数字图像处理 图像的频域变换
数字图像处理中的频域滤波数学原理探索
![数字图像处理中的频域滤波数学原理探索](https://img.taocdn.com/s3/m/ef3f19ab80c758f5f61fb7360b4c2e3f5627257a.png)
数字图像处理中的频域滤波数学原理探索数字图像处理是一门涉及图像获取、图像处理和图像分析的学科,其中频域滤波是其中一个重要的技术。
频域滤波通过将图像从空域转换到频域,利用频域的特性对图像进行处理。
本文将探索数字图像处理中的频域滤波的数学原理。
一、傅里叶变换傅里叶变换是频域滤波的基础,它将一个函数表示为正弦和余弦函数的和。
对于一维信号,傅里叶变换可以表示为以下公式:F(u) = ∫[f(x)e^(-i2πux)]dx其中F(u)表示信号f(x)在频率域的表示,u表示频率,x表示空间位置。
对于二维图像,傅里叶变换可以表示为以下公式:F(u,v) = ∬[f(x,y)e^(-i2π(ux+vy))]dxdy其中F(u,v)表示图像f(x,y)在频率域的表示,u和v表示频率,x和y表示图像的空间位置。
二、频域滤波在频域中,对图像进行滤波意味着对图像的频率分量进行操作。
常见的频域滤波操作包括低通滤波和高通滤波。
1. 低通滤波低通滤波器允许通过低频分量,并抑制高频分量。
在图像中,低频分量通常表示图像的平滑部分,而高频分量则表示图像的细节部分。
低通滤波器可以用于去除图像中的噪声和细节,使图像变得更加平滑。
2. 高通滤波高通滤波器允许通过高频分量,并抑制低频分量。
在图像中,高频分量通常表示图像的边缘和纹理部分,而低频分量则表示图像的整体亮度分布。
高通滤波器可以用于增强图像的边缘和纹理特征。
三、频域滤波的步骤频域滤波的一般步骤包括图像的傅里叶变换、滤波器的设计、滤波器与图像的乘积、逆傅里叶变换。
1. 图像的傅里叶变换首先,将原始图像转换为频域表示。
通过对图像进行傅里叶变换,可以得到图像在频率域中的表示。
2. 滤波器的设计根据需要进行滤波器的设计。
滤波器可以是低通滤波器或高通滤波器,具体设计方法可以根据应用需求选择。
3. 滤波器与图像的乘积将滤波器与图像在频域中的表示进行乘积操作。
乘积的结果是滤波后的频域图像。
4. 逆傅里叶变换对滤波后的频域图像进行逆傅里叶变换,将其转换回空域表示。
数字图像处理 -习题2增强-噪声-几何变换-频域变换
![数字图像处理 -习题2增强-噪声-几何变换-频域变换](https://img.taocdn.com/s3/m/e5d17695f61fb7360b4c6573.png)
第三章图像增强一.填空题1. 我们将照相机拍摄到的某个瞬间场景中的亮度变化范围,即一幅图像中所描述的从最暗到最亮的变化范围称为____动态范围__。
2.所谓动态范围调整,就是利用动态范围对人类视觉的影响的特性,将动态范围进行__压缩____,将所关心部分的灰度级的变化范围扩大,由此达到改善画面效果的目的。
3. 动态范围调整分为线性动态范围调整和__非线性调整___两种。
4. 直方图均衡化把原始图的直方图变换为分布均匀的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。
基本思想是:对图像中像素个数多的灰度值进行__展宽_____,而对像素个数少的灰度值进行归并,从而达到清晰图像的目的。
5. 数字图像处理包含很多方面的研究内容。
其中,__图像增强_的目的是将一幅图像中有用的信息进行增强,同时将无用的信息进行抑制,提高图像的可观察性。
6. 灰级窗,是只将灰度值落在一定范围内的目标进行__对比度增强___,就好像开窗观察只落在视野内的目标内容一样。
二.选择题1. 下面说法正确的是:(B )A、基于像素的图像增强方法是一种线性灰度变换;B、基于像素的图像增强方法是基于空间域的图像增强方法的一种;C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图像域的方法计算复杂较高;D、基于频域的图像增强方法比基于空域的图像增强方法的增强效果好。
2. 指出下面正确的说法:(D )A、基于像素的图像增强方法是一种非线性灰度变换。
B、基于像素的图像增强方法是基于频域的图像增强方法的一种。
C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图像域的方法计算复杂较高。
D、基于频域的图像增强方法可以获得和基于空域的图像增强方法同样的图像增强效果。
3.指出下面正确的说法:(D )①基于像素的图像增强方法是一种非线性灰度变换。
②基于像素的图像增强方法是基于空域的图像增强方法的一种。
数字图像处理_图像的频域变换处理
![数字图像处理_图像的频域变换处理](https://img.taocdn.com/s3/m/6c5f2c9de87101f69e3195b0.png)
图像的频域变换处理1 实验目的 1. 掌握Fourier ,DCT 和Radon 变换与反变换的原理及算法实现,并初步理解Fourier 、Radon和DCT 变换的物理意义。
2、 利用傅里叶变换、离散余弦变换等处理图像,理解图像变换系数的特点。
3、 掌握图像的频谱分析方法。
4、 掌握图像频域压缩的方法。
5、 掌握二维数字滤波器处理图像的方法。
2 实验原理1、傅里叶变换 fft2函数:F=fft2(A);fftshift 函数:F1=fftshift(F);ifft2函数:M=ifft2(F);2、离散余弦变换:dct2函数 :F=dct2(f2);idct2函数:M=idct2(F);3、 小波变换对静态二维数字图像,可先对其进行若干次二维DWT 变换, 将图像信息分解为高频成分H 、V 和D 和低频成分A 。
对低频部分A ,由于它对压缩的结果影响很大,因此可采用无损编码方法, 如Huffman 、 DPCM 等;对H 、V 和D 部分,可对不同的层次采用不同策略的向量量化编码方法,这样便可大大减少数据量,而图像的解码过程刚好相反。
(1)dwt2[CA,CH,CV,CD]=dwt2(X,’wname’)[CA,CH,CV,CD]=dwt2(X,LO_D,HI_D’)()()⎰⎥⎦⎤⎢⎣⎡-ψ=dt a b t t Rf a 1b ,a W *()⎪⎭⎫ ⎝⎛-ψ=ψa b t a 1t b ,a 112()00(,)[(,)](,)ux vy M N j M N x y f x y eF f x y F u v π---+====∑∑1100(21)(21)(,)(,)()()cos cos 22M N x y x u y v F u v f x y C u C v M Nππ--==++=∑∑CA 图像分解的近似分量,CH 水平分量,CV 垂直分量,CD 细节分量; dwt2(X,’wname ’) 使用小波基wname 对X 进行小波分解。
数字图像频域变换
![数字图像频域变换](https://img.taocdn.com/s3/m/adfb6ccc5901020206409c23.png)
字
图
象 • 一维连续傅立叶变换:几个概念
处 理
(3)
f(x)的傅立叶相位记为: (u)
基
(u) = tan-1 (I(u) / R(u))
础 (4) 傅立叶变换中的变量u通常称为频率变量
第 三
这个名称源于尤拉公式中的指数项
节
exp[-j2ux] = cos2ux - jsin2ux
频
如果把傅立叶变换的积分解释为离散项的和,则易
基
h(x,y) = f*g = f(m,n)g(x – m, y – n)
础
mn
第
– 相关的定义
三
节
频
h(t) = g(t + )f()d 记为:y = g x
域
-
变
换
第
二
章 数
第三节 频域变换
字
图
象
处 理
• 连续与离散的傅立叶变换
基 础
– 一维连续傅立叶变换
第
– 二维连续傅立叶变换
三 节
-
节
频
=exp(-j2au) f(x-a)exp(-j2ux)exp( j2ua)dx
值域[0,k]的上限(最大值)
换
第
二
章 数
第三节 频域变换:傅立叶变换
字
图
象 • 离散傅立叶变换的显示
处
理
基
础
第 三 节
频 域 变 换
第
二
章 数
第三节 频域变换:傅立叶变换
字
图
象 • 离散傅立叶变换的显示
处
理
基
础
第 三 节
频 域 变 换
第
二
数字图像处理数字图像处理第二章(第二讲)空域变换、频率域变换
![数字图像处理数字图像处理第二章(第二讲)空域变换、频率域变换](https://img.taocdn.com/s3/m/5c8a2740172ded630b1cb6fc.png)
2.1 引言 2.2 空域变换 2.3 频率域变换 2.4 离散余弦变换 2.5 KL变换 2.6 其他正交变换
第二章 常用的数学变换
2.2 空域变换——2.2.2. 遥感影像几何校正 2.2.2.2 几何校正类型
商用遥感数据(如:SPOT-Image, Digital Globe, Space Image)都已消 除了大多数系统误差 。两种常用的几何校正方法:
第二章 常用的数学变换
2.2 空域变换——2.2.2. 几何变换
第二章 常用的数学变换
2.2 空域变换——2.2.2. 几何变换
第二章 常用的数学变换
2.2 空域变换——2.2.2. 几何变换 灰度插值——高阶插值
如果简化计算,仅取原点周围有限范围函数:
第二章 常用的数学变换
2.2 空域变换——2.2.2. 几何变换
2.2.2.2 几何校正类型 ➢ 从影像到影像的配准
从影像到影像的配准 是平移和旋转过程的结合,通过 两幅影像中的同名点进行匹配,使同名地物出现在配准后 的 影像的相同位置。若不需要使每个像元都具有特定的地 图投影坐标(x, y),就可以使用这种纠正方法。例如,我们 可能希望用光标查看两幅不同时相影像是否发生变化。
国家级精品资源共享课
2.2.2.2 几何校正类型
➢ 影像校正/配准的混合方法
影像校正和配准所用的基本原理是相同的。所不同的是:从影像到 地图的校正中,参考的是有标准地图投影的地图;而从影像到影像的配 准中,参考的是另一景影像。 如果采用已校正过的影像(而不是传统地 图)为参考,那么得到的所有配准影像都会带有原参考影像中包含的几 何误差。 因此,高精度地球科学遥感研究中,应采用从影像到地图的 校正。 然而,对两个或多个遥感数据进行精确的变化检测时,选择从 影像到地图的校正和从影像到影像的配准相结合的混合校正法就显得十 分有用。
数字图像处理图像变换与频域处理
![数字图像处理图像变换与频域处理](https://img.taocdn.com/s3/m/f866c4244b35eefdc8d333bd.png)
南京信息工程大学 计算机图像处理 实验(实习)报告 实验(实习)名称 图像变换与频域处理 实验(实习)日期 得分 指导老师 系 专业 班级 姓名 学号一、 实验目的1.了解离散傅里叶变换的基本性质;2.熟练掌握图像傅里叶变换的方法及应用;3.通过实验了解二维频谱的分布特点;4.熟悉图像频域处理的意义和手段;5.通过本实验掌握利用MATLAB 的工具箱实现数字图像的频域处理。
二、 实验原理(一)傅立叶变换傅立叶变换是数字图像处理中应用最广的一种变换,其中图像增强、图像复原 和图像分析与描述等,每一类处理方法都要用到图像变换,尤其是图像的傅立 叶变换。
离散傅立叶(Fourier )变换的定义:二维离散傅立叶变换(DFT )为:逆变换为:式中,在DFT 变换对中, 称为离散信号 的频谱,而 称为幅度谱, 为相位角,功率谱为频谱的平方,它们之间的关系为:图像的傅立叶变换有快速算法。
(二)图像的频域增强常用的图像增强技术可分为基于空域和基于变换域的两类方法。
最常用的变换域是频域空间。
在频域空间,图像的信息表现为不同频率分量的组合。
如果能让某个范围内的分量或某些频率的分量受到抑制而让其他分量不受影响,就可以改变输出图像的频率分布,达到不同的增强目的。
频域增强的工作流程:频域空间的增强方法对应的三个步骤:(1) 将图像f(x,y)从图像空间转换到频域空间,得到F(u,v);(2) 在频域空间中通过不同的滤波函数H(u,v)对图像进行不同的增强,得到G(u,v)(注:不同的滤波器滤除的频率和保留的频率不同,因而可获得不同的增强效果);(3) 将增强后的图像再从频域空间转换到图像空间,得到图像g(x,y)。
),(v u F ),(v u G ),(y x f ∑∑-=-=+-=1010)(2exp ),(1),(M x N y N vy M ux j y x f MN v u F π∑∑-=-=+=101)(2exp ),(1),(M u N v N vy M ux j v u F MN y x f π}1,,1,0{,-∈M x u }1,,1,0{,-∈N y v ),(v u F ),(y x f ),(v u F ),(v u ϕ),(),()],(exp[),(),(v u jI v u R v u j v u F v u F +==ϕ1.低通滤波图像中的边缘和噪声都对应图像傅立叶变换中的高频部分,如要在频域中消弱其影响,设法减弱这部分频率的分量。
2023研究生数字图像处理第3讲数字图像变换
![2023研究生数字图像处理第3讲数字图像变换](https://img.taocdn.com/s3/m/f5ccc3bffbb069dc5022aaea998fcc22bcd143b6.png)
特点:DCT具有较 好的能量压缩能力 和空间局部性
应用:在图像压缩 、图像增强等方面 有广泛应用
与其他变换比较:DCT 相对于傅里叶变换和小 波变换具有更高的压缩 效率和更好的视觉效果
小波变换的基本概念:小波变换是一种 在频率和时间上变化的函数,能够将信 号分解成不同频率和时间尺度的成分。
小波变换的原理:通过将信号与小波函数 进行内积运算,可以得到信号在不同频率 和时间尺度上的分解结果。
图像加密:通过数字图像变换技术,对图像进行加密处理,保护图像的安全性和隐私 性。
图像压缩:利用数字图像变换技术,对图像进行压缩编码,以减少图像存储和传输所 需的存储空间和带宽。
图像增强:通过数字图像变换技术,对图像进行增强处理,提高图像的清晰度和对比 度,改善图像的质量。
图像恢复:利用数字图像变换技术,对受到损坏或降质的图像进行恢复处理,以恢复 其原始质量和清晰度。
数字图像变换在图像处理中的应用 数字图像变换在不同场景下的优缺点 数字图像变换在不同领域的应用案例 数字图像变换在不同场景下的选择与优化建议
数字图像变换的基本原理
实践应用案例展示
添加标题
添加标题
基于DFT的图像去噪算法
添加标题
添加标题
效果评估与比较
DCT(离散余弦变换)的基本原理 基于DCT的图像压缩算法 实验结果及分析 与其他图像压缩方法的比较
小波变换的特点:小波变换具有多分辨率 分析的特点,能够同时获得信号在时间和 频率上的信息。
小波变换的应用:小波变换在数字图像处 理中广泛应用于图像压缩、图像增强、图 像去噪等方面。
傅里叶变换 小波变换 离散余弦变换 哈达玛变换
小波变换的基本原理 小波变换在数字图像处理中的应用 基于小波的变换方法实现过程 小波变换的优势与局限性
数字图像处理教程(OPENCV版)第4章 图像的频域处理
![数字图像处理教程(OPENCV版)第4章 图像的频域处理](https://img.taocdn.com/s3/m/3b3fd14db6360b4c2e3f5727a5e9856a5712264d.png)
10
4.1.2 二维离散傅里叶变换性质
2024/5/9
11
4.1.2 二维离散傅里叶变换叶变换性质
2024/5/9
13
4.1.2 二维离散傅里叶变换性质
2024/5/9
14
4.1.2 二维离散傅里叶变换性质
2024/5/9
15
4.1.2 二维离散傅里叶变换性质
2024/5/9
2
4.1 二维离散傅里叶变换
2024/5/9
3
➢ 通过傅里叶变换可以将对函数的分析转为对构成它的频率成分 进行分析,每个系数代表着其对应频率对函数的贡献量
➢ 二维图像通过傅里叶变换把像素值与空间坐标对应关系转化为 傅里叶变换值与频率之间的关系
2024/5/9
4
4.1.1 二维离散傅里叶变换和反变换
2024/5/9
56
4.6.2 陷波滤波器
➢ 陷波滤波器去除周期噪声示例
2024/5/9
57
4.6.2 陷波滤波器
实际中陷波滤波器设计小窍门
➢ 求图像离散傅里叶变换,将其幅度谱以图像形式显示
➢ 找到频谱图中规律性的离散亮点,这些亮点来自周期性噪声
➢ 两种方法得到陷波滤波器频谱:
① 频谱图是单色的(黑灰白),用彩色点遮盖噪声频谱中心点、或者用彩色块遮盖噪声频谱 ② 交互程序,用鼠标选择陷波区域 ✓ 由于频谱的对称性,建议只用彩色点/块(或鼠标选择区域) 遮盖1、2象限的频谱,后续根
➢ 高通滤波等价于“原图像-原图像低通滤波结果
2024/5/9
33
4.4.1 理想高通滤波器
2024/5/9
34
4.4.1 理想高通滤波器
➢ 理想高通滤波器会产生振铃现象
数字图像处理频域滤波与图像变换
![数字图像处理频域滤波与图像变换](https://img.taocdn.com/s3/m/ae6bd20de87101f69e31953d.png)
实验四频域滤波与图像变换编码实验目的通过实验了解频域高频和低频滤波器对图像处理的效果,了解离散余弦变换在图像变换编码中的作用。
1.载入图像’cameraman.tif’,加入椒盐噪声,编程设计一阶巴特沃斯低通滤波器,改变滤波器的参数,观察并比较滤波效果。
close all;clear all;I1=imread('pout.tif');subplot(2,3,1),imshow(I1);title('原始图像')I2=imnoise(I1,'salt & pepper');subplot(2,3,2)imshow(I2);title('加噪图像');f=double(I2);g=fft2(f);g=fftshift(g);[N1,N2]=size(g);n=1;d0=5;n1=fix(N1/2);n2=fix(N2/2);for i=1:N1for j=1:N2d=sqrt((i-n1)^2+(j-n2)^2);h=1/(1+0.414*(d/d0)^(2*n));result(i,j)=h*g(i,j);endendresult=ifftshift(result);X2=ifft2(result);X3=uint8(real(X2));subplot(2,3,3),imshow(X3);title('Butterworth 低通滤波器,d0=5');d0=11;n1=fix(N1/2);n2=fix(N2/2);for i=1:N1for j=1:N2d=sqrt((i-n1)^2+(j-n2)^2);h=1/(1+0.414*(d/d0)^(2*n));result(i,j)=h*g(i,j);endendresult=ifftshift(result);X2=ifft2(result);X3=uint8(real(X2));subplot(2,3,4),imshow(X3);title('d0=11');d0=25n1=fix(N1/2);n2=fix(N2/2);for i=1:N1for j=1:N2d=sqrt((i-n1)^2+(j-n2)^2);h=1/(1+0.414*(d/d0)^(2*n));result(i,j)=h*g(i,j);endendresult=ifftshift(result);X2=ifft2(result);X3=uint8(real(X2));subplot(2,3,5),imshow(X3);title('d0=25');d0=50n1=fix(N1/2);n2=fix(N2/2);for i=1:N1for j=1:N2d=sqrt((i-n1)^2+(j-n2)^2);h=1/(1+0.414*(d/d0)^(2*n));result(i,j)=h*g(i,j);endendresult=ifftshift(result);X2=ifft2(result);X3=uint8(real(X2));subplot(2,3,6),imshow(X3);title('d0=50');由图可知,由于对噪声模型的估计不准确,使用巴特沃斯滤波器在平滑了噪声的同时,也使图像模糊了,随着截断频率的增加,图像的模糊程度减小,滤除噪声的效果也越来越差。
数字图像处理实验图像频谱分析
![数字图像处理实验图像频谱分析](https://img.taocdn.com/s3/m/7fd030486bec0975f565e275.png)
姓名:朱慧娟班级:电子二班学号:410109060325实验2 图像频谱分析一、实验目的1、了解图像变换的意义和手段。
2、熟悉及掌握图像的变换原理及性质,实现图像的傅里叶变换。
二、实验内容1、分别显示图像Bridge.bmp、cameraman.tif(自带图像)、blood.tif及其频谱,观察图像频谱的特点。
2、生成一幅图像,图像中背景黑色,目标为一亮条;平移亮条,观察其频谱的变化。
3、对lena.bmp图像进行旋转,显示原始图像与旋转后图像,及其傅里叶频谱,分析旋转前、后傅里叶频谱的对应关系。
三、实验程序及结果1.1 实验程序clear; %清除以前实验变量a=imread('e:\ZHJ\Bridge.bmp'); %读入图像Bridge.bmp,并记为ab=imread('cameraman.tif'); %读入图像cameraman.tif,并记为bc=imread('e:\ZHJ\blood.tif'); %读入图像blood.tif,并记为cd=fft2(a); %对图像a进行傅里叶变换,并记为de=fftshift(d); %将变换后图像频谱中心从矩阵的原点移动到矩阵的中心,并记为e A=abs(e); %对e取绝对值,及得到图像a的幅度谱,并记为AB=log(1+A); %对幅度谱A取对数,并记为Bf=fft2(b); %对图像b进行傅里叶变换,并记为fg=fftshift(f); %将变换后图像频谱中心从矩阵的原点移动到矩阵的中心,并记为g C=abs(g); %对g取绝对值,及得到图像b的幅度谱,并记为CD=log(1+C); %对幅度谱C取对数,并记为Dh=fft2(c); %对图像c进行傅里叶变换,并记为hi=fftshift(h); %将变换后图像频谱中心从矩阵的原点移动到矩阵的中心,并记为i E=abs(i); %对i取绝对值,及得到图像c的幅度谱,并记为EF=log(1+E); %对幅度谱E取对数,并记为Ffigure(1); %建立图表1subplot(2,1,1); %将图表1分成两部分,第一部分imshow(a); %显示图像atitle('Bridge.bmp'); %给图像a加标题‘Bridge.bmp’subplot(2,1,2); %将图表1分成两部分,第二部分imshow(B,[]); %显示B即图像a的频谱图title('Bridge.bmp频谱图'); %给图像B加标题‘Bridge.bmp频谱图’figure(2); %建立图表2subplot(2,1,1); %将图表2分成两部分,第一部分imshow(b); %显示图像btitle('cameraman.tif'); %给图像b加标题‘cameraman.tif’subplot(2,1,2); %将图表2分成两部分,第二部分imshow(D,[]); %显示D即图像b的频谱图title('cameraman.tif频谱图'); %给图像D加标题‘cameraman.tif频谱图’figure(3); %建立图表3subplot(2,1,1); %将图表3分成两部分,第一部分imshow(c); %显示图像ctitle('blood.tif'); %给图像c加标题‘blood.tif’subplot(2,1,2); %将图表3分成两部分,第二部分imshow(F,[]); %显示F即图像c的频谱图title('blood.tif频谱图'); %给图像F加标题‘blood.tif频谱图’1.2 实验结果2.1 实验程序clear; %清除以前实验变量A= zeros(256,256); %建立行列都是256的0矩阵,即建立黑色图,并记为AA(10:20,:)=256; %矩阵A中第十到二十行数据改为256,即在黑色图像上加上亮条纹B=circshift(A,[50, 0]); %将矩阵A行向移动50行,得到新矩阵记为Ba=fft2(A); %对矩阵A进行傅里叶变换,并记为ab=fftshift(a); %将变换后图像频谱中心从矩阵的原点移动到矩阵的中心,并记为b M=abs(b); %对b取绝对值,及得到矩阵A的幅度谱,并记为MN=log(1+M); %对幅度谱M取对数,并记为Nc=fft2(B); %对矩阵B进行傅里叶变换,并记为cd=fftshift(c); %将变换后图像频谱中心从矩阵的原点移动到矩阵的中心,并记为d S=abs(d); %对d取绝对值,及得到矩阵B的幅度谱,并记为ST=log(1+S); %对幅度谱S取对数,并记为Tfigure; %建立图表subplot(2,2,1); %将图表分成四部分,第一部分imshow(A); %显示图像Atitle('原图像'); %给所显示图像加标题‘原图像’subplot(2,2,2); %将图表分成四部分,第二部分imshow(B); %显示图像Btitle('平移后图像'); %给所显示图像加标题‘平移后图像’subplot(2,2,3); %将图表分成四部分,第三部分imshow(N,[]); %显示图像A的频谱图title('原图像频谱图'); %给所显示图像加标题‘原图像频谱图’subplot(2,2,4); %将图表分成四部分,第四部分imshow(T,[]); %显示图像B的频谱图title('平移后图像频谱图'); %给所显示图像加标题‘平移后图像频谱图’2.2 实验结果3.1 实验程序clear; %清除以前实验变量a=imread('e:\ZHJ\lena.bmp'); %读入图像lena.bmp,并记为ab=imrotate(a,-45); %将图像a顺时针旋转45度c=fft2(a); %对图像a进行傅里叶变换,并记为cd=fftshift(c); %将变换后图像频谱中心从矩阵的原点移动到矩阵的中心,并记为d A=abs(d); %对d取绝对值,及得到图像a的幅度谱,并记为AB=log(1+A); %对幅度谱A取对数,并记为Be=fft2(b); %对图像b进行傅里叶变换,并记为ef=fftshift(e); %将变换后图像频谱中心从矩阵的原点移动到矩阵的中心,并记为f C=abs(f); %对f取绝对值,及得到图像b的幅度谱,并记为CD=log(1+C); %对幅度谱C取对数,并记为Dfigure; %建立图表subplot(2,2,1); %将图表分成四部分,第一部分imshow(a); %显示图像atitle('原图像'); %给所显示图像加标题‘原图像’subplot(2,2,2); %将图表分成四部分,第二部分imshow(b); %显示图像btitle('旋转后图像'); %给所显示图像加标题‘旋转后图像’subplot(2,2,3); %将图表分成四部分,第三部分imshow(B,[]); %显示图像a的频谱图title('原图像频谱图'); %给所显示图像加标题‘原图像频谱图’subplot(2,2,4); %将图表分成四部分,第四部分imshow(D,[]); %显示图像b的频谱图title('旋转后平移后图像频谱图'); %给所显示图像加标题‘旋转后平移后图像频谱图’3.2 实验结果四、思考题1.图像频谱有哪些特点?答:频谱图,四个角对应低频成分,中央部分对应高频成分;图像亮条的平移影响频谱的分布,但当频谱搬移到中心时,图像亮条的平移后频谱图是相同的。
数字图像处理——图像频域变换
![数字图像处理——图像频域变换](https://img.taocdn.com/s3/m/4b5f2921eff9aef8941e068a.png)
图像频域变换_离散余弦变换
离散余弦变换的频谱分布
程序:DCTFFT.m DCTspectrum.m
离散余弦变换之后的图像左上角对应于频谱的低频成分,最亮。
图像频域变换_离散余弦变换
离散余弦变换总结
(1)离散余弦变换相对于傅立叶变换而言,只有实数运算,没有复数运算,计 算量大大降低。 (2)离散余弦变换是可分离的变换,其变换核为余弦函数,且正反变换核相同。
u 0 v 0 M 1 N 1
2 x 1 u cos 2 y 1 v
2M 2N 2M 2N
2 x 1 u cos 2 y 1 v
式中:
u, x 0,1, 2, v, y 0,1, 2,
1 M a u 2 M
根据二维离散余弦变换核可以分离性,一般将二维DCT变换可以分成两个一维 DCT变换来完成:
f x, y F行 f x, y F x, v
T T T 转置 F x, v F列 f x, v F u, v 转置 F u, v
f t e j2t dt
j2 t
f t t k T e
dt
f t t k T e j2t dt
f k T e j2 k T
周期为 1 T
图像频域变换_傅里叶变换
f t e j t dt
o
t
F
1
t e j t dt f 0 1
单位冲激串
-
o
sT
sT t
第四章数字图像的变换域处理
![第四章数字图像的变换域处理](https://img.taocdn.com/s3/m/95832943700abb68a882fb44.png)
Lena图像的移动后的频谱结果显示于图4.2中,对比图4.2与图4.1(b),可以看出其移动效果。
例4.1利用卷积定理计算两个矩阵A、B的卷积
>>[M,N]=size(A);
>>[P,Q]=size(B);
>>p1=M+P-1;
>>q1=N+Q-1;
>>A1=fft2(A,p1,q1);
>>T=dctmtx(n);
函数返回值T为 的变换核矩阵,对于 的方阵A,可以使用矩阵运算B=T*A*D’计算其DCT变换。
例4.3利用Dctmtx()函数编程实现对Lena图片计算其离散余弦变换。
>>f=imread('E:\matlab7\lena.bmp');
>>g=rgb2gray(f);
一维离散线性变换可以表示为变换矩阵形式,对于一个 的向量 ,其离散线性变换可以表示为:
(4-21)
其中, 为变换结果, 为 的变换矩阵,如果 矩阵是非奇异的,其逆矩阵 存在,其逆变换可以表示为:
(4-22)
如果逆矩阵 等于变换矩阵的 共轭转置,有
(4-23)
则称 矩阵为酉矩阵,对应的变换为酉变换。离散傅里叶变换的也可写成式(4-21)的矩阵表示,变换矩阵 为:
>>B1=fft2(B,p1,q1);
>>C=A1.*B1;
>>C1=ifft2(C);
其中fft2(A,p1,q1)是将图像A扩展为 矩阵后再计算其傅里叶变换。
4.2离散余弦变换
4.2.1离散余弦变换
离散余弦变换(Discrete CosineTransform, DCT)的变换基矢量为余弦函数,一维离散余弦变换的基矢量为:
频域分析在数字图像处理中的应用
![频域分析在数字图像处理中的应用](https://img.taocdn.com/s3/m/d865a5df846a561252d380eb6294dd88d0d23d29.png)
频域分析在数字图像处理中的应用随着数字技术的不断发展,数字图像处理技术越来越成熟。
频域分析是数字图像处理中一种常用的基于时域的方法之一。
在图像处理中,频域分析可以用来分析和识别图像中的特征。
频域分析可以通过将原始图像变换为频率域图像来达到这一目的。
频域分析是一个广泛的概念,涉及到很多技术和算法。
本文将重点讨论如何利用频域分析来处理数字图像。
我们将从以下几个方面来介绍频域分析在数字图像处理中的应用。
一、基本概念频域分析是一种将信号表示为频率成分的过程。
它可以将时域信号转换为频域信号,从而实现对信号特征的识别和分析。
在数字图像处理中,频域分析的基本原理是将图像转换为频率域,以便更好地理解和处理图像。
这种转换可以使用傅里叶变换或小波变换等技术来实现。
二、频域滤波频域滤波是数字图像处理中最常用的应用之一。
它利用频率分析技术来去除图像中的噪声、增强图像的细节和特征。
频域滤波可以分为低通滤波和高通滤波两种。
低通滤波可以去除图像中的高频成分,从而平滑图像。
高通滤波可以去除图像中的低频成分,从而强调图像中的细节和特征。
这些滤波器可以通过傅里叶变换进行设计和实现。
三、频域变换频域变换可以将图像从时域转换为频率域。
这种转换可以通过傅里叶变换、小波变换和离散余弦变换等技术来实现。
这些变换可以将图像中的信号分离为不同的频率成分,从而更好地理解和处理图像。
在频域分析中,傅里叶变换和小波变换是最常用的方法。
四、特征提取频域分析可以用来提取图像中的特征。
这些特征可以包括灰度分布、纹理、形状等。
这些特征可以用来识别目标、分类和匹配。
在脸部识别和指纹识别等领域,频域分析的特征提取技术已经得到广泛应用。
结论:总之,频域分析在数字图像处理中有着广泛的应用。
通过频域分析,可以更好地理解和处理图像。
目前,各种频域分析技术正在不断发展和改进。
可以预见,随着技术的不断更新,频域分析将在数字图像处理中发挥越来越重要的作用。
实验三 图像的频域变换
![实验三 图像的频域变换](https://img.taocdn.com/s3/m/3b140fea910ef12d2af9e7ae.png)
<数字图像处理数学方法>实验报告实验三图像的频域变换专业:信息与计算科学班级:学号:姓名:二〇一五年十二月二日实验目的1、了解数字图像频域变换的目的;2、熟悉DFT、DCT变换的频谱特征;3、掌握数字图像FFT、DCT变换的方法实验内容在Matlab下读入一幅图像,对其灰度图作快速傅立叶变换;在Matlab下读入一幅图像,对其灰度图作DCT变换;试将DCT变换后的系数做一些修改,并说明修改的意义,以及拟得到的结果;将修改后的系数进行逆变换,对照原图观察图像结果变化,并分析。
实验步骤及分析一、在Matlab下读入一幅图像,对其灰度图作快速傅立叶变换;1、设置当前工作目录打开Matlab,从“文件”菜单选择“Set Path”,弹出“Set Path”窗体,单击“Add Folder…”按钮或“Add with Subfolders…”按钮,弹出“浏览文件夹”窗口,选择自己的文件夹添加到当前工作目录中,点击“确定”,返回到“Set Path”窗体,依次点击“Save”按钮、“Close”按钮,完成当前工作目录的设置。
2、使用imread函数读入一幅图像。
使用rgb2gray(I)函数将读入的图像I转换成灰度图像I使用subplot()函数和imshow()函数显示图像。
3、快速傅立叶变换A=abs(fft_I);将频谱矩阵元素归一化到0~255 A=(A-min(min(A)))/(max(max(A))-min(min(A)))*255;4、使用subplot()函数和imshow()函数显示图像。
二、在Matlab下读入一幅图像,对其灰度图作DCT变换;1、设置当前工作目录打开Matlab,从“文件”菜单选择“Set Path”,弹出“Set Path”窗体,单击“Add Folder…”按钮或“Add with Subfolders…”按钮,弹出“浏览文件夹”窗口,选择自己的文件夹添加到当前工作目录中,点击“确定”,返回到“Set Path”窗体,依次点击“Save”按钮、“Close”按钮,完成当前工作目录的设置。
图像编码中的频域处理技术介绍(一)
![图像编码中的频域处理技术介绍(一)](https://img.taocdn.com/s3/m/d1cde6e27e192279168884868762caaedc33ba43.png)
图像编码中的频域处理技术介绍随着数字图像的广泛应用,图像编码技术在图像传输、存储和处理中发挥着重要作用。
频域处理是图像编码中的重要技术之一,通过将图像从时域转换到频域,可以更好地理解和描述图像的特征。
本文将介绍图像编码中的频域处理技术,包括离散余弦变换(DCT)、小波变换以及其应用。
一、离散余弦变换(DCT)离散余弦变换(DCT)被广泛用于图像和视频的压缩编码。
DCT通过将图像从空间域转换到频域,将图像分解为不同频率的分量,以此达到压缩图像的目的。
在DCT中,图像被分割成若干个非重叠的小块,对每个小块进行二维离散余弦变换。
这样可以将图像的大部分能量集中在低频分量上,从而使得高频分量被大幅度抑制,实现了图像的压缩。
二、小波变换小波变换是一种时间域和频域表示的统一变换方法,它使得图像的不同频率分量能够以不同的时间分辨率进行表示。
通过小波变换,可以得到图像在不同频率和时间分辨率上的信息,从而更好地描述图像的细节和结构。
小波变换的基函数是由平移和缩放产生的小波基,它可以将图像分解为一个低频部分(近似分量)和若干个不同频率的高频部分(细节分量)。
这样可以实现图像的分级表示,便于图像的压缩和传输。
三、频域处理的应用频域处理在图像编码中有着广泛的应用。
首先,DCT和小波变换可以作为图像的预处理方法,通过变换将图像转换到频域,可以降低图像的冗余性,减少图像的信息量,从而实现图像的压缩和传输。
其次,频域处理可以用于图像增强和图像复原。
通过观察和分析图像在频域上的特征,可以增强图像的对比度和细节,改善图像的质量。
同时,在图像复原中,通过对图像的频域分析和处理,可以对模糊图像进行恢复和重建,提高图像的清晰度和可视性。
除了图像编码领域,频域处理技术还被广泛应用于其他领域。
在音频处理中,离散余弦变换被广泛应用于音频信号的压缩和编码。
在数据挖掘和模式识别中,小波变换被用于特征提取和数据分析。
在通信和信号处理中,频域分析可以用于信号去噪和信号恢复。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题的提出
人类视觉所感受到的是在空间域和时间域的 信号。
但是,往往许多问题在频域中讨论时,有其 非常方便分析的一面。例如,空间位置上的 变化不改变信号的频域特性。
图像变换的前提条件
首先,提出的变换必须是有好处的,换句话 说,可以解决时域中解决不了的问题。
其次,变换必须是可逆的,可以通过逆变换 还原回原时域中。
本章讨论的内容
二维离散傅立叶变换 快速傅立叶变换 二维离散傅立叶变换的应用 离散余弦变换
作 业(共1题)
1. 第230页 第1题。源自