土壤可溶性有机氮,硝态氮,铵态氮和微生物量氮测定

合集下载

土壤无机N---铵态氮硝态氮测量方法

土壤无机N---铵态氮硝态氮测量方法

土壤无机N---铵态氮硝态氮测量方法铵态氮和硝态氮测定方法铵态氮测量方法(2mol ?L -1KCl 浸提—靛酚蓝比色法)1)方法原理2mol ?L -1KCl 溶液浸提土壤,把吸附在土壤胶体上的NH4+及水溶性NH4+浸提出来。

土壤浸提液中的铵态氮在强碱性介质中与次氯酸盐和苯酚作用,生成水溶性染料靛酚蓝,溶液的颜色很稳定。

在含氮0.05~0.5mol ?L -1的范围内,吸光度与铵态氮含量成正比,可用比色法测定。

2)试剂(1)2mol ?L -1KCl 溶液称取149.1g KCl ,化学纯)溶于水中,稀释至1L 。

(2)苯酚溶液称取苯酚(C6H5OH ,化学纯)10g 和硝基铁氰化钠[Na2Fe(CN)5NO 2H 2O]100mg稀释至1L 。

此试剂不稳定,须贮于棕色瓶中,在4℃冰箱中保存。

(3)次氯酸钠碱性溶液称取氢氧化钠(化学纯)10g 、磷酸氢二钠(Na 2HPO 4?7H 2O ,化学纯)7.06g 、磷酸钠(Na 3PO 4?12H 2O ,化学纯)31.8g 和52.5g ?L -1次氯酸钠(NaOCl,化学纯,即含10%有效氯的漂白粉溶液)5mL 溶于水中,稀释至1L ,贮于棕色瓶中,在4℃冰箱中保存。

(4)掩蔽剂将400g ?L -1的酒石酸钾钠(KNaC 4H 4O 6?4H 2O ,化学纯)与100g ?L -1的EDTA 二钠盐溶液等体积混合。

每100mL 混合液中加入10 mol?L -1氢氧化钠0.5mL 。

(5)2.5μg ?mL –1铵态氮(NH4+—N; 100ppm)标准溶液称取干燥的硫酸铵[(NH4)2SO 4,分析纯0.4717g 溶于水中,洗入容量瓶后定容至1L ,制备成含铵态氮(N )100μg ?mL –1的贮存溶液;使用前将其加水稀释20倍,即配制成含铵态氮(N )2.5μg ?mL –1的标准溶液备用。

3)仪器与设备:往复式振荡机、分光光度计。

土壤中氨态氮的测定方法

土壤中氨态氮的测定方法

案例C ASESOCCUPATION832013 03务进行教学任务一:轴类零件加工方案的制定。

学生以小组为单位制定加工方案。

确定送料主轴材料的选择、毛坯的选择、加工工艺的安排,什么时候要进行热处理,应安排何种热处理(让学生复习材料与热处理课程的相关知识);如何保证精度,基准应该如何选择,哪些地方需要磨削,应留多少磨量等等。

在完成任务过程中,教师要不断给学生提出问题,让学生查找资料讨论确定本小组的方案,并填写工艺卡片、工序卡片、刀具卡片等,划分小组成员的角色:工艺员、程序员、调度员、操作员、检验员等,每完成一个项目小组成员间要进行角色调换。

任务二:送料主轴的数控车削加工及热处理。

程序的编制、单件及批量生产工艺的划分、粗精加工、各种工夹量具及刀具的准备、教师示范演示、学生操作完成零件的数控车削加工。

在热处理环节,由教研室提前和校企合作的企业或校办工厂联系,教师带领学生去现场参观学习。

任务三:送料主轴键槽的铣削加工。

键槽的类型、加工方法、刀具的选择、基准及定位、铣削键槽应注意的问题、教师示范演示、学生操作完成。

任务四:送料主轴的磨削加工。

磨床的选择、外圆磨削的精度等级、磨削的注意问题、教师示范、学生操作完成零件的磨削加工。

任务五:送料主轴的精度检验及装配调试。

完成本项目的总结,包括小组自评、小组互评和教师评价。

授课地点:一体化教室、仿真室、资料室(在车间配备了一个资料室,便于学生及时查找相关资料)、多媒体通过这样一个一个典型的项目将本专业的课程体系串联起来,实现了课程间的关联对接,将理论课程和实践课程有机地融合,摆脱了困扰我们许久的理论和实践脱节的问题,真正以学生为主体,让他们在做中学、学中做。

五、教学改革体现的创新亮点本次教学改革的创新亮点集中地体现在以下几个方面。

第一,项目载体完全体现职业教育的职业性、实践性和开放性。

创新点:所遴选的典型项目完全来自合作企业的典型产品及零件,经精心打造的典型项目有机融合了学生素质养成所需的知识要素与能力要素。

土壤中氮含量的测定分析(精)

土壤中氮含量的测定分析(精)

土壤中氮含量的测定分析核心提示:摘要:概述了土壤中氮元素的存在形式、土壤全氮、无机氮(包括铵态氮、硝态氮)水解氮、酰胺态氮的测定方法。

关键词:土壤;全氮;测定方法土壤是作物氮素营养的主要来源,土壤中的氮素包括无机态氮和有机态...摘要:概述了土壤中氮元素的存在形式、土壤全氮、无机氮(包括铵态氮、硝态氮)水解氮、酰胺态氮的测定方法。

关键词:土壤;全氮;测定方法土壤是作物氮素营养的主要来源,土壤中的氮素包括无机态氮和有机态氮两大类,其中95%以上为有机态氮,主要包括腐殖质、蛋白质、氨基酸等。

小分子的氨基酸可直接被植物吸收,有机态氮必须经过矿化作用转化为铵,才能被作物吸收,属于缓效氮。

土壤全氮中无机态氮含量不到 5%,主要是铵和硝酸盐,亚硝酸盐、氨、氮气和氮氧化物等很少。

大部分铵态氮和硝态氮容易被作物直接吸收利用,属于速效氮。

无机态氮包括存在于土壤溶液中的硝酸根和吸附在土壤颗粒上的铵离子,作物都能直接吸收。

土壤对硝酸根的吸附很弱,所以硝酸根非常容易随水流失。

在还原条件下,硝酸根在微生物的作用下可以还原为气态氮而逸出土壤,即反硝化脱氮。

部分铵离子可以被粘土矿物固定而难以被作物吸收,而在碱性土壤中非常容易以氨的形式挥发掉。

土壤腐殖质的合成过程中,也会利用大量无机氮素,由于腐殖质分解很慢,这些氮素的有效性很低。

土壤中的氮素主要来自施肥、生物固氮、雨水和灌溉水,后二者对土壤氮贡献很小,施肥是耕作土壤氮素的主要来源,而自然土壤的氮素主要来自生物固氮。

土壤含氮量受植被、温度、耕作、施肥等影响,一般耕地表层含氮量为0.05%~0.30%,少数肥沃的耕地、草原、林地的表层土壤含氮量在 0.50%~0.60%以上。

我国土壤的含氮量,从东向西、从北向南逐渐减少。

进入土壤中的各种形态的氮素,无论是化学肥料,还是有机肥料,都可以在物理、化学和生物因素的作用下进行相互转化。

1 土壤全氮的测定1.1 开氏法近百年来,许多科学工作者对全氮的测定方法不断改进,提出了许多新方法,主要有重铬酸钾-硫酸消化法、高氯酸-硫酸消化法、硒粉-硫酸铜-硫酸消化法。

土壤微生物体氮测定方法的研究

土壤微生物体氮测定方法的研究

土壤微生物体氮测定方法的研究土壤微生物是土壤中最主要的有机质分解者和循环者,对土壤的养分循环、有机质分解和抗性病虫害有着重要的影响。

在土壤微生物研究中,氮是一个非常关键的元素。

了解土壤微生物体氮含量能够为农田生产和土壤质量监测提供重要参考数据。

目前,常用的土壤微生物体氮测定方法主要分为直接测定法和间接测定法两大类。

一、直接测定法1.顶空气相色谱法(HS-GC):该方法通过将土壤样品与乙酸作用,将微生物体内的氮转化为气体态的氨,然后用顶空气相色谱仪测定氨的含量,进而计算出微生物体氮的含量。

该方法操作简单,测定快速,准确性较高,适用于大样品量和多样品同时测定。

2.直接燃烧法:该方法将土壤样品在高温下燃烧,将微生物体内的氮氧化为氮气,用气相色谱仪测定氮气含量,从而计算微生物体氮的含量。

该方法操作简单,测定过程较快,但存在样品氮转化率不高的问题,会对测定结果产生一定的影响。

3.甲醇硫酸加热浸提法:该方法将土壤样品与甲醇硫酸溶液加热浸提,提取土壤中的微生物体,并将微生物体氮硫化成氨,再用气相色谱测定氨的含量,从而计算出微生物体氮的含量。

该方法适用于多样品同时测定,操作简单,准确性较高。

二、间接测定法间接测定法通过测定土壤中的可溶性氮来间接估算微生物体氮的含量。

1.土壤凯氏钠铼溶液(BROOMS的方法):该方法通过土壤样品与凯氏钠铼溶液反应,测定土壤中可溶性氮的含量,然后通过对微生物体氮和可溶性氮进行回归分析,建立回归模型,从而间接估算微生物体氮的含量。

该方法操作简单,适用范围广,但准确性较低。

2.直接高温燃烧法:该方法将土壤样品在高温下燃烧,将土壤中的氮完全氧化为气态氮,再用气相色谱仪测定氮气含量,从而计算土壤中总氮的含量,再和微生物数量进行回归分析,从而估算微生物体氮的含量。

该方法准确性较高,但操作较为复杂。

综上所述,土壤微生物体氮测定方法主要包括直接测定法和间接测定法。

直接测定法操作简单,测定快速,准确性较高,适用于大样品量和多样品同时测定。

土壤中硝氮、氨氮测定方法

土壤中硝氮、氨氮测定方法

(七)沉积物磷形态测定方法-SMT方法概述:SMT (The Standards,Measurements and Testing Programme) 是欧洲标准测试委员会框架下发展的淡水沉积物磷形态分离方法,是一种标准测试程序。

对于在湖泊修复中水质的监测和水资源领域的管理,尤其是在至关重要的实验室分析过程的质量保证和数据可比性中是一种很有价值的工具。

研究表明,对沉积物中磷形态与其沉积物的理化性质(有机质、主要氧化物组成)之间的关系可用来推断沉积物中磷的特性。

前人利用SMT方法发现消落带土壤中活性磷组分与河流沉积物中活性磷组分与相比较高,在适宜的环境条件下会成为水体的二次污染源。

目前,已应用SMT法分析沉积物中磷分布特征、各形态磷之间的关系以及与沉积物的某些理化性质之间的相关关系等。

1、方法原理利用土壤、沉积物中各种形态的无机磷酸盐具有不同浸提能力的化学浸提浸提剂,将无机磷酸盐加以逐级分离。

图1淡水沉积物磷形态分离SMT法摘自:金相灿,庞燕,王圣瑞,周小宁. 长江中下游浅水湖沉积物磷形态及其分布特征研究[J].农业环境科学学报2008,27(1):279-285.2、需要的设备与实验条件紫外分光光度计、高压灭菌锅3、所需试剂及操作步骤(一)所需要的试剂(1)5N H2SO4:70mL浓硫酸-500mL水中,置于常温下保存;(2)酒石酸锑钾溶液:准确称取1.3715g酒石酸锑钾于500mL容量瓶中,溶解定容,充分摇匀后将该溶液贮存在棕色或其他试剂瓶(玻璃瓶)中,将其置于4℃下保存。

(3)钼酸铵溶液:准确称取40g钼酸铵于1000mL容量瓶中,加适量水待其完全溶解后加水稀释至刻度线,充分摇匀后将该溶液贮存在棕色或其他试剂瓶(玻璃瓶)中,将其置于冰箱中于4℃下保存。

(4)抗坏血酸溶液:准确称取17.6g抗坏血酸1000mL容量瓶中,加适量水待其完全溶解后加水稀释至刻度线,充分摇匀后将该溶液贮存在棕色或其他试剂瓶(玻璃瓶)中,将其置于冰箱中于4℃下保存。

土壤氮测定方法

土壤氮测定方法

土壤氮测定方法引言:土壤氮是土壤中的一种重要养分,对植物的生长发育具有重大影响。

因此,准确测定土壤中的氮含量对于合理施肥和农作物的高产高质量生产具有重要意义。

本文将介绍几种常用的土壤氮测定方法,帮助读者了解和选择适合自己的测定方法。

一、硝态氮测定方法1. 硝酸还原法:该方法是将土壤中的硝态氮还原为亚硝态氮,然后通过显色反应测定亚硝态氮的含量。

具体操作步骤如下:a. 取土壤样品,加入一定比例的三氯化铁和硫酸,使样品中的硝态氮转化为亚硝态氮。

b. 加入显色试剂,与亚硝态氮发生显色反应。

c. 根据显色反应的强度,利用光度计或比色计测定亚硝态氮的含量。

2. 硝酸还原-分光光度法:该方法是将土壤中的硝态氮还原为亚硝态氮,然后利用分光光度计测定亚硝态氮的吸光度。

具体操作步骤如下:a. 取土壤样品,加入一定比例的硫酸和硫化亚铁,使样品中的硝态氮还原为亚硝态氮。

b. 利用分光光度计测定亚硝态氮的吸光度。

c. 根据标准曲线或计算公式计算出土壤中硝态氮的含量。

二、铵态氮测定方法1. 蒸发测定法:该方法是利用土壤中铵态氮易于挥发的特点,将土壤样品经过蒸发处理,然后测定挥发出的铵态氮的含量。

具体操作步骤如下:a. 取土壤样品,加入一定比例的碱液,使铵态氮转化为氨。

b. 将样品进行蒸发处理,使挥发出的氨与酸反应生成盐酸。

c. 通过滴定法或酸度计测定盐酸的含量,从而计算出土壤中铵态氮的含量。

2. 直接测定法:该方法是直接测定土壤样品中的铵态氮含量,不需要经过转化或处理。

具体操作步骤如下:a. 取土壤样品,加入一定比例的提取液,使土壤中的铵态氮溶解。

b. 进行离心或过滤处理,将溶液中的杂质去除。

c. 利用分光光度计或离子色谱仪测定铵态氮的含量。

三、全氮测定方法全氮是土壤中所有形态氮的总和,包括有机氮和无机氮。

测定全氮的方法有多种,常用的包括燃烧-红外吸收法和湿氧燃烧法。

这里以湿氧燃烧法为例进行介绍:1. 取土壤样品,加入一定比例的氧化剂和催化剂。

土壤硝态氮和铵态氮的测定方法

土壤硝态氮和铵态氮的测定方法

一、原理:过滤后的样品经过一个开放的镀铜镉还原器通道后,硝酸根被还原成亚硝酸根,亚硝酸根通过磺胺处理后,与N-(1-萘基)-乙二胺二盐酸盐偶联,形成深红色的偶氮染料,然后在550nm或者520nm比色分析。

二、样品处理土壤鲜样采取四分法处理,根据实验用量进行过筛(比目大小视样品含水量而定)。

过筛后的土样,取出5g土样放入离心管,加入25ml 氯化钾提取液(2moL/L),震荡2小时后进行离心(8000 g ,15min),静置后过滤,取上清液测定。

若不能及时测定,放入4℃冰箱保存。

三、试剂配制:试剂用水:蒸馏水或去离子水。

(1)显色试剂:(棕色玻璃瓶,避光保存)150ml水,加入25ml浓磷酸▲,冷却至室温后,加入10g磺胺,再加入0.5g N-(1-萘基)-乙二胺二盐酸盐溶解。

用水定容至250ml。

加入浓缩探针清洗液(表面活性剂)。

(2)氯化铵-EDTA缓冲液(ammonium chloride-EDTA):把85g氯化铵和0.1g 乙二胺四乙酸二钠盐(EDTA-Na2)溶解于水,定容至1L。

用浓氨水▲调节PH至。

(3)硝化组件缓冲液:{用来清洗OTCR(镀铜镉还原器通道)}取100ml的氯化铵-EDTA缓冲液,稀释至1L。

调节PH至。

(4)2%硫酸铜:10g 五水硫酸铜()溶于水,定容至500ml。

(5)5mol/L盐酸:小心慢慢加入浓盐酸▲于水中,冷却后定容至100ml。

(6)硝酸盐存储溶液(1g/L):(溶液6个月内有效)7.218g硝酸钾溶于水,定容至1L,加入1ml氯仿▲(防腐剂)。

(7)比色管清洗液:(定容时缓慢,防止出现泡沫,室温保存,两个月内有效)取50ml比色管清洗液,加水定容至1L。

(8)进样针清洗液:(定容时缓慢,防止出现泡沫,室温保存,两个月内有效。

)取进样针清洗液,加水定容至1L。

四、测定方法:土壤硝态氮测定采用SmartChem全自动间断化学分析仪。

一、样品处理土壤鲜样采取四分法处理,根据实验用量进行过筛(比目大小视样品含水量而定)。

土壤硝态氮铵态氮的测定

土壤硝态氮铵态氮的测定

(二)土壤硝态氮的测定1、酚二磺酸比色法1)方法原理土壤用饱和CaSO4 2H2O溶液浸提,在微碱性条件下蒸发至干,土壤浸提液中的NO3-—N在无水的条件下能与酚二磺酸试剂作用,生成硝基酚二磺酸。

C6H3OH(HSO3)2+HNO3→C6H2OH(HSO3)2 NO2+H2O2,4-酚二磺酸6-硝基酚-2,4-二磺酸此反应必须在无水条件下才能迅速完成,反应产物在酸性介质中无色,碱化后则为稳定的黄色溶液,黄色的深浅与NO3-—N含量在一定范围内成正相关,可在400~425nm处(或用蓝色滤光片)比色测定。

酚二磺酸法的灵敏度很高,可测出溶液中0.1mg•L-1 NO3-—N,测定范围为0.1~2mg•L-1。

2)主要仪器分光光度计、水浴锅、瓷蒸发皿。

3)试剂(1)酚二磺酸试剂:称取白色苯酚(C6H5OH,分析纯)25.0g置于500mL三角瓶中,以150mL 纯浓H2SO4溶解,再加入发烟H2SO475mL并置于沸水中加热2h,可得酚二磺酸溶液,储于棕色瓶中保存。

使用时须注意其强烈的腐蚀性。

如无发烟H2SO4,可用酚25.0g,加浓H2SO4225mL,沸水加热6h配成。

试剂冷后可能析出结晶,用时须重新加热溶解,但不可加水,试剂必须贮于密闭的玻塞棕色瓶中,严防吸湿。

(2)10µg•mL-1 NO3-—N标准溶液:准确称取KNO3(二级)0.7221g溶于水,定容1L,此为100µg•mL-1 NO3-—N溶液,将此液准确稀释10倍,即为10µg•mL-1 NO3-—N标准溶液。

(3)CaSO4•2H2O(分析纯、粉状)、(4)CaCO3(分析纯、粉状)、(5)1:1 NH4OH、(6)活性碳(不含NO3-),用以除去有机质的颜色。

(7)Ag2SO4(分析纯、粉状)、Ca(OH)2(分析纯、粉状)和MgCO3(分析纯、粉状),用以消除Cl-1的干扰。

4)操作步骤(1)浸提:称取新鲜土样(注1)50g(风干土样25g)放在500mL三角瓶中,加入CaSO4•2H2O 0.5g(注2)[凝聚剂的作用,使滤液不混浊而澄清]和250.00mL蒸馏水,盖塞后,用振荡机振荡10min。

试验步骤--土壤氮的测定

试验步骤--土壤氮的测定

试验步骤目录1、土壤pH 值的测定 (2)2、土壤温湿度的测定 (3)3、土壤有机质的测定 (3)4、全氮的测定 (3)5、无机氮(铵态氮、硝态氮)的测定 (4)6、可溶性有机氮 (4)7、微生物生物量氮的测定 (4)8、土壤酶活性的测定 (5)【1】土壤脲酶测定 (5)【2】蛋白酶活性的测定 (7)【3】硝酸还原酶 (8)【4】亚硝酸还原酶 (9)【5】羟胺还原酶 (10)1、土壤pH值的测定用电位法测定土壤 pH值,水与土之比为 2.5:1。

测定步骤如下:1.待测液的制备:称取通过2mm筛孔的风干土样10g于50m1高型烧杯中,加入25ml无二氧化碳的水或 1.0mol/L氯化钾溶液(酸性土壤测定用)或 0.01mol/L氯化钙溶液(中性、石灰性或碱性土测定用)。

枯枝落叶层或泥炭层样品称5g,加水或盐溶液50ml。

用玻璃棒剧烈搅动1-2min,静止30min,此时应避免空气中氨或挥发性酸的影响。

2.仪器校正:(以雷磁25型酸度计为例)①接通电源,按仪器要求预热。

量程开关层指向7-10或7-14档。

②装上已在蒸馏水中浸泡24h的指示电极——玻璃电极及参比电极——甘汞电极。

③校正。

a.将选择开关置于“pH”档位置。

b.将两电极插入装有标准缓冲液(如待测液为近中性,用pH6.86标准缓冲液;待测液为碱性,用 pH9.18标准缓冲液;待测液为酸性,用 pH4.01标准缓冲液)烧杯中。

c.温度补偿器尖头旋钮应指于待测液的温度位置。

d.将量程开关置于“7-0”档,或“7-14”档。

e.调零点调节器,使指针在pH 7位置。

f.按下读数开关,调节定位调节器,使指针指在标准缓冲液pH值位置。

g.放开读数开关,指针应在7处,如有变动,则调节零点调节器至7处,用蒸馏水冲洗电极。

3.测定①用滤纸将附于电极上的剩余溶液吸干。

②将甘汞电极插在上部清液中,玻璃电极插入土壤悬液中,检查零位。

③按下读数开关,指针所指即为溶液的pH值。

土壤可溶性有机氮,硝态氮,铵态氮和微生物量氮测定

土壤可溶性有机氮,硝态氮,铵态氮和微生物量氮测定

土壤可溶性有机氮、硝态氮、铵态氮、微生物量氮最方便最简单的测定方法1.母液制样:称取新鲜土壤(30.0g)于放置烧杯中,加约等于田间持水量60%水在25℃下培养7~15d。

取15.0g土于烧杯,置于真空干燥器中,同时内放一装有用100ml精制氯仿的小烧杯,密封真空干燥器,密封好的真空干燥器连到真空泵上,抽真空至氯仿沸腾5分钟,静置5分钟,再抽滤5分钟,同样操作三次。

干燥器放入25℃培养箱中24小时后,抽真空15-30分钟以除尽土壤吸附的氯仿。

按照土:0.5M K2SO4=1:4(烘干土算,一般就是湿土:0.5M K2SO4=1:2),加入0.5M K2SO4溶液(未熏蒸为空白直接称取15.0g土,加同样比例0.5M K2SO4溶液)震荡30分钟,过滤。

其中熏蒸后的土壤过滤液为A母液,未熏蒸的土壤过滤液为B母液。

母液要是不及时测定,需立即在-15℃以下保存2.测定可溶性有机氮=可溶性全氮-(铵态氮+硝态氮)要是有流动分析仪器还有TOC的话可以利用A母液测得碳氮减去B母液的碳氮含量根据公式计算得出微生物碳氮,可以用B母液测的铵态氮、硝态氮和可溶性全氮,是很方便的。

以下的是用传统的方法测定以上指标,经过852个土壤样品试验结果还是很好的。

土壤可溶性全氮测定氧化剂:将6g NaOH 和30g K2S2O8溶于蒸馏水中并定容至1L(K2S2O8 比较难溶,在低于60℃得瑟水浴中溶解,高于60℃配置的溶液至其氧化性失效,NaOH制成溶液,致其温度达到常温后与K2S2O8溶液混合定容至1L)测定:移取A母液10ml至消化试管,加入10ml氧化剂,水浴中加热,温度升高到120℃后保持90min,使用紫外分光光度计测定A220和A275,空白需加入1ml氧化剂并同时作水浴处理。

(Tips:农化上母液与氧化剂各取25ml,此处取其比例为1:1。

)标准曲线:0.7218g硝酸钾溶于水中,转入1000ml容量瓶中定容摇匀,制得浓度为100mg/L的氮标准贮存液。

土壤氮元素实验报告

土壤氮元素实验报告

土壤氮元素实验报告一、实验目的本实验旨在通过对土壤中氮元素含量的测定,了解土壤的氮素供应状况,并研究土壤氮素含量与作物生长之间的关系。

二、实验原理土壤中的氮素主要有有机氮和无机氮两种形态。

有机氮主要存在于土壤中的有机质中,如腐殖质和微生物体。

无机氮包括铵态氮(NH4+)和硝态氮(NO3-),它们是植物直接吸收和利用的氮素形态。

实验中,采用盐酸钠铁法测定土壤中的铵态氮含量,采用硫酸亚铁还原-蒸馏法测定土壤中的硝态氮含量。

三、实验步骤1. 取一定量的土壤样品,将其空气干燥后研磨成细粉末。

2. 取0.5g土壤样品,加入100ml盐酸钠铁溶液中,摇匀,蒸发至干燥。

3. 将干燥后的土壤样品与蒸馏水混合,过滤后用盐酸钠铁溶液进行洗涤,将洗涤液集中收集。

4. 取一定量的洗涤液,加入硫酸亚铁溶液,并加入硫酸溶液进行酸化,使其产生反应生成亚铁离子。

5. 将生成的亚铁离子与硝态氮反应生成氨气,通过导热管送入酸性缓冲溶液中。

6. 用盐酸进行滴定,直到溶液颜色变为橙黄色,记录滴定消耗的盐酸体积。

7. 根据滴定消耗的盐酸体积推算出硝态氮的含量。

四、实验结果和分析根据实验数据,计算出土壤样品中的铵态氮和硝态氮的含量,并计算土壤总氮的含量。

通过与对照组进行比较,可以评估土壤中的氮素供应状态。

五、实验结论根据实验结果分析,得出结论并总结实验中的发现。

并可以进一步展望与讨论。

六、实验改进和优化对于实验过程中存在的问题和不足之处提出改进建议,并分析可能的改进方法,以提高实验结果的准确性和可重复性。

七、实验应用和展望根据实验结果,探讨土壤氮素含量与作物生长之间的关系,以及对农业生产的应用价值。

并展望未来对土壤氮素研究的发展方向。

八、参考文献列出实验中所参考的文献和资料。

以上为土壤氮元素实验报告的基本结构和要点。

根据具体实验内容和结果,进行相应的补充和扩展。

实验报告要包含实验目的、原理、步骤、结果、结论等内容,并进行全面的分析与讨论。

土壤硝态氮测定方法转氨酶、硝态氮、铵态氮等测定方法

土壤硝态氮测定方法转氨酶、硝态氮、铵态氮等测定方法

土壤硝态氮测定方法转氨酶、硝态氮、铵态氮等测定方法六、氮含量(硝酸盐、亚硝酸盐、游离氨基酸、铵态氮等)的测定:(2g)样品提取液的提取: 称取新鲜植物组织2g,加入15ml无离子水研磨成匀浆,置于45℃振荡机中摇动浸提(或超声波)lh后用5ml无离子水冲洗干净,然后离心或过滤(如含色素需用活性炭脱色),滤液备用。

备注(lg的经验):可溶性糖、可溶性蛋白质、VC等需要研磨提取的简单指标也可以使用此提取液按比例测定。

1硝态氮的测定:标准氮试剂:精称KNO3 0.9021g,溶于少量重蒸无离子水中,并定容至250ml,含N 量为500µgNO3一N/ml。

5%水杨酸一硫酸溶液:称取水杨酸5g,溶于100ml浓H2SO4(比重1.84)中,搅拌溶解后贮于棕色瓶内,冰箱中至多保存l周,最好现用现配。

2mol/L NaOH溶液:称取NaOH 80g放入500ml硬质烧杯中,加入重蒸无离子水200ml,溶解后定容至l000ml。

操作方法标准曲线制作取:50ml容量瓶6只(编号),依次加入标准氮试剂5、l0、l5、20、25、30ml,用无离子水定容,则成为50、100、l50、200、250、300 ug/ml的氮系列标准溶液;再取干沽50ml三角瓶7只,分别装入上述系列溶液0.2ml,剩下的1只三角瓶加入无离水0.2ml(作为O 点);然后分别加入5%水杨酸一硫酸溶液0.8ml,混匀静置20--30min(显色);最后加入2mol/L NaOH溶液l9ml,混匀。

冷却后利用751分光光度计,于410nm下比色,记录光密度(OD)值;并以OD 值为纵座标,以标准氮(0、50、l00、150、200、250、300 ug)为横座标,绘制一条标准曲线(通过原点的直线)。

0.1ml滤液+0.4ml 5%水杨酸一硫酸溶液,混匀静置20--30min(显色);最后加入2mol/L NaOH溶液9.5ml,混匀。

土壤硝态氮和铵态氮的测定方法

土壤硝态氮和铵态氮的测定方法

土壤硝态氮和铵态氮的测定方法土壤硝态氮和铵态氮的测定方法土壤硝态氮测定方法一、原理:过滤后的样品经过一个开放的镀铜镉还原器通道后~硝酸根被还原成亚硝酸根~亚硝酸根通过磺胺处理后~与N-(1-萘基)-乙二胺二盐酸盐偶联~形成深红色的偶氮染料~然后在550nm或者520nm比色分析。

二、样品处理土壤鲜样采取四分法处理~根据实验用量进行过筛,比目大小视样品含水量而定,。

过筛后的土样~取出5g土样放入离心管~加入25ml氯化钾提取液,2moL/L,~震荡2小时后进行离心,8000 g ~15min,~静置后过滤~取上清液测定。

若不能及时测定~放入4?冰箱保存。

三、试剂配制:试剂用水:蒸馏水或去离子水。

(1)显色试剂:,棕色玻璃瓶~避光保存,150ml水~加入25ml浓磷酸?~冷却至室温后~加入10g磺胺~再加入0.5g N-(1-萘基)-乙二胺二盐酸盐溶解。

用水定容至加入2.0ml浓缩探针清洗液,表面活性剂,。

250ml。

(2)氯化铵-EDTA缓冲液,ammonium chloride-EDTA,:把85g氯化铵和0.1g 乙二胺四乙酸二钠盐,EDTA-Na,溶解于2水~定容至1L。

用浓氨水?调节PH至8.5。

(3)硝化组件缓冲液:{用来清洗OTCR(镀铜镉还原器通道)}取100ml的氯化铵-EDTA缓冲液~稀释至1L。

调节PH至8.5。

(4)2%硫酸铜: 10g 五水硫酸铜,CuSO.5HO,溶于水~定容至500ml。

42(5)5mol/L盐酸:小心慢慢加入50.69ml浓盐酸?于水中~冷却后定容至100ml。

,6,硝酸盐存储溶液(1g/L):,溶液6个月内有效,7.218g硝酸钾溶于水~定容至1L~加入1ml氯仿?,防腐剂,。

(7)比色管清洗液:,定容时缓慢~防止出现泡沫~室温保存,两个月内有效,取50ml比色管清洗液~加水定容至1L。

(8)进样针清洗液:,定容时缓慢~防止出现泡沫~室温保存~两个月内有效。

土壤氮的测定方法

土壤氮的测定方法

土壤氮的测定方法
土壤氮的测定方法包括以下几种常用的方法:
1. 硝态氮测定法:通过检测土壤中的硝态氮(NO3-N)含量来估计土壤中的氮素含量。

常用的方法包括硝酸盐法、亚硝酸盐法和钠氢碘酸方法等。

2. 氨态氮测定法:通过检测土壤中的氨态氮(NH4-N)含量来估计土壤中的氮素含量。

常用的方法包括氧化-蒸馏法、蒸馏-酚洗法和Kjeldahl 法等。

3. 全氮测定法:通过检测土壤中的总氮含量来估计土壤中的氮素含量。

常用的方法有燃烧法、湿氧化法和酸氧化法等。

4. 有机氮测定法:通过检测土壤中的有机氮含量来估计土壤中的氮素含量。

常用的方法包括Kjeldahl 法、酸水解法和热酸水解等。

5. 根际液测定法:通过采集植物根系周围土壤中的液体样品,测定其中的氮含量来估计土壤氮素的供应情况。

常用的方法包括压力皮层液技术、吸收滤液技术和根系吸收技术等。

一般来说,选择合适的土壤氮测定方法需要考虑到实验室设施条件、样品数量、检测目的和经济成本等因素。

不同方法的原理和操作步骤各有差异,可以根据具
体情况选择合适的方法进行测定。

土壤中氮含量测定(精)

土壤中氮含量测定(精)

土壤中氮含量测定论文关键词:土壤;全氮;测定方法论文摘要:概述了土壤中氮元素的存在形式、土壤全氮、无机氮(包括铵态氮、硝态氮)水解氮、酰胺态氮的测定方法。

土壤是作物氮素营养的主要来源,土壤中的氮素包括无机态氮和有机态氮两大类,其中95%以上为有机态氮,主要包括腐殖质、蛋白质、氨基酸等。

小分子的氨基酸可直接被植物吸收,有机态氮必须经过矿化作用转化为铵,才能被作物吸收,属于缓效氮。

土壤全氮中无机态氮含量不到 5%,主要是铵和硝酸盐,亚硝酸盐、氨、氮气和氮氧化物等很少。

大部分铵态氮和硝态氮容易被作物直接吸收利用,属于速效氮。

无机态氮包括存在于土壤溶液中的硝酸根和吸附在土壤颗粒上的铵离子,作物都能直接吸收。

土壤对硝酸根的吸附很弱,所以硝酸根非常容易随水流失。

在还原条件下,硝酸根在微生物的作用下可以还原为气态氮而逸出土壤,即反硝化脱氮。

部分铵离子可以被粘土矿物固定而难以被作物吸收,而在碱性土壤中非常容易以氨的形式挥发掉。

土壤腐殖质的合成过程中,也会利用大量无机氮素,由于腐殖质分解很慢,这些氮素的有效性很低。

土壤中的氮素主要来自施肥、生物固氮、雨水和灌溉水,后二者对土壤氮贡献很小,施肥是耕作土壤氮素的主要来源,而自然土壤的氮素主要来自生物固氮。

土壤含氮量受植被、温度、耕作、施肥等影响,一般耕地表层含氮量为 0.05%~0.30%,少数肥沃的耕地、草原、林地的表层土壤含氮量在 0.50%~0.60%以上。

我国土壤的含氮量,从东向西、从北向南逐渐减少。

进入土壤中的各种形态的氮素,无论是化学肥料,还是有机肥料,都可以在物理、化学和生物因素的作用下进行相互转化。

1土壤全氮的测定 1.1开氏法近百年来,许多科学工作者对全氮的测定方法不断改进,提出了许多新方法,主要有重铬酸钾-硫酸消化法、高氯酸-硫酸消化法、硒粉-硫酸铜-硫酸消化法。

但开氏法目前仍作为一个统一的标准方法,此法容易掌握,测定结果稳定,准确率较高。

开氏法测氮的原理为:在盐类和催化剂的参与下,用浓硫酸消煮,使有机氮分解为铵态氮。

铵态氮硝态氮测量方法

铵态氮硝态氮测量方法

铵态氮硝态氮测量方法铵态氮和硝态氮是土壤中两种重要的氮素形态,对于土壤的肥力状况和施肥管理具有重要意义。

因此,准确测量土壤中的铵态氮和硝态氮含量对于合理的施肥和农田管理具有重要的意义。

本文将介绍几种常用的测量土壤中铵态氮和硝态氮的方法。

1.常用的颜色反应法:该法通过将土壤样品与钠氢氧化或钾氢氧化的碱性溶液分离,使土壤中的铵态氮转化为氨气,再经过蒸馏和缩水,使氨气转化为氨溶液,进而用酸与碱反应形成氨盐,并通过比色法测定氨盐的含量来间接测定土壤中的铵态氮含量。

2.氨蒸馏法:该方法通过加热土壤样品和钠氢氧化之后,将产生的氨气蒸馏出来,然后通过捕捉装置和滴定方法来间接测定土壤中的铵态氮含量。

3.电导比浓度法:该方法通过测定土壤浆液中的电导率,根据土壤的铵态氮含量和电导率之间的关系,间接推算出土壤中的铵态氮含量。

1.亚硝态氮还原法(蓝色素法):该方法通过将土壤样品与酸性溶液、硫酸亚铁和草酸反应,将硝态氮还原为亚硝态氮,并与硫酸胍反应生成蓝色化合物。

然后,通过比色法测定反应产物的吸光度,来间接测定土壤中的硝态氮含量。

2.钴硝酸法:该方法通过将土壤样品与硝酸钴反应,在酸性条件下,硝态氮与硝酸钴形成红色络合物。

然后,通过比色法测定络合物的吸光度,来间接测定土壤中的硝态氮含量。

3. 紫外分光光度法:该方法通过利用硝态氮的特征吸收峰(220-225nm),采用紫外分光光度计,直接测定土壤中硝态氮的含量。

综上所述,测量土壤中的铵态氮和硝态氮含量的常用方法包括常用的颜色反应法、氨蒸馏法、电导比浓度法、亚硝态氮还原法、钴硝酸法和紫外分光光度法等。

每种方法都有其特点和适用范围,使用时需根据实际需要选择合适的方法进行测量。

土壤硝态氮和铵态氮的测定方法

土壤硝态氮和铵态氮的测定方法

一、原理:过滤后的样品经过一个开放的镀铜镉还原器通道后,硝酸根被还原成亚硝酸根,亚硝酸根通过磺胺处理后,与N-(1-萘基)-乙二胺二盐酸盐偶联,形成深红色的偶氮染料,然后在550nm或者520nm比色分析。

二、样品处理土壤鲜样采取四分法处理,根据实验用量进行过筛(比目大小视样品含水量而定)。

过筛后的土样,取出5g土样放入离心管,加入25ml 氯化钾提取液(2moL/L),震荡2小时后进行离心(8000 g ,15min),静置后过滤,取上清液测定。

若不能及时测定,放入4℃冰箱保存。

三、试剂配制:试剂用水:蒸馏水或去离子水。

(1)显色试剂:(棕色玻璃瓶,避光保存)150ml水,加入25ml浓磷酸▲,冷却至室温后,加入10g磺胺,再加入0.5g N-(1-萘基)-乙二胺二盐酸盐溶解。

用水定容至250ml。

加入2.0ml浓缩探针清洗液(表面活性剂)。

(2)氯化铵-EDTA缓冲液(ammonium chloride-EDTA):把85g氯化铵和0.1g 乙二胺四乙酸二钠盐(EDTA-Na2)溶解于水,定容至1L。

用浓氨水▲调节PH至8.5。

(3)硝化组件缓冲液:{用来清洗OTCR(镀铜镉还原器通道)}取100ml的氯化铵-EDTA缓冲液,稀释至1L。

调节PH至8.5。

(4)2%硫酸铜:10g 五水硫酸铜(CuSO4.5H2O)溶于水,定容至500ml。

(5)5mol/L盐酸:小心慢慢加入50.69ml浓盐酸▲于水中,冷却后定容至100ml。

(6)硝酸盐存储溶液(1g/L):(溶液6个月内有效)7.218g硝酸钾溶于水,定容至1L,加入1ml氯仿▲(防腐剂)。

(7)比色管清洗液:(定容时缓慢,防止出现泡沫,室温保存,两个月内有效)取50ml比色管清洗液,加水定容至1L。

(8)进样针清洗液:(定容时缓慢,防止出现泡沫,室温保存,两个月内有效。

)取0.5ml进样针清洗液,加水定容至1L。

四、测定方法:土壤硝态氮测定采用SmartChem全自动间断化学分析仪。

土壤硝态氮及铵态氮的取样测定

土壤硝态氮及铵态氮的取样测定

土壤硝态氮和铵态氮的取样测定1.田间取样与保存根据小区面积,随机选2~3个样点,采样地点应避开边行以及头尾。

在行间取样,以30cm为一层,取样深度可以是0-90cm或0-210cm或更深,分层取样,等层混合。

新鲜土样须田间将土壤样品立即放入冰盒,没有冰盒者应将土样放置阴凉处,避免阳光直接照射,并尽快带回室内处理。

2.土样的处理在田间采样后,立即将土样放置在冰盒中,低温保存。

返回实验室后,如果样品数量较多,则放置于冰箱中4℃保存。

也可以直接进行土样处理:土壤过3-5cm筛,测定土壤的水分含量,同时作浸提。

3.土样的浸提称取混匀好的新鲜土壤样品24.00g,放入振荡瓶,加100 ml 1mol/L 优级纯KCl浸提液,充分混匀后放入振荡机振荡1个小时,用定性滤纸过滤(注意:国内好多滤纸含有铵态氮,需选择那些无铵滤纸)到小烧杯或胶卷盒中,留滤液约20ml备用,每批样做3个空白。

若样品不能及时测定,应放入贮藏瓶中冷冻保存。

同时称取20-30 g鲜土放入铝盒中105℃下烘干测定土壤水分。

剩余土样自然风干后保存。

4.土壤硝态氮、铵态氮测定测定前先解冻贮藏瓶盒中的滤液,并保持滤液均匀(注意:解冻后的样品有时有KCl 析出,必须等KCl溶解后,液体完全均匀后再测定),上流动分析测定溶液中的铵态氮和硝态氮含量(专门的试验人员负责)。

所用标准溶液必须是用1mol/L KCl浸提液配制。

有时样品浓度超出了机器的测定范围,需对样品进行稀释(注意:应以最低稀释倍数把样品测定出来,且不可放大稀释倍数,这样会引起很大误差)。

流动分析测定的是溶液中的铵态氮和硝态氮浓度,单位是mg/L,必须根据土壤样品含水量和土壤干重换算成mg N/kg。

如果要换算成kg N/ha,可以通过下列公式:土壤硝态氮或铵态氮(kg N/ha)=土壤硝态氮或铵态氮(mg N/kg)* 采样层次(30cm或20cm)* 土壤容重/ 10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土壤可溶性有机氮、硝态氮、铵态氮、微生物量氮最方便最简单的测定方法1.母液制样:称取新鲜土壤(30.0g)于放置烧杯中,加约等于田间持水量60%水在25℃下培养7~15d。

取15.0g土于烧杯,置于真空干燥器中,同时内放一装有用100ml精制氯仿的小烧杯,密封真空干燥器,密封好的真空干燥器连到真空泵上,抽真空至氯仿沸腾5分钟,静置5分钟,再抽滤5分钟,同样操作三次。

干燥器放入25℃培养箱中24小时后,抽真空15-30分钟以除尽土壤吸附的氯仿。

按照土:0.5M K2SO4=1:4(烘干土算,一般就是湿土:0.5M K2SO4=1:2),加入0.5M K2SO4溶液(未熏蒸为空白直接称取15.0g土,加同样比例0.5M K2SO4溶液)震荡30分钟,过滤。

其中熏蒸后的土壤过滤液为A母液,未熏蒸的土壤过滤液为B母液。

母液要是不及时测定,需立即在-15℃以下保存2.测定可溶性有机氮=可溶性全氮-(铵态氮+硝态氮)要是有流动分析仪器还有TOC的话可以利用A母液测得碳氮减去B母液的碳氮含量根据公式计算得出微生物碳氮,可以用B母液测的铵态氮、硝态氮和可溶性全氮,是很方便的。

以下的是用传统的方法测定以上指标,经过852个土壤样品试验结果还是很好的。

土壤可溶性全氮测定氧化剂:将6g NaOH 和30g K2S2O8溶于蒸馏水中并定容至1L(K2S2O8 比较难溶,在低于60℃得瑟水浴中溶解,高于60℃配置的溶液至其氧化性失效,NaOH制成溶液,致其温度达到常温后与K2S2O8溶液混合定容至1L)测定:移取A母液10ml至消化试管,加入10ml氧化剂,水浴中加热,温度升高到120℃后保持90min,使用紫外分光光度计测定A220和A275,空白需加入1ml氧化剂并同时作水浴处理。

(Tips:农化上母液与氧化剂各取25ml,此处取其比例为1:1。

)标准曲线:0.7218g硝酸钾溶于水中,转入1000ml容量瓶中定容摇匀,制得浓度为100mg/L的氮标准贮存液。

稀释10倍即为10mg/L 的氮标准溶液。

吸取氮标准溶液(梯度为0ml,1ml,2ml,3ml,4ml,5ml,6ml;对应浓度分别为0 mg/L,0.02 mg/L,0.04 mg/L,0.06 mg/L,0.08 mg/L,0.10 mg/L,0.12mg/L)于50ml容量瓶中,各加入1ml 氧化剂并定容,得氮的标准系列,与样品同样消煮测定A220和A275。

以A(A= A220-A275)为纵标,氮浓度为横标绘制标准曲线。

硝态氮测定1注:硝态氮测定1仅适合于农田土壤,腐殖质含量比较低的土壤,森林土壤和腐殖质含量比较高的土壤不适用,因为森林土壤和腐殖质高的土壤有腐植酸的颜色,干扰比色可采用硝态氮测定2进行测定测定:移取B母液5ml定容至50ml容量瓶中,使用紫外分光光度计测定即可,在220nm和275nm直接测定A220和A275,用校正吸光度A=A220-A275查得硝酸根浓度,空白为去离子水。

NO3--N标准曲线:0.1631g硝酸钾溶解定容至1L,制得浓度为100mg/L的硝酸根标准溶液。

标准曲线梯度为0ml,0.5ml,1ml,2ml,3ml,4ml,5ml,对应浓度分别为0mg/L,1mg/L,2mg/L,4mg/L,6mg/L,8mg/L,10mg/L。

()硝态氮测定21、酚二磺酸比色法1)方法原理土壤用饱和CaSO4 2H2O溶液浸提,在微碱性条件下蒸发至干,土壤浸提液中的NO3-—N在无水的条件下能与酚二磺酸试剂作用,生成硝基酚二磺酸。

C6H3OH(HSO3)2+HNO3→C6H2OH(HSO3)2 NO2+H2O2,4-酚二磺酸6-硝基酚-2,4-二磺酸此反应必须在无水条件下才能迅速完成,反应产物在酸性介质中无色,碱化后则为稳定的黄色溶液,黄色的深浅与NO3-—N含量在一定范围内成正相关,可在400~425nm处(或用蓝色滤光片)比色测定。

酚二磺酸法的灵敏度很高,可测出溶液中0.1mg•L-1 NO3-—N,测定范围为0.1~2mg•L-1。

2)主要仪器分光光度计、水浴锅、瓷蒸发皿。

3)试剂(1)酚二磺酸试剂:称取白色苯酚(C6H5OH,分析纯)25.0g置于500mL三角瓶中,以150mL 纯浓H2SO4溶解,再加入发烟H2SO475mL并置于沸水中加热2h,可得酚二磺酸溶液,储于棕色瓶中保存。

使用时须注意其强烈的腐蚀性。

如无发烟H2SO4,可用酚25.0g,加浓H2SO4225mL,沸水加热6h配成。

试剂冷后可能析出结晶,用时须重新加热溶解,但不可加水,试剂必须贮于密闭的玻塞棕色瓶中,严防吸湿。

(2)10µg•mL-1 NO3-—N标准溶液:准确称取KNO3(二级)0.7221g溶于水,定容1L,此为100µg•mL-1 NO3-—N溶液,将此液准确稀释10倍,即为10µg•mL-1 NO3-—N标准溶液。

(3)CaSO4•2H2O(分析纯、粉状)、(4)CaCO3(分析纯、粉状)、(5)1:1 NH4OH、(6)活性碳(不含NO3-),用以除去有机质的颜色。

(7)Ag2SO4(分析纯、粉状)、Ca(OH)2(分析纯、粉状)和MgCO3(分析纯、粉状),用以消除Cl-1的干扰。

4)操作步骤测定(1)吸取B母液 50mL加入0.1g CaSO4•2H2O(注2)[凝聚剂的作用,使滤液不混浊而澄清](含NO3-—N 20~150µg)震荡过滤,取25ml滤液于瓷蒸发皿中,加CaCO3约0.05g(注5)[调节pH,防止NO3-—N在酸性和中性条件下蒸干分解而损失],在水浴上蒸干(注6),到达干燥时不应继续加热。

稍冷,迅速加入酚二磺酸试剂1---2 mL,将皿旋转,使试剂接触到所有的蒸干物。

静止10min使其充分作用后,加水20 mL,用玻璃棒搅拌直到蒸干物完全溶解。

冷却后缓缓加入1:1 NH4OH(注7)并不断搅拌混匀,至溶液呈微碱性(溶液显黄色不再加深)再多加2mL,以保证NH4OH试剂过量。

然后将溶液全部转入100mL容量瓶中,加水定容(注8)。

在分光光度计上用光径1cm比色杯在波长420nm处比色,以空白溶液作参比,调节仪器零点。

(2)同时,NO3-—N工作曲线绘制:分别取10µg•mL-1NO3-—N标准液0、1、2、5、10、15、20mL于蒸发皿中,在水浴上蒸干,与待测液相同操作,进行显色和比色,绘制成标准曲线,或用计算器求出回归方程。

5)结果计算土壤中NO3-—N含量(mg•kg-1)=式中:C(NO3--N)——从标准曲线上查得(或回归所求)的显色液NO3--N 质量浓度(µg•mL-1);V——显色液的体积(mL);ts——分取倍数;m——风干样品质量,g。

H——风干样品水分质量含量百分数。

6)注释注1.硝酸根为阴离子,不为土壤胶体吸附,且易溶于水,很易在土壤内部移动,在土壤剖面上下层移动频繁,因此测定硝态氮时注采样深度。

即不仅要采集表层土壤,而且要采集心土和底土,采样深度可达40cm、60 cm以至120 cm。

试验证明,旱地土壤上分析全剖面的硝态氮含量能更好地反映土壤的供氮水平。

和表层土壤比较,则全剖面的硝态氮含量与生物反应之间有更好的相关性,土壤经风干或烘干易引起NO3-—N变化,故一般都用新鲜土样测定。

注2.用酚二磺酸法测定硝态氮,首先要求浸提液清彻,不能混浊,但是一般中性或碱性土壤滤液不易澄清,且带有机质的颜色,为此在浸提液中应加入凝聚剂。

凝聚剂的种类很多,有CaSO4、CaO、Ca(OH)2、CaCO3、MgCO3、KAl(SO4)2、CuSO4等,其中CuSO4有防止生物转化的作用,但在过滤前必须以氢氧化钙或碳酸镁除去多余的铜,因此以CaSO4法提取较为方便。

注3.如果土壤浸提液由于有机质而有较深的颜色,则可用活性炭除去,但不宜用H2O2,以防最后显色时反常。

注4.土壤中的亚硝酸根和氯离子是本法的主要干扰离子。

亚硝酸和酚二磺酸产生同样的黄色化合物,但一般土壤中亚硝酸含量极少,可忽略不计。

必要时可加少量尿素、硫尿和氨基磺酸(20g•L-1NH2SO3H)以除去之。

例如亚硝酸根如果超出了1µg•mL-1时,一般每10mL待测液中加入20mg尿素,并放置过夜,以破坏亚硝酸根。

检查亚硝酸根的方法:可取待测液5滴于白瓷板上,加入亚硝酸试粉0.1g,用玻璃棒搅拌后,放置10min,如有红色出现,即有1mg•L-1亚硝酸根存在。

如果红色极浅或无色,则可省去破坏亚硝酸根手续。

Cl-对反应的干扰,主要是加酸后生成亚硝酰氯化合物或其它氯的气体。

如果土壤中含氯化合物超过15mg•kg-1,则必须加Ag2SO4除去,方法是每100mL浸出液中加入 Ag2SO4 0.1g (0.1g Ag2SO4 可沉淀22.72mg Cl-),摇动15min,然后加入Ca(OH)2 0.2g及MgCO3 0.5g,以沉过量的银,摇动5min后过滤,继续按蒸干显色步骤进行。

NO3- + 3Cl- + 4H+ → NOCl + Cl2 + 2H2O亚硝酰氯注5.在蒸干过程中加入碳酸钙是为了防止硝态氮的损失。

因为在酸性和中性条件下蒸干易导致硝酸离子的分解,如果浸出液中含铵盐较多,更易产生负误差。

注6.此反应必须在无水条件下才能完成,因此反应前必须蒸干。

注7.碱化时应用NH4OH,而不用NaOH或KOH,是因为NH3能与Ag+络合成水溶性的[ (NH3)2]+,不致生成Ag2O的黑色沉淀而影响比色。

注8.在蒸干前,显色和转入容量瓶时应防止损失铵态氮测定方法原理0.5mol•L-1 K2SO4溶液浸提土壤,把吸附在土壤胶体上的NH4+及水溶性NH4+浸提出来。

土壤浸提液中的铵态氮在强碱性介质中与次氯酸盐和苯酚作用,生成水溶性染料靛酚蓝,溶液的颜色很稳定。

在含氮0.05~0.5mg•L-1的范围内,吸光度与铵态氮含量成正比,可用比色法测定。

2)试剂(1)2mol/LKCl溶液称取149.1g氯化钾(KCl,化学纯)溶于水中,稀释至1L。

(2)苯酚溶液称取苯酚(C6H5OH,化学纯)10g和硝基铁氰化钠[Na2Fe(CN)5NO2H2O]100mg稀释至1L。

此试剂不稳定,须贮于棕色瓶中,在4℃冰箱中保存。

(3)次氯酸钠碱性溶液称取氢氧化钠(化学纯)10g、磷酸氢二钠(Na2HPO4•12H2O, 化学纯)9.431g、磷酸钠(Na3PO4•12H2O, 化学纯)31.8g和 5.25%次氯酸钠(NaOCl,化学纯,即含5%有效氯的漂白粉溶液)10mL溶于1L水中,贮于棕色瓶中,在4℃冰箱中保存。

(4)掩蔽剂将400g/L的酒石酸钾钠(KNaC4H4O6•4H2O, 化学纯)与100g/L的EDTA二钠盐溶液等体积混合。

相关文档
最新文档