A.8 minB.16 minC.24 minD.32 min9.[2018·北京东城区期中]光线通过一块玻璃,强度要损失10%.设光线原来的强度为k,通过x块这样的玻璃以后强度为y,则经过x块这样的玻璃后光线强度y=k·0.9x,若光线强度能减弱到原来的以下,则至少通过这样的玻璃(lg 3≈0.477,lg 2≈0.3)()A.12块B.13块C.14块D.15块图K12-110.某厂有许多形状为直角梯形的铁皮边角料(如图K12-1),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,则截取的矩形铁片面积的最大值为.11.某商品价格y(单位:元)因上架时间x(单位:天)的不同而不同,假定商品的价格与上架时间的函数关系是y=k·a x(a>0且a≠1,x∈N*).若商品上架第1天的价格为96元,上架第3天的价格为54元,则该商品上架第4天的价格为元.12.(10分)在十九大报告中提出的新时代坚持和发展中国特色社会主义的基本方略,包括“坚持人与自然和谐共生,加快生态文明体制改革,建设美丽中国”.目前我国一些高耗能低效产业(煤炭、钢铁、有色金属、炼化等)的产能过剩,将严重影响生态文明建设,“去产能”将是一项重大任务.十九大后,某行业计划从2018年开始,每年的产能比上一年减少的百分比为x(0<x<1),设n年后(2018年记为第1年)年产能为2017年的a倍.(1)请用a,n表示x.(2)若x=10%,则至少要到哪一年才能使年产能不超过2017年的25%?参考数据:lg 2≈0.301,lg 3≈0.477.13.(12分)[2018·南通模拟]秸秆还田是当今世界上普遍重视的一项培肥地力的增产措施,在杜绝了秸秆焚烧所造成的大气污染的同时还有增肥增产作用.某农机户为了达到在收割的同时让秸秆还田,花137 600元购买了一台新型联合收割机,每年用于收割可以收入60 000元(已减去所用柴油费).该收割机每年都要定期进行维修保养,第一年由厂方免费维修保养,第二年及以后由该农机户付费维修保养,每年用于维修保养的费用y(元)与使用年数n的关系式为y=kn+b(n≥2,且n∈N*),已知第二年付费1800元,第五年付费6000元.(1)试求出该农机户每年用于维修保养的费用y(元)与使用年数n(n∈N*)的函数关系式.(2)这台收割机使用多少年可使年平均收益最大?(收益=收入-维修保养费用-购买机械费用)难点突破14.(13分)某市郊区有一加油站,2018年初汽油的存储量为50吨,计划从年初起每周初均购进汽油m吨,以满足城区内和城区外汽车用油需求.已知城区外汽车每周用油5吨;城区内汽车前x(1≤x≤16,x∈N*)周的汽油需求量y(单位:吨)与x的函数关系式为y=a(a为常数),且前4周城区内汽车的汽油需求量为100吨.(1)试写出第x(1≤x≤16,x∈N*)周结束时,汽油存储量M(单位:吨)与x的函数关系式;(2)要使16周内每周按计划购进汽油之后,加油站总能满足城区内和城区外汽车的用油需求,且每周结束时加油站的汽油存储量不超过150吨,试确定m的取值范围.课时作业(十二)1.C[解析] 当1≤x≤10时,y≤40;当x>100时,y>150.因此所求人数x∈(10,100],由2x+10=60,得x=25,故选C.2.C[解析] 依题意,设在A地销售x辆车,则在B地销售(16-x)辆车,所以总利润y=4.1x-0.1x2+2(16-x)=-0.1x2+2.1x+32=-0.1(x-10.5)2+0.1×10.52+32,因为x∈[0,16]且x ∈N,所以当x=10或11时,y max=43.故选C.3.B[解析] 由y随x的变化趋势知,函数在(0,+∞)上是增函数,且y的增长速度随x的增大越来越快.A中函数增长速度不变,C中函数是增长速度逐渐变慢的函数,D中函数是减函数,故排除A,C,D,易知B中函数最符合题意.4.C[解析] 因为当t∈[0,30]时,污染物含量的平均变化率是-10ln 2,所以-10ln 2=,所以p0=600ln 2,所以当t=60时,p=600ln 2×2-2=150ln 2.5.24[解析] 由题意知192=e b,48=e22k+b,∴e22k=,∴当x=33时,y=e33k+b=192×=24.6.D[解析] 设总成本为C元,总利润为P元,则C=20 000+100x,则P=R-C=当0≤x≤400时,P=-x2+300x-20 000=-(x-300)2+25 000,x=300时,P取得最大值25 000;当x>400时,P<20 000.所以当x=300时,P取得最大值,故选D.7.B[解析] 使用n天的平均耗资为=+2n+48(元),当且仅当=2n时取得最小值,此时n=400.8.B[解析] 依题意有a e-8b=a,即e-8b=,两边取对数,得-8b=ln=-ln 2,∴b=,∴y=a.当容器内的细沙只有开始时的八分之一时,则有a=a,∴=,两边取对数,得-t=ln=-3ln 2,∴t=24,∴又经过的时间为24-8=16(min).故选B.9.C[解析] 由题意知0.9x k<,即0.9x<,两边同时取对数,可得x lg 0.9<lg,∵lg 0.9<lg 1=0,∴x>=≈13.04,又x∈N*,∴至少通过14块这样的玻璃,光线强度能减弱到原来的以下.故选C.10.180[解析] 依题意知=,即x=(24-y)(8≤y<24),所以阴影部分的面积S=xy=(24-y)·y=(-y2+24y)=-(y-12)2+180,当y=12时,S取得最大值180,故答案为180.11.40.5[解析] 由题意可得方程组结合a>0且a≠1,可得则y=128×,则该商品上架第4天的价格为128×==40.5(元).12.解:(1)依题意得(1-x)n=a,即1-x=,即x=1-(n∈N*).(2)由题得(1-10%)n≤25%,即≤,则n lg≤lg,即n(2lg 3-1)≤-2lg 2,则n≥,又≈13.09,n∈N*,∴n的最小值为14.故至少要到2031年才能使年产能不超过2017年的25%.13.解:(1)依题意知,当n=2时,y=1800;当n=5时,y=6000,则解得所以y=(2)记使用n年,年平均收益为W元,则当n≥2时,W=60 000-[137 600+1400(2+3+…+n)-1000(n-1)]=60 000-137600+1400×-1000(n-1)=60 000-(137 200+700n2-300n)=60 300-≤60 300-2=40 700,当且仅当700n=,即n=14时取等号,所以这台收割机使用14年可使年平均收益最大.14.解:(1)由已知条件得100=a,解得a=50,所以y=50(1≤x≤16,x∈N*),所以M=mx-5x-50+50(1≤x≤16,x∈N*).(2)由题意知,0≤M≤150,所以(1≤x≤16,x∈N*)恒成立, 即(1≤x≤16,x∈N*)恒成立.设t=,则≤t≤1,所以恒成立.由m≥-50t2+50t+5=-50+恒成立,得m≥当t=,即x=4时取等号;由m≤100t2+50t+5=100-≤t≤1恒成立,得m≤当t=,即x=16时取等号.所以m的取值范围是.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考数学总复习课时作业(12)函数模型及其应用理基础热身1.若一根蜡烛长20 cm,点燃后每小时燃烧5 cm,则蜡烛燃烧剩下的高度h(cm)与燃烧时间t(h)的函数关系用图像表示为()图K12-12.某公司招聘员工,面试对象人数按拟录用人数分段计算,计算公式为y=其中x代表拟录用人数, y代表面试对象人数.若面试对象人数为60,则该公司的拟录用人数为()A.15B.40C.25D.703.据统计,每年到鄱阳湖国家湿地公园越冬的白鹤数量y(只)与时间x(年)近似地满足关系y=a log3(x+2),观察发现2012年(作为第1年)到该湿地公园越冬的白鹤数量为3000只,估计到2018年到该湿地公园越冬的白鹤的数量为 ()A.4000只B.5000只C.6000只D.7000只4.某品牌平板电脑投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是()A.y=100xB.y=50x2-50x+100C.y=50×2xD.y=100log2x+1005.[2017·河北武邑中学调研]“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R与广告费A之间满足关系R=a(a为常数),广告效应为D=a-A.那么精明的商人为了取得最大广告效应,投入的广告费应为.(用常数a表示)能力提升6.已知每生产100克饼干的原材料加工费为1.8元.某食品加工厂对饼干采用两种包装,包装费用、销售价格如下表所示:型号小包装大包装重量100克300克包装费0.5元0.7元销售价格3.0元8.4元则下列说法中正确的是()①买小包装实惠;②买大包装实惠;③卖3小包比卖1大包盈利多;④卖1大包比卖3小包盈利多.A.①③B.①④C.②③D.②④7.[2017·北京丰台区测试]血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图K12-2所示.图K12-2根据图中提供的信息,下列关于成人使用该药物的说法中不正确的是 ()A.首次服用该药物1单位约10分钟后,药物发挥治疗作用B.每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒C.每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用D.首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒8.[2017·南昌二模]某商场2017年1月份到12月份销售额呈现先下降后上升的趋势,下列四个函数中,能较准确地反映商场月销售额f(x)与月份x的关系且满足f(1)=8,f(3)=2的函数为()A.f(x)=20×B.f(x)=-6log3x+8C.f(x)=x2-12x+19D.f(x)=x2-7x+149.某足球俱乐部为救助失学儿童准备在体育中心举行一场足球义赛,预计卖出门票2.4万张,票价有3元、5元和8元三种,分别有a,b,c万张,且有a=0.3b2-1.2b+1.5.设x是门票的总收入,经预算,扣除其他各项开支后,该俱乐部募捐的纯收入为y=lg 2x,为了使募捐的纯收入最大,则这三种门票的数量(万张)分别为 ()A.1,0.8,0.6B.0.6,1,0.8C.0.6,0.8,1D.0.8,0.6,110.某地区居民生活用电分高峰和低谷两个时间段进行计价,该地区电网销售电价表如下:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位: 千瓦时) 高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时)低谷电价(单位:元/千瓦时)50及以下的部分0.56850及以下的部分0.288超过50至200的部分0.598超过50至200的部分0.318超过200的部分0.668超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为元.(用数字作答)11.已知直角梯形ABCD如图K12-3所示,CD=2,AB=4,AD=2,线段AB上有一点P,过点P作AB 的垂线l,当点P从点A运动到点B时,记AP=x,l截直角梯形的左边部分面积为y,则y关于x的函数关系式为.图K12-312.(12分)某地下车库在排气扇发生故障的情况下测得空气中一氧化碳含量达到了危险状态,经抢修排气扇恢复正常.排气4分钟后测得车库内的一氧化碳浓度为64 ppm,继续排气4分钟后又测得浓度为32 ppm.由检验知该地下车库一氧化碳浓度y(ppm)与排气时间t(分钟)之间存在函数关系y=c(c,m为常数).(1)求c,m的值.(2)若空气中一氧化碳浓度不高于0.5 ppm为正常,问至少排气多少分钟,这个地下车库中的一氧化碳含量才能达到正常状态?13.(13分)已知某电子公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设该公司一年内共生产该款手机x万部并全部销售完,每万部的销售收入为R(x)万美元,且R(x)=(1)写出年利润W(万美元)关于年产量x(万部)的函数解析式.(2)当年产量为多少万部时,该公司在该款手机的生产中所获得的利润最大?并求出最大利润.难点突破14.(5分)为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地.第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元,每年销售蔬菜的收入为26万元.设f(n)表示前n年的纯利润(f(n)=前n年的总收入-前n年的总费用支出-投资额),则从第年开始盈利.15.(5分)[2017·德阳一诊]将甲桶中的a L水缓慢注入空桶乙中,t min后甲桶中剩余的水量符合指数衰减曲线y=a e nt.假设过5 min后甲桶和乙桶中的水量相等,若再过m min后甲桶中的水只有 L,则m的值为.课时作业(十二)1.B [解析] 由题意得h=20-5t(0≤t≤4),故选B.2.C [解析] 当1≤x≤10时,y≤40;当x>100时,y>150.因此所求人数x∈(10,100],由2x+10=60,得x=25,故选C.3.C[解析] 当x=1时,由3000=a log3(1+2),得a=3000,到2018年即第7年,可得y=3000log3(7+2)=6000,故选C.4.C[解析] 对于C,当x=1时,y=100;当x=2时,y=200;当x=3时,y=400;当x=4时,y=800,与第4个月销售台数790比较接近.故选C.5.a2[解析] 由题意得D=a-A=--2+,且A≥0,∴当=,即A=时,D最大,故答案为.6.D [解析] 买小包装时每克费用为元,买大包装时每克费用为=元,而>,所以买大包装实惠.卖3小包的利润为3×(3-1.8-0.5)=2.1(元),卖1大包的利润是8.4-1.8×3-0.7=2.3(元),而2.3>2.1,所以卖1大包盈利多.故选D.7.D[解析] 从图像可以看出,首次服用该药物1单位约10分钟后,该药物的血药浓度大于最低有效浓度,药物发挥治疗作用,A正确;第一次服药4小时后与第2次服药1小时后,血药浓度之和大于最低中毒浓度,因此一定会产生药物中毒,B正确,D错误;服药5.5小时后,血药浓度小于最低有效浓度,此时再服药,血药浓度增加,正好能发挥作用,C正确.故选D.8.D[解析] 销售额先下降后上升,很明显只有选项C和D符合,又因为f(1)=8,f(3)=2,所以只有选项D符合.9.B [解析] 由题意可得整理得x=-1.5(b-1)2+13.2,当b=1时,a=0.6,c=0.8,此时门票的总收入x最大,即为13.2,由于y=lg 2x为增函数,即此时y也取得最大值.10.148.4[解析] 据题意有0.568×50+0.598×150+0.288×50+0.318×50=148.4(元).11.y=[解析] 易知0≤x≤4,当0≤x≤2时,y=2x,当2<x≤4时,y=6-(4-x)2,∴y=12.解:(1)由题意可列方程组两式相除,解得(2)由题意可列不等式128≤0.5,所以≤,即t≥8,解得t≥32.故至少排气32分钟,这个地下车库中的一氧化碳含量才能达到正常状态.13.解:(1)当0<x≤40时,W=xR(x)-(16x+40)=-6x2+384x-40;当x>40时,W=xR(x)-(16x+40)=--16x+7360.所以W=(2)①当0<x≤40时,W=-6(x-32)2+6104,所以当x=32时,W max=6104.②当x>40时,W=--16x+7360,由于+16x≥2=1600,当且仅当=16x, 即x=50时,W取得最大值5760.综合①②知,当x=32时,W取得最大值6104,即当年产量为32万部时,该公司在该款手机的生产中所获得的利润最大,最大利润为6104万美元.14.5[解析] 由题知f(n)=26n-8n+×2-60=-n2+19n-60.令f(n)>0,即-n2+19n-60>0,解得4<n<15,所以从第5年开始盈利.15.5[解析] ∵5 min后甲桶和乙桶中的水量相等,∴函数y=f(t)=a e nt满足f(5)=a e5n=a,可得n=ln.令f(k)=a,则ln·k=ln,即为ln·k=2ln,解得k=10,故m=10-5=5.。