和声搜索算法2008

和声搜索算法2008
和声搜索算法2008

和声搜索算法2008-05-22 11:54

分类:Technique

字号:大中小基本和声搜索算法是最近问世的一种启发式全局搜索算法,在许多组合优化问题中得到了成功的应用。在音乐演奏中,乐师们凭借自己的记忆,通过反复调整乐队中各乐器的音调,最终达到一个美妙的和声状态。Z. W. Geem 等受这一现象启发,将乐器i(1,2,……,m)类比于优化问题中的第i个设计变量,各乐器声调的和声Rj,j=1,2,……,M 相当于优化问题的第j个解向量,评价类比于目标函数。算法首先产生M个初始解(和声)放入和声(HM)记忆库(harmony memory)内,以概率HR在HM内搜索新解,以概率1-HR 在HM外变量可能值域中搜索。然后,算法以概率PR对新解产生局部扰动,判断新解目标函数值是否优于HM 内的最差解,若是,则替换之;以后不断迭代,直至达到最大迭代次数为止,其计算流程见下图。

基本和声算法流程图

基本和声算法流程图

各种优化算法求解函数优化问题

各种优化算法求解函数优化问题 1.遗传算法的简单介绍及流程 1.1遗传算法的基本原理 遗传算法 ( Genetic Algorithm ,简称 GA) 是近年来迅速发展起来的一种全新的随机搜索优化算法。与传统搜索算法不同 ,遗传算法从一组随机产生的初始解 (称为群体 )开始搜索。群体中的每个个体是问题的一个解 ,称为染色体。这些染色体在后续迭代中不断进化 , 称为遗传。遗传算法主要通过交叉、变异、选择运算实现。交叉或变异运算生成下一代染色体,称为后 代。染色体的好坏用适应度来衡量。根据适应度的大小从上一代和后代中选择一定数量的个 体 ,作为下一代群体 ,再继续进化 ,这样经过若干代之后 ,算法收敛于最好的染色体 ,它很可能就是问题的最优解或次优解。遗传算法中使用适应度这个概念来度量群体中的各个个体在优化计算中有可能达到最优解的优良程度。度量个体适应度的函数称为适应度函数。适应度函数的定义一般与具体求解问题有关。 1.2遗传算法的流程 第一步:确定决策变量及各种约束条件,即确定出个体的表现型X和问题的解空间; 第二步:确定出目标函数的类型,即求目标函数的最大值还是最小值,以及其数学描述形式或量化方法,建立其优化模型; 第三步:确定表示可行解的染色体编码方法,即确定出个体的基因型X和遗传算法的搜 索空间。 第四步:确定解码方法,即确定出个体的基因型 X和个体的表现型 X的对应关系或转换方法; 第五步:确定个体时候适应度的量化评价方法,即确定出由目标函数 f(X) 值到个体适应度F(X) 的转换规则; 第六步:设计遗传算子,即确定出选择运算、交叉运算、变异运算等遗传算子的具体操作方法; 第七步:确定出遗传算法的运行参数,即确定出遗传算法的M、 T、 Pc、 Pm等参数。1.3 遗传算法求解函数优化问题中的参数分析 目前,函数优化是遗传算法的经典应用领域,也是对遗传算法进行性能评价的常用范 例。对于函数优化中求解实数型变量的问题,一般采用动态编码和实数编码的方法来提高其搜

爬山算法、模拟退火算法、遗传算法

一.爬山算法( Hill Climbing ) 介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算 法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到 达到一个局部最优解。 爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜 索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点 这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不 能得到更优的解。 二.模拟退火(SA,Simulated Annealing)思想(跟人一样找不 到最优解就最产生疑惑,我到底需不需要坚持,随着时间的推移,逐渐的慢慢的放弃去追寻最优解的念头) 爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。 以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。 若J( Y(i+1) )>= J( Y(i) ) (即移动后得到更优解),则总是接受该移动 若J( Y(i+1) )< J( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定) 这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。 根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为: P(dE) = exp( dE/(kT) ) 其中k是一个常数,exp表示自然指数,且dE<0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。 随着温度T的降低,P(dE)会逐渐降低。 我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。 关于爬山算法与模拟退火,有一个有趣的比喻:(有点意思)

改进的粒子群优化算法

第37卷第4期河北工业大学学报2008年8月V ol.37No.4JOURNAL OF HEBEI UNIVERSITY OF TECHNOLOGY August2008 文章编号:1008-2373(2008)04-0055-05 改进的粒子群优化算法 宋洁,董永峰,侯向丹,杨彦卿 (河北工业大学计算机科学与软件学院,天津300401) 摘要粒子群优化算法是一种基于群体的自适应搜索优化算法,存在后期收敛慢、搜索精度低、容易陷入局部极 小等缺点,为此提出了一种改进的粒子群优化算法,从初始解和搜索精度两个方面进行了改进,提高了算法的计 算精度,改善了算法收敛性,很大程度上避免了算法陷入局部极小.对经典函数测试计算,验证了算法的有效性. 关键词粒子群优化算法;均匀化;变量搜索;初始解;搜索精度 中图分类号TP391文献标识码A A Modified Particle Swarm Optimization Algorithm SONG Jie,DONG Yong-feng,HOU Xiang-dan,Y ANG Yan-qing (School of Computer Science and Engineering,Hebei University of Technology,Tianjin300401,China) Abstract Particle Swarm Optimization Algorithm is a kind of auto-adapted search optimization based on community. But the standard particle swarm optimization is used resulting in slow after convergence,low search precision and easily leading to local minimum.A new Particle Swarm Optimization algorithm is proposed to improve from the initial solution and the search precision.The obtained results showed the algorithm computation precision and the astringency are im- proved,and local minimum is avoided.The experimental results of classic functions show that the improved PSO is ef- ficient and feasible. Key words PSO;average;variable search;initial solution;search accuracy 0引言 粒子群优化(Particle Swarm Optimization,PSO)算法是一种基于群体的随机优化技术,最早在1995年由美国社会心理学家James Kennedy和电气工程师Russell Eberhart[1]共同提出,基本思想源于对鸟群觅食行为的研究.PSO将每个可能产生的解都表述为群中的一个微粒,每个微粒都具有自己的位置向量和速度向量,和一个由目标函数决定的适应度,通过类似梯度下降算法使各粒子向适应度函数值最高的方向群游.该算法控制参数少、程序相对简单,因此在应用领域表现出了很大的优越性.由于PSO算法容易理解、易于实现,所以PSO算法发展很快.目前,多种PSO改进算法已广泛应用于函数优化、神经网络训练、模式识别、模糊系统控制以及其他的应用领域. 许多学者对PSO算法进行研究,发现其容易出现早熟、最优解附近收敛慢等现象,并提出了一些改进方案,例如自适应PSO算法、混合PSO算法、杂交PSO算法等[2-4].因此,本文从初始解和收敛精度两个角度出发对PSO算法进行了改进,提高了算法的计算精度,有效的改善了算法的优化性能. 1基本PSO算法 PSO算法是一种基于群体的随机优化技术,基本思想源于对鸟群觅食行为的研究.通过对鸟群飞行时经常会突然改变方向、散开、聚集,但整体总保持一致性,个体与个体间鸟群好像在一个中心的控制 收稿日期:2008-04-17 基金项目:河北省自然科学基金(F2006000109) 作者简介:宋洁(1967-),女(汉族),副教授.

目标跟踪算法的分类

目标跟踪算法的分类

主要基于两种思路: a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标; b)依赖于目标的先验知识,首先为运动目标建模,然后在图像序列中实时找到相匹配的运动目标。 一.运动目标检测 对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。运动检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测 (一)静态背景 1.背景差 2.帧差 3.GMM 4.光流 背景减算法可以对背景的光照变化、噪声干扰以及周期性运动等进行建模,在各种不同情况下它都可以准确地检测出运动目标。因此对于固定

个关键技术: a)匹配法则,如最大相关、最小误差等 b)搜索方法,如三步搜索法、交叉搜索法等。 c) 块大小的确定,如分级、自适应等。 光流法 光流估计的方法都是基于以下假设:图像灰度分布的变化完全是目标或者场景的运动引起的,也就是说,目标与场景的灰度不随时间变化。这使得光流方法抗噪声能力较差,其应用范围一般局限于目标与场景的灰度保持不变这个假设条件下。另外,大多数的光流计算方法相当复杂,如果没有特别的硬件装置,其处理速度相当慢,达不到实时处理的要求。 二.目标跟踪 运动目标的跟踪,即通过目标的有效表达,在图像序列中寻找与目标模板最相似候选目标区位置的过程。简单说,就是在序列图像中为目标定位。运动目标的有效表达除了对运动目标建模外,目标跟踪中常用到的目标特性表达主要包括视觉特征 (图像边缘、轮廓、形状、纹理、区域)、统计特征 (直方图、各种矩特征)、变换系数特

遗传算法模拟退火matlab编程

单钻头退火算法matlab编程 clear clc a = 0.999; % 温度衰减函数的参数 t0 = 97; tf = 3; t = t0; Markov_length = 2800; % Markov链长度 coordinates = [ ]; coordinates(:,1) = []; amount = size(coordinates,1); % 城市的数目 % 通过向量化的方法计算距离矩阵 dist_matrix = zeros(amount, amount); coor_x_tmp1 = coordinates(:,1) * ones(1,amount); coor_x_tmp2 = coor_x_tmp1'; coor_y_tmp1 = coordinates(:,2) * ones(1,amount); coor_y_tmp2 = coor_y_tmp1'; dist_matrix = sqrt((coor_x_tmp1-coor_x_tmp2).^2 + ... (coor_y_tmp1-coor_y_tmp2).^2); sol_new = 1:amount; % 产生初始解 % sol_new是每次产生的新解;sol_current是当前解;sol_best是冷却中的最好解; E_current = inf;E_best = inf; % E_current是当前解对应的回路距离; % E_new是新解的回路距离; % E_best是最优解的 sol_current = sol_new; sol_best = sol_new; p = 1; while t>=tf for r=1:Markov_length % Markov链长度 % 产生随机扰动 if (rand < 0.5) % 随机决定是进行两交换还是三交换 % 两交换 ind1 = 0; ind2 = 0; while (ind1 == ind2) ind1 = ceil(rand.*amount); ind2 = ceil(rand.*amount); end tmp1 = sol_new(ind1); sol_new(ind1) = sol_new(ind2);

iSIGHT中优化算法分类

iSIGHT中优化方法种类 iSIGHT里面的优化方法大致可分为三类: 1 数值优化方法 数值优化方法通常假设设计空间是单峰值的,凸性的,连续的。iSIGHT中有以下几种: (1)外点罚函数法(EP): 外点罚函数法被广泛应用于约束优化问题。此方法非常很可靠,通常能够在有最小值的情况下,相对容易地找到真正的目标值。外点罚函数法可以通过使罚函数的值达到无穷值,把设计变量从不可行域拉回到可行域里,从而达到目标值。 (2)广义简约梯度法(LSGRG2): 通常用广义简约梯度算法来解决非线性约束问题。此算法同其他有效约束优化一样,可以在某方向微小位移下保持约束的有效性。 (3)广义虎克定律直接搜索法: 此方法适用于在初始设计点周围的设计空间进行局部寻优。它不要求目标函数的连续性。因为算法不必求导,函数不需要是可微的。另外,还提供收敛系数(rho),用来预计目标函数方程的数目,从而确保收敛性。 (4)可行方向法(CONMIN): 可行方向法是一个直接数值优化方法,它可以直接在非线性的设计空间进行搜索。它可以在搜索空间的某个方向上不断寻求最优解。用数学方程描述如下: Design i = Design i-1 + A * Search Direction i方程中,i表示循环变量,A表示在某个空间搜索时决定的常数。它的优点就是在保持解的可行性下降低了目标函数值。这种方法可以快速地达到目标值并可以处理不等式约束。缺点是目前还不能解决包含等式约束的优化问题。 (5)混合整型优化法(MOST): 混合整型优化法首先假定优化问题的设计变量是连续的,并用序列二次规划法得到一个初始的优化解。如果所有的设计变量是实型的,则优化过程停止。否则,如果一些设计变量为整型或是离散型,那么这个初始优化解不能满足这些限制条件,需要对每一个非实型参数寻找一个设计点,该点满足非实型参数的限制条件。这些限制条件被作为新的约束条件加入优化过程,重新优化产生一个新的优化解,迭代依次进行。在优化过程中,非实型变量为重点考虑的对象,直到所有的限制条件都得到满足,优化过程结束,得到最优解。 (6)序列线性规划法(SLP):序列线性规划法利用一系列的子优化方法来解决约束优化问题。此方法非常好实现,适用于许多工程实例问题。 (7)序列二次规划法(DONLP): 此方法对拉各朗日法的海森矩阵进行了微小的改动,进行变量的缩放,并且改善了armijo型步长算法。这种算法在设计空间中通过梯度投影法进行搜索。 (8)序列二次规划法(NLPQL): 这种算法假设目标函数是连续可微的。基本思想是将目标函数以二阶拉氏方程展开,并把约束条件线性化,使得转化为一个二次规划问题。二阶方程通过quasi-Newton公式得到了改进,而且加入了直线搜索提高了算法的稳定性。 (9)逐次逼近法(SAM): 逐次逼近法把非线性问题当做线性问题来处理。使用了稀疏矩阵法和单纯形法求解线性问题。如果某个变量被声明成整型,单纯形法通过重复大量的矩阵运算来达到预期的最优值。逐次逼近法是在M. Berkalaar和J.J. Dirks提出的二次线性算法。 2 探索优化方法 探索优化法避免了在局部出现最优解的情况。这种方法通常在整个设计空间中搜索全局最优值。iSIGHT中有以下两种: (1)多岛遗传算法(MIGA): 在多岛遗传算法中,和其他的遗传算法一样每个设计点都有一个适应度值,这个值是建立在目标函

分类算法小结

分类算法小结

分类算法小结 学号:12013120116 李余芳 分类是数据挖掘中比较重要的一类,它的算法也有很多。在此,我将一些常用的算法做一个简单的小结。 一、决策树 决策树技术是用于分类和预测的主要技术,决策树学习是以实例为基础的归纳学习算法。它着眼于从一组无次序、无规则的事例中推理除决策树表示形式的分类规则。它采用自顶向下的递归方式,在决策树的内部节点进行属性值的比较并根据不同属性判断从该节点向下的分支,然后进行剪枝,最后在决策树的叶节点得到结论。所以从根到叶节点就对应着一条合取规则,整棵树就对应着一组析取表达式规则。树的每一个结点上使用信息增益度量选择测试属性。可以从生成的决策树中提取规则。。 优点: 1、易于理解和解释.人们在通过解释后有能力去理解决策树所表达的意义。 2、能够同时处理数据型和常规型属性。其他技术往往要求数据属性的单一。 3、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 4、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 5、可以对有许多属性的数据集构造决策树。 6、决策树可很好地扩展到大型数据库中,它的大小独立于数据库的大小。 缺点: 1、对于各类别样本数量不一致的数据,在决策树中,信息增益的结果偏向于那些具有更多数值的特征。 2、决策树处理缺失数据时的困难。 3、过度拟合问题的出现。 4、忽略数据集中属性之间的相关性。 应用 1、决策树是用二叉树形图来表示处理逻辑的一种工具。可以直观、清晰地表

达加工的逻辑要求。特别适合于判断因素比较少、逻辑组合关系不复杂的情况。 2、决策树提供了一种展示类似在什么条件下会得到什么值这类规则的方法。比如,在贷款申请中,要对申请的风险大小做出判断。 3、决策树很擅长处理非数值型数据,这与神经网络只能处理数值型数据比起来,就免去了很多数据预处理工作等等。 二、K最近邻法(KNN) KNN法即K最近邻法,最初由Cover和Hart于1968年提出的,是一个理论上比较成熟的方法。该方法的思路非常简单直观:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。因此,采用这种方法可以较好地避免样本的不平衡问题。另外,由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。 优点: 1、简单、有效。 2、K最近邻算法是一种非参数的分类技术,在基于统计的模式识别中非常有效,并对未知和非正态分布可取得较高的分类准确率。 3、在类别决策时,只与极少量的相邻样本有关,可以较好地避免样本的不平衡问题。 4、该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。 缺点: 1、KNN算法是建立在VSM模型上的,其样本距离测度使用欧式距离。若各维权值相同,即认定各维对于分类的贡献度相同,显然这不符合实际情况。 2、KNN是懒散的分类算法,对于分类所需的计算均推迟至分类进行,故在其分

目标跟踪算法的分类

运动目标跟踪就是在一段序列图像中的每幅图像中实时地找到所感兴趣的运动目标 (包括位置、速度及加速度等运动参数)。在运动目标跟踪问题的研究上,总体来说有两种思路: a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标; b)依赖于目标的先验知识,首先为运动目标建模,然后在图像序列中实时找到相匹配的运动目标。 一、运动目标检测 对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。运动检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测。 静态背景下运动检测就是摄像机在整个监视过程中不发生移动,只有被监视目标在摄像机视场内运动,这个过程只有目标相对于摄像机的运动;动态背景下运动检测就是摄像机在整个监视过程中发生了移动 (如平动、旋转或多自由度运动),被监视目标在摄像机视场内也发生了运动,这个过程就产生了目标与摄像机之间复杂的相对运动。 1、静态背景 背景差分法 背景差分法是利用当前图像与背景图像的差分来检测运动区域的一种技术。它一般能够提供最完全的特征数据,但对于动态场景的变化,如天气、光照、背景扰动及背景物移入移出等特别敏感,运动目标的阴影也会影响检测结果的准确性及跟踪的精确性。其基本思想就是首先获得一个背景模型,然后将当前帧与背景模型相减,如果像素差值大于某一阈值,则判断此像素属于运动目标,否则属于背景图像。背景模型的建立与更新、阴影的去除等对跟踪结果的好坏至关重要。 帧间差分法 相邻帧间差分法是通过相邻两帧图像的差值计算,获得运动物体位置和形状等信息的运动目标检测方法。其对环境的适应性较强,特别是对于光照的变化适应性强,但由于运动目标上像素的纹理、灰度等信息比较相近,不能检测出完整

基于改进粒子群算法的优化策略

收稿日期:2009-12-13 基金项目:国家自然科学基金资助项目(60674021) 作者简介:卢 峰(1982-),男,辽宁抚顺人,东北大学博士研究生;高立群(1949-),男,辽宁沈阳人,东北大学教授,博士生导师 第32卷第9期2011年9月东北大学学报(自然科学版)Journal of Northeastern U niversity(Natural Science)Vol 32,No.9Sep.2011 基于改进粒子群算法的优化策略 卢 峰,高立群 (东北大学信息科学与工程学院,辽宁沈阳 110819) 摘 要:为提高传统粒子群算法的搜索速度和搜索精度,提出了一种改进的自适应粒子群优化算法 将正则变化函数和慢变函数引入传统位置更新和速度更新公式当中,形成两种新的更新机制:搜索算子和开发算子 在算法运行的初始阶段,种群中大部分个体将按照搜索算子进行更新,搜索算子将有助于种群遍历整个解空间;随着迭代次数的增加,按照搜索算子进行更新的个体将逐渐减少,而按照开发算子进行更新的个体将逐渐增多,开发算子将有效地克服陷入局部最优解的问题 通过典型测试函数的仿真实验,新算法在加快收敛速度同时,提高了算法的全局搜索能力 关 键 词:进化算法;粒子群算法;全局优化;慢变函数;自适应 中图分类号:T G 273 文献标志码:A 文章编号:1005 3026(2011)09 01221 04 Novel Optimization Mechanism Based on Improved Particle Swarm Optimization L U Feng ,GAO L i qun (School of Information Science &Engineering,Northeaster n U niv ersity,Shenyang 110819,China.Corresponding author :LU F eng,E mail:feng.lu.lf @g https://www.360docs.net/doc/205256691.html,) Abstract :To accelerate searching speed and optimization accuracy of traditional PSO,an improved particle swarm optimization (PSO )algorithm w as presented.Regularly vary ing function and slow ly varying function were introduced in the position and velocity update formula.New mechanisms such as explorative operator and exploitative operator are formulated.At the beginning,most elements will be updated by explorative operator in the entire search space sufficiently.Within the iterations,more and more particles w ill be handled by ex ploitative operator,which are useful to overcome the deceptions of multiple local optima.It can be seen from the simulation results of the standard benchm ark test functions that the proposed algorithm not only accelerates the convergence process,but also improves g lobal optim ization ability. Key words:evolutionary algorithms;particle sw arm optimization;global optimization;slow ly v arying function;self adaptive 20世纪90年代初,产生了模拟自然生物群体行为的优化方法,被称为群智能优化方法 Dorigo 等人通过模拟蚂蚁的寻径行为,提出了蚁群优化算法(ant colony optimization)[1] ;Eberhart 等人基于对鸟群、鱼群的模拟,提出了粒子群优化算法(particle sw arm optim ization )[2] 作为一种群智能优化方法的代表,粒子群算法通过个体间的协作来寻找最优解,每个个体都被赋予一个随机速度并在整个解空间中搜索,通 过个体之间的合作与竞争来实现个体进化 由于粒子群优化算法运算简单,易于实现,具有良好的解决非线性、不可微和多峰值复杂优化问题的能力,已被广泛应用于科学和工程实际领域[3-5] 但是,粒子群优化算法是根据全体粒子和自身的搜索经验向着最优解的方向进化,在进化后期收敛速度将变得缓慢,同时算法在收敛到一定精度时,容易陷入停滞,无法继续进化更新,因此,存在早熟和陷入局部极值点的现象

启发式优化算法综述

启发式优化算法综述 一、启发式算法简介 1、定义 由于传统的优化算法如最速下降法,线性规划,动态规划,分支定界法,单纯形法,共轭梯度法,拟牛顿法等在求解复杂的大规模优化问题中无法快速有效地寻找到一个合理可靠的解,使得学者们期望探索一种算法:它不依赖问题的数学性能,如连续可微,非凸等特性; 对初始值要求不严格、不敏感,并能够高效处理髙维数多模态的复杂优化问题,在合理时间内寻找到全局最优值或靠近全局最优的值。于是基于实际应用的需求,智能优化算法应运而生。智能优化算法借助自然现象的一些特点,抽象出数学规则来求解优化问题,受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法(Heuristic Algorithm)。 为什么要引出启发式算法,因为NP问题,一般的经典算法是无法求解,或求解时间过长,我们无法接受。因此,采用一种相对好的求解算法,去尽可能逼近最优解,得到一个相对优解,在很多实际情况中也是可以接受的。启发式算法是一种技术,这种技术使得在可接受的计算成本内去搜寻最好的解,但不一定能保证所得的可行解和最优解,甚至在多数情况下,无法阐述所得解同最优解的近似程度。 启发式算法是和问题求解及搜索相关的,也就是说,启发式算法是为了提高搜索效率才提出的。人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案,

以随机或近似随机方法搜索非线性复杂空间中全局最优解的寻取。启发式解决问题的方法是与算法相对立的。算法是把各种可能性都一一进行尝试,最终能找到问题的答案,但它是在很大的问题空间内,花费大量的时间和精力才能求得答案。启发式方法则是在有限的搜索空间内,大大减少尝试的数量,能迅速地达到问题的解决。 2、发展历史 启发式算法的计算量都比较大,所以启发式算法伴随着计算机技术的发展,才能取得了巨大的成就。纵观启发式算法的历史发展史: 40年代:由于实际需要,提出了启发式算法(快速有效)。 50年代:逐步繁荣,其中贪婪算法和局部搜索等到人们的关注。 60年代: 反思,发现以前提出的启发式算法速度很快,但是解得质量不能保证,而且对大规模的问题仍然无能为力(收敛速度慢)。 70年代:计算复杂性理论的提出,NP问题。许多实际问题不可能在合理的时间范围内找到全局最优解。发现贪婪算法和局部搜索算法速度快,但解不好的原因主要是他们只是在局部的区域内找解,等到的解没有全局最优性。由此必须引入新的搜索机制和策略。 Holland的遗传算法出现了(Genetic Algorithm)再次引发了人们研究启发式算法的兴趣。 80年代以后:模拟退火算法(Simulated Annealing Algorithm),人工神经网络(Artificial Neural Network),禁忌搜索(Tabu Search)相继出现。 最近比较火热的:演化算法(Evolutionary Algorithm), 蚁群算法(Ant Algorithms),拟人拟物算法,量子算法等。 二、启发式算法类型

一种求解高维复杂优化问题的动态自适应和声搜索算法

第39卷第9期2012年9月计算机科学 ComputerScience V01.39No.9 Sep2012 一种求解高维复杂优化问题的动态自适应和声搜索算法 拓守恒邓方安 (陕西理工学院数学与计算机科学学院汉中723000) 摘要为了更好地提高求解高维复杂优化问题的能力,提出一种动态自适应和声搜索(DSHS)算法。该算法采用正交试验来设计算法的初始化和声记忆库;利用多维动态自适应调整算子和单维和声微调算子相结合的策略进行和声创作;改进和声音调调解步长,从而增强算法的扰动能力,避免其陷入局部搜索。通过6个标准Benchmark函数测试表明,该算法在全局搜索能力、收敛速度和稳定性方面都有明显提高。 关键词高维优化问题,动态自适应,和声搜索算法 中图法分类号TPl8文献标识码A DynamicSelf-adaptiveHarmonySearchAlgorithmforSolving High-dimensionalComplexOptimizationProblems TUOShou-hengDENGFang-an (SchoolofMathematicsandComputerScience,ShaanxiUniversityofTechnology,Hanzhong723000,China) AbstractThisstudypresentedadynamicself-adaptiveharmonysearch(DSHS)algorithmtOsolvehigh-dimensionaloptimizationproblems.IntheproposedDSHSalgorithm,theorthogonalexperimentaldesignalgorithmwasusedtoini—tializepopulation;twonewharmonyadjustmentoperators,multi-dimensionaldynamicadaptiveadjustmentoperatorandone-dimensionaltonesfine-tuningoperator,wereintegratedtotheimprovisationscheme.Foravoidingthesearchbeingtrappedin10caloptimum。animprovedbandwidthadjustment algorithmwasemployedtoenhancethedisturbaneeper- formance.6benchmarkfunctionexperimentsshowthattheproposedalgorithmhas strongconvergencevelocity,stabili—zationandcapacityofspaceexplorationonsolvinghigh-dimensionalcomplexoptimizationproblems,comparedwithmostotherapproaches. KeywordsHigh-dimensional,Dynamicself-adaptive,Harmonysearchalgorithm 1引言 仿生群体智能优化算法以对其优化问题的数学模型复杂度要求较低、优化过程与初始值无关、搜索速度快等优势,成为求解大规模复杂问题的研究热点。目前典型仿生群体智能优化算法主要有遗传算法(GeneticAlgorithm:GA)、微粒子群算法PSO、人工蜂群优化算法ABC、蚁群算法Ac0、模拟退火算法SA和差分进化算法DE等。仿生智能优化算法通过模仿生物的进化规则(GA,DE)或生物觅食规则(PS0、AC0、ABC)等来进行优化问题求解,已经得到广泛应用。 和声搜索(HarmonySearch:HS)算法是Geem和Kim等[1]提出的一种新型的仿生智能优化算法。HS算法模拟音乐家在音乐创作中不断调整各个乐器或音符,形成美妙动听的和声。同样地,在优化问题求解中,通过逐步调整各个解中的决策变量的值使其向全局最优解靠近。目前,该方法已在组合优化[2]、无约束函数优化[3]等问题中得到了广泛应用,Es—maileKhorron/4]将HS算法应用到热力和电力经济调度问题中,SinemKulluk[5]应用HS算法训练神经网络,雍龙泉嘲采用HS算法求解绝对值方程。 HS算法在求解低维优化问题时,求解速度快,且稳定性好。但该算法是逐步淘汰和声库中最差和声向量,当问题的维数和复杂度较高时,往往需要多次迭代求解,因此非常容易早熟而陷入局部搜索,并且难以跳出局部搜索区域。针对该缺点,学者们提出了一些改进算法:改进的和声算法(ImproveHarmonySearch,HIS)[7|、全局最优和声搜索算法(Global-bestHarmonySearch,GHS)[8]、自适应全局最优和声搜索算法(Self-adaptiveGlobal-bestHarmonySearch,SGHS)[9.103等。IHS、GHS和SGHS算法对HS算法从收敛性和搜索空间探索能力都有一定的提升,但对一些高维多模态复杂问题还是有一些不足,为此,本文在上述算法的基础上提出一种求解高维复杂优化问题的动态自适应和声搜索算法(DynamicSelf-adaptiveHarmonySearch,DSHS)。 到稿日期:2011-12-07返修日期:2012-03-05本文受国家高技术研究发展计划(863计划)(2008AA01A303),国家自然科学基金(81160183),宁夏自然科学基金项目(NZlll05),宁夏卫生厅科研项目(2011033),陕西理工学院“汉水文化”省级重点学科课题(SLGHl226)资助。 拓守恒(1978一),男,讲师,硕士,CCF会员,主要研究方向为进化计算、人工智能、神经网络等;邓方安(1963一),男,博士,教授,主要研究方向为人工智能、粗糙集。 ?240? 万方数据

分类算法综述

分类算法综述 1 分类算法分类是数据挖掘中的一个重要课题。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个。分类可用于提取描述重要数据类的模型或预测未来的数据趋势。分类可描述如下:输入数据,或称训练集(Training Set),是一条条的数据库记录(Record)组成的。每一条记录包含若干个属性(Attribute),组成一个特征向量。训练集的每条记录还有一个特定的类标签(Class Label)与之对应。该类标签是系统的输入,通常是以往的一些经验数据。一个具体样本的形式可为样本向量:(v1,v2,…, vn ;c)。在这里vi表示字段值,c表示类别。分类的目的是:分析输入数据,通过在训练集中的数据表现出来的特性,为每一个类找到一种准确的描述或者模型。这种描述常常用谓词表示。由此生成的类描述用来对未来的测试数据进行分类。尽管这些未来的测试数据的类标签是未知的,我们仍可以由此预测这些新

数据所属的类。注意是预测,而不能肯定,因为分类的准确率不能达到百分之百。我们也可以由此对数据中的每一个类有更好的理解。也就是说:我们获得了对这个类的知识。 2 典型分类算法介绍解决分类问题的方法很多,下面介绍一些经典的分类方法,分析 各自的优缺点。 2.1 决策树分类算法决策树(Decision Tree)是一种有向无环图(Directed Acyclic Graphics,DAG)。决策树方法是利用信息论中 的信息增益寻找数据库中具有最大信息量的属性字段,建立决策树的一个结点,在根据该属性字段的 不同取值建立树的分支,在每个子分支子集中重复 建立树的下层结点和分支的一个过程。构造决策树 的具体过程为:首先寻找初始分裂,整个训练集作 为产生决策树的集合,训练集每个记录必须是已经 分好类的,以决定哪个属性域(Field)作为目前最 好的分类指标。一般的做法是穷尽所有的属性域, 对每个属性域分裂的好坏做出量化,计算出最好的 一个分裂。量化的标准是计算每个分裂的多样性(Diversity)指标。其次,重复第一步,直至每个叶 节点内的记录都属于同一类且增长到一棵完整的树。

用A算法解决十五数码问题

一、15数码问题的描述及其状态空间法表示 (1)15数码问题描述 15数码问题又叫移棋盘问题,是人工智能中的一个经典问题。所谓的15数码问题:就是在一个4×4的16宫格棋盘上,摆放有15个将牌,每一个将牌都刻有1~15中的某一个数码。棋盘中留有一个空格,允许其周围的某一个将牌向空格移动,这样通过移动将牌就可以不断改变将牌的布局。这种求解的问题是:给定一种初始的将牌布局或结构(称初始状态)和一个目标布局(称目标状态),问如何移动数码,实现从初始状态到目标状态的转变,如图1所示。问题的实质就是寻找一个合法的动作序列 (a)初始状态(b)目标状态 图1 15数码问题的一个实例 (2)状态空间法表示 人工智能问题的求解是以知识表示为基础的。如何将已获得的有关知识以计算机内部代码形式加以合理地描述、存储、有效地利用便是表示应解决的问题[1]。目前的知识表示方法有十余种,如:一阶谓词逻辑表示法、产生式表示法、状态空间表示法、语义网格表示法、框架表示法、脚本表示法、面向对象表示法等。任何一个给定的问题可能存在多种知识表示方法,人们可以根据待求解问题的领域知识选择适当的知识表示方法。这里我们只强调状态空间表示法。 把求解的问题表示成问题状态、操作、约束、初始状态和目标状态。状态空间就是所有可能的状态的集合。求解一个问题就是从初始状态出发,不断应用可应用的操作,在满足约束的条件下达到目标状态。问题求解过程就可以看成是问题状态在状态空间的移动。 状态是为描述某类不同事物间的差别而引入的一组最少变量q0,q1,…,q n的有序集合。问题的状态空间是一个表示该问题全部可能状态及其关系的图。记为三元状态(S、F、G),其中S所有可能的问题初始状态集合,F操作符集合,G目标状态集合。十五数码的状态空间法: 初始状态S[4][4]={5,12,11,4,13,6,3,10,14,2,7,9,1,15,0,8};(0表示空格) 目标状态G[4][4]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0}; 操作符集合F={空格上移,空格下移,空格左移,空格右移} 状态空间的一个解:是一个有限的操作算子序列,它使初始状态转化为目标状态:S0-f1->S1-f2->...f k->G。 二、A* 算法的基本原理、算法步骤、流程图 (1)A*算法基本原理

遗传算法与模拟退火算法比较

一、遗传算法与模拟退火算法比较 分析模拟退火算法的基本原理可以看出,模拟退火算法是通过温度的不断下降渐进产生出最优解的过程,是一个列马尔科夫链序列,在一定温度下不断重复Metropolis过程,目标函数值满足Boltzmann概率分布。在温度下降足够慢的条件下,Boltzmann分布收敛于全局最小状态的均匀分布,从而保证模拟退火算法以概率为1收敛到全局最优。另外,不难看出,模拟退火算法还存在计算结构简单、通用性好以及鲁棒性强等优点。但是,模拟退火算法存在如下缺陷: 1. 尽管温度参数下降缓慢时理论上可以保证算法以概率为1地收敛到最优值,但是需要的时间过长加之误差积累与时间长度的限制,难以保证计算结果为最优; 2.如果降温过程加快,很可能得不到全局最优解,因此,温度的控制是一个需要解决的问题; 3.在每一种温度下什么时候系统达到平衡状态,即需要多少次Metropolis过程不易把握,从而影响模拟退火算法的最终结果。 与模拟退火算法相比较,遗传算法具有如下典型特征: 这两种算法的相同点是都采用进化控制优化的过程。主要不同点是模拟退火是采用单个个体进行进化,遗传算法是采用种群进行进化。模拟退火一般新解优于当前解才接受新解,并且还需要通过温度参数进行选择,并通过变异操作产生新个体。而遗传算法新解是通过选择操作进行选择个体,并通过交叉和变异产生新个体。具体说来,遗传算法具有如下特点: (1)与自然界相似,遗传算法对求解问题的本身一无所知,对搜索空间没有任何要求(如函数可导、光滑性、连通性等),只以决策编码变量作为运算对象并对算法所产生的染色体进行 评价,可用于求解无数值概念或很难有数值概念的优化问题,应用范围广泛; (2)搜索过程不直接作用到变量上,直接对参数集进行编码操作,操作对象可以是集合、序列、矩阵、树、图、链和表等; (3)搜索过程是一组解迭代到另一组解,采用同时处理群体中多个个体的方法,因此,算法具有并行特性;

结合禁忌搜索的改进粒子群优化算法

———————————— 基金项目基金项目::国家自然科学基金资助项目(61174133) 作者简介作者简介::李勇刚(1974-),男,副教授,主研方向:人工智能,智能搜索;邓艳青,硕士研究生 收稿日期收稿日期::2011-09-20 修回修回日期日期日期::2011-12-26 E-mail :dengyanqing12345@https://www.360docs.net/doc/205256691.html, 结合禁忌搜索的改进粒子群优化算法 李勇刚李勇刚,,邓艳青 (中南大学信息科学与工程学院,长沙 410083) 摘 要:为提高粒子群优化算法的全局搜索和局部开采能力,提出一种结合禁忌搜索(TS)的改进粒子群优化算法。在搜索过程中,以线性递增的概率对最优粒子实施随机扰动,在全局搜索收敛到一定程度后,引入TS 算法进行局部搜索,使算法快速收敛到全局最优解。分析结果表明,该算法收敛精度较高,能有效克服早熟收敛问题。 关键词关键词::粒子群优化算法;禁忌搜索;随机扰动;局部最优;收敛精度 Improved Particle Swarm Optimization Algorithm with Tabu Search LI Yong-gang, DENG Yan-qing (School of Information Science and Engineering, Central South University, Changsha 410083, China) 【Abstract 】To improve the global exploration and local exploitation ability of Particle Swarm Optimization(PSO) algorithm, an improved PSO algorithm integrated with Tabu Search(TS) is proposed. In PSO algorithm, optimal particle is perturbed with a linear increasing probability. When the global PSO algorithm converges to a certain degree, TS algorithm is used for local search of global optimum. Simulation results show that the convergence precision of the improved algorithm is very high, and can overcome premature convergence effectively. 【Key words 】Particle Swarm Optimization(PSO) algorithm; Tabu Search(TS); random perturbance; local optimum; convergence precision DOI: 10.3969/j.issn.1000-3428.2012.18.042 计 算 机 工 程 Computer Engineering 第38卷 第18期 V ol.38 No.18 2012年9月 September 2012 ·人工智能及识别技术人工智能及识别技术·· 文章编号文章编号::1000—3428(2012)18—0155—03 文献标识码文献标识码::A 中图分类号中图分类号::TP301.6 1 概述 粒子群优化(Particle Swarm Optimization, PSO)算法[1] 是由于在人工生命研究中对鸟群社会行为模拟受到启发,提出的一种基于群智能的启发式搜索算法,具有思想简单、容易实现等特点,受到了广泛的关注。 PSO 算法容易早熟收敛,并且局部寻优能力较差。为此,许多学者提出各种改进策略,如文献[2-3]提出与遗传算法,差分进化算法等全局优化算法混合;文献[4-5]提出与单纯形法,模拟退火等局部优化算法混合。但大多数都只采用一种策略对其改进,要么与其他算法混合,要么加入变异操作[6],同时,采用2种策略的混合算法较少。与局部算法相混合可以提高收敛速度,却加剧了陷入局部最优的概率。引入变异操作增强了全局搜索,但局部搜索能力却没有改善。因此,如果将局部搜索算法和变异操作同时混合到PSO 算法中,通过适当的调节,使其在优化机制、进程、搜索行为、操作上进行有机结合,可以发挥各自的优点,同时,提高PSO 算法的全局搜索和局部开采能力。 本文提出一种结合禁忌搜索(Tabu Search, TS)与加入随机扰动的PSO 算法的混合算法。利用PSO 算法的快速 性和随机性,全空间地搜索最优解可能存在的区域,使用禁忌搜索算法的记忆功能及爬山能力强的特点,解决算法陷入局部最优的问题。 2 粒子群优化算法粒子群优化算法及禁忌搜索算法及禁忌搜索算法 2.1 标准标准粒子群优化算法粒子群优化算法 PSO 算法先初始化一群随机粒子,然后通过迭代找到最优解。在每次迭代中,粒子通过跟踪2个“极值”更新自己。一个是粒子本身找到的最好解称个体极值pbest ,另—个是整个种群目前找到的最优解称全局极值gbest 。在找这2个最优值时,粒子根据如下的公式来更新自己的速度和位置: 11122()()k k k k k k v wv c r pbest x c r gbest x +=+?+? (1) 11k k k x x v ++=+ (2) 其中,w 为惯性权重;1r 、2r 取[0:1]之间的随机数;1c 、 2c 为加速常量。 2.2 禁忌搜索禁忌搜索算算法 禁忌搜索思想是一种模拟人思维的智能搜索算法[7]。它采用一种灵活的“记忆”技术,即对历史进行记录和选择,指导下一步的搜索方向。另外,为了尽可能不错过产生最优解的“移动”,TS 还采用“释放准则”的策略[8]。

相关文档
最新文档