基于Multisim的方波、三角波和正弦波发生器

合集下载

实验六-方波—三角波—正弦波函数发生器

实验六-方波—三角波—正弦波函数发生器

实验六-方波—三角波—正弦波函数发生器六.方波-三角波-正弦波函数发生器一、实验目的函数信号发生器是一种可以同时产生正弦波、三角波和方波信号电压波形的电路,调节外部电路参数,还可以获得占空比可调的锯齿波、阶梯波等信号的电压波形。

本实验主要是掌握方波-三角波-正弦波函数发生器的设计方法。

二、设计任务要求频率范围:100~1000Hz,1000~10000Hz输出电压:方波V pp≤24V三角波V pp=6V正弦波V pp=1V波形特征:方波t r<100μs三、实验原理本实验方波-三角波-正弦波的设计电路如下图所示:由比较器、积分器和反馈网络组成振荡器,比较器所产生的方波通过积分器变成三角波,最后利用差分放大器传输特性曲线,将三角波转换成正弦波。

具体的电路设计如下图所示,三角波-方波产生电路是把比较器与积分器首尾相连,而三角波-正弦波的变换电路采用的是单端输入-单端输出差动放大电路输入输出方式。

下面将仔细分析两个子电路。

①方波-三角波产生器方波-三角波产生器有很多种,此次试验是采用把比较器和积分器首尾相连构成方波-三角波产生器的方式,具体分析电路如下所示:集成运放A 2的输出信号三角波V O2为A 1的输入信号V 1,又因为A1的反相端接地,可得三角波输出V O2的峰值V O2m 为V O2m =ZP V R R R 132+式中的V Z 为方波的峰值电压。

因积分电路输出电压从0上升到V 1m 所需时间为1/4T,故RCT V dt R V CV R R R V Z TZ Z P MO 4141322==+=⎰其中R=R 4+R P2 ()C R R R R R T p p 132424++=从上述分析关系可得,调节R P2和电容C 的大小可改变振荡频率,改变R 2/(R P1+R 3)的比值可调节三角波的峰值。

② 三角波-正弦波产生电路三角波-正弦波产生电路的设计简图如下所示:在电路两边对称的理想条件下,流过理想的恒流源R E 的电流I O 不会随差模输入电压而变化,晶体管工作在放大区时,它的集电极电流近似为: TBE V V S E C e I I I 1111=≈α TBE V V S E C eI I I 2222=≈α假设α≈1时, )1()1(12112121TBE BE V V VC C C C C C O eI I I I I I I -+=+=+≈由于V id =V BE1-V BE2 则TidV V OC eI I -+=11同理Tid V V OC eI I+=12分析表明,如果差分电路的差模输入V id 为三角波,则I c1与I c2的波形近似为正弦波,因为单端输出电压V o3也近似为正弦波,实现了三角波-正弦波变换。

【multisim】正弦波-三角波-方波转换电路

【multisim】正弦波-三角波-方波转换电路

【multisim】正弦波-三角波-方波转换电路要实现从正弦波到三角波再到方波的转换电路,可以使用集成运算放
大器(Op-Amp)和滞回器电路。

以下是实现该转换电路的步骤:
1. 正弦波至三角波的转换:将正弦波输入到一个比较器电路中。

比较
器电路由一个集成运算放大器和两个电阻组成。

其中一个电阻连接到
一个固定电压源,另一个电阻连接到一个可调电压源,可调电压源的
输出与正弦波输入相连。

比较器电路会将正弦波与一个参考电压进行
比较,并根据比较结果输出高电平或低电平。

通过调节可调电压源的
电压,可以改变比较器的输出电平,从而实现正弦波至三角波的转换。

2. 三角波至方波的转换:之前得到的三角波接入一个滞回器电路中。

滞回器电路也由一个集成运算放大器和两个电阻组成。

其中一个电阻
连接到固定电压源,另一个电阻连接到滞回器电路的输出端。

滞回器
电路会将三角波的波峰和波谷进行限幅,输出一个具有较高/低电平的
方波信号。

需要注意的是,电阻值的选择以及比较器和滞回器电路的参数设置,
都会影响转换电路的性能和效果。

可根据具体需求进行调整。

基于Multisim的方波、三角波和正弦波发生器

基于Multisim的方波、三角波和正弦波发生器

课程: Multisim课程设计班级: 10电信本2班姓名: 6 2 2 学号: 100917024教师:吕老师课程设计----基于Multisim的方波、三角波和正弦波发生器一.设计目的1.掌握电子系统的一般设计方法2.掌握模拟IC器件的应用3.培养综合应用所学知识来指导实践的能力4.掌握常用元器件的识别和测试5.熟悉常用仪表,了解电路调试的基本方法二.设计要求能够同时显示出方波、三角波和正弦波。

三.设计原理函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件 (如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。

为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。

产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。

本课题采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法,本课程设计中函数发生器电路组成框图如下所示:由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理是利用差分放大器传输特性曲线的非线性。

图1 原理框图方波发生电路工作原理此电路由反相输入的滞回比较器和RC电路组成。

RC回路即作为迟滞环节,又作为反馈网络,通过RC冲、放电实现输出状态的自动转换。

设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+Ut,Uo通过R3对电容C正向充电,如图中箭头所示。

基于LM324的方波、三角波、正弦波发生器(含原理图)

基于LM324的方波、三角波、正弦波发生器(含原理图)

课程设计(论文)说明书题目:方波、三角波、正弦波发生器院(系):专业:学生:学号:指导教师:职称:2012年12 月 5 日....摘要本文通过介绍一种电路的连接,实现函数发生器的基本功能。

将其接入电源,并通过在显示器上观察波形及数据,得到结果。

电压比较器实现方波的输出,又连接积分器得到三角波,并通过差分放大器电路得到正弦波,得到想要的信号。

NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。

凭借NI Multisim ,你可以立即创建具有完整组件库的电路图,并利用0工业标准SPICE模拟器模仿电路行为。

本设计就是利用Multisim软件进行电路图的绘制并进行仿真。

关键词:电源、波形、比较器、积分器、MultisimAbstractThis paper introduces a circuit connection, to achieve the basic functions of function generator. Their access to power, and through the display of waveform and data, and get the result.A voltage comparator to achieve a square wave output, in turn connected integrator triangle wave, and through the triangle wave - sine wave conversion circuit to see the sine wave, the desired signal.NI Multisim software combines intuitive capture and powerful simulation, an quickly, easily, efficiently for circuit design and verification. With NI Multisim, you can immediately create a complete component library circuitdiagram, and the use of 0 industry standard SPICE simulator to mimic circuit behavior. This design is the use of Multisim software in circuit diagram and carry out simulationKey words: power, waveform, comparator, an integrator, a converter circuit, Multisim..目录1 设计任务---------------------------------------11.1 电路设计任务------------------------------11.2 电路设计要求------------------------------12正弦波、方波发生器的组成------------------------12.1 原理框图----------------------------------12.2 原理分析----------------------------------12.3 放大器功能及管脚图------------------------23 系统中各模块设计--------------------------------23.1方波-三角波-正弦波-------------------------23.1.1方波形仿真图-----------------------------43.1.2三角波仿真电路图以及仿真图---------------43.1.3正弦波仿真图-----------------------------63.1.4实验设计电路图---------------------------63.1.5实验电路PCB图---------------------------73.1.6参数设计---------------------------------73.2元器件型号---------------------------------94 电路调试---------------------------------------104.1 安装正弦波、方波发生器- ------------------134.2调试正弦波、方波发生器---------------------134.3调试结果展示------------------------------134.3.1方波实验波形图--------------------------114.3.2三角波实验波形图------------------------114.3.3正弦波实验波形图------------------------124.3.4实际电路图及实物图展示------------------124.4性能指标测量与误差分析--------------------13..5 实验总结--------------------------------------13辞、参考文献-----------------------------------14....一 设计任务1.1 任务设计制作一个方波-三角波-正弦波发生器。

方波——三角波——正弦波函数信号发生器

方波——三角波——正弦波函数信号发生器

方波——三角波——正弦波函数信号发生器现今世界中电子技术与电子产品的应用越加广泛,人们对电子技术的要求也越来越高。

因此如何根据实际要求设计出简便实用的电子技术物品便显得尤为重要。

灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。

能将简单的易获取的信号转换为自己所需的复杂信号是一项必不可少的技术。

以555定时器为核心器件,制作一种方波-三角波-正玄波函数转发生器,制作成本较低。

适合学生学习电子技术测量使用。

比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。

输出波形的频率和占空比还可以由电流或电阻控制。

函数信号发生器在电路实验和设备检测中具有十分广泛的用途。

例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。

在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

随着众多领域对于复杂的、可由用户定义的测试波形的需要而形成和发展起来的,波形发生器的主要特点是可以产生任何一种特殊波形,输出信号的频率、电平以及平滑低通滤波的截至频率也可以作到程序设置,因此在机械性能分析、雷达和导航、自动测试系统等方面得到广泛的应用。

而本课题设计的正是多种波形发生器。

本设计由555定时器和积分器组成方波—三角波产生电路,555定时器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理是利用差分放大器传输特性曲线的非线性。

该设计在proteus仿真软件上进行了仿真,验证了该设计方法正确性和有效性。

模拟电子电路课程设计——正弦波-三角波-方波函数发生器

模拟电子电路课程设计——正弦波-三角波-方波函数发生器

课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目:正弦波-三角波-方波函数发生器初始条件:具备模拟电子电路的理论知识;具备模拟电路基本电路的设计能力;具备模拟电路的基本调试手段;自选相关电子器件;可以使用实验室仪器调试。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、频率范围三段:10~100Hz,100 Hz~1KHz,1 KHz~10 KHz;2、正弦波Uopp≈3V,三角波Uopp≈5V,方波Uopp≈14V;3、幅度连续可调,线性失真小;4、安装调试并完成符合学校要求的设计说明书时间安排:一周,其中3天硬件设计,2天硬件调试指导教师签名:年月日系主任(或责任教师)签名:年月日目录1.综述...........................................................1 1.1信号发生器概论...................................................1 1.2 Multisim简介....................................................21.3集成运放lm324简介...............................................32.方案设计与论证...............................................4 2.1方案一...................................................4 2.2方案二..................................................42.3方案三..................................................53.单元电路设计..............................................6 3.1正弦波发生电路的工作原理...............................6 3.2正弦波变换成方波的工作原理.............................8 3.3方波变换成三角波的工作原理.............................93.4正负12V直流稳压电源的设计............................104.电路仿真................................................124.1总波形发生电路............................................124.2正弦波仿真................................................134.3方波仿真...................................................144.2三角波仿真...............................................145.实物制作与调试..........................................155.1焊接过程.............................................155.2 实物图...............................................155.3调试波形.............................................186.数据记录................................................197.课设总结................................................208.参考书目................................................219.附录....................................................22 本科生课程设计成绩评定表....................................241.综述1.1信号发生器概论在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。

方波三角波正弦波函数发生器的设计

方波三角波正弦波函数发生器的设计

方波三角波正弦波函数发生器的设计
设计方波、三角波、正弦波函数发生器需要经过以下步骤:
首先,设计电路图。

其主要由单稳态触发器、行波触发器、电源部分和振荡放大部分组成,使用的主要器件有电阻、电容、三极管和二极管。

其次,具体元器件的参数选择。

为了保证输出波形的稳定性,应该选择具有良好温度稳定性和频率稳定性的元器件,同时考虑到制作成本和实际应用要求,选择适合的元器件。

第三,制作电路板。

在选择好元器件之后,需要合理布局电路,将元器件焊接到电路板上。

为保证电路的稳定性和可靠性,电路板应该选用高质量的绝缘材料,并进行严格的质量控制。

然后,对电路进行调试和测试。

初始调试时,需要使用示波器和电压表等测试仪器,调整电路参数,使其达到预期的性能要求。

在测试中,应注意观察波形的稳定性、频率、峰值、偏移量等参数,对异常情况进行分析和处理。

最后,进行封装和安装。

根据实际应用环境和要求,选择合适的封装方式和安装位置。

考虑到散热和防护问题,需要选择具有良好散热性能和防护性能的封装材料,并进行严格的防护处理。

综上所述,设计方波、三角波、正弦波函数发生器是一项既需要严谨的理论知识,又需要熟练的实践技能和深入的电路分析能力的工作,这需要设计者具有深厚的电子技术基础和丰富的实践经验。

基于LM324的方波、三角波、正弦波发生器(含原理图)讲解

基于LM324的方波、三角波、正弦波发生器(含原理图)讲解

课程设计(论文)说明书题目:方波、三角波、正弦波发生器院(系):专业:学生姓名:学号:指导教师:职称:2012年12 月 5 日摘要本文通过介绍一种电路的连接,实现函数发生器的基本功能。

将其接入电源,并通过在显示器上观察波形及数据,得到结果。

电压比较器实现方波的输出,又连接积分器得到三角波,并通过差分放大器电路得到正弦波,得到想要的信号。

NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。

凭借NI Multisim ,你可以立即创建具有完整组件库的电路图,并利用0工业标准SPICE模拟器模仿电路行为。

本设计就是利用Multisim软件进行电路图的绘制并进行仿真。

关键词:电源、波形、比较器、积分器、MultisimAbstractThis paper introduces a circuit connection, to achieve the basic functions of function generator. Their access to power, and through the display of waveform and data, and get the result.A voltage comparator to achieve a square wave output, in turn connected integrator triangle wave, and through the triangle wave - sine wave conversion circuit to see the sine wave, the desired signal.NI Multisim software combines intuitive capture and powerful simulation, an quickly, easily, efficiently for circuit design and verification. With NI Multisim, you can immediately create a complete component library circuitdiagram, and the use of 0 industry standard SPICE simulator to mimic circuit behavior. This design is the use of Multisim software in circuit diagram and carry out simulationKey words: power, waveform, comparator, an integrator, a converter circuit, Multisim目录1 设计任务---------------------------------------11.1 电路设计任务------------------------------11.2 电路设计要求------------------------------12正弦波、方波发生器的组成------------------------12.1 原理框图----------------------------------12.2 原理分析----------------------------------12.3 放大器功能及管脚图------------------------23 系统中各模块设计--------------------------------23.1方波-三角波-正弦波-------------------------23.1.1方波形仿真图-----------------------------43.1.2三角波仿真电路图以及仿真图---------------43.1.3正弦波仿真图-----------------------------63.1.4实验设计电路图---------------------------63.1.5实验电路PCB图---------------------------73.1.6参数设计---------------------------------73.2元器件型号---------------------------------94 电路调试---------------------------------------104.1 安装正弦波、方波发生器- ------------------134.2调试正弦波、方波发生器---------------------134.3调试结果展示------------------------------134.3.1方波实验波形图--------------------------114.3.2三角波实验波形图------------------------114.3.3正弦波实验波形图------------------------124.3.4实际电路图及实物图展示------------------124.4性能指标测量与误差分析--------------------135 实验总结--------------------------------------13谢辞、参考文献-----------------------------------14一设计任务1.1 任务设计制作一个方波-三角波-正弦波发生器。

基于Multisim的方波-三角波发生电路的仿真实验

基于Multisim的方波-三角波发生电路的仿真实验

基于Multisim的方波-三角波发生电路的仿真实验姚雪妍;郭琼【摘要】本文通过使用Multisim仿真软件对模拟电子技术基础课程中所学内容进行了仿真试验,以及相关的验证和计算;研究了方波、三角波发生电路,通过改变电路元件参数,对输出波形进行对比观测,得到了该振荡电路的相关电路特性,虚拟仿真结论与理论分析和实际计算结果相一致。

表明利用Multsim仿真软件可将理论学习和实践紧密地结合起来,利于加深对所学知识的理解和掌握。

【期刊名称】《办公自动化(综合版)》【年(卷),期】2016(000)006【总页数】4页(P45-47,60)【关键词】Multisim;方波-三角波;仿真实验;电路分析【作者】姚雪妍;郭琼【作者单位】华侨大学信息科学与工程学院厦门 361021 1;无锡职业技术学院无锡 214121 2【正文语种】中文【中图分类】TP391.9在模拟电子技术课程的学习中,会涉及到正弦波、方波、三角波、锯齿波等多种波形及其发生电路,这类波形及其发生电路作为常用的信号源,在生产、科研及教学实验中都具有广泛的应用[1]。

因此,在学习过程中,对这类信号源波形及其发生电路的深入理解与掌握,是十分必要的。

传统的学习方式大多采用实物搭接电路,用仪器、设备观察结果得出结论后进行分析,这样不仅需要耗费大量的时间,且增加了耗材成本,还可能因器件质量或更换困难、参数不易调整等原因使观察结果出现较大偏差。

随着电子信息技术的快速发展,在课程的学习过程中,我们可以借助各类仿真软件来进行虚拟实验。

通过采用软件提供的元器件和仪器实现电路,并对电路运行情况进行观测分析,使实验过程更为灵活和方便;在软件虚拟的“电路实验室”中,通过快速的搭接电路并进行仿真,完成电路的验证和辅助设计,从而使学生加深对学习内容的理解和掌握,进一步提高分析设计能力和综合应用能力。

NI Multisim 13.0是美国国家仪器有限公司(National Instruments,简称NI)最新发布的一款以Windows为基础的汉化仿真软件。

设计能产生方波、三角波、正弦波的函数信号发生器电路

设计能产生方波、三角波、正弦波的函数信号发生器电路

目录1 课程设计的目的与作用 (1)2 设计任务及所用multisim软件环境介绍 (1)2.1设计任务 (1)2.2所用multisim软件环境介绍 (1)2.2.1 Multistim 10简介 (1)2.2.2 Multistim 10主页面 (2)2.2.3 Multistim 10元器件库 (2)2.2.4 Multistim 10虚拟仪器 (3)2.2.5 Multistim 10分析工具 (3)3 电路模型的建立 (3)3.1原理分析 (3)3.2函数信号发生器各单元电路的设计 (5)3.2.1方波产生电路图 (5)3.2.2方波—三角波转换电路图 (5)3.2.3正弦波电路图 (6)3.2.4方波-三角波-正弦波函数发生器整体电路图 (6)4 理论分析及计算 (7)4.1方波发生电路 (7)4.2方波—三角波 (7)4.3正弦波 (7)5 仿真结果分析 (8)5.1仿真结果 (8)5.1.1方波、三角波产生电路的仿真波形如图所示 (8)5.1.2方波—三角波转换电路的仿真 (10)5.1.3三角波—正弦波转换电路仿真 (11)5.1.4方波—三角波—正弦波转换电路仿真 (12)5.2结果分析 (13)6 设计总结和体会 (133)7 参考文献 (144)I1 课程设计的目的与作用1.巩固和加深对电子电路基本知识的理解,提高综合运用本课程所学知识的能力。

2.培养根据课题需要选学参考书籍,查阅手册、图表和文献资料的自学能力。

通过独立思考,深入钻研有关问题,学会自己分析并解决问题的方法。

3.通过电路方案的分析、论证和比较,设计计算和选取元器件;初步掌握简单实用电路的分析方法和工程设计方法。

4.了解与课题有关的电子电路以及元器件的工程技术规范,能按设计任务书的要求,完成设计任务,编写设计说明书,正确地反映设计与实验的成果,正确地绘制电路图等。

5.培养严肃、认真的工作作风和科学态度2 设计任务及所用multisim软件环境介绍2.1 设计任务设计能产生方波、三角波、正弦波的函数信号发生器电路1)输出各种波形工作频率范围:10—100Hz,100—1KHz,1K—10KHz。

multisim仿真教程函数波形发生器电路

multisim仿真教程函数波形发生器电路

三角波(锯齿波)、方波(矩形波)、阶梯波
等电压波形的电路和仪器。电路形式可以采用
由运放及分离元件构成;也可采用单片集成函
数发生器,根据用途不同,有产生多种波形的
函数信号发生器,本例介绍产生方波和三角波
的函数发生器。电路如图12.1.1所示。
图12.1.1 函数波形发生器电路
此电路的频率范围:1HZ~10HZ ,10HZ~ 100HZ , 100HZ~1KHZ
元件参数的选定 方波-三角波的频率:
f R3 RP 1 4R2(R4 RP 2)C

R2
1
R3 RP1 3
取R2=10KΩ,则R2+ RP1=30 KΩ:
KΩ,RP1=20 KΩ
取R3=20

f R3RP1得到4R2(R4 RP2)C
R2
RP1
3 4fC
当 1HZf1 H 0Z 时, 取C=10μF, R4+ RP2=75~7.5 KΩ, R4= 5.1KΩ, RP2=100 KΩ
图12.1.2 开关K与电容C2相连时的输出波形
THANK YOU!
THE END!
multisim仿真教程函数波形发生器电路
本章的重点是掌握综合应用电路的仿真设
计与分析方法。注意掌握综合应用电路设计的
一些技巧,如子电路设计、电路功能的模块化
等。注意应用要求与逻辑函数之间的转换,解
决一个实际问题,可以采用不同形式的电路形
式。
12.1 函数波形发生器电路
函数发生器一般是指能自动产生正弦波、
当 1H 0Z f1 0 H Z 0时,取C=1μF 当 10HZ 0f1 0H 0Z0 时,取C=0.1μ
改变开关K与电容C1、 C2、 C3的连接位置 可改变三角波、方波的输出频率,图 12.1.2 是开关K与电容C2相连时的输出波 形。(注:在仿真电路中各元器件的脚标无 法用下脚标表示,如C1只能表示成C1)。

设计能产生方波、三角波、正弦波的函数信号发生器电路

设计能产生方波、三角波、正弦波的函数信号发生器电路

目录1 课程设计的目的与作用 (1)2 设计任务及所用multisim软件环境介绍 (1)2.1设计任务 (1)2.2所用multisim软件环境介绍 (1)2.2.1 Multistim 10简介 (1)2.2.2 Multistim 10主页面 (2)2.2.3 Multistim 10元器件库 (2)2.2.4 Multistim 10虚拟仪器 (3)2.2.5 Multistim 10分析工具 (3)3 电路模型的建立 (3)3.1原理分析 (3)3.2函数信号发生器各单元电路的设计 (5)3.2.1方波产生电路图 (5)3.2.2方波—三角波转换电路图 (5)3.2.3正弦波电路图 (6)3.2.4方波-三角波-正弦波函数发生器整体电路图 (6)4 理论分析及计算 (7)4.1方波发生电路 (7)4.2方波—三角波 (7)4.3正弦波 (7)5 仿真结果分析 (8)5.1仿真结果 (8)5.1.1方波、三角波产生电路的仿真波形如图所示 (8)5.1.2方波—三角波转换电路的仿真 (10)5.1.3三角波—正弦波转换电路仿真 (11)5.1.4方波—三角波—正弦波转换电路仿真 (12)5.2结果分析 (13)6 设计总结和体会 (133)7 参考文献 (144)I1 课程设计的目的与作用1.巩固和加深对电子电路基本知识的理解,提高综合运用本课程所学知识的能力。

2.培养根据课题需要选学参考书籍,查阅手册、图表和文献资料的自学能力。

通过独立思考,深入钻研有关问题,学会自己分析并解决问题的方法。

3.通过电路方案的分析、论证和比较,设计计算和选取元器件;初步掌握简单实用电路的分析方法和工程设计方法。

4.了解与课题有关的电子电路以及元器件的工程技术规范,能按设计任务书的要求,完成设计任务,编写设计说明书,正确地反映设计与实验的成果,正确地绘制电路图等。

5.培养严肃、认真的工作作风和科学态度2 设计任务及所用multisim软件环境介绍2.1 设计任务设计能产生方波、三角波、正弦波的函数信号发生器电路1)输出各种波形工作频率范围:10—100Hz,100—1KHz,1K—10KHz。

模拟电子电路课程设计方案——正弦波三角波方波函数发生器

模拟电子电路课程设计方案——正弦波三角波方波函数发生器

课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目:正弦波-三角波-方波函数发生器初始条件:具备模拟电子电路的理论知识;具备模拟电路基本电路的设计能力;具备模拟电路的基本调试手段;自选有关电子器件;能够使用实验室仪器调试。

要求达成的主要任务:(包含课程设计工作量及其技术要求,以及说明书撰写等详细要求)1、频次范围三段:10~100Hz,100 Hz~1KHz,1 KHz~10 KHz;2、正弦波Uopp≈3V,三角波Uopp≈5V,方波Uopp≈14V;3、幅度连续可调,线性失真小;4、安装调试并达成切合学校要求的设计说明书时间安排:一周,此中3天硬件设计,2天硬件调试指导教师署名:年月日系主任(或责任教师)署名:年月日目录1.综述...........................................................1 1.1信号发生器概论...................................................1 1.2 Multisim简介....................................................21.3集成运放lm324简介...............................................32.方案设计与论证...............................................4 2.1方案一...................................................4 2.2方案二..................................................42.3方案三..................................................53.单元电路设计..............................................6 3.1正弦波发生电路的工作原理...............................6 3.2正弦波变换成方波的工作原理.............................8 3.3方波变换成三角波的工作原理.............................93.4正负12V直流稳压电源的设计............................104.电路仿真................................................124.1总波形发生电路............................................124.2正弦波仿真................................................134.3方波仿真...................................................144.2三角波仿真...............................................145.实物制作与调试..........................................155.1焊接过程.............................................155.2 实物图...............................................155.3调试波形.............................................186.数据记录................................................197.课设总结................................................208.参照书目................................................219.附录....................................................22 本科生课程设计成绩评定表....................................241.综述在人们认识自然、改造自然的过程中,常常需要对各种各种的电子信号进行丈量,因此怎样依据被丈量电子信号的不同特色和丈量要求,灵巧、快速的采纳不同特色的信号源成了现代丈量技术值得深入研究的课题。

能产生方波,三角波,正弦波的信号发生器(用741)

能产生方波,三角波,正弦波的信号发生器(用741)

模拟电子技术——课程设计报告题目:信号发生器专业:班级:学号:姓名:日期:指导老师:目录(信号发生器)1 信号发生器的总方案及原理框图1.1 电路设计原理框图1.2 电路设计方案设计2 设计的目的及任务2.1 课程设计的目的2.2 课程设计的任务与要求2.3 课程设计的技术指标3 各部分电路设计3.1 正弦波产生电路的工作原理3.2 正弦波——方波发生电路的工作原理3.3 方波——三角波转换电路的工作原理3.4 电路的参数选择与计算3.5 总电路图4 电路的仿真4.1 正弦波发生电路仿真4.2 方波——三角波发生电路的仿真5 电路的安装与调试5.1 正弦波发生电路的安装与调试5.2 正弦波——方波的安装与调试5.3 方波——三角波的安装与调试5.4 总电路的安装与调试5.5 电路安装与调试中遇到的问题及分析解决方法6 电路的实验结果6.1 正弦波发生电路的实验结果6.2 正弦波——方波转换电路的实验结果6.3 方波——三角波转换电路的实验结果6.4 实测电路误差分析及改进方法7 实验总结1 信号发生器的总方案及原理框图1.1 电路设计原理框图电路设计原理框图如图1所示。

三角波图1 电路设计原理框图1.2 电路设计方案设计1、采用RC串并联网络构成的RC桥式振荡电路产生正弦波。

2、将第一级送出的正弦波经过第二级的滞回电压比较器输出方波。

3、将第二级的方波通过第三级的积分器输出三角波。

4、电路完成。

2 设计的目的及任务2.1 课程设计的目的1、学习用集成运放构成正弦波、方波、三角波发生器。

2、学习波形发生器的调整和主要性能指标的测试方法。

2.2 课程设计的任务与要求1、设计出能产生正弦波、方波和三角波的函数发生器。

2、完成电路的仿真操作,并安装实际电路。

3、完成对焊接电路的检验工作。

4、确保无误后,安装芯片,接入电源,开始测试。

5、调试,实现功能并记录测试数据的结果。

6. 教师检查并评分,上交设计作品,完成实验报告。

方波三角波正弦波锯齿波函数信号发生器

方波三角波正弦波锯齿波函数信号发生器

课程设计说明书课程设计名称:模拟电路课程设计课程设计题目:方波三角波正弦波锯齿波函数信号发生器学院名称:信息工程学院专业:电子信息工程班级:学号:姓名:评分:教师:彭嵩20 11 年04 月07 日《模拟电路》课程设计任务书20 10 -20 11 学年第2 学期第1 周-2 周注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。

2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。

摘要本次课程设计是要求做一个能够产生方波-锯齿波三角波-正弦波的函数发生器.由理论分析知,电压比较器可以产生方波,积分电路可以产生三角波,三角波再经过差动放大器可以产生正弦波.向电压比较器输入三角波就可以产生方波,同时,三角波发生电路中积分电路反向积分速度远大于正向积分速度,或者正向积分速度远大于反向积分速度则输出的电压就成为锯齿波,于是可以将积分电路的输出作为电压比较器的输入.各种波形频率段的调整可以由外电路的改变来实现,例如,改变电容的值.另外也可以做先产生正弦波的电路,,其次经过比较器产生方波,再经过积分电路,产生三角波..获得正弦波时,可以做一个RC 正弦波整荡电路.电路的原理部分的设计,可以是先设计单元电路,然后用仿真软件模拟.等到各个单元都设计完成后,可以将各个单元结合到一起,由仿真软件模拟是否符合制作要求.本次试验中,就是先做方波发生电路:电压比较器.然后是积分电路,最后是差动放大电路.最后使用multisim软件模拟整个制作的电路,在模拟中,要解决出现的种种问题.关键词:正弦波、三角波、方波、锯齿波、滞回比较器、选频网络、反馈、积分电路、微分电路。

目录第一章设计内容及要求 (5)1.1. 内容及要求 (5)第二章设计方案 (6)2.1 方波发生器的设计方案 (6)2.2 三角波发生器的设计方案 (6)2.3 正弦波发生器的设计方案 (6)2.4 锯齿波发生器的设计方案 (6)第三章波形发生器的工作原理 (7)3.1 方波发生器的工作原理 (7)3.2 三角波发生器的工作原理 (8)3.3 正弦波发生器的工作原理 (9)3.4 锯齿波发生器的工作原理 (10)第四章参数计算、器件选择 (12)4.1. 电路的参数计算 (12)4.1.1 方波的主要参数的 (12)4.1.2 三角波的主要参数的估算 (14)4.1.3 正弦波的主要参数的估算 (15)4.1.4 锯齿弦波的主要参数的估算 (17)第五章调试及测试结果与分析 (18)5.1 原理图、调试 (18)5.1.1 原理图 (18)5.1.2 振荡电路的调整 (19)5 .1.3 频率的调节 (20)5.2 测试结果与分析 (20)5.2.1. 安装电路 (20)5.2.2. 测量最大不失真电压和振荡频率 (20)5.2.3.测量RC串并联网络的频率特性 (20)5.3 调试结果 (21)5.4 器件选择 (22)结论 (23)参考文献 (24)附录一 (25)第一章设计内容及要求1.1 内容及要求①输出波形频率范围为0.02Hz~20kHz且连续可调;②正弦波幅值为±2V;③方波幅值为2V,占空比可调;④三角波峰-峰值为2V;⑤锯齿波峰-峰值为2V;⑥设计电路所需的直流电源可用实验室电源。

利用Multisim仿真设计方波转换成三角波

利用Multisim仿真设计方波转换成三角波

利用Multisim仿真设计方波转换成三角波利用Multisim仿真设计方波—三角波转换电路姓名:汪航学号:13919232一.设计内容与要求①矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。

②三角波电路,频率1KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。

二、电路图设计及理论分析比较器积分器①方波电路1.电路组成及工作原理因为方波电压只有两种状态,高电平和低电平,所以电压比较器是它的重要组成部分;因为产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈;因为输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来切丁每种状态维持的时间。

图示为矩形波发生电路,它由反相输入的滞回比较器和RC电路组成。

RC回路既作为延迟环节,又作为反馈网络,通过RC充放电实现输出状态的自动转换。

它由反相输入的滞回比较器和RC电路组成。

RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换。

反相滞回比较器的门限电压:Vt h +=R 2V Z/(R 1+R 2) Vt h-=-R 2V Z/(R 1+R 2)2 波形分析及主要参数由于图中所示电路电筒正向充电和反向充电的时间常数均为RC ,而且充电的总幅值也相等,因而在一个周期内Uo=+Uz 的时间与Uo=-Uz 的时间相等,Uo 为对称的方波,所以也称为该电路为方波发生电路。

电容上电压Uc (即集成运放反相输入端电位Un )和电路输出电压Uo 波形如图所示。

利用一阶RC 电路的三要素法可列出方程())(132/T T T Z T U C R e U U U -+???? ??-+=+- 将(1)式代入上式,即可求出振荡周期T = 23R C ln ??+2121R R 振荡频f=1/T 。

通过以上分析可知,调整电压比较器的电路参数R1和R2可以改变Uc 的幅值,调整电阻R1、R2、R3和电容C的数值可以改变电路的振荡频率。

电子技术课程设计——方波-三角波-正弦波函数发生器的设计

电子技术课程设计——方波-三角波-正弦波函数发生器的设计

题目2:设计方波-三角波-正弦波函数发生器。

(3组9人,或选作题目5)设计任务和要求①输出波形频率范围为10Hz~100Hz;②方波幅值为3V,占空比可调;课题方波-三角波-正弦波函数发生器的设计一、实验名称:方波,三角波发生器的设计。

二、实验目的:(1)学习方波、三角波发生器的设计方法。

(2)进一步培养安装与调试电路的能力。

三、实验仪器:10KΩ电阻五个,6.2KΩ电阻三个, 2.2KΩ电阻两个,22KΩ、5.1 KΩ、75 KΩ、36 KΩ、2 KΩ电阻各一个,324芯片一块,β值为五十附近的NPN型BJT管四个,电位器三个,0.47μF、220μF电容各两个,示波器、直流稳压电压源、信号源各一台。

四、实验要求:(1)已知条件:集成运放324一片,BJT管若干只(2)性能指标要求:频率范围:10Hz~1KHz;输出电压:方波VPP<24V,三角波VPP>3V,正弦波VPP>1V;五、实验原理。

方波、三角波发生器有电压比较器和基本积分器组成。

运算放大器A1与R1、R2、R3及R P1组成电压比较器;运算放大器A2与R4、R P2、C1及C2组成反向积分器,计较器与积分器首尾相连,形成闭环电路,构成能自动产生方波、三角波的发生器。

电路参数:(1)方波的幅度:U o1m=U z(2)三角波的幅度:U o2m=U z(3)方波三角波的频率:f=可改变三角波的幅度,但会影响方波、三角波的频率;调节电位调节电位器Rp1可改变方波、三角波的频率,但不会影响方波、三角波的幅度。

器Rp2六、具体设计思路1、方波-三角波发生器的基本电路图中A1与A2均采用CF324集成运算放大器,其中A1与R1、R2、R3及滑动变阻器组成电压比较器;A2与R4、C1、C2及滑动变阻器组成反相积分器,比较器与积分器首尾相连,形成闭环电路,调节R p1、R p2,使其能自动产生方波-三角波的发生器。

2、正弦波发生器的基本电路七、整体电路设计。

三角波,正弦波,方波波形,发生器的设计(内含1-127倍增益电路和DCDC转换)

三角波,正弦波,方波波形,发生器的设计(内含1-127倍增益电路和DCDC转换)

波形发生器的设计摘要:本设计基于LM324D的芯片,利用电压比较器和积分器设计了一个三角波-方波发生器,再利用二极管网络变换电路把三角波转化为正弦波。

在增益部分利用了T型网路芯片DAC0832来实现增益可调部分,最后,我们采用了TP1301DCDC芯片和集成开关型稳压器AIC1563,实现DCDC转换,能够升压和改变输出电压的正负值。

关键词:二极管网络变换电路;T型网路芯片;DCDC一.方案论证与比较方案一:采用文氏电桥振荡器产生正弦波,并且采用由电阻网络和运算放大器构成的D/A转换器对最后的输出进行放大。

文氏电桥振荡器的优点是:不仅振荡较稳定,波形良好,带负载能力强,输出电压失真小。

而且电阻网路只需要7个阻值不同的电阻就能实现128种不同倍率的增益变换。

但是文氏电桥振荡的频率取决于R和C,C要是太小,频率就和放大环节有关了,所以电路的频率不能太高,而且,我们在实际仿真中,遇到了这样的一个问题:尽管文氏电桥振荡器输出的波形较好,但是我们在对其进行频率调节的时候,遇到了困难,就是发现频率很难调到想要的数值,稍微改变一下R,频率的变动幅度就非常大,而且电阻网络里面的电阻,最大电阻阻值是最小电阻阻值的128倍,而且对这些电阻的精度要求比较高。

如果这样的话,从工艺上实现起来是很困难的。

方案二:根据题目的要求,我们决定采用方案二,即采用电压比较器加积分器,产生三角波和方波,即由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波。

再用二极管网络变换电路把三角波转换为正弦波。

电压增益部分则用T型网路芯片DAC0832代替了电阻网络来实现增益可调部分。

T型网路芯片由于只用了2种阻值不同的电阻,使得误差大大减少。

二、系统原理框图图1三、主要电路的理论分析与设计1、5V 电源电路(原理图略)设计制作5V 电源。

2、方波和三角波输出部分。

基于电压比较器加积分器的三角波方波发生器方波和三角波产生原理图如图2:图2方波与三角波发生器由电压比较器加积分器组成。

基于multisim的正弦波发生器

基于multisim的正弦波发生器

成绩电子技术课程设计报告题目:基于multisim的正弦波发生器学生姓名:朱世旺学生学号:**********系别:电子工程学院专业:电子信息科学与技术年级:2012级指导教师:王宜结电子工程学院制2015年3月基于multisim的正弦波发生器学生:朱世旺指导教师:王宜结电子工程学院电子信息科学与技术1、设计任务与要求1.1.设计任务以文氏电桥正弦波振荡电路仿真为例,分析了基本及稳幅文氏电桥正弦波发生器的特点,并采用Multisim 10软件对文氏电桥正弦波发生器进行了仿真,仿真结果与理论分析结果一致。

软件仿真在课堂教学、电路设计、及实验教学中的应用,使得课堂教学信息量饱满,设计、实验变得轻松,使教学的效果得到提升,在教学领域具有重要的推广、应用价值。

在自控、测量、无线电通讯、测量等技术领域中,需用到波形发生器,较常用的是正弦波振荡器和多谐振荡器两大类。

采用Multisim10仿真软件对正弦波振荡器进行仿真,该软件是NI 公司下属的Electronics WorkbenchGroup 发布的交互式SPICE 仿真和电路分析的软件。

前期发展经历了EWB5.0、EWB6. 0、Multisim2001、Mult-isim7、Multisim8、Multisim9 等版本。

Multisim10 的特点有:1) 器件丰富。

Multisim10比老版本新增了1200 多个器件、500多个SPICE 模块和100 多个开关模式电源模块。

2) 虚拟仪器种类齐全。

通用仪器有数字万用表、信号源,双通道示波器、波特图示仪、字信号发生器、逻辑分析仪、失真度测试仪、频谱分析仪和网络分析仪等。

3) 软件分析功能更强大。

分析功能包括静态工作点分析、交流小信号分析、瞬态分析、灵敏度分析、参数扫描分析、温度扫描分析、传输函数分析、最坏情况分析、特卡洛分析、批处理分析、噪声指数分析、射频分析等。

1.2.设计要求基本文氏电桥正弦波发生器[1-3]常用的正弦波振荡电路有RC 和LC 两种电路,通常低频段选用RC 振荡器,其电路输出功率小,频率较低;高频段选用LC 振荡电路, 其输出的功率、频率都要高一些;频率稳定度要求高时,一般采用电容三点式振荡电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程:Multisim课程设计班级:10电信本2班
姓名: 6 2 2
学号:*********
教师:***
课程设计----
基于Multisim的方波、三角波和正弦波发生器
一.设计目的
1.掌握电子系统的一般设计方法
2.掌握模拟IC器件的应用
3.培养综合应用所学知识来指导实践的能力
4.掌握常用元器件的识别和测试
5.熟悉常用仪表,了解电路调试的基本方法
二.设计要求
能够同时显示出方波、三角波和正弦波。

三.设计原理
函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用
的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采
用集成电路(如单片函数发生器模块8038)。

为进一步掌握电路的基本理论及实验调
试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角
波—正弦波函数发生器的设计方法。

产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角
波—方波,再将三角波变成正弦波或将方波变成正弦波等等。

本课题采用先产生方
波—三角波,再将三角波变换成正弦波的电路设计方法,
本课程设计中函数发生器电路组成框图如下所示:
由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。

差分放大器具有
工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别是作为直流放大器时,可
以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原
理是利用差分放大器传输特性曲线的非线性。

图1 原理框图
方波发生电路工作原理
此电路由反相输入的滞回比较器和RC 电路组成。

RC 回路即作为迟滞环节,又作为反馈网络,通过RC 冲、放电实现输出状态的自动转换。

设某一时刻输出电压Uo=+Uz ,则同相输入端电位Up=+Ut,Uo 通过R3对电容C 正向充电,如图中箭头所示。

反相输入端电位n 随时间的增长而逐渐增高,当t 趋于无穷时,Un 趋于+Uz ;但是Un=+Ut ,再稍增大,Uo 从+Uz 跃变为-Uz ,与此同时Up 从+Ut 跃变为-U T 。

随后,Uo 又通过R3对电容反相充电,如图中虚线箭头所示。

Un 随时间逐渐增长而减低,当T 趋于无穷大时,U n 趋于-Uz ;但是,一旦Un=-Uz 再减小,U O 就从-Uz 跃变为+Uz ,U O 从-Ut 跃变为+Ut ,电容又开是正向充电。

上述过程周而复始,电路产生了自激振荡。

方波---三角波转换电路的工作原理
R1
1
2
3
5
4
U1
R2
R3
50%
Rp1R4
50%
Rp2
1
2
3
5
4U2
C1
R17
图2 方波—三角波转换电路原理
电压比较器
积分电路 低通滤波器
若a 点断开,运算发大器A1与R1、R2及R3、RP1组成电压比较器,C1为加速电容,可加速比较器的翻转。

运放的反相端接基准电压,即U-=0,同相输入端接输入电压Uia ,R1称为平衡电阻。

比较器的输出Uo1的高电平等于正电源电压+Vcc ,低电平等于负电源电压-Vee (|+Vcc|=|-Vee|), 当比较器的U+=U-=0时,比较器翻转,输出Uo1从高电平跳到低电
平-Vee,或者从低电平Vee 跳到高电平Vcc 。

设Uo1=+Vcc,则 31
2231231
()0CC ia R RP R U V U R R RP R R RP ++=++=++++
将上式整理,得比较器翻转的下门限单位Uia-为 22
3131
()CC CC ia R R U V V R RP R RP ---=
+=++
若Uo1=-Vee,则比较器翻转的上门限电位Uia+为 22
3131
()EE CC ia R R U V V R RP R RP +-=
-=++
比较器的门限宽度2
31
2
H CC ia ia R U U U I R RP +-=-=+
由以上公式可得比较器的电压传输特性,如图3-71所示。

a 点断开后,运放A2与R4、RP2、C2及R5组成反相积分器,其输入信号为方波Uo1,则积分器的输出Uo2为214221
()O O U U dt R RP C -=
+⎰
1O CC U V =+时,2422422()()()CC CC
O V V U t t R RP C R RP C -+-=
=++
1O EE U V =-时,2422422
()
()()CC EE O V V U t t R RP C R RP C --=
=++
可见积分器的输入为方波时,输出是一个上升速度与下降速度相等的三角波,其波形关系下图所示。

a 点闭合,既比较器与积分器首尾相连,形成闭环电路,则自动产生方波-三角波。

三角波的
幅度为2
231
O m CC R U V R RP =
+
方波-三角波的频率f 为 31
2422
4()R RP f R R RP C +=
+
由以上两式可以得到以下结论:
1. 电位器RP2在调整方波-三角波的输出频率时,不会影响输出波形的幅度。

若要求输出
频率的范围较宽,可用C2改变频率的范围,PR2实现频率微调。

2. 方波的输出幅度应等于电源电压+Vcc 。

三角波的输出幅度应不超过电源电压+Vcc 。

电位器RP1可实现幅度微调,但会影响方波-三角波的频率。

三角波---正弦波转换电路的工作原理
图3 三角波—正弦波转换电路原理
三角波——正弦波的变换电路主要由差分放大电路来完成。

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别是作为直流放大器,可以有效的抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理是利用差分放大器传输特性曲线的非线性。

分析表明,传输特性曲线的表达式为:
022/1id T C E U U aI I aI e ==
+ 0
11
/1id T
C E U U aI I aI e -==+ 式中 /1C E a I I =≈
0I ——差分放大器的恒定电流;
T U ——温度的电压当量,当室温为25oc 时,UT ≈26mV 。

如果Uid 为三角波,设表达式为
44434m id m U T t T U U T
t T ⎧⎛⎫- ⎪⎪⎪⎝⎭=⎨
-⎛⎫⎪- ⎪
⎪⎝

⎩ 022T t T t T ⎛
⎫≤≤ ⎪

⎭⎛⎫≤≤ ⎪⎝⎭
式中 Um ——三角波的幅度; T ——三角波的周期。

方波—三角波—正弦波电路
图4 方波—三角波—正弦波发生电路
四. 电路仿真
图5 方波输出仿真图6 三角波输出仿真
图7 正弦波输出仿真
图8 方波—三角波转换仿真
图9 三角波—正弦波转换仿真仿真结果基本符合课程设计要求。

相关文档
最新文档