高考物理专题分析:四 弹性碰撞模型及应用
弹性碰撞专题分析
弹性碰撞专题分析沈志斌(江苏省无锡市第一中学江苏无锡214031)前几年的《考试说明》中,关于弹性碰撞的知识有限定性说明:“在弹性碰撞的问题中,不要求使用动能守恒公式进行计算”。
2003年高考物理《考试说明》第31个考点:动量知识和机械能知识的应用(包括碰撞、反冲、火箭),定位在Ⅱ类要求,无限定性说明。
而2002年广东试卷中也考到弹性碰撞的知识,鉴于上述原因,笔者认为在高中教学中应该补充“弹性碰撞”的理论及作相关训练。
本文就弹性碰撞作一专题讲座,供大家教学时参考。
一、什么是弹性碰撞?弹性形变是指撤去外力后能够恢复原状的形变,能够发生弹性形变的物理我们说它具有弹性。
碰撞是在极短的时间内发生的,满足相互作用的内力大于大于外力的条件,因此不管系统是否受到外力,一般都满足动量守恒。
因此弹性碰撞是同时满足动量守恒和动能守恒的碰撞。
一般意义上的碰撞,仅满足动量守恒,系统有动能损失,由于一般只研究碰撞发生在一直线上的情况,系统在碰撞前后的重力势能不变,因此动能损失也对应着机械能的损失,通常情况下是机械能转化为内能。
二、弹性碰撞的基本规律如图1所示,设质量为m1的弹性球,速度为v1与质量为m2的弹性球,速度为v2发生碰撞,碰撞后两求的速度分别为v1/、v2/,取向右为矢量的正方向。
由系统的动量守恒定律得 m1v1+m2v2=m1v1/+m2v2/……①由系统的动能守恒定律得 m1v12/2+m2v22/2=m1v1/2/2+m2v2/2/2……②由①②得 v1-v2= v2/-v1/……③③的物理意义是:“在弹性碰撞中,碰撞前后两球的相对速度大小保持不变,但方向改变1800。
”由①②得碰撞后两球的速度为:v1/=[(m1-m2)v1+2m2v2]/(m1+m2)……④v2/=[(m2-m1)v2+2m1v1]/(m1+m2)……⑤特例讨论:1.两球质量m1=m2 v1/= v2 v2/= v1两球速度交换(动量)动能也交换)2.两球质量m1>>m2 v1/= v1 v2/= 2v1-v2(如果v2=0,则v2/= 2v1,如果列车以30m/s的速度撞上静止的汽车,发生交通事故,假定为弹性碰撞,则汽车将以60m/s的速度飞出,而列车速度不变) 3.两球质量m1<<m2 v1/=2v2-v1 v2/=v2(如果v2=0,则v1/=-v1,如果乒乓球以10m/s的速度撞上静止的墙壁,假定为弹性碰撞,则乒乓球将以10m/s的速度返回,而墙壁仍然静止)三、考题研究例1 如图2所示,质量为m 的钢球,放在质量为M 的光滑箱底,箱置于光滑水平面上,箱底长度为L 。
2025高考物理总复习碰撞模型及拓展
考点一 碰撞模型
例3 (2023·天津卷·12)已知A、B两物体mA=2 kg,mB=1 kg,A物体从h =1.2 m处自由下落,且同时B物体从地面竖直上抛,经过t=0.2 s相遇碰 撞后,两物体立刻粘在一起运动,已知重力加速度g=10 m/s2,求: (1)碰撞时离地高度x; 答案 1 m
对物体A,根据运动学公式可得 x=h-12gt2=1.2 m-12×10×0.22 m=1 m
考点一 碰撞模型
例2 (2024·江苏省木渎高级中学月考)如图所示,两小球P、Q
竖直叠放在一起,小球间留有较小空隙,从距水平地面高度为h处同时由静止释放源自已知小球Q的质量是P的2倍。设所有碰撞
均为弹性碰撞。忽略空气阻力及碰撞时间,则两球第一次碰撞
后小球P上升的高度为
5 A.3h
√B.295h
7 C.3h
第七章
动量守恒定律
第 3
专题强化:碰撞模型及拓展
课
时
目标 1.理解碰撞的种类及其遵循的规律。2.理解“滑块—弹簧”、“滑块—斜(曲)面”两种模型与碰撞的相似性, 要求 会分析解决两类模型的有关问题。
内 容
考点一 碰撞模型
索
引
考点二 碰撞模型拓展
< 考点一 >
碰撞模型
考点一 碰撞模型
1.碰撞 碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的 现象。 2.特点 在碰撞现象中,一般都满足内力 远大于 外力,可认为相互碰撞的物体组 成的系统动量守恒。
考点一 碰撞模型
总结提升
碰撞问题遵守的三条原则 1.动量守恒:p1+p2=p1′+p2′。 2.动能不增加:Ek1+Ek2≥Ek1′+Ek2′。 3.速度要符合实际情况 (1)碰前两物体同向运动,若要发生碰撞,则应有v后>v前,碰后原来在前 的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。 (2)碰前两物体相向运动,碰后两物体的运动方向至少有一个改变。
2024届高考物理一轮复习课件:弹性碰撞
弹性碰撞
一、动量守恒定律的判断和计算
二、动量守恒定律的应用之1——碰撞 1、碰撞 2、完全非弹性碰撞:子弹打木块模型 3、完全弹性碰撞: 4、弹簧模型(含2、3)
1、已知A、B两个钢性小球质量分别是m1、m2,小
球B静止在光滑水平面上,A以初速度v0与小球B
发生弹性碰撞,求碰撞后小球A的速度v1,物体B
【典例】 如图所示,在足够长的光滑水平面上,物体 A、B、C 位于同一直 线上,A 位于 B、C 之间.A 的质量为 m,B、C 的质量都为 M,三者均处于静止 状态.现使 A 以某一速度向右运动,求 m 和 M 之间应满足什么条件,才能使 A 只 与 B、C 各发生一次碰撞.设物体间的碰撞都是弹性的.
2、质量为M的小车静止于光滑的水平面上,小车
的上表面和圆弧的轨道均光滑,如图所示,一个
质量为m的小球以速度v0水平冲向小车,当小球
返回左端脱离小车时,下列说法正确的是:
A.小球一定沿水平方向向左做平抛运动
B.小球可能沿水平方向向左作平抛运动
C.小球可能沿水平方向向右作平抛运动
D.小球可能做自由落体运动
小球A与地面的碰撞是弹性的,而且AB都是从同一高
度释放的,所以AB碰撞前的速度大小相等于设为v0, 根据机械能守恒有:
mA gH
1 2
mAv02
化简得: v0 2gH
设A、B碰撞后的速度分别为vA和vB,以竖直向上为
速度的正方向,根据A、B组成的系统动量守恒和动
能不变得:
mAv0 mBv0 mAvA mBvB
高考物理碰撞问题
碰撞问题(⼀)——考点透析碰撞问题是历年⾼考试题的重点和热点,同时它也是同学们学习的难点.它所反映出来的物理过程、状态变化及能量关系,能够全⽅位地考查同学们的理解能⼒、逻辑思维能⼒及分析推理能⼒.⾼考中考查的碰撞问题,碰撞时间极短,位移为零,碰撞过程遵循动量守恒定律.⼀、考点诠释两个(或两个以上)物体相遇,物体之间的相互作⽤仅持续⼀个极为短暂的时间,⽽运动状态发⽣显著变化,这种现象称为碰撞。
碰撞是⼀个基本,⼗分重要的物理模型,其特点是:1.瞬时性.由于物体在发⽣碰撞时,所⽤时间极短,因此在计算物体运动时间时,通常把碰撞时间忽略不计;在碰撞这⼀极短的时间内,物体的位置是来不及改变的,因此我们可以认为物体在碰撞中位移为零。
2.动量守恒性.因碰撞时间极短,相互作⽤的内⼒⼤于外⼒,所以系统在碰撞过程中动量守恒。
3.动能不增.在碰撞过程中,系统总动能只有减少或者不变,⽽绝不会增加,即不能违背能量守恒原则。
若弹性碰撞则同时满⾜动量、动能守恒。
⾮弹性碰撞只满⾜动量守恒,⽽不满⾜动能守恒(系统的动能减少)。
⼆、解题策略⾸先要根据碰撞的瞬时性特点,正确选取相互作⽤的研究对象,使问题简便解决;其次要确定碰撞前和碰撞后系统中各个研究对象的状态;然后根据动量守恒定律及其他规律求解,并验证求得结果的合理性。
三、边解边悟1.在光滑的⽔平⾯上有三个完全相同的⼩球排成⼀条直线.2、3⼩球静⽌,并靠在⼀起,1球以速度v0射向它们,如图所示.设碰撞过程不损失机械能,则碰后三个⼩球的速度为多少?解析:本题的关键在于分析清楚实际的碰撞过程:由于球1与球2发⽣碰撞时间极短,球2的位置来不及发⽣变化,这样球2对球3也就⽆法产⽣⼒的作⽤,即球3不会参与此次碰撞过程.⽽球1与球2发⽣的是弹性碰撞,质量⼜相等,故它们在碰撞中实现速度交换,碰后球1⽴即停⽌,球2速度⽴即变为;此后球2与球3碰撞,再⼀次实现速度交换.所以碰后球1、球2的速度为零,球3速度为v 0.2.⽤轻弹簧相连的质量均为m =2㎏的A 、B 两物体都以v =6m/s 的速度在光滑的⽔平地⾯上运动,弹簧处于原⻓,质量M =4㎏的物体C 运动,在以后的运动中,求:(1)当弹簧的弹性势能最⼤时物体A 的速度。
2024届高考物理一轮复习热点题型归类训练:动量能量在各类模型中的应用(学生版)
动量能量在各类模型中的应用目录题型一碰撞模型类型1 一动一静的弹性碰撞类型2 弹性碰撞中的“子母球”模型题型二非弹性碰撞中的“动能损失”问题类型1 非弹性小球碰撞中的动能损失类型2 滑块木板模型中的动能损失类型3 滑块-曲面模型中的动能损失问题类型4 小球-弹簧模型中的动能损失问题类型5 带电系统中动能的损失问题类型6 导体棒“追及”过程中的动能损失问题题型三碰撞遵循的规律类型1 碰撞的可能性类型2 碰撞类型的识别题型四 “滑块-弹簧”碰撞模型中的多过程问题题型五 “滑块-斜(曲)面”碰撞模型题型六滑块模型中的多过程题型七子弹打木块模型中的能量动量问题题型八两体爆炸(类爆炸)模型中的能量分配题型九人船模型及其拓展模型的应用题型十悬绳模型题型一:碰撞模型1.类型1一动一静的弹性碰撞.以质量为m1、速度为v1的小球与质量为m2的静止小球发生弹性碰撞为例,则有m1v1=m1v1′+m2v2′1 2m1v21=12m1v1′2+12m2v2′2联立解得:v1′=m1-m2m1+m2v1,v2′=2m1m1+m2v1讨论:①若m1=m2,则v1′=0,v2′=v1(速度交换);②若m1>m2,则v1′>0,v2′>0(碰后两小球沿同一方向运动);当m1≫m2时,v1′≈v1,v2′≈2v1;③若m1<m2,则v1′<0,v2′>0(碰后两小球沿相反方向运动);当m1≪m2时,v1′≈-v1,v2′≈0.1(2023春·江西赣州·高三校联考阶段练习)弹玻璃球是小孩子最爱玩的游戏之一,一次游戏中,有大小相同、但质量不同的A、B两玻璃球,质量分别为m A、m B,且m A<m B,小朋友在水平面上将玻璃球A以一定的速度沿直线弹出,与玻璃球B发生正碰,玻璃球B冲上斜面后返回水平面时与玻璃球A速度相等,不计一切摩擦和能量损失,则m A、m B之比为()A.1:2B.1:3C.1:4D.1:52(2023·四川达州·统考二模)如图所示,用不可伸长的轻绳将质量为m1的小球悬挂在O点,绳长L= 0.8m,轻绳处于水平拉直状态。
2024年高考物理热点-碰撞与类碰撞模型(解析版)
碰撞与类碰撞模型1.碰撞问题是历年高考试题的重点和热点,它所反映出来的物理过程、状态变化及能量关系,对学生的理解能力、逻辑思维能力及分析推理能力要求比较高。
高考中考查的碰撞问题,碰撞时间极短,位移为零,碰撞过程遵循动量守恒定律。
2.高考题命题加重了试题与实际的联系,命题导向由单纯的解题向解决问题转变,对于动量守恒定律这一重要规律我们也要关注其在生活实际中的应用,学会建构模型、科学推理。
3.动量和能量综合考查是高考命题的热点,在选择题和计算题中都可能出现,选择题中可能考查动量和能量知识的简单应用,计算题中一般结合竖直面内的圆周运动模型、板块模型或弹簧模型等压轴考查,难度较大。
此类试题区分度较高,且能很好地考查运动与相互作用观念、能量观念动量观念和科学思维要素,因此备考命题者青睐。
题型一人船模型1.模型简析:如图所示,长为L 、质量为m 船的小船停在静水中,质量为m 人的人由静止开始从船的一端走到船的另一端,不计水的阻力。
以人和船组成的系统为研究对象,在人由船的一端走到船的另一端的过程中,系统水平方向不受外力作用,所以整个系统动量守恒,可得m 船v 船=m 人v 人,因人和船组成的系统动量始终守恒,故有m 船x 船=m 人x 人,由图可看出x 船+x 人=L ,可解得x 人=m 船m 人+m 船L ,x 船=m 人m 人+m 船L 。
2.模型特点(1)两个物体作用前均静止,作用后均运动。
(2)动量守恒且总动量为零。
3.结论:m 1x 1=m 2x 2(m 1、m 2为相互作用物体的质量,x 1、x 2为其对地位移的大小)。
题型二“物块-弹簧”模型模型图例m 1、m 2与轻弹簧(开始处于原长)相连,m 1以初速度v 0运动两种情景1.当弹簧处于最短(最长)状态时两物体瞬时速度相等,弹性势能最大:(1)系统动量守恒:m 1v 0=(m 1+m 2)v 共。
210212共pm 2.当弹簧处于原长时弹性势能为零:(1)系统动量守恒:m1v0=m1v1+m2v2。
高考物理一轮复习学案:碰撞的规律及应用(三)
三、碰撞模型的建构有些物理现象虽然不是小球间的碰撞,但相互作用的物体动量、能量变化规律与碰撞规律相同,可抽象为碰撞模型求解。
【例1】 如图,一滑雪道由AB 和BC 两段滑道组成,其中AB 段倾角为θ,BC 段水平,AB 段和BC段由一小段光滑圆弧连接,一个质量为2kg 的背包在滑道顶端A 处由静止滑下,若1s 后质量为48kg 的滑雪者从顶端以1.5m/s 的初速度、23m/s 的加速度匀加速追赶,恰好在坡底光滑圆弧的水平处追上背包并立即将其拎起,背包与滑道的动摩擦因数为112μ=,重力加速度取210m/s g =,7sin 25θ=,24cos 25θ=,忽略空气阻力及拎包过程中滑雪者与背包的重心变化,求:(1)滑雪者追上背包的时间;(2)滑雪者拎起背包时这一瞬间的速度。
【导思】滑雪者与背包位移相等,运用运动学公式求出追上的时间,进而求出追上时两者的速度。
*【拓展1】如图所示,物块A 和B 通过一根轻质不可伸长的细绳连接,跨放在质量不计的光滑定滑轮两侧,质量分别为m A =2 kg 、m B =1 kg 。
初始时A 静止于水平地面上,B 悬于空中。
先将B 竖直向上再举高h=1.8 m (未触及滑轮)然后由静止释放。
一段时间后细绳绷直,A 、B 以大小相等的速度一起运动,之后B 恰好可以和地面接触。
取g=10 m/s 2。
空气阻力不计。
求:(1)A 的最大速度v 的大小;(3)初始时B 离地面的高度H 。
【导思】细绳绷直时A 、B 速度大小相等,此时A 、B 的相互作用相对于粘合碰撞。
高三一轮复习 物理学案 动量守恒定律6 总第( )期 学生姓名 班级 学号 课题:碰撞的规律及应用(三) 组编人: 校对人:【例2】在反应堆中用石墨作减速剂使快中子减速。
碳核的质量是中子的12倍,假设中子与碳核的每次碰撞都是弹性正碰,而且认为碰撞前碳核是静止的,碰撞前中子的动能是E0,求:经过第一次碰撞,中子损失去的动能是多少?*【拓展2】至少经过多少次碰撞,中子的动能才能小于10-6E0?(lg11=1.04,lg13=1.11)*【拓展3】如图所示,两质量分别为m1和m2的弹性小球叠放在一起,从高度为h处自由落下,且h 远大于两小球半径,所有的碰撞都是弹性碰撞,且都发生在竖直方向.已知m2=3m1,求小球m1反弹后能达到的高度。
2025高考物理专题复习--弹性碰撞和非弹性碰撞(共37张ppt)
A.
C.−
B.-v
D.
15
2、碰撞的可能性判断
2.1 碰撞问题遵循的三个原则
例4、(多选)质量相等的A、B两球在光滑水平面上沿同一直线、同一方向运动,
A球的动量pA=9 kg·m/s,B球的动量pB=3 kg·m/s,当A追上B时发生正碰,则碰
后A、B两球的动量可能值是( AD )
A. pA′=6 kg·m/s,pB′=6 kg·m/s
球A、B、C,现让A球以v0=2 m/s的速度向着B球运动,A、B两球碰撞后粘合在
一起,两球继续向右运动并跟C球碰撞,C球的最终速度vC=1 m/s.求:
(1)A、B两球跟C球相碰前的共同速度大小;
(2)第二次碰撞过程中损失了多少动能;
(3)两次碰撞过程中共损失了多少动能.
答案
(1)1 m/s;(2)0.25J;(3)1.25J
a、碰前两物体同向运动,即v后 > v前,碰后原来在前面的物体速度一定增大,
且v前′ ≥ v后′。
b、碰前两物体相向运动,碰后两物体的运动方向不可能都不改变。
14
2、碰撞的可能性判断
2.1 碰撞问题遵循的三个原则
例3、如图所示,质量为m的A小球以水平速度v与静止的质量为3m的B小球正碰
后,A球的速率变为原来的 ,而碰后B球的速度是(以v方向为正方向) ( D )
2、非弹性碰撞:物体碰撞后,形变不能恢复,动能产生损失。生活中,绝大多
数碰撞属于非弹性碰撞。
动量守恒:
动能损失,转化成声能和内能:
7
1、 弹性碰撞和非弹性碰撞
1.3 碰撞的分类
3、完全非弹性碰撞:一种特殊的非弹性碰撞,物体碰撞后结合在一起,动能损
高中物理常见“碰撞”模型及其性质分析
“碰撞”作为高中物理中重要的模型之一,在每年的高考物理题中都会出现,除了会出现在选择题中,还会出现在压轴题中。
而且在很多情况下,其背景较为隐蔽,学生难以准确发掘,因此解答问题也就较为困难。
为了帮助学生快速解答常见的碰撞类问题,笔者结合实际问题,系统性地总结常见题型,分析常见问题。
一、弹性碰撞(一)一动碰一静弹性碰撞是物体碰撞后能够恢复到碰撞前的状态,即碰撞前后满足动量守恒。
如图1所示,两小球质量为m1、m2,小球m1以速度v1与静止小球m2发生弹性碰撞,两小球同时进行运动时,由动量守恒和机械能守恒定律有m1v1=m1v'1+m2v'2,12m1v21=12m1v'21+12m2v'22,则进一步可得v'1=m1-m2m1+m2v1,v'2=2m1m1+m2v1。
学生应当牢记这一结果,以便在计算过程中灵活运用,从而提高解题效率。
图1[例1]如图2所示,速度为v0的中子与静止的氢核和氮核发生弹性碰撞,碰撞后氢核和氮核速度分别为v1和v2,则下列说法正确的是( )。
A.碰撞后,氮核的动量小于氢核B.碰撞后,氮核的动能小于氢核C. v2>v1D. v2>v0图2解析:由题意可知,在碰撞过程中中子、氢核和氮核满足动量守恒和机械能守恒。
设中子的质量为m,氢核的质量为m,氮核的质量为14m,设中子与氢核碰撞后中子的速度为v3,由动量守恒定律和能量守恒定律可得mv0=mv1+mv3,12mv20=12mv21+12mv23,联立即得v1=v0。
设中子与氮核碰撞后中子的速度为v4,由动量守恒定律和能量守恒定律可得mv0=14mv2+mv4,12mv20=12×14mv22+12mv24,联立解得v2=215v0,则v1=v0>v2。
碰撞后,氢核的动量为p H=mv1=mv0,氮核的动量为p N=14mv2=28mv015,可得p N>p H。
高考物理 弹性碰撞模型及应用
弹性碰撞模型及应用弹性碰撞问题及其变形在是中学物理中常见问题,在高中物理中占有重要位置,也是多年来高考的热点。
弹性碰撞模型能与很多知识点综合,联系广泛,题目背景易推陈出新,掌握这一模型,举一反三,可轻松解决这一类题,切实提高学生推理能力和分析解决问题能力。
所以我们有必要研究这一模型。
(一) 弹性碰撞模型弹性碰撞是碰撞过程无机械能损失的碰撞,遵循的规律是动量守恒和系统机械能守恒。
确切的说是碰撞前后动量守恒,动能不变。
在题目中常见的弹性球、光滑的钢球及分子、原子等微观粒子的碰撞都是弹性碰撞。
已知A 、B 两个钢性小球质量分别是m 1、m 2,小球B 静止在光滑水平面上,A 以初速度v 0与小球B 发生弹性碰撞,求碰撞后小球A 的速度v 1,物体B 的速度v 2大小和方向解析:取小球A 初速度v 0的方向为正方向,因发生的是弹性碰撞,碰撞前后动量守恒、动能不变有:m 1v 0= m 1v 1+ m 2v 2 ①222211201212121v m v m v m += ② 由①②两式得:210211)(m m v m m v +-= , 210122m m v m v += 结论:(1)当m 1=m 2时,v 1=0,v 2=v 0,显然碰撞后A 静止,B 以A 的初速度运动,两球速度交换,并且A 的动能完全传递给B ,因此m 1=m 2也是动能传递最大的条件;(2)当m 1>m 2时,v 1>0,即A 、B 同方向运动,因2121)(m m m m +- <2112m m m +,所以速度大小v 1<v 2,即两球不会发生第二次碰撞;若m 1>>m 2时,v 1= v 0,v 2=2v 0 即当质量很大的物体A 碰撞质量很小的物体B 时,物体A 的速度几乎不变,物体B 以2倍于物体A 的速度向前运动。
(3)当m 1<m 2时,则v 1<0,即物体A 反向运动。
当m 1<<m 2时,v 1= - v 0,v 2=0 即物体A 以原来大小的速度弹回,而物体B 不动,A 的动能完全没有传给B ,因此m 1<<m 2是动能传递最小的条件。
高考物理:高中物理碰撞模型!
高考物理:高中物理碰撞模型!一、碰撞问题:完全弹性碰撞:碰撞时产生弹性形变,碰撞后形变完全消失,碰撞过程系统的动量和机械能均守恒。
完全非弹性碰撞:碰撞后物体粘结成一体或相对静止,即相互碰撞时产生的形变一点没有恢复,碰撞后相互作用的物体具有共同速度,系统动量守恒,但系统的机械能不守恒,此时损失的最多。
二、两类问题1、完全非弹性碰撞在光滑水平面上,质量为m1的物体以初速度v1去碰撞静止的物体m2,碰后两物体粘在一起。
碰撞时间极短,内力很大,故而两物体组成系统动量守恒。
碰后两物体速度相等,由动量守恒定律得:由能量守恒定律得:解得:作用结束后,两物体具有共同的速度,为完全非弹性碰撞,此时系统动能损失最大。
2、完全弹性碰撞在光滑水平面上,质量为m1的物体以初速度v0去碰撞静止的物体m2,碰后的m1速度是v1,m2的速度是v2,碰撞过程无机械能损失。
据动量守恒定律:据能量守恒定律得:解得:对v1、v2分情况讨论:①若,则、,物理意义:入射小球质量大于被碰小球质量,则入射小球碰后仍沿原方向运动但速度变小,被碰小球的速度大小入射小球碰前的速度。
②若,则、,物理意义:入射小球与被碰小球质量相等,则碰后两球交换速度。
③若,则(即与方向相反)、,物理意义:入射小球质量小于被碰小球质量,则入射小球将被反弹回去,被碰小球的速度小于入射小球碰前的速度。
④若,则趋近于、趋近于,物理意义:入射小球质量比被碰小球质量大的多,则入射小球的速度几乎不变,被碰小球的速度接近入射小球碰前速度的2倍,也就是说被碰小球对入射小球的运动影响很小,但入射小球对被碰小球的运动影响不能忽略,例如:用一个铅球去撞击一个乒乓球。
⑤若,则v1趋近于、趋近于0,物理意义:入射小球质量比被碰小球质量小的多,则入射小球几乎被原速率反弹回去,被碰小球几乎不动,例如:乒乓球撞击铅球。
注意:上面讨论出的结果不能盲目乱搬乱用,应用的前提条件是:一个运动的物体去碰撞一个静止的物体,且是弹性碰撞。
专题强化八 碰撞类的四类模型
专题强化八碰撞类的四类模型【专题解读 1.本专题主要研究碰撞过程的特点和满足的物理规律,并对碰撞模型进行拓展分析。
2.会分析物体的正碰模型、“滑块—弹簧”、“滑块—斜面”、“滑块—木板”碰撞模型的特点,并会应用相应规律解决问题。
3.用到的知识、规律和方法有:牛顿运动定律和匀变速直线运动规律,动量守恒定律,动能定理和能量守恒定律。
模型一“物体与物体”正碰模型1.碰撞问题遵守的三条原则(1)动量守恒:p1+p2=p1′+p2′。
(2)动能不增加:E k1+E k2≥E k1′+E k2′。
(3)速度要符合实际情况①碰前两物体同向运动,若要发生碰撞,则应有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。
②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变。
2.弹性碰撞的结论(1)m1v1+m2v2=m1v1′+m2v2′12m1v 21+12m2v22=12m1v1′2+12m2v2′2v1′=(m1-m2)v1+2m2v2m1+m2v2′=(m2-m1)v2+2m1v1m1+m2(2)若v2=0时,v1′=m1-m2m1+m2v1v2′=2m1m1+m2v1讨论:①若m1=m2,则v1′=0,v2′=v1(速度交换);②若m1>m2,则v1′>0,v2′>0(碰后,两物体沿同一方向运动);③若m1≫m2,则v1′≈v1,v2′≈2v1;④若m1<m2,则v1′<0,v2′>0(碰后,两物体沿相反方向运动);⑤若m1≪m2,则v1′≈-v1,v2′≈0。
3.非弹性碰撞碰撞结束后,动能有部分损失。
m1v1+m2v2=m1v1′+m2v2′12m1v 21+12m2v22=12m1v1′2+12m2v2′2+ΔE k损4.完全非弹性碰撞碰撞结束后,两物体合二为一,以同一速度运动,动能损失最大。
m1v1+m2v2=(m1+m2)v12m1v 21+12m2v22=12(m1+m2)v2+ΔE k损max【真题示例1(2020·全国Ⅲ卷,15)甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图1中实线所示。
第37课时动量守恒中的四类模型2025届高考物理一轮复习课件
kg和mB=2.0 kg,用轻弹簧拴接,放在光滑的水平地面上,物块B右侧
与竖直墙相接触。另有一物块C在t=0时刻以一定速度向右运动,在t
=4 s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图像
如图乙所示,下列说法正确的是(
)
目录
高中总复习·物理
A. 物块B离开墙壁前,弹簧的最大弹性势能为48 J
2
2
滑块上升的最大高度,不一定等于圆弧轨道的高度。
(2)滑块返回最低点时,滑块与曲面体分离
①系统水平方向动量守恒:mv0=mv1+Mv2;
1
1
1
2
2
②系统机械能守恒: mv0 = mv1 + Mv2 2 。
2
2
2
目录
高中总复习·物理
【典例3】 如图所示,质量为m=1 kg的工件甲静置在光滑水平面
上,其上表面由光滑水平轨道AB和四分之一光滑圆弧轨道BC组成,
②系统机械能守恒: m1v0 = (m1+m2)v共 2 +Epm。
2
2
(2)弹簧处于原长时弹性势能为零
①系统动量守恒:m1v0=m1v1+m2v2;
1
1
1
2
2
②系统机械能守恒: m1v0 = m1v1 + m2v2 2 。
2
2
2
目录
高中总复习·物理
【典例4】
(多选)如图甲所示,物块A、B的质量分别是mA=4.0
板,物块与滑板之间的动摩擦因数均为μ=0.1。重力加速度大小取g=
10 m/s2。
目录
高中总复习·物理
(1)若0<k<0.5,求碰撞后瞬间新物块和新滑板各自速度的大小和
方向;
答案:5(1-k)m/s
专题十一 动量守恒中的四类典型模型-2025届高中物理
第七章动量守恒定律专题十一动量守恒中的四类典型模型核心考点五年考情命题分析预测子弹打木块模型本专题是本章的难点,滑块+弹簧模型和滑块+滑板模型是高考的热点.预计2025年高考会出现考查滑块+滑板模型的选择题或滑块+弹簧模型的计算题.滑块+弹簧模型2023:辽宁T15,浙江6月T18;2022:全国乙T25;2021:天津T10;2019:全国ⅢT25滑块+斜(曲)面模型2023:湖南T15,山东T18滑块+滑板模型2023:辽宁T15;2022:山东T18,河北T13题型1子弹打木块模型1.模型图示2.模型特点(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.3.两种情境(1)子弹嵌入木块中,两者速度相等,机械能损失最多(完全非弹性碰撞)动量守恒:mv 0=(m +M )v .能量守恒:Q =F f s =12m 02-12(M +m )v 2.(2)子弹穿透木块动量守恒:mv 0=mv 1+Mv 2.能量守恒:Q=F f d=12m02-(12M22+12m12).1.[子弹未穿透木块/2024江苏淮安模拟]如图所示,质量为M=0.45kg的木块静止于光滑水平面上,一质量为m=0.05kg的子弹以水平速度v0=100m/s打入木块并停在木块中,下列说法正确的是(A)A.子弹打入木块后子弹和木块的共同速度为v=10m/sB.子弹对木块做的功W=25JC.木块对子弹做正功D.子弹打入木块过程中产生的热量Q=175J解析根据动量守恒定律可得mv0=(M+m)v,解得子弹打入木块后子弹和木块的共同速度为v=B0+=10m/s,故A正确;根据动能定理可知,子弹对木块做的功为W=12Mv2-0=22.5J,故B错误;由于子弹的动能减小,根据动能定理可知,木块对子弹做负功,故C错误;根据能量守恒定律可知,子弹打入木块过程中产生的热量为Q=12m02−12(M+m)v2=225J,故D错误.2.[子弹穿透木块]如图所示,在光滑的水平桌面上静止放置一个质量为980g的匀质木块,现有一颗质量为20g的子弹以大小为300m/s的水平速度沿木块的中心轴线射向木块,最终留在木块中没有射出,和木块一起以共同的速度运动.已知木块沿子弹运动方向的长度为10cm,子弹打进木块的深度为6cm.设木块对子弹的阻力保持不变.(1)求子弹和木块的共同速度以及它们在此过程中所产生的内能.(2)若子弹是以大小为400m/s的水平速度从同一方向水平射向该木块,则在射中木块后能否射穿该木块?答案(1)6m/s882J(2)能解析(1)设子弹射入木块后与木块的共同速度为v,对子弹和木块组成的系统,由动量守恒定律得mv0=(M+m)v解得v=6m/s此过程系统所增加的内能ΔE=12m02-12(M+m)v2=882J.(2)假设子弹以v'0=400m/s的速度入射时没有射穿木块,则对以子弹和木块组成的系统,由动量守恒定律得mv'0=(M+m)v'解得v'=8m/s此过程系统所损耗的机械能为ΔE'=12mv'20-12(M +m )v'2=1568J 由功能关系有ΔE =F 阻x 相=F 阻d ΔE'=F 阻x'相=F 阻d'则ΔΔ'=阻阻'='解得d'=1568147cm因为d'>10cm ,所以假设不成立,能射穿木块.题型2滑块+弹簧模型模型图示水平地面光滑模型特点(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的矢量和为零,则系统动量守恒;(2)在能量方面,由于弹簧形变会使弹性势能发生变化,系统的总动能将发生变化;若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒;(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动能通常最小(完全非弹性碰撞拓展模型);(4)弹簧恢复原长时,弹性势能为零,系统动能最大(弹性碰撞拓展模型,相当于碰撞结束时)3.[滑块与弹簧连接/多选]如图甲所示,一个轻弹簧的两端与质量分别为m 1和m 2的两物块A 、B 相连接并静止在光滑的水平地面上.现使A 以3m/s 的速度向B 运动压缩弹簧,速度—时间图像如图乙,则有(CD)A.在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都处于压缩状态B.从t3到t4时刻弹簧由压缩状态恢复原长C.两物块的质量之比为m1:m2=1:2D.在t2时刻A与B的动能之比E k1:E k2=1:8解析由题图乙可知t1、t3时刻两物块达到共同速度1m/s,且此时系统动能最小,根据系统机械能守恒可知,此时弹性势能最大,t1时刻弹簧处于压缩状态,而t3时刻处于伸长状态,故A错误;结合图像弄清两物块的运动过程,开始时A逐渐减速,B逐渐加速,弹簧被压缩,t1时刻二者速度相同,系统动能最小,势能最大,弹簧被压缩到最短,然后弹簧逐渐恢复原长,B仍然加速,A先减速为零,然后反向加速,t2时刻,弹簧恢复原长状态,由于此时两物块速度相反,因此弹簧的长度将逐渐增大,两物块均减速,在t3时刻,两物块速度相等,系统动能最小,弹簧最长,因此从t3到t4过程中弹簧由伸长状态恢复原长,故B错误;根据动量守恒定律,可知t=0时刻和t=t1时刻系统总动量相等,有m1v1=(m1+m2)v2,其中v1=3m/s,v2=1m/s,解得m1:m2=1:2,故C正确;在t2时刻A的速度为v A=-1m/s,B的速度为v B=2m/s,根据m1:m2=1:2,求出E k1:E k2=1:8,故D正确.命题拓展命题条件不变,一题多设问下列说法不正确的是(C)A.t1~t2时间内B的加速度在减小B.t1和t3时刻弹簧的弹性势能相等C.t2时刻弹簧处于压缩状态D.t3时刻弹簧的弹性势能最大解析由v-t图像可知t1~t2时间内B的加速度在减小,A正确,不符合题意;t1和t3时刻,A和B的速度均相等,则A和B系统的总动能相等,弹簧的弹性势能相等,B正确,不符合题意;t2时刻,A和B的加速度均为零,说明弹簧弹力为零,则弹簧在t2时刻处于原长状态,C错误,符合题意;t3时刻,A和B的速度相等,弹簧的弹性势能最大,D正确,不符合题意.4.[滑块与弹簧不连接]如图所示,一木板放在光滑水平面上,木板的右端与一根沿水平方向放置的轻质弹簧相连,弹簧的自由端在Q点.木板的上表面左端点P与Q点之间是粗糙的,P、Q之间的距离为L,Q点右侧表面是光滑的.一质量为m=0.2kg的滑块(可视为质点)以水平速度v0=3m/s从木板的左端沿板面向右滑行,压缩弹簧后又被弹回.已知木板质量M=0.3kg,滑块与木板表面P、Q之间的动摩擦因数为μ=0.2,g=10m/s2.(1)若L=0.8m,求滑块滑上木板后的运动过程中弹簧的最大弹性势能;(2)要使滑块既能挤压弹簧,最终又没有滑离木板,则木板上P 、Q 之间的距离L 应在什么范围内?答案(1)0.22J(2)0.675m≤L <1.35m解析(1)滑块滑上木板后将弹簧压缩到最短时,弹簧具有最大弹性势能,此时滑块、木板共速,取向右为正方向,由动量守恒定律得mv 0=(m +M )v 共由能量守恒定律得E p =12m 02-12(m +M )共2-μmgL解得E p =0.22J(2)滑块最终没有离开木板,滑块和木板具有共同的末速度,设为u ,滑块与木板组成的系统动量守恒,有mv 0=(m +M )u设共速时滑块恰好滑到Q 点,由能量守恒定律得μmgL 1=12m 02-12(m +M )u2解得L 1=1.35m设共速时滑块恰好回到木板的左端P 点处,由能量守恒定律得2μmgL 2=12m 02-12(m +M )u 2解得L 2=0.675m所以P 、Q 之间的距离L 应满足0.675m≤L <1.35m.题型3滑块+斜(曲)面模型模型图示水平地面光滑、曲面光滑模型特点(1)最高点:m 与M 具有共同水平速度v 共,m 不会从此处或提前偏离轨道,系统水平方向动量守恒,mv 0=(M +m )v 共;系统机械能守恒,12m v 02=12(M +m )v 共2+mgh ,其中h 为滑块上升的最大高度,不一定等于圆弧轨道的高度(完全非弹性碰撞拓展模型);(2)最低点:m 与M 分离点,系统水平方向动量守恒,mv 0=mv 1+Mv 2;系统机械能守恒,12m 02=12m 12+12M 22(弹性碰撞拓展模型)5.[滑块脱离曲面]如图所示,在光滑的水平地面上,静置一质量为m的四分之一光滑圆弧滑块,圆弧半径为R,一质量也为m的小球,以水平速度v0自滑块的左端A处滑上滑块,当二者共速时,小球刚好到达圆弧上端B.若将小球的初速度增大为2v0,不计空气阻力,则小球能达到距B点的最大高度为(C)A.RB.1.5RC.3RD.4R解析若小球以水平速度v0滑上滑块,小球上升到圆弧的上端时,小球与滑块速度相同,设为v1,以小球的初速度v0的方向为正方向,在水平方向上,由动量守恒定律得mv0=2mv1,由机械能守恒定律得12m02=12×2m12+mgR,代入数据解得v0=2g,若小球以水平速度2v0冲上滑块,小球上升到圆弧的上端时,小球与滑块水平方向上速度相同,设为v2,以小球的初速度方向为正方向,在水平方向上,由动量守恒定律得2mv0=2mv2,由能量守恒定律得12m×(2v0)2=12×2m22+mgR+12m2,解得v y=6g,小球离开圆弧后做斜抛运动,竖直方向做匀减速运动,则h=22=3R,故距B点的最大高度为3R,故选C.命题拓展情境不变,一题多设问以水平速度v0自滑块的左端A处滑上滑块,小球与滑块分离时的速度是多少?答案0解析从小球滑上滑块至小球离开滑块的过程中,根据能量守恒定律得12m02=12m球2+12m块2,小球和滑块系统水平方向动量守恒,有mv0=mv球+mv块,解得v球=0.6.[滑块不脱离曲面/2024广东广州部分学校联考]如图所示,质量m0=5g的小球用长l=1m的轻绳悬挂在固定点O,质量m1=10g的物块静止在质量m2=30g的14光滑圆弧轨道的最低点,圆弧轨道静止在光滑水平面上,悬点O在物块m1的正上方,将小球拉至轻绳与竖直方向成37°角后,由静止释放小球,小球下摆至最低点时与物块发生弹性正碰,碰后物块恰能到达圆弧轨道的最上端.若小球、物块可视为质点,不计空气阻力,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8.求:(1)小球与物块碰撞前瞬间小球的速度v0;(2)小球与物块碰撞后瞬间物块的速度v1;(3)圆弧轨道的半径R.答案(1)v0=2m/s(2)v1=43m/s(3)R=115m解析(1)小球下摆至最低点,满足机械能守恒定律,有m0gl(1-cos37°)=12m002解得v0=2g(1-Hs37°)=2m/s(2)小球与物块碰撞,满足动量守恒定律、机械能守恒定律,有m0v0=m0v01+m1v1 12m002=12m0012+12m112解得v1=43m/s(3)物块滑到圆弧轨道最高点的过程,满足动量守恒定律、机械能守恒定律,则有m1v1=(m1+m2)v212m112=12(m1+m2)22+m1gR解得R=115m.7.[滑块与斜面结合]如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3m(h小于斜面体的高度).已知小孩与滑板的总质量为m1=30kg,冰块的质量为m2=10kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10m/s2.(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?答案(1)20kg(2)不能,理由见解析解析(1)规定向左为正方向.冰块在斜面体上上升到最大高度时两者达到共同速度,设此共同速度为v,斜面体的质量为m3.对冰块与斜面体,由水平方向动量守恒和机械能守恒定律得m2v0=(m2+m3)v①12m202=12(m2+m3)v2+m2gh②式中v0=3m/s为冰块推出时的速度,联立①②式并代入题给数据得v=1m/s,m3=20kg ③.(2)设小孩推出冰块后的速度为v1,对小孩与冰块,由动量守恒定律有m1v1+m2v0=0④代入数据得v1=-1m/s⑤设冰块与斜面体分离后的速度分别为v2和v3,对冰块与斜面体,由动量守恒定律和机械能守恒定律有m2v0=m2v2+m3v3⑥12m 202=12m 222+12m 332⑦联立③⑥⑦式并代入数据得v 2=-1m/s⑧由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且冰块处在小孩后方,故冰块不能追上小孩.题型4滑块+滑板模型示意图木板初速度为零且足够长木板有初速度且足够长,板块反向地面光滑地面光滑v -t 图像8.[滑块、滑板同向运动]如图所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(可视为质点)以一定的初速度从左端冲上木板,如果长木板是固定的,物块恰好停在木板的右端,如果长木板不固定,则物块冲上木板后在木板上滑行的距离为(C)A.LB.34C.2 D.4解析设物块受到的滑动摩擦力为F f ,物块的初速度为v 0.如果长木板是固定的,物块恰好停在长木板的右端,对物块的滑动过程运用动能定理得-F f L =0-12M 02,如果长木板不固定,物块冲上木板后,物块向右减速的同时,木板要加速,最终两者一起做匀速运动,该过程系统所受外力的合力为零,动量守恒,规定向右为正方向,根据动量守恒定律得Mv 0=(M +M )v 1,对系统运用能量守恒定律有F f L'=12M 02−12(2M )12,联立解得L'=2,C 正确,A 、B 、D 错误.9.[滑块、滑板反向运动]质量为M=1.0kg的长木板A在光滑水平面上以v1=0.5m/s的速度向左运动,某时刻质量为m=0.5kg的小木块B以v2=4m/s的速度从左端向右滑上长木板,经过时间t=0.6s小木块B相对A静止,已知重力加速度g取10m/s2,求:(1)两者相对静止时的运动速度v;(2)从木块滑上木板到相对木板静止的过程中,木板A的动量变化量的大小;(3)小木块与长木板间的动摩擦因数μ.答案(1)1m/s,方向水平向右(2)1.5kg·m/s(3)0.5解析设水平向右为正方向(1)从开始到相对静止,系统在水平方向动量守恒-Mv1+mv2=(M+m)v解得v=1m/s,方向水平向右.(2)长木板的动量变化量大小Δp=Mv-(-Mv1)=1.5kg·m/s.(3)对小木块B,根据动量定理得-μmgt=mv-mv2解得μ=0.5.10.[多个滑块综合考查/2024辽宁沈阳模拟]如图,粗糙水平地面上放着两个相同的木板B和C,可视为质点的物块A以初速度v0冲上木板B.已知A质量为2m,与B、C间动摩擦因数均为μ;B、C质量均为m,与地面间动摩擦因数均为12μ.当A运动至B最右端时,A、B速度相同且B、C恰好相撞(碰撞时间极短),撞后B、C粘在一起.重力加速度为g.求:(1)开始时B、C间的距离;(2)A最终离C右端的距离;(3)从A冲上木板B到最终C静止的整个过程系统因摩擦产生的热量.答案(1)029B(2)230272B(3)3536m02解析(1)A在B上滑动时,对A有2μmg=2ma A故a A=μg对B有2μmg-32μmg=ma B故a B=12μg设经过t1时间A、B速度相同,则有v0-a A t1=a B t1解得t1=203B由于x B=12a B12,解得x B=029B,此即B、C的初始距离(2)木板B的长度等于A、B共速时的相对位移,有L=(v0t1-12a A12)-12a B12解得L=023B由动量守恒定律可得,A滑到B最右端时,A、B共速的速度v1=13v0此时B与C发生完全非弹性碰撞,有mv1=2mv2故碰撞后瞬间B、C的速度为v2=16v0A以13v0的速度滑上C,继续以a A=μg的加速度减速,而此时B、C整体所受合力为零,做匀速直线运动,设经过时间t2后A与B、C共速,则有v1-a A t2=v2解得t2=06B此过程中A相对C的位移大小为x AC=(v1t2-12a A22)-v2t2解得x AC=0272B此后A、C相对静止,故A最终离C右端的距离为L-x AC=230272B(3)B、C碰撞过程损失的机械能为12m12-12×2m22=136m02整个过程系统的总机械能损失为12×2m02-0=m02因此整个过程系统因摩擦产生的热量Q=3536m02.1.[滑块+曲面/2023山东]如图所示,物块A和木板B置于水平地面上,固定光滑弧形轨道末端与B的上表面所在平面相切,竖直挡板P固定在地面上.作用在A上的水平外力,使A 与B以相同速度v0向右做匀速直线运动.当B的左端经过轨道末端时,从弧形轨道某处无初速度下滑的滑块C恰好到达最低点,并以水平速度v滑上B的上表面,同时撤掉外力,此时B右端与P板的距离为s.已知v0=1m/s,v=4m/s,m A=m C=1kg,m B=2kg,A与地面间无摩擦,B与地面间动摩擦因数μ1=0.1,C与B间动摩擦因数μ2=0.5,B足够长,使得C 不会从B上滑下.B与P、A的碰撞均为弹性碰撞,不计碰撞时间,取重力加速度大小g=10m/s2.(1)求C下滑的高度H;(2)与P碰撞前,若B与C能达到共速,且A、B未发生碰撞,求s的范围;(3)若s=0.48m,求B与P碰撞前,摩擦力对C做的功W;(4)若s=0.48m,自C滑上B开始至A、B、C三个物体都达到平衡状态,求这三个物体总动量的变化量Δp的大小.答案(1)0.8m(2)0.625m≤s≤2+2m(3)-6J(4)(6+322)N·s解析(1)C下滑过程,由动能定理有m C gH=12m C v2,解得H=0.8m(2)设C滑上B以后,C的加速度大小为a C,B的加速度大小为a1,B、C共速时间为t1,s的最小值为s1,B、C共同的加速度大小为a2,经过t2时间A追上B,s的最大值为s2,则由牛顿第二定律有μ2m C g=m C a C解得a C=5m/s2μ2m C g-μ1(m B+m C)g=m B a1解得a1=1m/s2又v0+a1t1=v-a C t1解得t1=0.5s由运动学规律有s1=v0t1+12a112联立解得s1=58m=0.625mB、C共速后,由牛顿第二定律得μ1(m B+m C)g=(m B+m C)a2解得a2=1m/s2由运动学公式得s2=s1+(v0+a1t1)t2-12a222s2=v0(t1+t2)联立解得s2=2+2m故s的范围为0.625m≤s≤2+2m(3)由题意知s<s1,所以B与P碰撞时,B与C未共速.设C在B板上滑动的时间为t3,B与P相碰时C的速度大小为v1,则由运动学公式得s=v0t3+12a132解得t3=0.4s(另一解舍去)v1=v-a C t3解得v1=2m/s对物体C从刚滑上B到B与P碰撞前的过程,由动能定理有W=12m C(12-v2)解得W=-6J(4)设B与P碰撞前瞬间的速度大小为v2,B与P碰撞后瞬间的速度为v3,B向左运动的加速度大小为a3,B向左运动时间t4与A相遇.设A、B碰撞前瞬间B的速度大小为v4;A、B碰撞后瞬间,A的速度为v5,B的速度为v6,C的速度大小为v7,则由运动学公式得v2=v0+a1t3解得v2=1.4m/s由于P固定在地面上,B与P的碰撞为弹性碰撞,所以有v3=v2=1.4m/sB与P碰撞后向左运动的过程中,对B由牛顿第二定律得μ2m C g+μ1(m B+m C)g=m B a3解得a3=4m/s2自B、P碰撞后至A、B发生碰撞的过程,由运动学公式得s-v0t3=v0t4+v3t4-12a342解得t4(另一解舍去)v4=v3-a3t4解得v41)m/sv7=v1-a C t4解得v7=(22-1)m/s以向右为正方向,A、B发生弹性碰撞,由动量守恒定律得m A v0-m B v4=m A v5+m B v6由机械能守恒定律得12m A02+12m B42=12m A+12m B62联立解得v5=(1m/s、v6=(1m/s(另一组解舍去)即A、B碰撞后,A以速度v5向左运动,B以初速度v6向右运动经分析可得,B、C最终静止,A最终以速度v5向左运动,故自C滑上B开始至三物体达到平衡状态,这三个物体总动量的变化量为Δp=m A v5-[(m A+m B)v0+m C v]解得Δ=(6N·s2.[滑块+弹簧/2022全国乙]如图(a),一质量为m的物块A与轻质弹簧连接,静止在光滑水平面上;物块B向A运动,t=0时与弹簧接触,到t=2t0时与弹簧分离,第一次碰撞结束,A、B的v-t图像如图(b)所示.已知从t=0到t=t0时间内,物块A运动的距离为0.36v0t0.A、B分离后,A滑上粗糙斜面,然后滑下,与一直在水平面上运动的B再次碰撞,之后A再次滑上斜面,达到的最高点与前一次相同.斜面倾角为θ(sinθ=0.6),与水平面光滑连接.碰撞过程中弹簧始终处于弹性限度内.求(1)第一次碰撞过程中,弹簧弹性势能的最大值;(2)第一次碰撞过程中,弹簧压缩量的最大值;(3)物块A与斜面间的动摩擦因数.图(a)图(b)答案(1)0.6m02(2)0.768v0t0(3)0.45解析(1)水平面光滑,故在水平面上两物块碰撞过程动量守恒,从B与弹簧接触到弹簧第一次压缩到最短过程中有m B v1=(m B+m A)v0其中v1=1.2v0可得m B=5m该过程中机械能守恒,设弹簧最大弹性势能为E p,得E p+12(m A+m B)02=12m B12由上式得E p=0.6m02(2)由图像知0~t0内物块B与物块A的位移差等于弹簧的最大压缩量,也就是题图中该段时间物块A、B图像所夹面积,物块A在0~t0时间内的位移S A=0.36v0t0,即为0~t0内,v-t图像中A线与t轴所夹面积.解法1在压缩弹簧的过程中,物块A、B所受弹簧弹力大小相等,方向相反,则物块A的加速度始终是物块B加速度的5倍,有a A=5a B若两者均做初速度为零的变速运动,则两者的位移满足S A=5S'B在图1中深灰色阴影面积为S A,浅灰色阴影面积为S'B.最大压缩量为X=1.2v0t0-S A-S'B=0.768v0t0图1图2解法20~t0过程,由动量守恒定律有mv A+5mv B=(m+5m)v0结合运动学知识有mS A+5mS B=6mv0t0解得S B=1.128v0t0(B在0~t0内的位移)最大压缩量为X=S B-S A=1.128v0t0-0.36v0t0=0.768v0t0(3)设物块A第一次从斜面滑到平面上时的速度为v x,物块A(含弹簧)回到水平面,第二次与B相互作用过程系统机械能守恒、动量守恒.则有m B v2-m A v x=m B v3+m A·2v012m B22+12m A2=12m B32+12m A(2v0)2其中v2=0.8v0可得v x=v0(另一解舍去)物块A第一次从斜面底端滑到最高点的过程,由动能定理有-mgμs cosθ-mgs sinθ=0-12m(20)2物块A第一次从最高点滑到水平面的过程,由动能定理有-mgμs cosθ+mgs sinθ=12m02-0由上式得μ=0.45.1.[多选]如图所示,在光滑的水平面上放有两个小球A和B,mA>m B,B球上固定一轻质弹簧.A球以速率v去碰撞静止的B球,则(BD)A.A球的最小速率为零B.B球的最大速率为2+vC.当弹簧压缩到最短时,B球的速率最大D.两球的动能最小值为222(+)解析A球与弹簧接触后,弹簧被压缩,弹簧对A球产生向左的弹力,对B球产生向右的弹力,故A球做减速运动,B球做加速运动,当B球的速度等于A球的速度时弹簧的压缩量最大,此后A球继续减速,B球继续加速,弹簧压缩量减小,当弹簧恢复原长时,B球速度最大,A球速度最小,此过程满足动量守恒定律和能量守恒定律,有m A v=m A v1+m B v2,12m A v2=12m A12+12m B22,解得v1=−+v,v2=2+v,因为m A>m B,可知A球的最小速率不为零,B球的最大速率为2+v,故A、C错误,B正确;两球共速时,弹簧压缩到最短,弹性势能最大,此时两球动能最小,根据动量守恒定律有m A v=(m A+m B)v共,E k=12(m A+m B)共2,联立可得E k=222(+),故D正确.2.[2024北京八一中学校考/多选]如图所示,静止在光滑水平桌面上的物块A和B用一轻质弹簧拴接在一起,弹簧处于原长.一颗子弹沿弹簧轴线方向射入物块A并留在其中,射入时间极短.下列说法中正确的是(BD)A.子弹射入物块A的过程中,子弹和物块A的机械能守恒B.子弹射入物块A的过程中,子弹对物块A的冲量大小等于物块A对子弹的冲量大小C.子弹射入物块A后,两物块与子弹的动能之和等于射入物块A前子弹的动能D.两物块运动过程中,弹簧最短时的弹性势能等于弹簧最长时的弹性势能解析子弹射入物块A的过程为完全非弹性碰撞,有动能损失,则子弹和物块A的机械能不守恒,故A错误;子弹射入物块A的过程中,子弹对物块A的作用力与物块A对子弹的作用力是一对相互作用力,等大反向,而且两个力作用时间相等,由I=Ft知,子弹对物块A的冲量大小等于物块A对子弹的冲量大小,故B正确;子弹射入物块A后,两物块与子弹的动能之和小于射入物块A前子弹的动能,因为子弹射入物块A过程中有动能转化为内能,故C错误;两物块运动过程中,弹簧最短时与弹簧最长时都是两物块具有共同速度时,有(m A+m子)v1=(m A+m子+m B)v2,ΔE p=12(m A+m子)12−12(m A+m子+m B)22,则弹簧最短时的弹性势能等于弹簧最长时的弹性势能,故D正确.3.[2024河南三门峡模拟/多选]光滑水平面上停放着质量为m、装有光滑弧形槽的小车,一质量也为m的小球以水平速度v0沿槽口向小车滑去,到达某一高度后,小球又返回右端,图甲小车放置在无阻碍的光滑水平面上,图乙小车靠墙停放,已知重力加速度为g,则(BC)A.图甲中小球返回右端将向右做平抛运动B.图乙中小球返回右端将向右做平抛运动C.图甲中小球在弧形槽内上升的最大高度为024D.图甲中全过程小球对小车压力的冲量为mv0解析题图甲中,小球离开小车时,设小球的速度为v1,小车的速度为v2,整个过程中系统在水平方向上动量守恒,以向左为正方向,由动量守恒定律得mv0=mv1+mv2,对系统由机械能守恒定律得12m02=12m12+12m22,联立解得v1=0,v2=v0,所以题图甲中小球返回右端将做自由落体运动,A错误;题图乙中小车静止不动,因此小球返回右端将向右做平抛运动,B正确;设题图甲中小球在弧形槽内上升的最大高度为h,由系统水平方向动量守恒得mv0=2mv,由能量守恒定律得12m02=12×2mv2+mgh,解得h=024,C正确;由以上分析可知,题图甲中小球返回右端将做自由落体运动,小车将向左做匀速直线运动,速度为v0,对小车水平方向,由动量定理可得I x=Δp=mv0,由于小球对小车一直有竖直向下的压力分量,故全过程小球对小车压力的冲量不等于mv0,D错误.4.[多选]如图所示,光滑水平面上有一质量为2M、半径为R(R足够大)的14光滑圆弧曲面C,质量为M的小球B置于其底端,质量为2的小球A以v0=6m/s的速度向B运动,并与B发生弹性碰撞,两小球均可视为质点,则(AD)A.B的最大速率为4m/sB.B运动到最高点时的速率为34m/sC.B能与A再次发生碰撞D.B不能与A再次发生碰撞解析A与B发生弹性碰撞,取水平向右为正方向,根据动量守恒定律和机械能守恒定律得2v0=2v A+Mv B,12·202=12·22+12M2,解得v A=-2m/s,v B=4m/s,故B的最大速率为4m/s,A正确;B冲上C并运动到最高点时二者共速,设为v,则Mv B=(M+2M)v,得v=43m/s,B错误;B冲上C然后又滑下的过程,设B、C分离时速度分别为v'B、v'C,由水平方向动量守恒有Mv B=Mv'B+2Mv'C,由机械能守恒有12M2=12Mv'2B+12·2Mv'2C,联立解得v'B=-43m/s,由于|v'B|<|v A|,所以二者不会再次发生碰撞,C错误,D正确.5.[设问创新/2024江苏盐城模拟]如图所示,一质量为M=3.0kg的长木板B放在光滑水平地面上,在其右端放一个质量为m=1.0kg的小木块A.同时给A和B大小均为v=5.0m/s、方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离B.在A做加速运动的时间内,B的速度大小可能是(C)A.1.8m/sB.2.4m/sC.2.8m/sD.3.5m/s解析以A、B组成的系统为研究对象,因为系统不受外力,则系统动量守恒,选择水平向右的方向为正方向,从A、B开始运动到A的速度为零,根据动量守恒定律可得(M-m)v=Mv B1,解得v B1=103m/s,从A、B开始运动到A、B共速,根据动量守恒定律可得(M-m)v=(M+m)v B2,解得v B2=2.5m/s,木块A加速运动的过程为其速度减为零到与B共速的过程,此过程中B始终减速,则在木块A做加速运动的时间内,B的速度范围为2.5m/s≤v B≤103m/s,故C正确,ABD错误.6.[2024湖南长沙南雅中学校考]质量为M,长度为d的木块放在光滑的水平面上,在木块的右边有一个销钉把木块挡住,使木块不能向右滑动,质量为m的子弹以水平速度v0射入静止的木块,刚好能将木块射穿.现拔去销钉,使木块能在水平面上自由滑动,而子弹仍以水平速度v0射入静止的木块,设子弹在木块中受到的阻力大小恒定,则(C)A.拔去销钉,木块和子弹组成的系统动量守恒,机械能也守恒B.子弹在木块中受到的阻力大小为B02C.拔去销钉,子弹在木块中运动的时间为2B(+)0D.拔去销钉,子弹射入木块的深度为B+解析拔去销钉,木块和子弹之间的摩擦力是系统内力,故木块和子弹组成的系统动量守恒;但因摩擦力要做功,故系统机械能不守恒,故A错误.当木块固定时,由动能定理可知-fd=0-12m02,解得f=B022,故B错误.拔去销钉,子弹与木块系统动量守恒,则根据动量守恒定律可得mv0=(m+M)v,解得v=B0+,对木块根据动量定理可得ft=Mv,子弹在木块中运动的时间为2B(+p0,故C正确.拔去销钉,由C选项分析可知最终速度,故整个过程根据动能定理有-fx=12(m+M)v2-12m02,解得x=B+,D错误.7.[2024江西南昌模拟]质量相等的A、B两球之间压缩一根轻质弹簧,静置于光滑水平桌面上,当用挡板挡住A球而只释放B球时,B球被弹出落到距桌边水平距离为x的地面上,如图所示,若再次以相同力压缩该弹簧,取走A左边的挡板,将A、B同时释放,则B球的落地点距桌边水平距离为(D)A.2 B.2x C.x解析当用挡板挡住A球而只释放B球时,B球做平抛运动,设高度为h,则有h=12gt2,x=v0t,所以弹簧的弹性势能为E p=12m02.若再次以相同力压缩该弹簧,取走A左边的挡板,将A、B同时释放,取向右为正方向,由动量守恒定律可得0=mv1-。
碰撞模型的拓展-高考物理复习
根据题意可知,当弹簧压缩到最短时,两物 体速度相同,所以此时乙物体的速度大小也 是1 m/s,A正确; 因为弹簧压缩到最短时,甲受力向左,甲继续减速,B错误; 根据动量守恒定律可得m1v0=(m1+m2)v,解得m1∶m2=1∶3,C错误; 当弹簧恢复原长时,根据动量守恒定律和机械能守恒定律有 m1v0= m1v1′+m2v2′,12m1v02=12m1v1′2+12m2v2′2,联立解得 v2′=2 m/s, D 错误.
例2 (多选)如图甲所示,一个轻弹簧的两端与质量分别为m1和m2的两物 块A、B相连接并静止在光滑的水平地面上.现使A以3 m/s的速度向B运动 压缩弹簧,A、B的速度—时间图像如图乙,则有
A.在t1、t3时刻两物块达到共同速度1 m/s,且弹簧都处于压缩状态 B.从t3到t4过程中,弹簧由压缩状态恢复原长
例1 (2023·江西南昌市模拟)如图所示,一个轻弹簧的两端与质量分别
为m1和m2的两物体甲、乙连接,静止在光滑的水平面上.现在使甲瞬间获 得水平向右的速度v0=4 m/s,当甲物体的速度减小到1 m/s时,弹簧最短. 下列说法中正确的是
√A.此时乙物体的速度大小为1 m/s
B.紧接着甲物体将开始做加速运动 C.甲、乙两物体的质量之比m1∶m2=1∶4 D.当弹簧恢复原长时,乙物体的速度大小为4 m/s
若滑块 P 不固定,小球与挡板第一次碰撞后将以 等大速度反弹,则滑上滑块后再滑回到地面的过 程,由动量守恒定律和能量关系可知 mv1+Mv2=mv1′+Mv2′,12mv12 +12Mv22=12mv1′2+12Mv2′2,联立解得 v1′=43 m/s,v2′=130 m/s, 因此时小球的速度小于滑块的速度,则小球与挡板碰后不能再次追 上滑块,则滑块的最终速度大小为130 m/s,选项 D 错误.
2007年高考物理“弹性碰撞”试题赏析
2007年高考物理“弹性碰撞”试题赏析笔者在对2007年全国12套高考物理试题整理时发现了弹性碰撞知识内容明显增多,去年全国物理试题中只有重庆卷出现弹性碰撞的计算题,而今年却有7套试卷出现了弹性碰撞的计算题,并且首批进入高中新课改的4个省份:广东、山东、海南和宁夏,它们的高考试卷有弹性碰撞的计算题,其中只有广东卷没有以选做的形式出现,其它三个省份的试卷是以选做的形式出现。
下面是笔者就2007年物理高考试题中的弹性碰撞归类。
一、弹性碰撞与匀速运动相结合两球发生弹性碰撞后,两球所受合外力为零而做匀速直线运动,根据题意,求出相关的物理量。
【例1】(宁夏第30题选考D题)在光滑的水平面上,质量为m1的小球A以速率v0向右运动。
在小球的前方O点处有一质量为m2的小球B处于静止状态,如图所示。
小球A与小球B发生正碰后小球A、B均向右运动。
小球B被在Q点处的墙壁弹回后与小球A在P点相遇,PQ=1.5PO。
假设小球间的碰撞及小球与墙壁之间的碰撞都是弹性的,求两小球质量之比m1/m2。
解:从两小球碰撞后到它们再次相遇,小球A和B的速度大小保持不变,根据它们通过的路程,可知小球B和小球A在碰撞后的速度大小之比为4∶1两球碰撞过程有:解得:二、弹性碰撞与平抛运动相结合小球碰撞后,其中有球做平抛运动,由平抛运动的知识,可求出初速度,然后列出弹性碰撞方向组,求得有关物理量。
【例2】(广东第17题)如图所示,在同一竖直上,质量为2m的小球A静止在光滑斜面的底部,斜面高度为H=2L。
小球受到弹簧的弹性力作用后,沿斜面向上运动。
离开斜面达到最高点时与静止悬挂在此处的小球B发生弹性碰撞,碰撞后球B刚好能摆到与悬点O同一高度,球A沿水平方向抛射落在水平面C上的P点,O点的投影O'与P的距离为L/2。
已知球B质量为m,悬绳长L,视两球为质点,重力加速度为g,不计空气阻力,求:(1)球B在两球碰撞后一瞬间的速度大小;(2)球A在两球碰撞后一瞬间的速度大小;(3)弹簧的弹性力对球A所做的功。
专题(45)“碰撞类”模型问题(解析版)
2021年高考物理一轮复习考点全攻关专题(45)“碰撞类”模型问题(解析版)专题解读1.本专题主要研究碰撞过程的特点和满足的物理规律,并对碰撞模型进行拓展分析.2.学好本专题,可以使同学们掌握根据物理情景或解题方法的相同或相似性,进行归类分析问题的能力.3.用到的知识、规律和方法有:牛顿运动定律和匀变速直线运动规律;动量守恒定律;动能定理和能量守恒定律.命题热点一:“物体与物体”正碰模型1.弹性碰撞碰撞结束后,形变全部消失,动能没有损失,不仅动量守恒,而且初、末动能相等.(1)m1v1+m2v2=m1v1′+m2v2′12m1v12+12m2v22=12m1v1′2+12m2v2′2v1′=m1-m2v1+2m2v2 m1+m2v2′=m2-m1v2+2m1v1 m1+m2(2)v2=0时,v1′=m1-m2m1+m2v1v2′=2m1m1+m2v1讨论:①若m1=m2,则v1′=0,v2′=v1(速度交换);①若m1>m2,则v1′>0,v2′>0(碰后,两物体沿同一方向运动);①若m1①m2,则v1′≈v1,v2′≈2v1;①若m1<m2,则v1′<0,v2′>0(碰后,两物体沿相反方向运动);①若m1①m2,则v1′≈-v1,v2′≈0.2.非弹性碰撞碰撞结束后,动能有部分损失.m1v1+m2v2=m1v1′+m2v2′12m1v12+12m2v22=12m1v1′2+12m2v2′2+ΔE k损3.完全非弹性碰撞碰撞结束后,两物体合二为一,以同一速度运动,动能损失最大.m1v1+m2v2=(m1+m2)v12m1v12+12m2v22=12(m1+m2)v2+ΔE k损max4.碰撞遵守的原则(1)动量守恒.(2)机械能不增加,即碰撞结束后总动能不增加,表达式为E k1+E k2≥E k1′+E k2′或p122m1+p222m2≥p1′22m1+p2′22m2.(3)速度要合理①碰前若同向运动,原来在前的物体速度一定增大,且v前≥v后.①两物体相向运动,碰后两物体的运动方向肯定有一个改变或速度均为零.例1如图所示,质量为m1=0.2 kg的小物块A,沿水平面与小物块B发生正碰,小物块B的质量为m2=1 kg.碰撞前瞬间,A的速度大小为v0=3 m/s,B静止在水平面上.由于两物块的材料未知,将可能发生不同性质的碰撞,已知A、B与地面间的动摩擦因数均为μ=0.2,重力加速度g取10 m/s2,试求碰后B在水平面上滑行的时间.【答案】见解析【解析】假如两物块发生的是完全非弹性碰撞,碰后的共同速度为v1,则由动量守恒定律有m1v0=(m1+m2)v1碰后,A、B一起滑行直至停下,设滑行时间为t1,则由动量定理有-μ(m1+m2)gt1=0-(m1+m2)v1解得t1=0.25 s假如两物块发生的是弹性碰撞,碰后A、B的速度分别为v A、v B,则由动量守恒定律有m1v0=m1v A+m2v B由机械能守恒有12m1v02=12m1v A2+12m2v B2设碰后B滑行的时间为t2,则-μm 2gt 2=0-m 2v B解得t 2=0.5 s可见,碰后B 在水平面上滑行的时间t 满足0.25 s≤t ≤0.5 s.【变式1】 在游乐场中,父子两人各自乘坐的碰碰车沿同一直线相向而行,在碰前瞬间双方都关闭了动力,此时父亲的速度大小为v ,儿子的速度大小为2v .两车瞬间碰撞后儿子沿反方向滑行,父亲运动的方向不变且经过时间t 停止运动.已知父亲和车的总质量为3m ,儿子和车的总质量为m ,两车与地面之间的动摩擦因数均为μ,重力加速度大小为g ,求:(1)碰后瞬间父亲的速度大小和此后父亲能滑行的最大距离;(2)碰撞过程父亲坐的车对儿子坐的车的冲量大小.【答案】(1)μgt 12μgt 2 (2)3mv -3μmgt 【解析】(1)设碰后瞬间父亲的速度大小为v 1,由动量定理可得-μ·3mgt =0-3mv 1得v 1=μgt设此后父亲能滑行的最大距离为s ,由动能定理可得-μ·3mgs =0-12×3mv 12 得s =12μgt 2 (2)设碰后瞬间儿子的速度大小为v 2,取父亲的运动方向为正方向,由动量守恒定律可得3mv -m ·2v =3mv 1+mv 2设碰撞过程父亲坐的车对儿子坐的车的冲量大小为I ,由动量定理可得I =mv 2-(-m ·2v )解得I =3mv -3μmgt命题热点二:“滑块-弹簧”碰撞模型模型图示模型特点(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的矢量和为零,则系统动量守恒(2)在能量方面,由于弹簧形变会使弹性势能发生变化,系统的总动能将发生变化;若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动能通常最小(完全非弹性碰撞拓展模型)(4)弹簧恢复原长时,弹性势能为零,系统动能最大(完全弹性碰撞拓展模型,相当于碰撞结束时)【例2】A、B两小球静止在光滑水平面上,用水平轻弹簧相连接,A、B两球的质量分别为m和M(m<M).若使A球获得瞬时速度v如图甲,弹簧压缩到最短时的长度为L1;若使B球获得瞬时速度v如图乙,弹簧压缩到最短时的长度为L2,则L1与L2的大小关系为()A.L1>L2B.L1<L2 C.L1=L2D.不能确定【答案】C【解析】当弹簧压缩到最短时,两球的速度相同,对题图甲取A的初速度方向为正方向,由动量守恒定律得:mv=(m+M)v′由机械能守恒定律得:E p=12mv2-12(m+M)v′2联立解得弹簧压缩到最短时E p=mMv22m+M同理:对题图乙取B的初速度方向为正方向,当弹簧压缩到最短时有:E p=mMv22m+M故弹性势能相等,则有:L1=L2,故A、B、D错误,C正确.变式2】 两物块A 、B 用轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m/s 的速度在光滑的水平地面上运动,质量为4 kg 的物块C 静止在前方,如图所示.已知B 与C 碰撞后会粘在一起运动.在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大?(2)系统中弹性势能的最大值是多少?【答案】(1)3 m/s (2)12 J【解析】(1)弹簧压缩至最短时,弹性势能最大,由动量守恒定律得:(m A +m B )v =(m A +m B +m C )v A解得v A =3 m/s(2)B 、C 碰撞过程系统动量守恒m B v =(m B +m C )v C故v C =2 m/s碰后弹簧压缩到最短时弹性势能最大,故E p =12m A v 2+12(m B +m C )v C 2-12(m A +m B +m C )v A 2=12 J 命题热点三:“滑块--斜面”碰撞模型(1)最高点:m 与M 具有共同水平速度v ,m 不会从此处或提前偏离轨道.系统例3】 如图所示,半径均为R 、质量均为M 、内表面光滑的两个完全相同的14圆槽A 和B 并排放在光滑的水平面上,图中a 、c 分别为A 、B 槽的最高点,b 、b ′分别为A 、B 槽的最低点,A 槽的左端紧靠着竖直墙壁,一个质量为m 的小球C 从圆槽A 顶端的a 点无初速度释放.重力加速度为g ,求:(1)小球C 从a 点运动到b 点时的速度大小及A 槽对地面的压力大小;(2)小球C 在B 槽内运动所能达到的最大高度;(3)B 的最大速度的大小.【答案】(1)2gR 3mg +Mg (2)MR M +m (3)2m M +m2gR 【解析】(1)小球C 从a 点运动到b 点的过程,机械能守恒,有mgR =12mv 02 解得小球到b 点时的速度大小为v 0=2gR在最低点b ,根据牛顿第二定律可得F N -mg =m v 02R解得F N =3mg由牛顿第三定律可知,小球C 对A 的压力F N ′=F N =3mg ,A 静止,处于平衡状态,由平衡条件可知,地面对A 的支持力F =F N ′+Mg =3mg +Mg ,由牛顿第三定律可知,A 对地面的压力F ′=F =3mg +Mg .(2)B 、C 组成的系统在水平方向动量守恒,以向右为正方向,小球C 在B 槽内运动至所能达到的最大高度h 处时,两者共速,由动量守恒定律可知mv 0=(M +m )v由机械能守恒定律,有12mv 02=12(M +m )v 2+mgh 解得h =MR M +m. (3)当小球回到B 槽的底端b ′点时,B 的速度最大,根据动量守恒定律,有mv 0=mv 1+Mv 2由能量守恒定律可知12mv 02=12mv 12+12Mv 22 解得v 2=2m M +m2gR .【变式3(2020·甘肃天水市调研)如图所示,在水平面上依次放置小物块A 、C 以及曲面劈B ,其中A 与C 的质量相等均为m ,曲面劈B 的质量M =3m ,曲面劈B 的曲面下端与水平面相切,且曲面劈B 足够高,各接触面均光滑.现让小物块C 以水平速度v 0向右运动,与A 发生碰撞,碰撞后两个小物块粘在一起滑上曲面劈B .求:(1)碰撞过程中系统损失的机械能;(2)碰后物块A 与C 在曲面劈B 上能够达到的最大高度.【答案】(1)14mv 02 (2)3v 0240g【解析】(1)小物块C 与物块A 发生碰撞粘在一起,以v 0的方向为正方向由动量守恒定律得:mv 0=2mv解得v =12v 0; 碰撞过程中系统损失的机械能为E 损=12mv 02-12×2mv 2 解得E 损=14mv 02. (2)当小物块A 、C 上升到最大高度时,A 、B 、C 系统的速度相等.根据动量守恒定律:mv 0=(m +m +3m )v 1解得v 1=15v 0 根据机械能守恒得2mgh =12×2m ⎝⎛⎭⎫12v 02-12×5m ⎝⎛⎭⎫15v 0 2 解得h =3v 0240g. 命题热点四:“滑块--木板”碰撞模型(1)若子弹未射穿木块或滑块未从木板上滑下,当两者速度相等时木块或木板的速例4 如图所示,在光滑水平面上有B 、C 两个木板,B 的上表面光滑,C 的上表面粗糙,B 上有一个可视为质点的物块A ,A 、B 、C 的质量分别为3m 、2m 、m .A 、B 以相同的初速度v 向右运动,C 以速度v 向左运动.B 、C 的上表面等高,二者发生完全非弹性碰撞但并不粘连,碰撞时间很短.A 滑上C 后恰好能到达C 的中间位置,C 的长度为L ,不计空气阻力.求:(1)木板C 的最终速度大小;(2)木板C 与物块A 之间的摩擦力F f 大小;(3)物块A 滑上木板C 之后,在木板C 上做减速运动的时间t .【答案】(1)56v (2)mv 23L (3)3L 2v【解析】(1)设水平向右为正方向,B 、C 碰撞过程中动量守恒:2mv -mv =(2m +m )v 1解得v 1=v 3A 滑到C 上,A 、C 动量守恒:3mv +mv 1=(3m +m )v 2解得v 2=56v ; (2)根据能量关系可知,在A 、C 相互作用过程中,木板C 与物块A 之间因摩擦产生的热量为Q =12(3m )v 2+12mv 12-12(3m +m )v 22 Q =F f · L 2联立解得F f =mv 23L; (3)在A 、C 相互作用过程中,以C 为研究对象,由动量定理得F f t =mv 2-mv 1解得t =3L 2v.变式4 如图所示,质量m =1 kg 的小物块静止放置在固定水平台的最左端,质量M =2 kg 的小车左端紧靠平台静置在光滑水平地面上,平台、小车的长度均为0.6 m 且上表面等高.现对小物块施加一水平向右的恒力F ,使小物块开始运动,当小物块到达平台最右端时撤去恒力F ,小物块刚好能够到达小车的右端.小物块大小不计,与平台间、小车间的动摩擦因数μ均为0.5,重力加速度g 取10 m/s 2,求:(1)小物块离开平台时速度的大小;(2)水平恒力F 对小物块冲量的大小.【答案】(1)3 m/s (2)5 N· s【解析】(1)设撤去水平向右的恒力F 时小物块的速度大小为v 0,小物块和小车的共同速度大小为v 1.从撤去恒力到小物块到达小车右端过程,以v 0的方向为正方向,对小物块和小车组成的系统:由动量守恒:mv 0=(m +M )v 1由能量守恒:12mv 02=12(m +M )v 12+μmgl 联立以上两式并代入数据得:v 0=3 m/s(2)设水平恒力F 对小物块冲量的大小为I ,小物块在平台上相对平台运动的时间为t .小物块在平台上相对平台运动的过程,对小物块:由动量定理:I -μmgt =mv 0-0由运动学规律:l =v 02·t 联立并代入数据得:I =5 N· s.课时精练:1.如图1所示,光滑水平面上质量为m 1=2 kg 的物块以v 0=2 m/s 的初速度冲向质量为m 2=6 kg 的静止的光滑圆弧面斜劈体,圆弧部分足够长.求:图1(1)物块m 1刚滑到最高点位置时,二者的速度大小;(2)物块m 1刚从圆弧面滑下后,二者速度大小.(3)若m 1=m 2,物块m 1从圆弧面滑下后,二者速度大小.【答案】见解析【解析】(1)物块m 1与斜劈体作用过程水平方向动量守恒,且到最高点时共速,以v 0方向为正,则有:m 1v 0=(m 1+m 2)v ,解得v =0.5 m/s ;(2)物块m 1从滑上圆弧面到从圆弧面滑下过程,水平方向动量守恒,能量守恒,则有:m 1v 0=m 1v 1+m 2v 2,12m 1v 02=12m 1v 12+12m 2v 22, 解得:v 1=m 1-m 2m 1+m 2v 0,v 2=2m 1m 1+m 2v 0代入数据得:v 1=-1 m/s ,v 2=1 m/s ;(3)若m 1=m 2,根据上述分析,物块m 1从圆弧面滑下后,交换速度,即v 1′=0,v 2′=2 m/s.2. 如图2所示,光滑曲面与粗糙平面平滑连接,质量为m 2=3 kg 的滑块B 静止在光滑曲面的底端,质量为m 1=2 kg 的滑块A 由曲面上某一高度H 处无初速度释放,滑到底端和滑块B 发生弹性正碰,碰后滑块B 在平面上滑行的距离为L =2 m ,已知两滑块与平面间的动摩擦因数均为0.4,重力加速度g =10 m/s 2.求:图2(1)滑块B 在碰撞后瞬间的速度大小;(2)滑块A 的释放高度.【答案】(1)4 m/s (2)1.25 m【解析】(1)碰后滑块B 减速滑行,由动能定理得:-μm 2gL =-12m 2v 22 滑块B 碰后瞬间的速度:v 2=4 m/s(2)两滑块碰撞,由动量守恒定律和能量守恒定律得:m 1v 0=m 1v 1+m 2v 212m 1v 02=12m 1v 12+12m 2v 22 滑块A 下滑过程,由动能定理得m 1gH =12m 1v 02 由以上各式解得 H =1.25 m3.如图3所示,静止放置在光滑水平面上的A 、B 、C 三个滑块,滑块A 、B 间通过一水平轻弹簧相连,滑块A 左侧紧靠一竖直固定挡板P ,某时刻给滑块C 施加一个水平冲量使其以初速度v 0水平向左运动,滑块C 撞上滑块B 的瞬间二者粘在一起共同向左运动,弹簧被压缩至最短的瞬间具有的弹性势能为1.35 J ,此时撤掉固定挡板P ,之后弹簧弹开释放势能,已知滑块A 、B 、C 的质量分别为m A =m B =0.2 kg ,m C =0.1 kg ,(取10=3.16)求:图3(1)滑块C 的初速度v 0的大小;(2)当弹簧弹开后恢复原长的瞬间,滑块B 、C 的速度大小;(3)从滑块B 、C 压缩弹簧至弹簧恢复原长的过程中,弹簧对滑块B 、C 整体的冲量.【答案】 (1)9 m/s (2)1.9 m/s (3)1.47 N·s ,方向水平向右【解析】(1)滑块C 撞上滑块B 的过程中,滑块B 、C 组成的系统动量守恒,以水平向左为正,根据动量守恒定律得:m C v 0=(m B +m C )v 1弹簧被压缩至最短时,滑块B 、C 速度为零,根据能量守恒定律得:E p =12(m B +m C )v 12 解得:v 1=3 m/s ,v 0=9 m/s(2)设弹簧弹开后恢复原长的瞬间,滑块B 、C 的速度大小为v 2,滑块A 的大小为v 3,根据动量守恒定律得: m A v 3=(m B +m C )v 2,根据能量守恒定律得:E p =12m A v 32+12(m B +m C )v 22 解得:v 2≈1.9 m/s(3)设弹簧对滑块B 、C 整体的冲量为I ,选向右为正方向,由动量定理得:I =Δp =(m B +m C )(v 2+v 1)解得:I =1.47 N·s ,方向水平向右.4.如图甲所示,半径为R =0.8 m 的四分之一光滑圆弧轨道固定在竖直平面内,A 为轨道最高点,与圆心O 等高;B 为轨道最低点.在光滑水平面上紧挨B 点有一静止的平板车,其质量M =3 kg ,小车足够长,车的上表面与B 点等高,平板车上表面涂有一种特殊材料,物块在上面滑动时,动摩擦因数随物块相对小车左端位移的变化图象如图乙所示.物块(可视为质点)从圆弧轨道最高点A 由静止释放,其质量m =1 kg ,g 取10 m/s 2.(1) 求物块滑到B 点时对轨道压力的大小;(2) 物块相对小车静止时距小车左端多远?【答案】 (1)30 N (2)1.75 m【解析】 (1)物块从光滑圆弧轨道A 点滑到B 点的过程中,只有重力做功,由机械能守恒定律得:mgR =12mv B 2代入数据解得v B =4 m/s在B 点,由牛顿第二定律得F N -mg =m v B 2R代入数据解得F N =30 N由牛顿第三定律可知,物块滑到B 点时对轨道的压力大小:F N ′=F N =30 N(2)物块滑上小车后,由于水平地面光滑,系统所受合外力为零,所以系统的动量守恒.以向右为正方向,由动量守恒定律得mv B =(m +M )v代入数据解得v =1 m/s由能量关系得系统因摩擦产生的热量Q =12mv B 2-12(m +M )v 2 解得Q =6 J由功能关系知Q =12μ1mgx 1+μ1mg (x -x 1) 将μ1=0.4,x 1=0.5 m 代入可解得x =1.75 m.。
高考物理建模之碰撞模型
高考物理建模之碰撞模型高中物理考查碰撞通常结合两个定律:动量守恒定律、能量转化定律,历年是高考物理必考考点。
做为高考热点,通常以选择、实验、更是压轴题形式出现。
高二物理常见的碰撞模型图
碰撞的特点
1、遵循动量守恒定律;
2、碰撞后动能不可能增大,即碰撞后机械能小于或等于碰前机械能;
3、追击类碰撞,碰前,后面物体的速度一定要大于前面物体的速度;碰后,若两物体同方向运动,后面的物体速度不可能大于前面物体的速度;若碰后两物体速度反向,则两者速度大小没有任何关系。
两类典型碰撞
1、弹性碰撞
特点:弹性碰撞必须除了遵循动量守恒定律外,还遵循机械能守恒定律。
正因为有这2个特点,因此可但凡看到物体属于弹性碰撞,我们可以列出两条方程组。
即:
讨论:
(1)一动一静且m1=m2的弹性碰撞时,碰后两球速度交换;
(2)大物体碰小物体,一起向前运动;质量相等,速度交换;小碰
大,向后退;
(3)原来动量P运动的物体,若其获得等大反向的动量时,是导致
物体静止或反向运动临界条件。
2、完全非弹性碰撞
特点:完全非弹性碰撞,碰后两物体共速,碰后机械能损失。
即:
说明:损失的机械能用于克服相对运动时摩擦力所做的功,转化为内能。
四个非常有用推论
1、弹性碰撞前后,双方的相对速度大小相等,即:v2-v1=v1-v2;
2、当质量相等的两物体发生弹性正碰时,速度交换;
3、完全非弹性碰撞后两物体共速;
4、碰撞过程中,遵循动量守恒定律、能量不增加定律、运动的合理性这三个条件的制约。
(2024年镜像物理)高考二轮复习解密突破《碰撞的四类模型》教学设计(全国通用)
(1)物理动画资源:物理动画资源可以直观地展示碰撞现象,帮助学生更好地理解碰撞过程。例如,《碰撞与冲击》等动画资源,可以为学生提供丰富的视觉体验,加深对碰撞现象的理解。
(2)物理实验资源:物理实验资源可以让学生亲身体验碰撞现象,提高学生的实践操作能力。例如,《碰撞实验》等实验资源,可以让学生通过实验观察并分析碰撞过程,加深对碰撞模型的理解。
②接着,教师应详细列出每种模型的定义、特点和计算方法,以便学生理解和记忆。例如,弹性碰撞的定义为碰撞后物体动能完全恢复的碰撞,计算方法为动量守恒定律和能量守恒定律。
③最后,教师应列出碰撞问题的数学计算方法,如动量守恒方程和能量守恒方程,并给出具体的计算步骤和公式。
2.板书设计应重点突出
①教师应在黑板上突出显示碰撞四类模型的核心知识点,如动量守恒定律和能量守恒定律。
(3)物理案例资源:物理案例资源可以让学生通过实际案例学习碰撞问题,提高解决实际问题的能力。例如,《碰撞案例分析》等资源,可以让学生通过分析实际案例,运用碰撞模型解决实际问题。
2.拓展建议
(1)组织学生观看物理动画资源,如《碰撞与冲击》等,让学生在轻松愉快的氛围中学习碰撞现象。通过观看动画,学生可以直观地感受到碰撞过程,加深对碰撞模型的理解。
(4)鼓励学生进行自主学习,查找与碰撞相关的资料,如学术论文、科普文章等。通过自主学习,学生可以拓展知识面,提高物理思维能力。
(5)组织学生参加物理竞赛或活动,如物理知识竞赛、物理实验竞赛等。通过参加竞赛,学生可以提高解决实际问题的能力,培养团队合作精神。
板书设计
1.板书设计应条理清楚
①首先,教师应在黑板上清晰地列出碰撞四类模型的名称,包括弹性碰撞、非弹性碰撞、完全非弹性碰撞和几何碰撞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四 弹性碰撞模型及应用
弹性碰撞问题及其变形在是中学物理中常见问题,在高中物理中占有重要位置,也是多年来高考的热点。
弹性碰撞模型能与很多知识点综合,联系广泛,题目背景易推陈出新,掌握这一模型,举一反三,可轻松解决这一类题,切实提高学生推理能力和分析解决问题能力。
所以我们有必要研究这一模型。
(一) 弹性碰撞模型
弹性碰撞是碰撞过程无机械能损失的碰撞,遵循的规律是动量守恒和系统机械能守恒。
确切的说是碰撞前后动量守恒,动能不变。
在题目中常见的弹性球、光滑的钢球及分子、原子等微观粒子的碰撞都是弹性碰撞。
已知A 、B 两个钢性小球质量分别是m 1、m 2,小球B 静止在光滑水平面上,A 以初速度v 0与小球B 发生弹性碰撞,求碰撞后小球A 的速度v 1,
物体B 的速度v 2大小和方向
解析:取小球A 初速度v 0的方向为正方向,因发
生的是弹性碰撞,碰撞前后动量守恒、动能不变有: m 1v 0= m 1v 1+ m 2v 2 ①
② 由①②两式得: , 结论:(1)当m 1=m 2时,v 1=0,v 2=v 0,显然碰撞后A 静止,B 以A 的初速度运动,两球速度交换,并且A 的动能完全传递给B ,因此m 1=m 2也是动能传递最大的条件;
(2)当m 1>m 2时,v 1>0,即A 、B 同方向运动,因 <,所以速度大小v 1<v 2,即两球不会发生第二次碰撞;
若m 1>>m 2时,v 1= v 0,v 2=2v 0 即当质量很大的物体A 碰撞质量很小的物体B 时,物体A 的速度几乎不变,物体B 以2倍于物体A 的速度向前运动。
(3)当m 1<m 2时,则v 1<0,即物体A 反向运动。
当m 1<<m 2时,v 1= - v 0,v 2=0 即物体A 以原来大小的速度弹回,而物体B 不动,A 的动能完全没有传给B ,因此m 1<<m 2是动能传递最小的条件。
2222112012
12121v m v m v m +=210211)(m m v m m v +-=2
10122m m v m v +=2121)(m m m m +-2
112m m m +m 2v 2 m 1v 1 B
m 1v 0 B A 图1 A
以上弹性碰撞以动撞静的情景可以简单概括为:(质量)等大小,(速度和动能)交换了;小撞大,被弹回;大撞小,同向跑。
(二)应用举例
[例1]如图2所示,两单摆的摆长不同,已知B 的摆长是A 摆长的4倍,A 的
周期为T ,平衡时两钢球刚好接触,现将摆球A 在两摆线所在的平面向左拉开一小
角度释放,两球发生弹性碰撞,碰撞后两球分开各自做简谐运动,以m A ,m B 分别
表示两摆球A ,B 的质量,则下列说法正确的是;
A .如果m A =m
B 经时间T 发生下次碰撞且发生在平衡位置
B .如果m A >m B 经时间T 发生下次碰撞且发生在平衡位置
C .如果m A >m B 经时间T/2发生下次碰撞且发生在平衡位置右侧
D .如果m A <m B 经时间T/2发生下次碰撞且发生在平衡位置左侧
[解析] 当m A =m B 时,A 、B 球在平衡位置发生弹性碰撞,速度互换,A 球静止,由于B 摆长是A 摆长的4倍,由单摆周期公式可知,A 周期是T ,B 的周期是2T ,当B 球反向摆回到平衡位置经时间为T ,再次发生碰撞。
故A 选项正确。
当m A >m B 时,发生第一次碰撞后两球同向右摆动,但A 球的速度小于B 球的速度,并有A 的周期是B 周期的一半,T/2时B 到达右侧最大位移处,此时A 向左回到平衡位置,A 继续向左;再经T/2, B 完成半个全振动向右,A 恰好完成一次全振动向左同时回到平衡位置发生碰撞,故B 选项正确,C 选项错误;当m A <m B 时,碰撞后A 反弹向左运动,B 向右,若m A 越接近m B 发生下一次碰撞的时间越接近T ,若m A <<m B ,A 接近原速反弹,B 几乎不动,发生下一次碰撞的时间越接近T/2,当A 经T/2经平衡位置从左向右运动时B 恰好在右侧最高点,而A 、B 碰撞的位置只能在平衡位置的右侧,或十分接近平衡位置,不可能在平衡位置的左侧,故D 选项错误。
[例2] 质量为 M 的小车静止于光滑的水平面上,小车的上表面和
圆弧的轨道均光滑,如图3如图所示,一个质量为m 的小球以速度v 0水平冲
向小车,当小球返回左端脱离小车时,下列说法正确的是:
A .小球一定沿水平方向向左做平作抛运动
B .小球可能沿水平方向向左作平抛运动
C .小球可能沿水平方向向右作平抛运动 g
L T π2=4
1
D .小球可能做自由落体运动
[解析]:小球水平冲上小车,又返回左端,到离开小车的整个过程中,系统动量守恒、机械能守恒,相当于小球与小车发生弹性碰撞的过程,如果m <M ,小球离开小车向左平抛运动,m=M ,小球离开小车做自由落体运动,如果m >M ,小球离开小车向右做平抛运动,所以答案应选B ,C ,D
[例3]在光滑水平面上有相隔一定距离的A 、B 两球,质量相等,假定它们之间存在恒定的斥力作用,原来两球被按住,处在静止状态。
现突然松开两球,同时给A 球以速度v 0,使之沿两球连线射向B 球,B 球初速度为零;若两球间的距离从最小值(两球未接触)到刚恢复到原始值所经历的时间为t 0,求:B 球在斥力作用下的加速度
[解析]:A 球射向B 球过程中,A 球一直作匀减速直线运动,B 球由静止开始一直作匀加速直线运动,当两球速度相等时相距最近,当恢复到原始值时相当于发生了一次弹性碰撞,,由于A 、B 质量相等,A 、B 发生了速度交换,系统动量守恒、机械能守恒。
设A 、B 速度相等时速度为v ,恢复到原始值时A 、B 的速度分别为v 1、v 2,
mv 0= 2mv ①
2mv=mv 1+ mv 2 ②
③ 由①式得v=,由②③解得v 1=0,v 2= v 0 (另一组解v 1= v 0,v 2= 0舍去) 则B 的加速度a== [例4] 如图4所示,光滑水平地面上静止放置两由弹簧相连木块A 和B,一质量为m 子弹,以速度v 0,水平击中木块A,并留在其中,A 的质量为3m,B 的质量为4m.
(1)求弹簧第一次最短时的弹性势能
(2)何时B 的速度最大,最大速度是多少?
[解析](1)从子弹击中木块A 到弹簧第一次达到最短的过程可分为两个小过程一是子弹与木块A 的碰撞过程,动量守恒,有机械能损失;二是子弹与木块A 组成的整体与木块B 通过弹簧相互作用的过程,动量守恒,系统机械能守恒,
子弹打入: mv 0=4mv 1 ① 2221202
12121mv mv mv +=2
0v 000022t v v t v v -=-0
02t v mv o
B
A
图4
打入后弹簧由原长到最短: 4mv 1=8mv 2 ②
机械能守恒: ③ 解①②③得 (2)从弹簧原长到压缩最短再恢复原长的过程中,木块B 一直作变加速运动,木块A 一直作变减速运动,相当于弹性碰撞,因质量相等,子弹和A 组成的整体与B 木块交换速度,此时B 的速度最大,设弹簧弹开时A 、B 的速度分别为
4mv 1=4mv 1’ +4mv 2’ ④ ⑤ 解得: v 1’=o ,v 2’=v 1 = 可见,两物体通过弹簧相互作用,与弹性碰撞相似。
弹性碰撞模型的应用不仅仅局限于“碰撞”,我们应广义地理解 “碰撞”模型。
这一模型的关键是抓住系统“碰撞”前后动量守恒、系统机械能守恒(动能不变),具备了这一特征的物理过程,可理解为“弹性碰撞”。
我们对物理过程和遵循的规律就有了较为清楚的认识,问题就会迎刃而解。
P E mv mv +=222182
142120161mv E P =
'
21,v v '2’22’12142
1421421mv mv mv +=40v。