数电-可调温度控制器
温度控制器设计
帮不帮温度控制器设计一、设计任务设计一个可以驱动1kW加热负载的水温控制器,具体要求如下:1、能够测量温度,温度用数字显示。
2、测量温度范围0〜100℃,测量精度为0.5℃。
3、能够设置水温控制温度,设定范围40〜90℃,且连续可调。
设置温度用数字显示。
4、水温控制精度W±2℃。
5、当超过设定的温度20℃时,产生声、光报警。
二、设计方案分析根据设计要求,该温度控制器是既可以测量温度也可以控制温度,其组成框图如图1所示。
图1温度控制器原理框图因为要求对温度进行测量显示,所以首先采用温度传感器,将温度变化转换成相应的电信号,并通过放大、滤波后送A/D转换器变成数字信号,然后进行译码显示。
若要求温度被控制在设定值附近,则要求将实际测量温度的信号与温度的设定僮基准电压)进行比较,根据比较结果(输出状态)来驱动执行机构,实现自动地控制、调节系统的温度。
测量的温度可以与另一个设定的温度上限比较器相比较,当温度超过上限温度值时,比较器产生报警信号输出。
1、温度检测及信号处理温度检测是温控系统的最关键部分,它只接影响整个系统的测量、控制精度。
目前检测温度的传感器很多,其测量范围、应用场合等也不尽相同。
例如热电偶温度传感器目前在工业生产和科学研究中已得到了广泛的应用,它是将温度信号转化成电动势。
目前热电偶温度传感器已形成系列化和标准化,主要优点是:它属于自发电型传感器,测量温度时可以不需要外加电源;结构简单,使用方便,热电偶的电极不受大小和形状的限制;测量温度范围广,高温热电偶测温高达1800 c以上,低温热电偶可测-260℃以下,目前主要用在高温测量工业生产现场中。
热电阻温度传感器是利用电阻值随温度升高而增大这一特性来测量温度的,目前应用较为广泛的热材料是铜和铂。
在铜电阻和伯电阻中,伯电阻性能最好,非常适合测量-200〜+960℃范围内的温度。
国内统一设计的工业用伯电阻常用的分度号有Pt25、Pt100 等,Pt100即表示该电阻的阻值在0c时为100Q。
可编程控制器
“可编程控制器是一种把数字运算与控制操作为一 体的电子控制系统,专为在工业环境下应用而设计, 它采用可编程序的存储器,用于其内部存储程序, 执行逻辑控制、顺序控制、定时、计数和算术运算 等操作指令,并通过数字式输入输出控制各种类型 的机械或生产过程。可编程控制器及其有关的外部 设备,都按易于与工业控制系统联成一个整体,并 易于扩充功能的原则设计。”
9-1可编程序控制器的基本结构、 工作原理和主要特点
20世纪60年代末,美国通用汽车公司(GM)对 控制系统提出要求为:
(1)能替代由各种继电器、定时器、接触器及其主令 电器等按一定的逻辑关系用导线连接起来的控制系 统,即传统的继电-接触器控制,且简单易懂,价格 低廉,能够满足生产工艺改动频繁的需要;
二、可编程控制器的特点与应用
2.PLC的应用概况:
(1)开关量顺序、逻辑控制 (2 )即模代拟替量继控电制-接触器控制系统 (3的)各数模种拟冶等据生量金的产采进行 控过集行业 制程的中 系、的监的 统自分高测动炉、析控上调制和节料中处控系对统制理温,。度轧压钢力机、、流连量铸等机连、续飞变剪化
三、可编程控制器的发展趋势
20世纪80年代,PLC已进入成熟阶段,向大规 模、高速度、高性能和多功能方面发展。
三菱公司在F1、FX2、A系列的基础上推出了小型遥 控的FX2C系列,其基本指令的处理速度加快到 0.48ms/千步,控制距离达100m(最远达400m)。 还有超薄型的FX0N系列。
西门子公司在S5系列的基础上,又推出微型高性能 的S7系列。包括S7-200系列(小型)、S7-300系列 (中型)S7-400系列(大型) 。
个人计算机 (Personal Computer)
实验报告
第I 页课程设计说明书数字显示温度控制器设计制作摘要在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。
在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。
本次设计一个数字显示温度的测量与控制装置.应用温度敏感元件和二次仪表的组合,对温度进行调节、控制,且能直接读数.经实验验证此控制器的性能指标达到要求,为温度测量与控制的工业应用奠定了一定的基础。
关键词:温度传感器数字电压表温度控制执行机构。
第II 页课程设计说明书目录1设计任务及要求 (1)2数字温度控制器设计方案 (1)3温度控制器电路的设计 (3)3.1温度传感器的选择 (3)3.2采样电路及校准电路 (4)3.3上下限采集电路 (5)3.4温度比较电路 (6)3.5 温度控制电路 (7)3.7 显示温度电路 (10)3.8 直流电源电路 (12)3.8.1稳压电源设计 (12)3.8.2 电路设计 (14)4整机工作原理 (14)5整体电路图 (16)致谢 (18)参考文献 (18)课程设计说明书1 设计任务及要求采用热敏电阻作为温度传感器,由于温度变化而引起的电压变化,在利用比较运算放大器与设置的温度值对应的电压进行比较,输出高或低电平从而对控制对象加热器进行控制。
其电路可分为三部分:测温电路,比较/显示电路,控制电路。
设计要求:(1):实现题目要求的内容(2):电路在功能相当的情况下越简单越好(3):要求输入电压为5V,红绿发光二极管为负载(4):调节电位器,使红,绿发光二极管交替点亮2 数字温度控制器设计方案方案1:此电路是一种数字温度控制器的参考设计方案图1 方案流程图原理:温度检测电路通过热敏电阻检测温度并将温度信号转化成电压信号,时钟发生器产生的脉冲启动A/D转换电路。
通过A/D转换电路将模拟信号转化成数字信号,利用4课程设计说明书线——7段显示译码器/驱动器将得到的BCD码送至LED数码显示管显示。
XMT系列数显温度控制器使用说明书
3、XMT — 131/132、XMTA — 2301/2302、XMTD — 2301/2302 的调节功能与使用方法:此类型号规格仪表为时间比例式
调节控制功能温控表。
字是实际温度值。当实际温度值低于下限设定值时,绿灯亮,上限继电器的总低通、总高断,继续加温;当实际值达到或超过下
限设定值,但仍低于上限设定值时,绿灯、红灯同时熄灭,下限继电器总低断、总高通,停止加温,上限继电器总低通、总高断,继续加温。当实际温度值达到或超过上限设定值时,红灯亮,此时下限、上限继电器均为总高通、总低断,停止加温。
仪 表 型 号
外 型 尺 寸 (B x H x L)
开 孔 尺 寸 (B x H x L)
XMT— 1□□
160 x 80 x 150
152 x 76
XMTA— 20□□
96 x 96 x 150
92 x 92
XMTD— 20□□
72 x 72 x 150
67 x 67
注:B为仪表正面宽度、H为仪表的正面高度、L为仪表的纵深长度,单位为:mm。
铂铑 — 铂
S(LB — 3)
0 - 1600、700 - 1600
热
电
阻
铜电阻
Cu50(G)
-50 - 150、0 - 50、0 - 100、0 - 150
0.1 ℃
铂电阻
Pt100
(BA1、BA2)
-199 - 199、0 - 199
0 - 300、 0 - 400、0 - 900
1 ℃
二、XMT系列数显温度控制器的型号规格列表表(2)
温度控制自动调节电路说明
温度控制自动调节电路(考核部分)原理图7107组成的显示测量电路(了解部分)原理图功能原理介绍一、温度显示及温度控制装置1.功能说明温度显示及温度控制电路可以实现温度显示和温度控制功能。
2.电路功能简介温度控制及温度报警装置由电源、温度设定、温度显示、温度控制、直流电压表电路等组成。
(1)温度设定部分接通电源,调节RP41,RP42可以设定预置温度。
(2)实时温度显示部分本电路采用LM35作为温度传感器,此传感器能产生10mV/℃电信号。
(3)温度控制电路接通电源,RT41发热电阻得电加热,当温度达到设定温度,第一级运放比较器发出信号,经第二级及VT41推动,驱动风扇降温。
当温度降至设定温度以下,风扇停止。
(4)直流电压表电路本电路采用7107构成基本直流电压表,电压信号从31脚输入,由7107直接转换成3.5位数字信号,送至数码管显示。
二、电路主要元件介绍及用法说明(1)3296电位器的结构如下图,用法:电位器有三个接头,两端和引脚2各一个,往哪边转阻值变大,取决于引脚2与哪边端头相连接。
(2) LM35温度传感器结构及接线方法如下图,电压范围3~30V,此传感器能产生10mV/℃电信号。
(3)LM358双运算放大器的结构如下图,用法:可通过配置相应的电阻、电容(如上原理图中的U42)使之构成比较器和放大器。
(4)ICL7107:3位半数字表头芯片。
ICL7107是31/2位双积分型A/D转换器,属于CMOS大规模集成电路,它的最大显示值为1999,最小分辨率为100uV,转换精度为0.05士1个字。
其典型连接应用方式如下图。
(5)使用注意事项:如果LM35温度传感器一直无风扇降温(误操作导致),会导致显示部分输入电压过高溢出,此时应立刻断电,否则显示驱动芯片ICL7107将会烧坏。
三、电路工作原理(1)接通-5V和12V电源,把J3的插针用跳线帽使1(TP2)和2相连,调节RP41,RP42即调节输入电压设置预置温度,电压信号从31脚输入,由7107直接转换成3.5位数字信号,送至数码管显示;(2)把J3的插针用跳线帽使2和3(TP1)相连,水泥电阻RT41逐渐发热导致温度传感器LM35产生电压(10mV/℃)上升,数码管实时显示其温度值,当产生的电压大于(1)中设置的基准电压时,经过比较器LM358 U42A,使得LM358的”1”引脚输出高电平VCC,此电压经过放大器LM358 U42B(可通过调节电位器RP44的电阻值来调节放大倍数)使电压放大即VT41三极管的基极控制端电压升高到导通电压,从而使三极管VT41集电极和发射极导通,从而使风扇J2导通启动,风扇启动后对水泥电阻RT41降温导致温度传感器LM35产生电压(10mV/℃)下降,一段时间后导致产生的电压小于(1)中设置的基准电压,使得比较器的”3”引脚电位小于”2”引脚电位,导致其”1”引脚输出低电平,此时经过放大器LM358 U42B放大的电压(即VT41三极管的基极控制端电压)达不到VT41三极管导通电压,导致三极管VT41关闭,即风扇得不到电压而停止;然后,水泥电阻RT41逐渐发热,如此循环,形成了温度的自动控制。
温度控制器的工作原理
温度控制器的工作原理IMB standardization office 【IMB 5AB- IMBK 08- IMB 2C】温度控制器的工作原理据了解,不少厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。
创新,采用了PID 含糊控制技术,较好地解决了惯性温度误差的问题。
传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。
电脑控制温度控制器:采用PID 含糊控制技术*用先进的数码技术通过Pvar 、Ivar 、Dvar (比例、积分、微分)三方面的结合调整形成一个含糊控制来解决惯性温度误差问题。
传统的温度控制器的电热元件普通以电热棒、发热圈为主,两者里面都用发热丝制成。
发热丝通过电流加热时,通常达到1000C 以上,所以发热棒、发热圈内部温度都很高。
普通进行温度控制的电器机械,其控制温度多在0-400C之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号住手加热。
但这时发热棒或者发热圈的内部温度会高于400C ,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号住手加热,被加热器件的温度还往往继续上升几度,然后才开始下降。
当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。
通常开始重新加热时,温度继续下降几度。
所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。
要解决温度控制器这个问题,采用PID 含糊控制技术,是明智的选择。
PID 含糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar 、Dvar 三方面的结合调整,形成一个含糊控制,来解决惯性温度误差问题。
可调式温控器工作原理
可调式温控器工作原理
可调式温控器的工作原理是通过测量环境温度和设定的目标温度差来控制加热或降温设备的工作状态,以维持环境温度在目标温度范围内。
一般来说,可调式温控器包含以下组件:
1. 温度传感器:用于测量环境的实际温度。
常用的传感器有热敏电阻、热电偶或半导体温度传感器。
2. 控制电路:接收温度传感器的信号,并将其与设定的目标温度进行比较。
控制电路通常由微处理器或专用集成电路实现。
3. 继电器或晶体管:根据控制电路的指令,控制电源或电路的通断。
当环境温度低于目标温度时,加热设备会被打开,当环境温度高于目标温度时,降温设备会被打开。
4. 显示屏和控制按钮:用于设置和显示目标温度以及其他调节参数。
工作流程如下:
1. 温度传感器感知环境温度,并将信号传递给控制电路。
2. 控制电路将环境温度与设定的目标温度进行比较。
3. 如果环境温度低于目标温度,控制电路会将加热设备打开,
让加热设备开始工作,直到温度达到目标温度。
4. 如果环境温度高于目标温度,控制电路会将降温设备打开,让降温设备开始工作,直到温度降至目标温度。
5. 控制电路可以通过控制按钮的设置来调整目标温度和其他调节参数。
通过持续的温度测量和设定目标温度的调节,可调式温控器能够在设定的温度范围内自动调节加热或降温设备的工作状态,以实现对环境温度的精确控制和调节。
温度控制器实验报告
温度控制器实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验设备与材料 (2)3. 实验原理 (3)二、实验内容与步骤 (4)1. 实验内容 (5)1.1 温度控制器的基本操作 (6)1.2 温度控制器的参数设置与调整 (7)2. 实验步骤 (8)2.1 安装温度控制器 (9)2.2 校准温度计 (9)2.3 设置温度控制器参数 (11)2.4 观察并记录实验数据 (13)2.5 分析实验结果 (13)三、实验数据与结果分析 (14)1. 实验数据 (15)1.1 温度控制器的温度读数 (17)1.2 温度控制器的设定温度 (18)1.3 温度控制器的实际输出温度 (19)2. 结果分析 (19)2.1 温度控制器的性能评价 (20)2.2 温度控制器在不同条件下的适应性分析 (21)四、实验结论与建议 (22)1. 实验结论 (23)2. 实验建议 (24)一、实验概述本实验旨在通过设计和制作一个温度控制器,让学生了解温度控制器的基本原理、结构和工作原理,并掌握温度控制器的制作方法。
学生将能够熟练掌握温度控制器的设计、制作和调试过程,为今后从事相关领域的工作打下坚实的基础。
本实验的主要内容包括,在实验过程中,学生将通过理论学习和实际操作相结合,全面掌握温度控制器的相关知识和技能。
1. 实验目的本实验旨在探究温度控制器的性能及其在实际应用中的表现,通过一系列实验,了解温度控制器的控制原理、操作过程以及性能特点,验证其在实际环境中的温度控制精度和稳定性。
本实验也旨在培养实验者的实践能力和问题解决能力,为后续相关领域的深入研究和实践打下坚实的基础。
2. 实验设备与材料温度控制器:作为实验的核心设备,本实验选择了高精度数字式温度控制器,具备较高的稳定性和精确度,能够确保实验结果的可靠性。
恒温箱实验箱:为了模拟不同的环境温度,采用了具有温控功能的恒温箱或实验箱。
通过调节箱内的温度,可以观察温度控制器在不同环境下的表现。
温度控制器的工作原理
温度控制器的工作原理温度控制器是一种常见的自动控制设备,广泛应用于各种工业和家用领域。
它的主要功能是通过监测环境温度并根据预设的温度范围来控制加热或者冷却系统,以维持温度在设定值附近。
温度控制器通常由以下几个主要部份组成:温度传感器、比较器、控制器和执行器。
下面将详细介绍每一个部份的工作原理。
1. 温度传感器:温度传感器是温度控制器的核心部件,用于测量环境温度。
常见的温度传感器包括热电偶、热敏电阻和半导体温度传感器等。
它们根据温度的变化产生电信号,并将信号传递给控制器进行处理。
2. 比较器:比较器是用于比较实际温度和设定温度的部件。
它接收温度传感器传来的信号,并将其与设定温度进行比较。
当实际温度超过或者低于设定温度时,比较器会产生相应的输出信号。
3. 控制器:控制器是温度控制器的核心部份,它接收比较器的输出信号,并根据信号进行逻辑运算和控制操作。
控制器通常包括微处理器或者专用的控制芯片,它根据设定的控制算法来判断应该采取何种控制动作。
4. 执行器:执行器是根据控制器的指令来实际控制温度的部件。
根据不同的应用场景,执行器可以是电磁继电器、可控硅(SCR)、电动阀门或者风扇等。
执行器根据控制器的输出信号来打开或者关闭加热或者冷却设备,以调节环境温度。
整个温度控制器的工作流程如下:首先,温度传感器测量环境温度,并将信号传递给比较器。
比较器将实际温度与设定温度进行比较,并产生相应的输出信号。
控制器接收比较器的输出信号,并根据设定的控制算法进行逻辑运算。
根据控制器的计算结果,执行器被激活,控制加热或者冷却设备的运行,以使环境温度逐渐接近设定温度。
一旦实际温度达到设定温度附近,执行器住手操作,从而实现温度的稳定控制。
温度控制器的工作原理可以通过以下示例进一步说明:假设我们有一个温室,需要将温度维持在25摄氏度。
我们可以使用一个温度控制器来实现这个目标。
首先,将一个温度传感器放置在温室内,它会不断测量温度并将信号传递给比较器。
温度控制器的工作原理
温度控制器的工作原理温度控制器是一种用于控制温度的设备,广泛应用于工业生产、实验室、家用电器等领域。
它通过感知环境温度并根据设定的温度范围进行自动调节,以维持温度在设定值附近稳定运行。
下面将详细介绍温度控制器的工作原理。
一、传感器部分温度控制器的核心是温度传感器,它负责感知环境温度并将其转化为电信号。
常用的温度传感器有热电偶、热电阻和半导体温度传感器等。
1. 热电偶热电偶是基于热电效应工作的温度传感器。
它由两种不同金属的导线焊接在一起,形成一个热电偶焊点。
当焊点处温度发生变化时,两种金属之间产生的热电势也会发生变化,通过测量热电势的大小来确定温度。
2. 热电阻热电阻是利用材料电阻随温度变化的特性来测量温度的传感器。
常用的热电阻材料有铂金、镍和铜等。
当温度发生变化时,热电阻材料的电阻值也会发生变化,通过测量电阻值的大小来确定温度。
3. 半导体温度传感器半导体温度传感器是利用半导体材料的电阻随温度变化的特性来测量温度的传感器。
它具有体积小、响应速度快、精度高等优点。
常用的半导体温度传感器有硅基和碳化硅等。
二、控制部分温度控制器的控制部分主要由比较器、计时器、继电器和显示器等组成。
它根据传感器测量到的温度信号与设定的温度范围进行比较,并根据比较结果控制继电器的开关状态。
1. 比较器比较器是控制部分的核心元件,它用于比较传感器测量到的温度信号与设定的温度范围。
当温度信号超出设定范围时,比较器会输出一个控制信号。
2. 计时器计时器用于设定温度控制器的工作时间,可以根据需要设定不同的工作周期和工作时间段。
当温度控制器工作时间达到设定值时,计时器会触发控制信号。
3. 继电器继电器是控制部分的输出装置,它根据比较器和计时器的控制信号来控制电路的开关状态。
当控制信号为高电平时,继电器闭合,电路通电;当控制信号为低电平时,继电器断开,电路断电。
4. 显示器显示器用于显示当前温度和设定的温度范围,方便操作人员实时监控温度变化。
温度控制器的工作原理
温度控制器的工作原理
温度控制器是通过测量环境温度与设定温度进行比较,然后根据比较结果采取相应的控制手段来实现温度的调节。
其工作原理可以分为四个步骤。
首先,温度控制器通过传感器感知环境温度。
传感器通常采用热敏电阻、热电偶或半导体温度传感器等,能够将环境温度转换成电信号。
其次,将感知到的环境温度信号与设定温度进行比较。
设定温度是用户预先设置的期望温度值,它可以通过控制器的面板上进行设置。
比较的方式可以是简单的大小关系比较,也可以是更复杂的控制算法,如PID控制算法。
然后,根据比较的结果,控制器会采取相应的控制手段来调节温度。
常见的控制手段有两种:开关控制和连续控制。
开关控制是指通过控制器的输出信号,控制加热或制冷设备的开关状态,以达到调节温度的目的。
连续控制则是通过控制输出的大小,控制加热或制冷设备的功率输出来实现温度调节。
最后,温度控制器会持续监测环境温度,不断进行比较和调节,以保持环境温度接近设定温度的状态。
控制器通常还会具备故障报警功能,当环境温度超出设定范围或控制器出现故障时,会通过报警方式提醒用户。
综上所述,温度控制器的工作原理是通过感知环境温度,与设
定温度进行比较,然后根据比较结果采取相应的控制手段来实现温度的调节,以保持环境温度接近设定温度。
温度控制器的工作原理
温度控制器的工作原理温度控制器是一种常见的自动控制设备,广泛应用于各种工业和家用领域。
它通过感知环境温度并根据预设的设定值来控制加热或者冷却设备,以维持温度在设定范围内稳定运行。
下面将详细介绍温度控制器的工作原理。
一、温度感知温度控制器通常通过传感器感知环境温度。
常见的温度传感器有热电偶、热敏电阻和红外线传感器等。
其中,热电偶是一种基于热电效应的温度传感器,它由两种不同金属的电极组成,当两个电极温度不同时,会产生电压差。
热敏电阻则是一种电阻值随温度变化的传感器,其电阻值随温度的升高或者降低而变化。
红外线传感器则通过感知物体发出的红外线辐射来间接测量温度。
二、温度设定温度控制器设有温度设定功能,用户可以根据需要设置设备工作的目标温度。
设定温度可以通过旋钮、按键或者触摸屏等方式进行调节。
一些高级温度控制器还可以通过计算机或者手机等远程设备进行远程设定。
三、控制算法温度控制器通过内置的控制算法来判断环境温度与设定温度之间的差异,并根据差异来控制加热或者冷却设备的工作。
常见的控制算法有比例控制、比例积分控制和比例积分微分控制等。
1. 比例控制(P控制)比例控制是最简单的控制算法之一,它根据温度偏差的大小来控制输出。
当温度偏离设定值越大时,输出信号也越大,从而加快温度的回归速度。
然而,比例控制容易产生超调现象,即温度在设定值附近来回波动。
2. 比例积分控制(PI控制)为了解决超调问题,比例积分控制在比例控制的基础上增加了积分环节。
积分环节通过积累温度偏差的面积来调整输出信号,从而消除超调现象。
比例积分控制适合于温度变化较慢的系统,但在快速变化的系统中可能导致温度的不稳定。
3. 比例积分微分控制(PID控制)为了进一步提高控制精度,比例积分微分控制在比例积分控制的基础上增加了微分环节。
微分环节通过测量温度变化速率来预测未来的温度变化趋势,并调整输出信号以减小温度波动。
PID控制是目前最常用的控制算法,适合于各种不同的温度控制场景。
RKC智能温控器 温控表 温度调节器REX-C100剖析
型号REX-C100 控制类型温度控制模式智能温度控制调节器测量对象温度,加热设备温度范围0-400(℃)测温误差1(℃)开孔尺寸45*45(mm)安装型式面板输出信号4-20(mA)工作电压80-240(V)外形尺寸48*48(mm)重量0.25(Kg)1.主要技术参数1.1仪表输入。
热电偶E K J S热电阻CU50 Pt1001.2显示基本误差:小于或等于输入满量程1.0%±1个字1.3 冷端补偿误差≤±2℃,温度系数≤0.05/℃1.4 分辨率:1℃或0.1℃1.5 采样周期:3次/秒1.6 报警功能:上限绝对值,上限偏差值1.7 报警输出:继电器触点AC250V3A1.8 控制方式:PID控制.位式控制1.9 控制输出:继电器触点(220V阻性负载3A)感性负载1A)SSR驱动电平:(DC0~12V)过零触发脉冲:光偶可控硅输出1A/600V1.10工作电源:AC220V±10% 50HZ/60HZ功耗≤3W1.11工作环境:环境温度0~50℃,湿度45%~85%,无腐蚀性及无强电磁干扰场合。
2.设定值(SV)显示器(绿)*显示设定值*显示参数内容*控制回路异常表示3指示灯*自整定指示灯(AT)绿自整定工作时灯亮*控制输出指示(OUT)绿控制输出时灯亮*第一报警指示灯(AL1)上限报警输出时灯亮4.功能键盘SET*SV设定:按一下SET键,SV个位闪烁(PV显示内容不变)可用其余三键修改数据*按住SET键5秒,即可进入参数层。
5.移位键在参数设定状态下,作移位键6.减数键在参数设定状态下,作减数键7.加数键在参数设定状态下,作加数键例:仪表完整型号为:REX-C100 K 0~400℃其具体功能含义是:面板尺寸为48×48mm,PID控制继电器输出,配用K分度号热电偶,量程0~400℃,带上限绝对值报警的智能多功能仪表。
< 附件>安装支架2套,说明书一份主要特点:热电偶、热电阻、模拟量等多种信号自由输入,量程自由设置;软件调零满度,冷端单独测温,放大器自稳零,显示精度优于0.5%FS;模糊理论结合传统PID方法,控制快速平稳,先进的整定方案;输出可选:断电器触点、逻辑电平、可控硅单相或三相过零或移相触发肪冲或移发脉冲、模拟量。
温度控制器的介绍及应用
温度控制器的介绍及应用温度控制器是一种用于测量和调节温度的设备。
它由传感器、调节器和执行器组成。
传感器负责检测环境温度,并将其转换成电信号;调节器根据传感器的信号进行计算,并发出控制信号;执行器根据控制信号来调节温度。
温度控制器的应用广泛。
下面将介绍几个常见的应用场景。
1. 家用电器:温度控制器在家用电器中起到了非常重要的作用。
例如,冰箱和空调都需要控制内部温度以保持在适宜的范围内。
温度控制器可以通过传感器检测当前温度,并通过执行器控制压缩机或风扇来调节温度。
2. 工业生产:温度控制器在工业生产中广泛应用。
例如,在一些化工过程中,需要确保反应物在特定温度下进行反应。
温度控制器可以监测反应温度,并通过控制加热或冷却设备来维持合适的温度。
3. 温室农业:温室农业是一种通过调节温室内部的温度和湿度来控制植物生长环境的技术。
温度控制器在温室中起到了至关重要的作用。
它可以根据不同的植物需求,监测和调节温室内的温度,创造一个适宜的生长环境。
4. 精密仪器:一些精密仪器对环境温度非常敏感,需要保持恒定的温度。
温度控制器可以监测环境温度,并通过控制加热或冷却装置来维持仪器所需的稳定温度。
5. 热处理:在金属加工中,热处理是一种重要的工艺。
温度控制器在热处理过程中起到至关重要的作用。
它可以监测金属件的温度,并根据设定的温度曲线调整加热设备,确保金属件的热处理过程精确而稳定。
总之,温度控制器在各个领域都有广泛的应用。
它可以帮助我们实现温度的准确控制和调节,提高生产效率,保证产品质量,节约能源。
随着科技的不断进步,温度控制技术也在不断创新和改进,使得温度控制器在各个行业中更加智能化、高效化。
温度控制调节仪
温度控制调节仪温度控制调节仪,也称为温度控制器,是一种常见的电子仪器,用于监测和调节环境、设备或材料的温度。
它广泛应用于工业生产、科学实验、医疗保健等领域。
原理温度控制调节仪的工作原理基于热力学原理。
它通过感知环境、设备或材料表面的温度变化,并通过内部电路实现温度的控制和调节。
常见的温度控制方式包括比例控制、积分控制和微分控制,也称为PID控制。
PID控制算法可以根据温度变化的速率、大小等参数实现更精确的温度控制。
结构温度控制调节仪通常由以下几个部分组成:1.感温元件:用于感知环境、设备或材料表面的温度变化,可以是热电偶、热敏电阻、红外线传感器等。
2.控制电路:通过比例控制、积分控制和微分控制等算法实现温度的控制和调节。
3.显示屏:用于显示当前的温度值、设定值和工作状态。
4.操作按钮:用于设置或调整温度、控制参数以及启动或停止温度控制器。
5.外壳:保护温度控制器的内部电路和元件,同时提供良好的散热条件。
应用温度控制调节仪广泛应用于以下领域:1.工业生产:用于控制生产过程中的温度变化,例如冶金、化工、食品加工等。
2.科学实验:用于精确控制实验室环境的温度、湿度等参数。
3.医疗保健:用于监测和调节医疗设备、手术室、病房等场所的温度。
4.家庭用途:用于调节室内温度、水温、食品储存温度等。
优点温度控制调节仪具有以下优点:1.高精度:温度控制调节仪可以实现高精度的温度控制,通常精度可达到0.1℃或更高。
2.自动化:温度控制器可以自动调节温度,避免人工操作引起的误差和难度。
3.稳定性:温度控制调节仪具有优秀的稳定性和可靠性,长时间使用不易出错或失效。
4.高效节能:温度控制器可以根据实际需要实现有效的节能效果,避免能源浪费和环境污染。
总结温度控制调节仪作为一种重要的电子仪器,在工业生产、科学实验、医疗保健等领域发挥着重要的作用。
它基于热力学原理,通过感知温度变化并采用PID控制算法实现温度的控制和调节。
温度控制调节仪具有高精度、自动化、稳定性和高效节能等优点,为实现科学化的、精确的温度控制提供了有效的技术手段。
温度控制器原理
温度控制器原理温度控制器是一种用于控制温度的设备,它可以通过测量温度并根据设定值来控制加热或冷却设备,以维持温度在设定范围内。
温度控制器广泛应用于各种工业和家用设备中,如烤箱、冰箱、空调、加热器等。
温度控制器的原理是基于反馈控制系统的原理。
反馈控制系统是一种通过测量输出信号并将其与设定值进行比较来控制系统的输入信号的系统。
在温度控制器中,输出信号是温度,输入信号是加热或冷却设备的控制信号。
温度控制器的基本组成部分包括传感器、比较器、控制器和执行器。
传感器用于测量温度,并将其转换为电信号。
比较器将测量到的温度信号与设定值进行比较,并产生一个误差信号。
控制器接收误差信号,并根据设定的控制算法计算出控制信号。
执行器接收控制信号,并控制加热或冷却设备的输出。
温度控制器的控制算法通常包括比例控制、积分控制和微分控制。
比例控制是根据误差信号的大小来控制输出信号的大小,即误差越大,输出信号越大。
积分控制是根据误差信号的积分值来控制输出信号的大小,即误差持续时间越长,输出信号越大。
微分控制是根据误差信号的变化率来控制输出信号的大小,即误差变化越快,输出信号越大。
温度控制器的性能取决于传感器的精度、比较器的精度、控制器的算法和执行器的响应速度。
传感器的精度越高,温度控制器的精度就越高。
比较器的精度越高,误差信号就越小,温度控制器的稳定性就越好。
控制器的算法越复杂,温度控制器的性能就越好。
执行器的响应速度越快,温度控制器的响应速度就越快。
温度控制器的应用范围非常广泛,从家用电器到工业生产设备都可以使用。
在家用电器中,温度控制器用于控制烤箱、冰箱、空调、加热器等设备的温度。
在工业生产中,温度控制器用于控制各种加热或冷却设备的温度,如熔炉、烘干机、冷却塔等。
温度控制器是一种非常重要的控制设备,它可以帮助我们控制温度,保证设备的正常运行。
温度控制器的原理是基于反馈控制系统的原理,它包括传感器、比较器、控制器和执行器等组成部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数电-可调温度控制器
绍兴文理学院电子设
计竞赛
2012年6月5日
作者:郭鹏程程攀邵美才
可调温度控器
【大二组】
目录:
目录: (3)
摘要 (4)
1.方案设计与论证 (5)
2.理论计算与分析 (5)
1.加热电阻功率10%~90%连续可调部分:
(6)
3.电路图 (8)
4.测试方法与测试数据 (11)
5.对测试结果分析总结 (11)
摘要
本设计利用1N4148二极管的正面压降守温度影响的特性,来检测电路加热器的温度是否超过最大值;再通过最大温度值对应的二极管正面压降与一定值压降比较,若加热器温度达到最大值,则比较器输出高电平,比较器的输出接场效应管(IRF540)来控制电路的导通与断开,同时实现加热器功率连续可调并有八档循环控制与显示。
模拟小汽车乘员使用的加热座椅垫功能。
关键词
占空比;PN结;比较器;555多谐振荡器;4051;40161;4511;LM324
1.方案设计与论证
方案一:
一个八选一模拟开关CD4051控制电路输出电压改变,功率电阻两端电压八
档变化。
串联滑动变阻器接入电路控制功率电阻连续变化。
一个四位二进制同步计数器CD40161和一个BCD —7段锁存译码驱动器CD4511通过按键(档位控制)间断闭合使一个共阴7段数码管显示0~7数字实现八档数字显示。
方案二:
555多谐振荡器和电位器通过调节输出电压的占空比使加热电阻的功率从
10%~90%可调。
一个八选一模拟开关CD4051分别对应电阻接入控制555多谐振荡器输出电平占空比使加热电阻的功率1~8档循环调节。
一个四位二进制同步计数器CD40161和一个BCD —7段锁存译码驱动器CD4511通过按键(档位控制)间断闭合使一个共阴7段数码管显示0~7数字实现八档数字显示。
方案二符合设计要求。
2.理论计算与分析
电路断路 调节电位器阻值 555充电时间变化 电阻超温 按键改变阻值 555充电时间变化 占空比改变 电阻功率改变 占空比改变
1.加热电阻功率10%~90%连续可调部分:
①利用一个555多谐振荡器和电位器通过调节输出电压的占空比使加热
电阻的功率从10%~90%可调。
②由于电路中D
1,D
2
的单向导电特性,使电容C的充放电回路分开,调
节电位器,就可调节多谐振荡器的占空比。
VCC通过RA、Ra、D
1
向电容C充电,充电时间为
t
PH ≈0.7(R
A
+R
a
)C
电容器C通过D2、RB、Rb及555中的三极管放电,放电时间为
t
PL ≈0.7(R
B
+R
b
)C
电压输出的占空比为
q(%)=(R
A +R
a
)/( R
A
+ R
B
+ R
a
+ R
b
)×100%
通过调节滑动变阻器改变Ra,Rb改变占空比。
2.加热电阻功率1~8档循环调节部分
①利用一个八选一模拟开关CD4051分别对应电阻接入控制555多谐振荡器输出电平占空比使加热电阻的功率1~8档循环调节。
②模拟开关CD4051的介绍
CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。
③调节原理
按键后,CD4051模拟开关选择不同电阻接入改变555多谐振荡器充放电时间,在同一个周期内加热时间增长,工作电阻功率改变。
3.1~8档循环调节档位指示部分
①利用一个四位二进制同步计数器CD40161和一个BCD—7段锁存译码驱动器CD4511通过按键(档位控制)间断闭合使一个共阴7段数码管显示0~7数字实现八档数字显示。
②四位二进制同步计数器CD40161
本部分显示0~7显示,采用高位置零实现循环显示。
前三位为111是再次按键高位进位1,高位置置数端实现清零。
③BCD-锁存-7段译码驱动器CD4511
CD4511是一个用于驱动共阴极 LED (数码管)显示器的 BCD 码—七段码译码器,特点:具有BCD转换、消隐和锁存控制、七段译码及驱动功能的CMOS 电路能提供较大的拉电流。
可直接驱动LED显示器。
4.电压比较实现电路通断部分
①利用二极管PN结正向电压随温度升高而降低的线性关系,使用LM324同相与反相电压跟随比较输出电压变化控制CMOS场效应管的通断。
温度达到一定值时,场效应管截止,电路断开,加热电阻停止工作。
②PN结正向压降温度特性
晶体二极管或三极管的PN结的结电压是随温度而变化的。
例如硅管的PN 结的结电压在温度每升高1℃时,下降-2mV,利用这种特性,一般可以直接采用二极管(如玻璃封装的开关二极管1N4148)来做PN结温度传感器。
③LM324
LM324为四运放集成电路,采用14脚双列直插塑料封装。
,内部有四个运算放大器,有相位补偿电路。
电路功耗很小,lm324工作电压范围宽,可用正电源3~30V,或正负双电源±1.5V~±15V工作。
它的输入电压可低到地电位,而输出电压范围为O~Vcc。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互单独。
④电压比较
电压比较器可以看作是放大倍数接近“无穷大”的运算放大器。
电压比较器的功能:比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系):
当”+”输入端电压高于”-”输入端时,电压比较器输出为高电平;
当”+”输入端电压低于”-”输入端时,电压比较器输出为低电平;
3.电路图
1.加热电阻功率10%~90%连续可调部分:
电路原理图:
2.加热电阻功率1~8档循环调节部分电路原理图:
3.1~8档循环调节档位指示部分
电路原理图:
4. 电压跟随比较实现电路通断部分电路原理图:
4.测试方法与测试数据
1.测试方法
①将各部分电路连接起来,接入12V直流电流。
②闭合连续调节档开关,观察数码管档位显示,工作信号指示灯是否闪烁及工作电阻是否开始发热。
③改变电位器阻值,观察指示灯闪烁频率变化。
④闭合1~8档循环调节开关,打开连续调节档开关。
观察信号指示灯是否闪烁及工作电阻是否开始发热。
⑤按键增大档位,观察指示灯闪烁频率变化。
⑥各档时将二极管两端温度升高至70℃以上,观察信号指示灯是否闪烁。
2.测试数据
①连续调节档电路连通。
增大电位器连接阻值,信号指示灯发光时间增加,工作电阻功率增大。
②1~8档电路连通。
增大电路档位,数码管循环显示0~7八档,档位增加时,信号指示灯发光时间增加,工作电阻功率增大。
③常温时测得PN结两端电压为0.568V;断路时为0.467V,此时温度为76℃,达到了设计要求。
5.对测试结果分析总结
①在测试过程中,需调节比较器部分电位器阻值,使PN接两端电压达到一定值(0.467V)满足设计温度要求范围内电路断路。
②通过引脚各点之间电压测量,得出结果与理论基本吻合,成品能够完成设计要求,即模拟小汽车加热坐垫功能。
参考文献
[1] 华中科技大学电子技术课程组编,康光华主编. 电子技术基础.数字部分.
第五版.北京: 高等教育出版,2006
[2] 华中科技大学电子技术课程组编,康光华主编. 电子技术基础.模拟部分.
第五版.北京: 高等教育出版,2006。