铁塔结构设计计算细则
铁塔尺寸计算
酒杯型铁塔构造设计尺寸计算(一)1、身腿部展开尺寸计算此节不仅适用于酒杯塔,对于任何其他类似的铁塔身腿部尺寸计算均适用。
1.1 身腿部展开图,见图4-11.2 身腿部展开尺寸计算根据设计图纸给定的已知控制尺寸a ——正面下口b ——正面上口c ——侧面下口d ——侧面上口H0——垂直中心高按下面公式计算出正面塔面高H 1,侧面塔面高H2,主材展开实际长Sb或Sx,如果是正方形断面,则a=c,b=d,Sb=Sx,H1=H2.Sb--正侧面不同时的实长SX--正侧面相同时的实长根据Sx,a,b 就可以获得正方形断面的四个相同的展开面。
正面(10-11-21-20),右侧面(10-12-22-20),左侧面(11-13-23-21),后面(12-13-23-22)。
如果是矩形断面就可以根据Sb,a ,b,c,d获得前后相同,左右相同的展开面。
酒杯型铁塔构造设计尺寸计算(二)2、身腿部几何尺寸计算此节不仅适用于酒杯塔,对于其他类似铁塔的身腿尺寸计算均适用。
2.1身腿部几何尺寸图,见图4-2。
2.2 身腿部几何尺寸计算当将塔的身腿某一段按每一节的方法计算展开以后,我们就可以在已展开的等腰梯形面上进行各杆件的几何尺寸计算。
一,计算的已知条件是:a---下口b---上口s---腰长,实长(二次坡长)H1—塔面高(一次坡长)二,需要计算的各杆件的几何尺寸可由下列式算出酒杯型铁塔构造设计尺寸计算(三)3、同坡度塔身,腿接口尺寸计算此节不公适用于酒杯塔,对其它类似的塔也适用。
3.1同坡度塔身,腿,接口尺寸见图4-33.2同坡度塔身,腿,接口尺寸计算了对于同坡度的高塔身和多接腿的接口尺寸心须在几何尺寸计算之前进行校核,以防止因接口尺寸有误面影响整体坡度出现不一致。
同坡度接口尺寸计算可以用H0(垂高),也可以有H1,H2(一次高),当然有时也可以用S1,S2(二次高)。
但是,在进塔身,塔腿的断面尺寸计算时,必须用一次高计算出来的坡度系数进行翻面计算断面杆件几何尺寸才算是正确合理的,其他算法的坡度系数都是近似的。
铁塔设计方案
铁塔设计方案引言本文档将详细介绍铁塔设计方案,包括铁塔的类型、结构、材料等方面的内容。
铁塔作为承载通信设备的重要结构,其设计方案直接关系到通信网络的安全稳定运行。
通过科学合理的设计方案,能够提高铁塔的结构强度和稳定性,确保通信设备的正常运行。
本文档将为设计师提供一份全面的铁塔设计方案参考。
1. 铁塔类型铁塔一般分为自立式铁塔和拉线式铁塔两种类型。
1.1 自立式铁塔自立式铁塔是指独立支撑立杆的铁塔,适用于平原地区和无法拉设导线的场所。
自立式铁塔的结构比较简单,搭建和维护相对容易。
1.2 拉线式铁塔拉线式铁塔是指通过导线和牵引索将铁塔与地面或其他支撑点相连,形成受力体系的铁塔。
拉线式铁塔适用于多种地形和特殊条件下,具有更高的结构稳定性。
铁塔的结构包括塔身、横梁和基础几个主要部分。
2.1 塔身塔身是铁塔的主体部分,承载通信设备和各种设施。
塔身通常由钢管、钢板、角钢等组成,具有一定的高度和强度。
钢材的选择应符合国家相关标准,具备一定的抗风、抗震能力。
2.2 横梁横梁位于塔身的顶部,用于承载天线和其他附件。
横梁的设计应考虑结构强度和稳定性,确保天线能够准确定位并承受一定的载荷。
2.3 基础基础是铁塔的支撑部分,用于固定塔身和传递荷载。
基础的设计应满足地质条件和施工要求,确保塔身的稳定性和安全性。
铁塔的主要材料是钢材,包括钢管、钢板、角钢等。
钢材具有良好的强度和耐候性,能够承受各种外部力和环境条件的影响。
钢材的选择应符合国家相关标准,具备一定的抗风、抗震能力。
4. 铁塔设计考虑因素铁塔设计需要考虑以下因素:•地理条件:包括地形、土壤等因素,影响基础设计和铁塔选址。
•风荷载:铁塔在风力作用下的应力、变形和振动,需要进行风荷载计算和结构强度分析。
•抗震能力:铁塔在地震作用下的稳定性和安全性,需要进行抗震设计和模拟分析。
•维护保养:铁塔的定期检查和维护,确保结构的安全和可靠运行。
5. 结论本文档对铁塔设计方案进行了详细介绍,包括铁塔的类型、结构、材料等方面的内容。
铁塔制图和构造规定
国家电网公司110~500kV输电线路典型设计铁塔制图和构造规定输电线路典型设计工作组2005年11月目录一.图纸幅面尺寸 (2)二.图标 (2)三.图纸内容 (2)四.铁塔构造 (3)五.图面一般规定 (10)六.常用图型式 (12)七.螺栓、角钉、垫圈规格表 (14)八.工艺符号说明 (16)九.塔脚板型式 (16)一.图纸幅面尺寸注:1、0#图不得加宽;2、1#、2#、3#图不宜加宽,可按(长边/8)的倍数加长,最长不超过1931mm;3、4#、5#图不得加长和加宽,5#图用于手册;4、选用图纸幅面时,同册图纸宜以一种规格的图幅为主,尽可能不要大小图幅混用。
二.图标与工程名各院提交的施工图纸的图标暂先采用各院现在使用的工程设计图标。
工程名为:国家电网公司110~500kV输电线路典型设计三.图纸内容1.总图1)单线图以最高呼称高为准,布置于总图的左边,由左向右按呼称高递减连续布置其它接腿。
塔身正侧面宽度不同或结构布置不同时,应分别绘制正侧面;2)材料汇总表放在总图右上侧。
统计汇总材料应按各段结构图和不同呼称高分别进行,并按类别(角钢、钢板、螺栓、脚钉、垫圈)、钢号(Q345、Q235)、规格(小规格、大规格)顺序排列;3)有关本塔特殊要求的说明;2)各段结构图应绘制单线图,单线图比例为1:100,并放在结构图的左上角,并标注上、下口宽、垂直高、准线差尺寸和段号,如下图所示:3)4)分段间的螺栓数量应计入节点板所在段号内;不计数量的螺栓只表示螺栓的种类及数量,不表示规格。
四.铁塔构造1、基本构造1)构件接头采用对接;不同规格的构件对接时,应以外边缘对齐,接头螺栓排列在各自准线上;2)主材接头设置在节点时,上、下段斜材的准线应交于各自主材准线(如铁塔瓶口、塔身变坡处),如图所示:6)制弯构件,选择顺序应为连接板、短构件、长构件;7)热镀锌构件长度不宜超过10米(可根据加工厂锌锅长度适当加长),宽度不宜超过0.75米;8)两构件连接面间的夹角大于2°时,构件应局部开、合角或制弯(如隔面主材等);9)构件间连接,出现空隙时应设置垫圈或垫板(当垫圈数量超过2个或8mm时应采用垫板);10)横担悬臂部分超过3m,应采用预拱,横担预拱值可根据实际外荷载在无风情况下的验算查看其位移(*.DIS文件),一般可取横担悬臂长度的1/50~100;11)塔腿各主材应设置一个接地孔(孔径17.5mm),离基础顶面距离宜为0.5~1.0m;2、螺栓排列1)角钢准线注:1、根据需要,角钢准线需多排,则标出准线位置。
铁塔结构计算公式
酒杯型铁塔构造设计尺寸计算:身腿部展开尺寸计算身腿部几何尺寸计算同坡度塔身腿接口尺寸计算铁塔锥顶高斜及其力臂的尺寸计算任意斜杆的尺寸计算羊角式塔头几何尺寸计算酒杯塔曲臂正、侧面的展开计算酒杯型串心塔头水平X值的计算铁塔身部串心水平X值的计算酒杯型塔头上、下曲臂内侧面翻面水平切口计算酒杯型塔横担几何尺寸计算铁塔身、腿部水平三角断面尺寸的计算铁塔节点紧凑设计中的双心斜交尺寸计算酒杯型塔双地线架展开尺寸的计算酒杯型塔颈部曲点三角形尺寸计算(一)酒杯型塔颈部曲点三角形尺寸计算(二)酒杯型塔颈部正、侧面三个口的关系铁塔身腿部水平三角断面正端距F、E极限值的计算双地线架的塔帽子展开尺寸计算防止酒杯型塔颈下内侧面出现不合理结构酒杯型铁塔构造设计尺寸计算1、身腿部展开尺寸计算此节不仅适用于酒杯塔,对于任何其他类似的铁塔身腿部尺寸计算均适用。
1.1 身腿部展开图,见图4-11.2 身腿部展开尺寸计算1.根据设计图纸给定的已知控制尺寸a ——正面下口b ——正面上口c ——侧面下口d ——侧面上口H0——垂直中心高2.按下面公式计算出正面塔面高H 1,侧面塔面高H2,主材展开实际长Sb或Sx,如果是正方形断面,则a=c,b=d,Sb=Sx,H1=H2.Sb--正侧面不同时的实长S X--正侧面相同时的实长根据Sx,a,b 就可以获得正方形断面的四个相同的展开面。
正面(10-11-21-20),右侧面(10-12-22-20),左侧面(11-13-23-21),后面(12-13-23-22)。
如果是矩形断面就可以根据Sb,a ,b,c,d获得前后相同,左右相同的展开面。
2、身腿部几何尺寸计算此节不仅适用天酒杯塔,对于其他类似铁塔的身腿尺寸计算均适用。
2.1身腿部几何尺寸图,见图4-2。
2.2 身腿部几何尺寸计算当将塔的身腿某一段按每一节的方法计算展开以后,我们就可以在已展开的等腰梯形面上进行各杆件的几何尺寸计算。
一,计算的已知条件是:a---下口b---上口s---腰长,实长(二次坡长)H1—塔面高(一次坡长)二,需要计算的各杆件的几何尺寸可由下列式算出3、同坡度塔身,腿接口尺寸计算此节不公适用于酒杯塔,对其它类似的塔也适用。
铁塔常用基础计算
幻灯片1架空输电线路基础设计(一)主要内容:1.基本规定2.上拔稳定计算3.基础下压和地基计算4.倾覆稳定计算5.构件承载力计算6.构造要求1.1 依据规程规范架空送电线路基础设计技术规定(2005版和征求意见稿)建筑地基基础设计规范(2011)混凝土结构设计规范(2010)岩土工程勘查规范(2009)湿陷性黄土地区建筑规范(2004)工业建筑防腐蚀设计规范(2008)构筑物抗震设计规范(2012)建筑地基处理技术规范(2002)建筑桩基技术规范(2008)冻土地区建筑地基基础设计规范(2011)1.2 输电线路基础设计等级根据《建基规》表3.0.1,一般工业建筑属于丙级,重要的工业与民用建筑属于甲级。
针对黄土地区,根据《黄土》表3.0.1和《线路基础》附录C:1. 大跨越、重要跨越塔及高塔(100m及以上)可按乙类建筑考虑。
2. 在Ⅲ、Ⅳ 级自重湿陷性黄土地区的转角塔和塔高50m及以上的直线塔可按丙类建筑考虑。
3. 塔高在50m以下直线塔(不含水浇地)按丁类建筑考虑。
1.3 荷载设计值和标准值的取用荷载设计值——进行基础上拔、下压、倾覆稳定以及软弱下卧层地基的承载力计算;进行基础正、斜截面的强度计算。
荷载标准值——进行地基沉降及基础位移计算;进行基础裂缝控制和挠度计算。
1.4 基础附加分项系数征求意见稿:统一规定为1.10、1.30、1.602.上拔稳定计算2.1 适用条件基础上拔稳定计算,仅适用于带底板的一般型基础,根据抗拔土体的状态分别采用剪切法和土重法。
土重法适用于回填抗拔土体,一般适用于“大开挖”基础类,含刚性基础(主要为台阶基础),柔性基础(直柱板式、斜柱板式、柔性大板等)及重力式基础。
剪切法适用于原状抗拔土体,一般适用于带扩大头掏挖基础。
土重法:1 基础埋深与圆形底板直径之比(ht/D)小于4、与方形底板边长之比(ht/B)不大于5的非松散砂类土;2 基础埋深与圆形底板直径之比(ht/D)不大于3.5、与方形底板边长之比(ht/B)不大于4.5的粘性土。
铁塔结构设计计算细则
铁塔结构设计计算细则 (角钢/钢管塔)审核:校核:编写:金晓华广东省电力设计研究院送变电室2006.9一、 设计依据1.《110kV~500kV架空送电线路设计技术规程》(DL/T5092-1999)2.《架空送电线路杆塔结构设计技术规定》(DL/T 5154-2002)3.“设计条件及塔头间隙图”(广东省电力设计研究院)(附件1)二、荷载1.导、地线荷载见 广东省电力设计研究院提供“铁塔外负荷计算书(附件2)”:2.设计工况应包括正常运行(包括最小垂直荷载和最大水平荷载组合;直线塔最小垂直档距取0.5倍水平档距;转角塔要考虑正、负垂直档距)、断线、安装的最不利组合情况,转角塔及结构布材不对称的塔应计算反向风工况,所有塔应计算基础作用力工况。
为便于校对,应进行设计工况归并,可参考 “铁塔设计工况”(附件3),并应详细列出每种荷载工况组合,而不是单纯指出第几种到第几种为事故或安装等工况。
3.参考国网典型设计,新规划的直线塔规定了计算高度,铁塔外负荷是对应这个计算高度值的。
杆塔风荷载调整系数βz以及线条荷载对地距离均应按该计算高度(呼高)取值。
对本塔高于该计算呼高的,应采用由我院电气专业开的缩小使用条件的铁塔外负荷来验算,原则上不增大共用段原主材构件规格,如个别共用段主材构件规格差别不大的情况下,则选用较大规格主材,而不修改档距从而修改计算荷载再重新计算,但应得到结构室内部确认。
4.引用国网典型设计,作以下特殊规定:1).500kV直线塔考虑施工锚固工况,部分使用条件大的220kV直线塔也考虑施工锚固工况;500kV和220kV直线塔都考虑2倍起吊安装荷载,但应按4:6比例分配到前后的荷载点上。
2).为降低塔材指标,新规划的直线塔分平地和山地二类,其中平地直线塔考虑1~2种使用条件的塔型,按平腿设计,导线断线张力取一相Tm的15%(500kV)和20%(220kV 及以下);山地直线塔考虑3~4种使用条件的塔型,按长短腿设计,导线断线张力对500kV 电压等级取15%(第1种使用条件的塔)、20%(第2种)及25%(第3、4种),对220kV及以下电压等级取20%(第1种)及25%(除第1种外)。
塔设备图结构设计与强度计算
●双流塔板组件结构
D、分块塔板结构与尺寸
分块塔板结构——有自身梁式a和槽式b,增强抗弯变形能力。
大多采用自身梁结构; 碳钢塔板厚度一般3-4mm,不锈钢为2-3mm(根据液位及 载荷可计算出)
E、塔板间连接固定结构
●通道板与塔板及塔板间的固定连接 上、下均可拆结构
自身梁松开结构与拧紧固定结构
●塔板与支撑圈间连接
塔板分为——整块塔板和分块塔板
A、整块塔板结构
B、分块塔板
分为单流与双流塔盘,塔径800mm以上人可进入塔内,采用 分块塔板
C、分块塔ቤተ መጻሕፍቲ ባይዱ结构与连接 ●单流塔板组件结构
1-通道板,2-矩形板,3-弓形板 4-支撑圈,5-筋板,6-受液盘 7-支撑板,8-固定降液板 9-可调堰板,10-可拆降液板 11-连接板
正压塔校核条件
不同工况下各种应力组合——式中的弯矩Mmax为裙座与筒体焊 接处的弯矩(2-2截面)
●裙座各截面强度校核公式
裙座人孔中心线处(1-1截面)
裙座人孔中心线处截面抗弯模量
裙座与塔体的焊缝强度校核(2-2截面)
基础环板弯曲强度和混凝土压缩强度
基础螺栓设计
螺栓埋入深度
7-蒸汽入口,8-塔盘,9-回流口,10-吊柱, 11-塔顶气体出口
2、裙座结构 裙座:有圆筒形和圆锥形 圆筒形——广泛使用,方 便制造 圆锥形——适用H/D特别大 的塔,为了多布置基础螺 栓提高抗风与地震载荷。 当筒体采用低合金钢, 如Q345R,裙座采用低碳钢时,裙座与塔体之间设置一个250350mm短节,避免异种材料焊接。 1-塔体,2,3-无保温层和有保温层时的排气孔,4-裙座,5-引出 管通道,7-排液孔,8-螺栓座 裙座总高——一般确定为5m,裙座人孔中心线距地面一般为1m
铁塔基础计算
铁塔基础设计在工程设计时根据具体情况进行分类规划一般分四类:粘土坚硬粘土碎石严重风化岩等C1粘土硬塑C3粘土可塑C5粘土软塑C7特殊地质、地形应区别对待。
如:未风化的岩石、有河流的河套地段、有较高洪水位的塔位、有较厚层的粘土地带、地下水位高施工困难地带等等根据地质地形条件和铁塔种类设计相应的基础。
目前常用的基础形式是现场浇注的台阶式钢筋混凝土基础。
台阶一般两阶或三台阶常用。
基础尺寸的预设定根据作用力大小确定,我们设计是66、110千伏且单回路线路,设计的铁塔基础作用力不大,主柱的宽度直线塔600,耐张塔600或800.选择台阶尺寸时要注意、台阶高度和伸出长的比值一定大于等于1,等于1是45度,“刚性角”因为基础底板不配钢筋不能使混凝土基础受拉。
常用的台阶尺寸最底层的采用300,其他台阶高度按计算和构造要求确定。
设计基础时已知条件铁塔基础作用力:上拔力、下压力、水平力;地质条件地耐力、地下水位、冻结深度、设计的过程是试凑法、事先给定尺寸、验算不满足要求重新选择尺寸、反复几次最后达到目的。
上拔稳定计算上拔稳定计算、根据抗拔土体的状态分别采用剪切法和土重法。
剪切法适用于原状土体;土重法适用于回填抗拔土体。
我们经常采用的是钢筋混凝土台阶式基础是回填抗拔土体,计算应用土重法。
下面介绍土重法计算。
土重法中几个常用参数在“送电线路基础设计技术规定”附表:注:位于地下水以下土的计算容重按8〜11取用。
混凝土重度24KN/m,位于地下水以下混凝土的计算重度按12KN/吊取用。
(插图1)自立式铁塔基础上拔稳定:r f T E<r E rs(Vt-△vt-V°)+Qr「基础附加分项系数直线塔1.1;耐张、转角塔1.6T E-上拔力ht-基础埋深mVt-ht深度内土和基础的体积m3△vt-相邻基础影响的微体积r『水平力影响系数(r s-基础底板以上土的加权平均重度M-深度内的基础的体积m3Q-基础自重力Q=基础体积*混凝土重度Vt(基础体积)=ht(B2+2Bhttana+4/3ht2tan2a)△vt=(B+2httan%-L)2/24tan%(2B+L+4httan%) L-基础跟开m基础下压计算1 .当轴心荷载作用时应符合式:F><fa/r rfP-基础底面处的平均压力设计值Kpaf a r修正后的地基承载力「f-地基承载力调整系数0.75B-基础宽度m2 .当偏心荷载作用时应符合式:Pmaxw1.2fa/「什基础底面的压力计算当轴心荷载作用时应符合式:P=(F+「G G)/AF-上部结构传至基础顶面的竖向压力设计值KN G-基础自重和基础上的土重KN2A-基础底面面积mr G-永久荷载分项系数,对基础有利时,宜取P G=1.0,不利时应取P G=1.2。
铁塔设计数据计算
绝缘子串正常运行情况下所受的综合荷载(N)= 绝缘子串验算情况下所受的综合荷载(N)= 绝缘子串断联情况下所受的综合荷载(N)= 绝缘子串年平均气温情况下所受的综合荷载(N)= 绝缘子串在导线断线情况下所受的综合荷载(N)=
394544.9757 217802.5107 116479.0432 291197.608 775882.6662
1000
75057.35 85792.49 42384.58 42384.58 128279.95
导线的综合荷载计算 GN=SQRT((Lh·g4·n1·S)^2 +(Lv·g1·n1·S)^2) 导线截面积= 561.39 分裂数= 4 绝缘子串重(kg) = 6500 Lh1= 729 Lv1= 1810 Lh2= 1259 Lv2= 1320 σ max= 237.953 导线的自重比载(N/m.mm2)= 0.040627 导线高空风速下的风压比载(N/m.mm2)= 0.081512 导线验算高空风速下的风压比载(N/m.mm2)= 0.091871 导线在断联、断线下的风压比载(N/m.mm2)= 0 导线在年平均气温下的风压比载(N/m.mm2)= 0 导线正常运行情况下的综合荷载(N)= 99041.42873 或 121714.9919 导线验算情况下的综合荷载(N)= 108750.0237 或 135401.6738 导线断联、断线情况下的综合荷载(N)= 48439.5216 或 42384.5814 导线年平均气温情况下的综合荷载(N)= 48439.5216 或 42384.5814 导线在断线情况下绝缘子串所受的不平衡张力(N)= Δ TD=60%*σ max*n/*S= 320602.6432 绝缘子串正常运行情况下的安全系数= 绝缘子串验算情况下的安全系数= 绝缘子串断联、导线断线情况下安全系数= 绝缘子串年平均气温情况下的安全系数= 3 1.5 2 5
【输电杆塔设计培训】06、第六章 铁塔材料及其构件的计算
mN A mMW 式中符号与受、受弯相同。
第三节 铁塔节点连接计算
铁塔节点连接一般采用焊接连接或螺栓连接。 一、焊接连接 1、焊缝的分类 焊接连接的连接件是焊缝。
焊缝分两种:对接焊缝,如图a
角焊缝,如图b
(a)
(b)
图6-4
角焊缝按受力方向分为:
正面角焊缝(端缝):焊缝长度方向与力方向垂直 侧面角焊缝(侧缝):焊缝长度方向与力的方向平
d—螺栓直径,当剪切 面在螺纹处时,则取 螺栓的有效直径,mm; nv=2
图6-5
fvb—螺栓连接的抗剪强度设计值,N/mm2;
∑t—取同一受力方向承压构件厚度和的 最小厚度和,mm;
fcb—螺栓连接的承压强度设计值,N/mm2。
(2) 受剪螺栓群的计算 ①螺栓数目的计算
当螺栓数目较多时,在节点上可采用多排布置
式中 K1、K2-为分配系数,按表6-5取值。
N-轴心拉力、压力
二、螺栓连接
1、螺栓型及分类
(1)按螺栓强度分分两种:
① 普通螺栓连接(铁塔多采用) ② 和高强度螺栓连接。 (2)普通螺栓分为三种: ① A级螺栓 ② B级螺栓 ③ C级螺栓
A级、B级螺栓加工和安装精度较高,在铁塔 中很少采用。
C级螺栓是采用Q235圆钢辊压而成,表面较粗 糙尺寸精度不高,对螺孔的要求也较低,容易装拆, 被广泛应用于钢结构连接中。
x0
图1
i-回转半径(绕x-x、y0-y0、x0-x0轴)
Z0-重心距离
3、长细比λ
l0 计算长度
等边角钢力学参数见附表11
第二节 铁塔构件计算
一、轴心受力构件的强度计算
以截面屈服极限应力为极限状态建立计算公式为
铁塔基础设计计算书
通用铁塔基础设计计算书一、YJ1-19m塔1、基础受力条件:运行情况:基础最大上拔力:248kN基础最大下压力:290kN基础最大水平力:X方向27.10kN Y方向2.60kN断导线状况:基础最大上拔力:234.0kN基础最大下压力:286.0kN基础最大水平力:X方向24.4kN Y方向22.9kN2、地基状况粉质粘土,地基承载力标准值为kPa120,计算上拔角为10°,计算容重取38m/kN。
/15mkN,地下水位±0.000m,土的浮重度取33、基础选型及材料上拔腿基础埋深取2.8m,四步放脚,放脚尺寸为400mm,基柱截面为800×800mm,基柱出地面高度为0.6m,基础底面尺寸为4.0m。
下压腿埋深取1.5m,三步放脚,放脚尺寸为300mm,基柱截面为800×800mm,基柱出地面高度为0.6m,基础底面尺寸为2.6m。
基础材料选用C15混凝土,Ⅰ、Ⅱ级钢筋。
4、下压腿基础尺寸校核并配筋①、基础几何参数及基本数据计算: 基础底面的抵抗矩为33929.26m b W jd ==, 基柱截面抵抗矩为33085.06m b W jz == 地基承载力为kPa h B f f h h b k 120)5.1()3(=-+-+=γηγη②、按照运行情况进行校核:内力计算:基础的轴力为290kN ,对基础底面的弯矩为m kN M x ⋅=91.56,m kN M y ⋅=46.5。
尺寸校核:yy x x W M W M lb G F P +++=max 929.246.591.566.2256.08.0205.16.2290222++⨯⨯+⨯⨯+=kPa kPa 12061.95 =,满足校核条件。
③、按照断边导线的情况进行校核:内力计算:基础的轴力为286.0kN ,对基础底面的弯矩为m kN M x ⋅=24.51,m kN M y ⋅=09.48 尺寸校核:yy x x W M W M lb G F P +++=max 929.2)09.4824.51(6.2256.08.0205.16.2290222++⨯⨯+⨯⨯+=kPa kPa 12023.108 =,满足校核条件。
铁塔构造设计尺寸计算
铁塔构造设计尺寸计算酒杯型铁塔构造设计尺寸计算(一)1、身腿部展开尺寸计算此节不仅适用于酒杯塔,对于任何其他类似的铁塔身腿部尺寸计算均适用。
1.1 身腿部展开图,见图4-1请登陆:输配电设备网浏览更多信息1.2 身腿部展开尺寸计算根据设计图纸给定的已知控制尺寸a ——正面下口b ——正面上口c ——侧面下口d ——侧面上口H0——垂直中心高按下面公式计算出正面塔面高H 1,侧面塔面高H2,主材展开实际长Sb或Sx,如果是正方形断面,则a=c,b=d,Sb=Sx,H1=H2.来源:Sb--正侧面不同时的实长SX--正侧面相同时的实长根据Sx,a,b就可以获得正方形断面的四个相同的展开面。
正面(10-11-21-20),右侧面(10-12-22-20),左侧面(11-13-23-21),后面(12-13-23-22)。
如果是矩形断面就可以根据Sb,a ,b,c,d获得前后相同,左右相同的展开面。
酒杯型铁塔构造设计尺寸计算(二)2、身腿部几何尺寸计算此节不仅适用于酒杯塔,对于其他类似铁塔的身腿尺寸计算均适用。
2.1身腿部几何尺寸图,见图4-2。
来源:2.2 身腿部几何尺寸计算当将塔的身腿某一段按每一节的方法计算展开以后,我们就可以在已展开的等腰梯形面上进行各杆件的几何尺寸计算。
一,计算的已知条件是:a---下口b---上口s---腰长,实长(二次坡长)H1—塔面高(一次坡长)二,需要计算的各杆件的几何尺寸可由下列式算出酒杯型铁塔构造设计尺寸计算(三)3、同坡度塔身,腿接口尺寸计算此节不公适用于酒杯塔,对其它类似的塔也适用。
3.1同坡度塔身,腿,接口尺寸见图4-3来源:输配电设备网3.2同坡度塔身,腿,接口尺寸计算了对于同坡度的高塔身和多接腿的接口尺寸心须在几何尺寸计算之前进行校核,以防止因接口尺寸有误面影响整体坡度出现不一致。
同坡度接口尺寸计算可以用H0(垂高),也可以有H1,H2(一次高),当然有时也可以用S1,S2(二次高)。
铁塔工程量计算式
50米四管塔根底工程量1、场地平整: S=16*16.5=264㎡2、根底土方开挖及换填○11 级湿陷、换填 1 米,每边宽出根底周边0.5 米,挖深 5 米深。
V=1/3〔〕3:7 灰土换填: V=1/3〔〕 *1=86.6m322 级湿陷、换填2 米,每边宽出根底周边0.8 米,挖深 6 米深。
○V=1/3〔〕3:7 灰土换填 : V=1/3〔9.3*9.3+11.1*11.1+9.3*11.1 〕、根底垫层砼:C158*8*0.1=6.4 m3根底底板砼: C307.7*7.7*0.8=47.43 m3矩形柱砼: C300.7*0.7*3.2*4=6.27 m3连系梁砼: C303.3*0.4*0.6*4=3.17 m34、现浇构件钢筋:圆钢≤现浇构件钢筋:螺纹钢综合预埋铁件:5、模板安拆:根底垫层: 8*4*0.1=3.2 ㎡根底底板: 7.7*4*0.8=24.64 ㎡1 / 7矩形柱: 0.7*4*3.2*4=35.84 ㎡连系梁:〔 3.3*0.6*2+3.3*0.4 〕*4=21.12 ㎡6、连系梁下底、侧面灰渣回填〔300 厚〕V=5.5*5.5*0.3=9.07 m37、硬化面下换填〔 300 厚〕 3:7 灰土 :V=(10.7*10.7-0.7*0.7*4) *0.3=33.76 m3水泥砂浆地面:S=10.7*10.7-0.7*0.7*4=112.53 ㎡8、土方回填:11 级湿陷、换填 1 米,每边宽出根底周边0.5 米,挖深 5 米○深,围墙内场坪高出自然地面0.5 米。
22 级湿陷、换填 2 米,每边宽出根底周边0.8 米,挖深 6 米○深。
围墙内场坪高出自然地面0.5 米。
V=863.18-208.62-63.27-9.07-33.76+0.5*264=680.46 m39、接地装置安装接地扁钢: -40mm*4mm74 米接地角钢: 50mm*5mm24 米40米、 45 米四管塔根底1、场地平整: S=16*16.5=264㎡2、根底土方开挖及换填2 / 7○11 级湿陷、换填 1 米,每边宽出根底周边0.5 米,挖深 5 米深。
【输电杆塔设计培训】08、第八章 铁塔内力计算
TBc1 2a1 TB 2
TBc1 2a1
TB 2
Ta
Tb
Tb
Ta △TB/2 △TB/2
式中 △TB-地线张力
图12
2、上、下横担上横隔面 横隔材内力N2、N4
控制条件: 受覆冰、安装情况控制, 由前后面横隔材承担。
对0取矩
N2
GDc2 2h1
N4
2GD c4 2h2
N2
图13
担三种型式
尖横担
鸭嘴横担 图16
矩形横担
1、尖横担 ①构造型式:上、下主材在挂线角点处相交于
一点,把横担视为由上下两片桁架组成。
②控制条件:受断线情况控制,断线后的力 有断线张力TD的垂直荷载GD’
③内力计算
下平面主材内力:
(1)在导线N1' GG2D'hlD1 ’的的作用下 取隔离体,对A点取矩
G+ N1 cos(1500-900)=0
N1=-G/ cos(1200-900)
=-100/0.87=-115N
负号说明力方向假设反了。
同理用∑X=0可求出N2
图1
2.截面 法将桁架选一适当的截面,而取其一部分作为隔
离体,研究构件内力与外荷载的平衡,根据共面 力系平衡条件,可列出三个平衡方程式:
α一主材与斜材夹角。
3.K型斜材桁架
如图5所示K型斜材桁架的 斜材受力与双斜材拉压系统相
同,而主材受力较小。
主材内力:
Nu
M0 G
2bi 4sin
斜材内力 :
水平N村s 内4力dM1i:c
图5
ND
Mc 4d 2i
4. 承受双向荷载单斜材桁架
Nu
Mx 2ai
塔架计算书
塔架计算书一、主要要求:1、型钢格构式塔架,自立式铁塔。
2、上层标高16.0m,自重120Kg,水平后座力4.12kN。
下层标高13.5m,自重120Kg,水平后座力2.2kN。
3、南京大厂镇江边。
二、设计概况:1、抗震设防烈度7度,设计基本地震加速度0.1g,设计地震分组为第一组.2、基本风压0.4kN/㎡,地面粗糙度为A类(空旷地带),工程的安全等级为一级(参照《高耸结构设计规范》设计)。
3、按照《高耸规范》第3.4.2条,本塔架结构不必进行构件截面的抗震验算,仅需满足抗震构造要求。
4、荷载的组合,按《高耸规范》第2.0.5条,取用下式:1.2G+1.4W+1.4×0.7L式中,G为自重等永久荷载W为风荷载L为活荷载5、考虑到平时检修使用时人员的上下,采用大型角钢格构式塔架,尺寸如下:三、塔架构件选择说明:1、满足大型格构式柱的构造要求:斜缀条与水平缀条的夹角宜在40°~70°内,水平缀条不小于L63×5,斜缀条不小于L75×6。
2、节点板的厚度由构造决定,选用10mm厚钢板,焊脚尺寸取8mm。
3、除塔架柱脚处的水平缀条连在柱分肢的外侧,其他所有缀条。
包括斜缀条和水平缀条均连在柱分肢的内侧,塔身外表平整,便于运输;根据业主要求,塔架用螺栓连接。
4、塔架可以在工厂分段制作,现场进行拼接。
5、格构式柱(塔架)采用分离式柱脚,柱脚底板由计算确定,且应不小于20mm厚;锚栓直径亦由计算确定,且应不小于20mm,孔径为螺栓直径的1.5倍,垫板孔径比螺栓大2mm。
四、风荷载的计算:按《高耸规范》执行。
W=βZμSμZμrω0式中:ω0=1.1× 0.4=0.44kN/㎡(1.1为工程重要性一级要求,0.4为南京的基本风压)βZ为风振系数:根据荷载规范GB50009-2001附录E,高耸结构的基本自振周期T1=(0.007~0.013)H,本工程为钢结构,取T1=0.013× 16.0=0.208sec;另根据《高耸规范》第3.2.7条,T1<0.25sec时不考虑风振影响,即βZ=1.0μS为风荷载体型系数,取2.6(偏于安全取规范的高值)μZ为风压高度变化系数,按高度16m的取值为1.52μr为风荷载重现期调整系数,为1.2W =1.0×2.6×1.52×1.2×0.44=2.09kN/㎡fA=3757平方毫米W xmin=68744(mm)3I x=6888100(mm)4I x0=10935600(mm)4I y0=2840600(mm)3W x0=110466(mm)3W y0=50467(mm)3I x=42.8mmI x0=54mmI y0=27.5mm Z 0=39.8mm G=29.492Kg/m角钢L100×10:肢宽L=100mm ,肢厚t f =14mmA=1926.1(mm)2W xmin =25060(mm)3I x =1795100(mm)4I x0=2846800(mm)4I y0=743500(mm)3W x0=4260(mm)3W y0=18540(mm)3I x =305mm I x0=384mm I y0=196mm Z 0=28.4mm G=15.12Kg/m六、计算格构式柱的柱身1500mm 高的材料重量及总重:分肢角钢:L140×14, 29.492×1.6×4=188.8 Kg L100×10水平角钢:15.12×1.6×4=96.8 Kg L100×10斜向角钢:15.12×1.8×4=108.9 Kg 节点板:0.3×0.6×0.01×7800×4=56.2 Kg 合计:188.8+96.8+108.9+56.2=450.7 Kg考虑计入爬梯及附属设备等,1600mm 高柱重取1.1×450.7=495.77 Kg 柱全高重:495.77×10(节)=4957.7Kg=49.58 kN七、求塔架内力:控制截面在塔底风荷载沿高度的线载=1.60×2.09=3.344 kN/m塔底轴力设计值: N=49.58×1.2=59.50kN弯矩设计值:M=1/2×3.344(风)×16.02×1.4+(4.12×16.0+2.2×13.5)(后座力)×1.4×0.7=599.2+93.7=692.9 kN ·m 剪力设计值:V=3.344×16.0×1.4+(4.12+2.2)×1.4×0.7 =74.91+6.2=81.1 kN查规范〈〈钢结构设计规范〉〉知,格构式柱的轴心受压构件的截面分类为b类。
铁塔基础系列计算程序使用说明2010-03-08
铁塔基础系列计算程序使用说明一、独立基础设计程序(1.5版本)1,承台及土重Gk中未考虑连梁自重2,考虑承台上土为回填土,承载力计算时宽度和深度修正系数可考虑分别取0,13,抗剪计算F l时,依据《建筑地基基础设计规范》条文8.2.7计算。
默认取有效高度h0=t-0.05 4,“五、短柱配筋计算”中对双向偏心受拉短柱,配筋计算采用《DL/T5219-2005架空送电线路基础设计技术规定》相关规定二、单桩承台基础设计程序(1.3版本)1,单桩竖向承载力计算依据《建筑地基基础设计规范》GB50007-2002(以下简称《地基》)公式8.5.5-1,端、侧阻力采用特征值,若地勘报告按照《建筑桩基技术规范》JGJ94-2008(以下简称《桩基》)或上海市《地基基础设计规范》,提供端、侧阻力极限标准值时,将以上数字除2后使用2,单桩抗拔承载力特征值依据《桩基》5.4.5-2计算。
因侧阻力采用特征值,故公式中Nk<Tuk/2+Gp中,不除2。
3,单桩水平承载力特征值由《桩基》5.7.2-2条计算,当桩身配筋率<0.65%时,暂时仍按此公式计算。
4,承台配筋计算时,暂按无桩时承台底应力考虑,偏安全。
所需配筋按max(0.15*B*t,M/(0.9fyh0))考虑5,桩身配筋时,所需钢筋按max(桩身构造配筋,1.4*Rta/(fy))考虑三、单柱单桩基础设计程序(1.5版本)1,单桩竖向承载力计算依据《建筑地基基础设计规范》GB50007-2002(以下简称《地基》)公式8.5.5-1,端、侧阻力采用特征值,若地勘报告按照《建筑桩基技术规范》JGJ94-2008,(以下简称《桩基》)提供端、侧阻力极限标准值时,按此程序的单桩竖向承载力特征值应除22,单桩抗拔承载力特征值依据《桩基》5.4.5-2计算。
因侧阻力采用特征值,故公式中Nk<Tuk/2+Gp中,不除2。
若为极限标准值时,应除2后进行抗拔承载力计算。
酒杯型铁塔结构设计尺寸盘算整理版
酒杯型铁塔构造设计尺寸计算北京道亨公司许英德 13910215021、身腿部展开尺寸计算此节不仅适用于酒杯塔,对于任何其他类似的铁塔身腿部尺寸计算均适用。
1.1 身腿部展开图,见图4-11.2 身腿部展开尺寸计算1.根据设计图纸给定的已知控制尺寸a ——正面下口b ——正面上口c ——侧面下口d ——侧面上口H0——垂直中心高2.按下面公式计算出正面塔面高H 1,侧面塔面高H2,主材展开实际长Sb或Sx,如果是正方形断面,则a=c,b=d,Sb=Sx,H1=H2.Sb--正侧面不同时的实长S X--正侧面相同时的实长根据Sx,a,b 就可以获得正方形断面的四个相同的展开面。
正面(10-11-21-20),右侧面(10-12-22-20),左侧面(11-13-23-21),后面(12-13-23-22)。
如果是矩形断面就可以根据Sb,a ,b,c,d获得前后相同,左右相同的展开面。
2、身腿部几何尺寸计算此节不仅适用天酒杯塔,对于其他类似铁塔的身腿尺寸计算均适用。
2.1身腿部几何尺寸图,见图4-2。
2.2 身腿部几何尺寸计算当将塔的身腿某一段按每一节的方法计算展开以后,我们就可以在已展开的等腰梯形面上进行各杆件的几何尺寸计算。
一,计算的已知条件是:a---下口b---上口s---腰长,实长(二次坡长)H1—塔面高(一次坡长)二,需要计算的各杆件的几何尺寸可由下列式算出3、同坡度塔身,腿接口尺寸计算此节不公适用于酒杯塔,对其它类似的塔也适用。
3.1同坡度塔身,腿,接口尺寸见图4-33.2同坡度塔身,腿,接口尺寸计算了对于同坡度的高塔身和多接腿的接口尺寸心须在几何尺寸计算之前进行校核,以防止因接口尺寸有误面影响整体坡度出现不一致。
同坡度接口尺寸计算可以用H0(垂高),也可以有H1,H2(一次高),当然有时也可以用S1,S2(二次高)。
但是,在进塔身,塔腿的断面尺寸计算时,必须用一次高计算出来的坡度系数进行翻面计算断面杆件几何尺寸才算是正确合理的,其他算法的坡度系数都是近似的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁塔结构设计计算细则 (角钢/钢管塔)审核:校核:编写:金晓华广东省电力设计研究院送变电室2006.9一、 设计依据1.《110kV~500kV架空送电线路设计技术规程》(DL/T5092-1999)2.《架空送电线路杆塔结构设计技术规定》(DL/T 5154-2002)3.“设计条件及塔头间隙图”(广东省电力设计研究院)(附件1)二、荷载1.导、地线荷载见 广东省电力设计研究院提供“铁塔外负荷计算书(附件2)”:2.设计工况应包括正常运行(包括最小垂直荷载和最大水平荷载组合;直线塔最小垂直档距取0.5倍水平档距;转角塔要考虑正、负垂直档距)、断线、安装的最不利组合情况,转角塔及结构布材不对称的塔应计算反向风工况,所有塔应计算基础作用力工况。
为便于校对,应进行设计工况归并,可参考 “铁塔设计工况”(附件3),并应详细列出每种荷载工况组合,而不是单纯指出第几种到第几种为事故或安装等工况。
3.参考国网典型设计,新规划的直线塔规定了计算高度,铁塔外负荷是对应这个计算高度值的。
杆塔风荷载调整系数βz以及线条荷载对地距离均应按该计算高度(呼高)取值。
对本塔高于该计算呼高的,应采用由我院电气专业开的缩小使用条件的铁塔外负荷来验算,原则上不增大共用段原主材构件规格,如个别共用段主材构件规格差别不大的情况下,则选用较大规格主材,而不修改档距从而修改计算荷载再重新计算,但应得到结构室内部确认。
4.引用国网典型设计,作以下特殊规定:1).500kV直线塔考虑施工锚固工况,部分使用条件大的220kV直线塔也考虑施工锚固工况;500kV和220kV直线塔都考虑2倍起吊安装荷载,但应按4:6比例分配到前后的荷载点上。
2).为降低塔材指标,新规划的直线塔分平地和山地二类,其中平地直线塔考虑1~2种使用条件的塔型,按平腿设计,导线断线张力取一相Tm的15%(500kV)和20%(220kV 及以下);山地直线塔考虑3~4种使用条件的塔型,按长短腿设计,导线断线张力对500kV 电压等级取15%(第1种使用条件的塔)、20%(第2种)及25%(第3、4种),对220kV及以下电压等级取20%(第1种)及25%(除第1种外)。
在塔的结构设计计算说明书的工程概 况中列出断线张力百分数。
3).山区耐张塔的荷载组合应考虑两侧正档下压、两侧负档上拔、一侧正档另一侧负档扭转的所有正常、断线、安装工况的组合;平地耐张塔(当塔型规划有时),不考虑上拔情况。
所有转角塔计算工况均应叠加跳线串荷载。
4).直线塔的导线挂点当采用“I”型串时按照前、后、中三个挂点进行设计,对运行大风情况应分别考虑中挂点承担垂直荷载或前后两挂点的垂直荷载按照4:6分配的情况。
5.荷载系数工况 恒载分项系数 可变荷载分项系数可变荷载组合系数1.4 1.0正常大风 1.2(不利时)1.0(有利时)导(地)线断线 1.2(不利时)1.4 0.91.0(有利时)1.4 0.9导(地)线安装 1.2(不利时)1.0(有利时)三、 设计计算细则1.主要原则:1)确保铁塔的强度、稳定和今后的安全。
2)降低钢材耗量。
3)构件的布置合理、结构形式简洁,传力路线直接、简短、清晰。
4)合理划分部件和节间,充分发挥构件的承载潜能。
5)满足现行《架空送电线路杆塔结构设计技术规定》(DL/T 5154-2002)有关钢结构的构造要求。
6)长短腿应按计算高度减腿的原则设置,取消共用接腿,各腿独立设计。
7) 计算成果应包含我室专业小程序生成的全塔分析云图,并对云图加以整理以方便校对。
2.铁塔构件计算及断面选择采用东北电力设计院编制的“自立式铁塔内力分析软件IGT2.0”或其它经过国家相关机构鉴定的铁塔设计软件(如VTLA2003)对铁塔进行整体有限元计算,对铁塔受力材进行选材(要求用《规程》(DL/T5092-1999)、《规定》(DL/T 5154-2002)计算)。
对铁塔辅助材考虑长细比及被支撑受力材最大内力的影响设计选材,可参考“铁塔辅助材选材细则(附件4)”。
横担的辅助材也应按有限元法建模计算规格。
对支撑角钢规格大于Q345L125X10的V 面辅助材也应按有限元法建模计算规格,而不能仅按长细比选材。
辅助材也应进行人重弯矩的验算。
对于腿部交叉斜材中间的横隔面如下图所示当新设计大肢宽、小壁厚的角钢时,应满足《钢结构》中规定的宽厚比。
轴心受压的稳定系数φ,按《规定》(DL/T 5154-2002)中附录D确定。
系数φ的查对,应以修正后的长细比值Kλ去查。
(当构件的长细比λ<120,且为单面连接时,应考虑构件的偏心影响;当构件为斜材或辅助材,且长细比λ≧120,每端有两个以上螺栓连接,并满足∑i约≧∑i被约时,应考虑节点的嵌固影响。
其中,∑i约:约束杆件的线抗弯刚度系数总和;∑i被约:被约束杆件的线抗弯刚度系数总和。
)对单回路直线塔的曲臂,因外主材弯折,设计计算时除应满足强度要求外,应充分考虑刚度,并对构造提出要求,给出示意图。
对横担下平面等,应采取在主材与斜材间增加小三角辅助支撑的方式或其它布材方式,尽量减小主、斜材的计算长度,以达到减小构件规格的目的。
对荷载较大的直线塔和转角塔,如需主材设计成双角钢时,转角塔则由塔头到塔腿均设计成双角钢,直线塔则在变坡位以下设计成双角钢,变坡位以上尽量采用单角钢。
(可采用调整塔头坡比的方法设计成单角钢,该坡比应该与电气再沟通)主材接头均按双剪设计,应列出每个接头外包板、内包角钢的规格及螺栓数,螺栓数应进行主材肢厚的挤压验算。
对于单角钢的主材,连接螺栓至少有一个以上的螺栓余度,且螺栓个数应取偶,对双角钢主材连接螺栓应有两个以上的螺栓余度,且螺栓数应为4的倍数。
对于T形组合角钢设计的塔身杆件,应按双剪设计连接螺栓个数,并应对连接板厚进行挤压验算螺栓数。
3.材质根据塔体不同部位,构件选用不同的钢材:塔身(腿)主材部分选用单角钢、双角钢、四角钢或钢管,横担部位选用角钢;塔身(腿)主材、横担主材及作用力较大(连接螺栓多于4个)受强度控制的杆件(包含肢厚大于6mm以上的辅助材应做Q235与Q345钢种选择比较)选用Q345(Q420)钢材;塔体斜材、横隔面材、受长细比控制的杆件及其他辅助材选用Q235钢材。
4.系数取值a.塔体风荷载调整系数ßz按新《规定》(5.7式)取值,并应在计算文件中说明取值考虑的因素。
b.构件体型系数μz按新《规定》(5.7式)取值(对钢管及角钢杆件取不同值)。
注:由于该程序只能单独计算选材为角钢或钢管,且程序对钢管风荷载体型系数自动取1.0,而实际采用0.8,故设计计算应在保证钢管杆件及角钢杆件同时满足新《规定》要求的前提下自行等效处理,并在计算总说明中对该系数的处理方法作说明。
c.对杆件的允许长细比按新《规定》(7.2.3)取值,当取不同标准时应有充分论证。
d.钢材强度设计值按新《规定》取值。
所有塔当塔腿采用5、6、7、8分格时,为保证塔腿整体稳定,塔腿主、斜材钢材强度设计值按取值的0.96、0.93、0.91、0.89进行折减。
5.其它要求a.为力求设计的合理,铁塔布材应进行优化,杆件布置应简单,受力明确,整体符合新《规定》构造要求。
主要受力杆件接近满应力并效率趋于一致。
每种塔型的计算应先按角钢塔的方案进行考虑,当主材必须用双组合角钢时,还应按钢管塔方案进行计算。
在方案比较时,先初步选定主材的规格,确定根开,然后按同一根开不同的布材方式进行优化,使传力简单直接,力求使长杆件受拉、短杆件受压,使各杆件的强度、刚度均匀。
对作用力大、连接螺栓数量多以及选材规格大的杆件还应按单、双角钢方案进行比较,综合比较优化选出塔重最轻的方案。
对受力较大的横、斜材,应有单角钢及双角钢的结果标在单线图中,供制图选择较优方案。
b.各局部验(计)算书及大样图横担单、双角钢杆件验算书及双角钢肢向大样图;塔腿辅助材及其螺栓计算书;上人荷载杆件的验算书;跳线串荷载杆件验算书;组合构件填板计算书及大样图;组合角钢螺栓计算;塔座板(型式见<附件5>)设计计算书及样图;插板连接计算书及大样图;法兰盘计算书及大样图;主材角钢与塔脚板间焊缝、主材钢管与塔脚板间焊缝强度计算书及示意图等。
c.对直线塔的起吊荷载,当设计为用单孔起吊时,须按该一点提升2倍起吊荷重计算;当不在中点起吊时,须将2倍起吊荷重按5:5的比例分配给前后侧两孔计算。
±800kV等有特殊要求时除外。
d.对导地线挂点、施工用孔等局部集中荷载附近的结构、构造及孔径等须按“设计条件及塔头间隙图”中说明的挂线方式、挂孔要求、选用金具进行强度校核,并提供计算书。
导、地线挂线板(孔)的安全系数2.0;e.当塔全高超过70m时,设置爬梯、平台、走道等,设计时应考虑,并出示意图、给出主要材料规格。
f.对长短腿,应考虑轮换及最不利组合。
长短腿的配置,应根据呼高和腿部斜材内力分几个档次。
g.对连接多杆件受力复杂或尺寸大的节点板应在成果单线图中说明材质及厚度、卷边或加劲方法,以便制图。
h.对控制工况计算基础反力,对呼高跨度大的塔,计算基础反力应分几个呼高档进行,风压调整系数应按各呼高相应的“规定”中的对基础取值。
对直线塔选出最大拔力、最大压力组合;对转角塔选出上拔腿最大拔力与安装时压力组合、下压腿最大压力与安装时拔力组合。
i.构造要求及构件规格构造要求及构件的最小规格应符合新《规定》。
为统一,构件规格可参见附件6“推荐构件规格一览表”。
为使塔重较优,不应随意取消构件规格,尤其是对主材。
螺栓用6.8级,规格为M16、M20、M24。
k.当遇《规程》、《规定》及本文均未提及的新问题时应及时与委托方技术负责人沟通、协商。
首个塔完成计算后应及时评审,以便尽早发现问题。
四、 设计计算成果要求提交如下成果(应为成品,并经设计、校核、审核逐级阅后签署)各2份:a.设计原始资料。
b.设计总说明(含各系数取值及依据,特殊考虑〈处理〉,计算塔重、基础反力、计算书清单等)c.输入数据文件d.设计考虑的荷载工况表e.计算结果文件(含控制工况下两种荷载情况对应的基础作用力)f.成果单线图(含节点编号、材料规格、螺栓规格及数量、各控制尺寸、各关键部位样图、节点板或插板的材质及厚度以及卷边或加劲方法、组合角钢时提供缀板型式及螺栓数量、制图注意事项等)g.本文第三、4条中要求的各局部计(验)算书及样图h.光盘(含以上所有内容)附件6:推荐构件规格一览表1.参考国网等边角钢型号的最小厚度为:L40X3 L45X3L50X4 L56X4 L63X4L70X5 L75X5 L80X6 L90X6 L100X7L125X8 L140X10 L160X10 L180X12L200X14 L63X5及以上角钢规格可以采用Q345。