入侵检测技术综述

合集下载

入侵检测技术研究综述

入侵检测技术研究综述

入侵检测技术研究综述提要本文介绍入侵及入侵检测的概念,分析各种入侵检测技术与特点。

关键词:入侵;异常数据;入侵检测中图分类号:F49 文献标识码:A近年来,计算机网络的高速发展和应用,使网络安全的重要性也日益增加。

如何识别和发现入侵行为或意图,并及时给予通知,以采取有效的防护措施,保证系统或网络安全,这是入侵检测系统的主要任务。

一、入侵及入侵检测入侵是指任何企图危及计算机系统资源的完整性、机密性和可用性或试图越过计算机或网络安全机制的行为。

入侵不仅包括发起攻击的人取得超出合法范围的系统控制权,也包括收集漏洞信息,造成拒绝服务等对计算机系统造成危害的行为。

入侵检测顾名思义,是对入侵行为的发觉,它是为保证计算机系统的安全而设计与配置的一种能够及时发现并报告系统中未授权或异常现象的技术,是一种用于检测计算机网络中违反安全策略行为的技术。

二、入侵检测系统的分类入侵检测系统的任务是在所提取到的大量检测数据中找到入侵的痕迹。

入侵分析过程需要将提取到的事件与入侵检测规则进行比较,以判断是否发生入侵行为。

一方面IDS需要尽可能多地提取数据以获得足够的入侵证据;另一方面由于入侵行为的多变性和复杂性而导致判定入侵的规则越来越复杂。

对于入侵检测系统,可以根据所采用的审计数据源、检测策略、检测的实时性、对抗措施、体系结构等方面进行不同的分类。

(1)依据审计数据源的不同可将IDS分为基于网络的IDS与基于主机的IDS;(2)从入侵检测的策略来看,可以分为滥用检测与异常检测;(3)按IDS处理数据的实时性,可以分为实时检测与事后检测;(4)从入侵检测系统的对抗措施来看,可以分为主动系统与被动系统;(5)从入侵检测系统的体系结构来看,可以分为集中式系统与分布式系统。

三、入侵检测主要研究技术目前,在IDS研究领域的主要研究方向包括IDS的性能评价、IDS集成中通用的通讯格式、面向大规模分布式网络的IDS框架以及采用一些最新的智能技术来识别新型未知攻击。

网络安全中的入侵检测技术综述

网络安全中的入侵检测技术综述

网络安全中的入侵检测技术综述网络安全是当前社会发展的重要方向之一,而网络入侵成为了网络安全的一个重要问题。

随着互联网的普及和发展,网络入侵手段也日益复杂多样化。

为了保护网络的安全,提高网络系统的防御能力,入侵检测技术应运而生。

本文将对网络安全中的入侵检测技术进行综述。

一、入侵检测技术的发展历程网络入侵检测技术起源于20世纪80年代,那时主要是基于对网络流量的分析进行入侵检测。

随着技术的进步,入侵检测技术从最初的基于规则的检测方法逐渐发展到了基于特征、行为和机器学习等方法。

目前,入侵检测技术已经成为了网络安全体系中不可缺少的一部分。

二、入侵检测技术的分类根据入侵检测技术的不同方式和目标,可以将其分为两大类,即基于签名的入侵检测和基于行为的入侵检测。

基于签名的入侵检测主要通过事先确定的规则和模式来识别已知的入侵行为,而基于行为的入侵检测则通过监测系统的行为特征来发现异常和潜在的入侵行为。

三、基于签名的入侵检测技术基于签名的入侵检测技术是一种传统的检测方法,其核心思想是通过与已知的入侵特征进行比对,寻找与之匹配的特征。

这种方法具有检测准确率高的优点,但对于未知的入侵行为无法进行有效的检测。

常用的基于签名的入侵检测系统有Snort、Suricata等。

四、基于行为的入侵检测技术基于行为的入侵检测技术研究的是系统和用户的行为特征,通过建立正常行为模型和异常行为模型来检测入侵行为。

这种方法适用于未知入侵和变异性入侵的检测,但在实际应用中存在误报率高的问题。

常用的基于行为的入侵检测系统有Bro、Snort、Suricata等。

五、机器学习在入侵检测中的应用机器学习在入侵检测中发挥了重要作用,通过训练算法和模型,能够对网络流量数据进行分析和预测。

在现实场景中,机器学习的应用能够提高入侵检测的准确率和实时性。

常用的机器学习算法包括决策树、支持向量机和神经网络等。

六、入侵检测技术的挑战与未来发展网络环境的复杂性和入侵手段的多样化给入侵检测技术带来了许多挑战。

网络入侵检测技术综述

网络入侵检测技术综述

网络入侵检测技术综述网络入侵检测技术综述随着信息技术的迅猛发展和互联网的广泛应用,网络安全问题成为了人们关注的焦点。

其中,网络入侵是指未经授权侵入他人计算机系统的行为,给网络系统带来了极大的威胁。

为了保障网络安全,人们提出了网络入侵检测技术。

本文将综述网络入侵检测技术的发展和应用。

网络入侵检测技术是在计算机网络系统中载入入侵检测系统,并通过对网络流量、日志记录、包头、外部事件等数据进行分析、监控和实时判断的方法,来检测和识别网络中的入侵行为。

根据检测方法的不同,可以将入侵检测技术分为基于特征的检测、基于异常的检测和基于机器学习的检测。

基于特征的检测技术主要是通过对网络流量、网络数据包等进行特征提取和匹配,从而判断是否存在入侵行为。

这种方法依赖于已知的入侵特征库,通过比对特征库中的特征和实时获取的数据特征,来判定网络是否存在入侵。

该方法的优点是准确性高,能够对已知的入侵行为进行有效检测和防御。

但是,缺点也非常明显,即无法对未知的入侵行为进行检测和应对。

基于异常的检测技术是通过建立和学习网络正常行为的模型,来检测网络中的异常行为。

异常行为是指与正常行为有明显差异的网络流量、数据包等。

这种方法的优点是能够对未知的入侵行为进行检测和防御,具有较高的自适应性。

但是,缺点是在建立正常行为模型时需要耗费大量的时间和计算资源,且对于复杂的网络环境和大规模网络系统的应用效果不佳。

基于机器学习的检测技术是近年来发展起来的一种新型检测方法。

通过对大量的网络数据进行学习和训练,建立起网络行为的模型。

然后,通过模型对实时获取的网络数据进行分类和判断,从而检测和识别网络入侵行为。

优点是能够实现对未知入侵行为的检测和自动化的防御措施。

然而,缺点是对于网络数据的学习和训练时间较长,且对于大规模网络系统的应用还面临着一定的挑战。

除了上述的入侵检测技术之外,还有一些新兴的技术正在逐渐应用到网络入侵检测中。

比如说,深度学习技术、云计算、大数据分析等。

网络入侵检测技术综述

网络入侵检测技术综述

网络入侵检测技术综述[摘要]入侵检测就是对计算机网络和计算机系统的关键结点的信息进行收集分析,检测其中是否有违反安全策略的事件发生或攻击迹象,并通知系统安全管理员。

一般把用于入侵检测的软件,硬件合称为入侵检测系统(Intrusion Detection System)。

入侵检测是计算机安全领域的一个重要技术,也是当前计算机安全理论研究的一个热点。

[关键词]入侵入侵检测IDS 神经网络一、入侵检测技术简介James Aderson在1980年首先提出了入侵检测的,将入侵尝试或威胁定义为:潜在的有预谋未经授权访问信息、操作信息、致使系统不可靠或无法使用的企图。

入侵(Intrusion)指的就是试图破坏计算机保密性,完整性,可用性或可控性的一系列活动。

入侵活动包括非授权用户试图存取数据,处理数据,或者妨碍计算机的正常运行。

入侵检测(Intrusion Detection),顾名思义,是指对入侵行为的发觉。

它通过在计算机网络或计算机系统中的若干关键点收集信息并对收集到的信息进行分析,从而判断网络或系统中是否有违反安全策略的行为和被攻击的迹象。

完成入侵检测功能的软件、硬件组合便是入侵检测系统(Intrusion Detection System,简称IDS)。

入侵检测系统包括三个功能部件:提供事件记录流的信息源;发现入侵迹象的分析引擎;基于分析引擎的结果产生反应的响应部件。

二、入侵检测的功能及原理一个入侵检测系统,至少应该能够完成以下五个功能:监控、分析用户和系统的活动;检查系统配置和漏洞;评估系统关键资源和数据文件的完整性;发现入侵企图或异常现象;记录、报警和主动响应。

因此,入侵检测技术就是一种主动保护自己免受黑客攻击的一种网络安全技术。

入侵检测技术能够帮助系统对付网络攻击,扩展了系统管理员的安全管理能力(包括安全审计、监视、入侵识别和响应),提高了信息安全基础结构的完整性。

它能够从计算机网络系统中的若干关键点收集信息,并分析这些信息,看看网络中是否有违反安全策略的行为和遭到袭击的迹象。

网络安全中的入侵检测技术综述

网络安全中的入侵检测技术综述

网络安全中的入侵检测技术综述网络安全是当今社会中的一个重要议题,随着互联网的普及和信息技术的迅速发展,网络攻击和入侵事件屡见不鲜。

为了保护网络系统和用户的安全,研究人员和安全专家们积极探索各种入侵检测技术。

本文将综述几种常见的入侵检测技术,并分析它们的特点和应用。

一、入侵检测技术的概念入侵检测技术(Intrusion Detection Technology)是指通过对网络通信流量、系统日志、主机状态等进行监控和分析,及时发现和识别已发生或即将发生的入侵行为。

其目的是快速准确地发现并阻止潜在的安全威胁,保护网络系统和用户的数据安全。

二、基于签名的入侵检测技术基于签名的入侵检测技术(signature-based intrusion detection)是一种传统而有效的检测方法。

它通过预定义的规则集合,检测网络流量中是否存在已知的攻击模式。

这种技术的优点在于准确率高,适用于已知攻击的检测。

然而,缺点也显而易见,就是无法检测未知攻击和变异攻击。

三、基于异常行为的入侵检测技术基于异常行为的入侵检测技术(anomaly-based intrusion detection)通过建立正常行为模型,检测网络流量中的异常行为。

相比于基于签名的方法,这种技术更具有普遍性,能够发现未知攻击。

然而,误报率较高是其主要问题之一,因为正常行为的变化也会被误判为异常。

四、混合型入侵检测技术为了克服单一方法的局限性,许多研究者提出了混合型入侵检测技术。

这些方法综合了基于签名和基于异常行为的特点,在检测效果上有所提高。

其中,流量分析、机器学习、数据挖掘等技术的应用,使得混合型入侵检测技术更加精准和智能化。

五、网络入侵检测系统的架构网络入侵检测系统(Intrusion Detection System,简称IDS)是实现入侵检测的关键组件。

其整体架构包括数据采集、数据处理、检测分析、警报响应等模块。

数据采集模块负责收集网络流量、日志信息等数据;数据处理模块负责对采集到的数据进行预处理和分析;检测分析模块负责使用各种入侵检测技术进行实时监测和分析;警报响应模块负责生成报警信息并采取相应的应对措施。

基于机器学习的网络入侵检测技术综述

基于机器学习的网络入侵检测技术综述

基于机器学习的网络入侵检测技术综述1. 总论网络安全已成为现代社会的一个重要问题。

随着网络技术的发展,网络入侵问题日益复杂。

作为一种被动的网络防御技术,网络入侵检测技术在网络安全中既起到保护网络资源和信息的作用,也是网络安全的重要组成部分。

而机器学习作为智能化的技术手段,提供了智能化的网络入侵检测方案。

本文将对基于机器学习的网络入侵检测技术进行综述,并进行归类分析和比较。

2. 基础知识2.1 网络入侵检测技术网络入侵检测技术是通过模拟网络攻击行为,对网络流量进行特征提取和分析,从而识别恶意流量和网络攻击行为的一种技术手段。

可分为基于特征匹配、基于自动规则生成和基于机器学习的三种类型。

基于学习的网络入侵检测系统是通过机器学习技术训练出网络入侵检测模型,然后对流量进行分类,从而更好地检测网络攻击。

2.2 机器学习机器学习是一种通过对专门设计的算法,使计算机能够自主学习的技术。

它的主要任务是从已知数据(历史数据)中学习特征,使其能够更准确地对未知数据(未知流量)进行分类预测。

主要分为有监督学习、无监督学习和半监督学习三种类型。

3. 基于机器学习的网络入侵检测技术3.1 基于分类算法3.1.1 支持向量机支持向量机(SVM)是一类二分类模型,它的基本思想是找到一个好的超平面对数据进行划分,使得分类误差最小。

与其他分类算法不同,支持向量机将数据空间转换为高维空间来发现更有效的超平面,以达到更好的分类效果。

在网络入侵检测中,SVM主要应用于对已知流量进行分类,进而识别未知流量是否是恶意流量。

同时,SVM还可以通过简化流量特征提取的复杂性,优化特征集。

3.1.2 决策树决策树是一种机器学习算法,可以进行分类和回归预测。

决策树使用树形结构来表示决策过程,树的每个节点代表一个特征或属性,每个分支代表一个该特征的取值或一个属性取值的集合。

在网络入侵检测中,决策树算法可识别不同类型的网络攻击,并为网络安全工程师提供必要的信息和分析结果,以支持决策制定。

信息安全中的网络入侵检测与防御技术综述

信息安全中的网络入侵检测与防御技术综述

信息安全中的网络入侵检测与防御技术综述随着互联网的快速发展,各种网络安全威胁也不断涌现,网络入侵成为了一项严峻的挑战。

网络入侵指未经授权的访问和使用计算机系统或网络的行为,旨在获取非法收益或破坏目标系统的完整性和可用性。

为了防范网络入侵,信息安全领域涌现出许多先进的网络入侵检测与防御技术。

本文将全面综述这些技术,并探讨未来的发展趋势。

网络入侵检测系统(IDS)是一种被动的安全工具,用于检测和响应网络中的潜在攻击。

IDS可以分为基于主机的IDS(HIDS)和基于网络的IDS(NIDS)两类。

HIDS主要集中在单台主机上的入侵检测和分析,通过监听和分析主机上的行为和活动来发现入侵行为,例如异常文件修改、进程执行等。

NIDS则主要关注整个网络通信流量的监控与分析,通过对流量特征和协议的分析来检测入侵行为,例如端口扫描、恶意代码传输等。

入侵检测技术根据检测方式可以分为基于签名、基于异常和基于机器学习的方法。

基于签名的检测方法依赖于已知攻击的特征和模式,通过与预先设置的签名进行匹配来判断是否有入侵行为。

这种方法在检测已知攻击方面效果良好,但对于新型攻击缺乏有效性。

基于异常的检测方法通过建立系统的正常行为模型,当检测到系统行为与模型存在显著偏差时,识别为入侵行为。

这种方法适用于未知攻击的检测,但容易受到误报的影响。

基于机器学习的检测方法利用机器学习算法,通过对大量数据的学习和训练来构建模型,从而检测网络入侵。

这种方法综合考虑了签名和异常方法的优势,可以有效检测新型攻击,并减少误报的产生。

网络入侵防御技术主要包括网络边界防御、主机防御和应用防御。

网络边界防御的目标是在网络与互联网之间建立一道防火墙,限制来自外部的恶意流量。

主机防御是在每台主机上设置防火墙和入侵防御系统,以保护主机免受攻击。

应用防御是指在应用程序层面上进行保护,常见的应用防御技术包括访问控制、数据加密和漏洞修复等。

综合运用这些防御技术可以提高整个网络的安全性和抗攻击能力。

网络安全中的入侵检测与防范技术综述

网络安全中的入侵检测与防范技术综述

网络安全中的入侵检测与防范技术综述一、绪论当前的网络普及使得人们在工作和生活中都离不开互联网,然而网络中却存在着各种各样的威胁,如网络黑客、病毒、恶意软件等,这些威胁可能会危及网络中的运行、数据的安全以及用户的隐私等,因此,对于网络安全的重视与加强也日益凸显。

而在各种网络安全技术中,入侵检测与防范技术被认为是目前网络安全领域的重要组成部分。

二、入侵检测技术入侵检测技术主要是指通过对网络流量数据进行实时的监控与检测,识别出可能的入侵行为并进行相应的响应和处理。

入侵检测技术主要包括基于规则的入侵检测和基于机器学习的入侵检测两种方式。

1.基于规则的入侵检测技术基于规则的入侵检测技术是指通过制定一系列的规则,根据已知的攻击特征,来对网络流量数据进行分析和判断,识别出可能的入侵行为。

该技术具有较高的效率和实时性,但由于其过分依赖人工定义的规则,导致其无法对于新颖的攻击进行准确识别,同时需要经常对规则进行升级与调整。

2.基于机器学习的入侵检测技术基于机器学习的入侵检测技术是指通过对网络流量数据进行建模和学习,从中发现攻击的特征,然后将其与已知攻击特征进行匹配,以便对网络攻击事件进行识别和分类。

该技术具有较高的准确性和可扩展性,可以处理大量的数据,发现新型攻击的能力较强,但同时也需要较大的数据训练集,可能存在误判和漏报等问题。

三、入侵防范技术除了入侵检测技术之外,入侵防范技术也是网络安全领域中不能忽视的技术之一,它主要是针对当前已知的攻击,采取一系列措施进行防范。

目前常用的入侵防范技术包括:1.网络访问控制技术该技术通过对网络中的用户和设备进行身份管理和访问权限的限制,可以有效防止非法用户对网络的攻击和入侵。

2.漏洞管理技术漏洞管理技术是指针对软件或系统中存在的安全漏洞进行管理和修补,以减少攻击者利用漏洞的机会。

3.网络安全审计技术该技术通过对网络中的操作和流量数据进行记录和分析,可以对网络中的各种问题和风险进行有效的监控和管理。

网络安全中的入侵检测与响应技术研究综述

网络安全中的入侵检测与响应技术研究综述

网络安全中的入侵检测与响应技术研究综述随着互联网的迅猛发展,网络安全问题也日益凸显。

网络入侵作为一种常见的攻击手段,给个人、企业和国家的信息资产造成了巨大的威胁。

因此,网络安全中的入侵检测与响应技术成为了一个研究热点。

本文将对该领域的研究现状进行综述,并探讨未来的发展方向。

入侵检测是指对网络中的异常行为进行监测和识别,以便及时采取相应的措施。

传统的入侵检测系统主要依靠规则匹配和特征识别,但由于攻击手段的多样性和隐蔽性,这些方法已经不再适应当前复杂的网络环境。

因此,研究人员提出了一系列新的入侵检测技术。

一种常见的新型入侵检测技术是基于机器学习的方法。

这些方法通过对大量的数据进行训练和学习,以识别网络中的异常行为。

其中,基于支持向量机(SVM)和人工神经网络(ANN)的方法是应用最广泛的。

SVM基于数学模型,通过构建一个最优的超平面来实现分类任务。

而ANN则模拟了人脑中的神经元,可以学习并识别复杂模式。

此外,还有一些基于深度学习的方法,如卷积神经网络(CNN)和循环神经网络(RNN),它们在入侵检测中也取得了一定的效果。

另一种新型入侵检测技术是基于行为分析的方法。

这些方法通过对用户行为进行实时监测和分析,以发现潜在的攻击行为。

行为分析基于用户的正常行为模式,并通过对比实际行为和预期行为的差异来判断是否存在异常行为。

该方法不依赖于特定的攻击特征,具有较好的通用性。

在行为分析中,关键问题是如何建立和维护用户的行为模型,这在很大程度上取决于对数据的采集和分析能力。

在入侵检测之后,及时的响应是确保网络安全的另一个重要环节。

入侵响应通过对入侵事件进行分析和处理,以减少攻击造成的损失。

传统的入侵响应方法主要包括事后调查和日志分析。

这些方法需要大量的人工参与,并且响应时间较长。

为了提高入侵响应效率,提出了一些新的技术。

一种是自动化响应技术,它通过建立自动化的响应方案,实现对入侵事件的快速反应。

另一种是基于人工智能的响应技术,它利用机器学习和自然语言处理等技术,对入侵事件进行自动分析和响应。

网络安全中的入侵检测与预防技术综述

网络安全中的入侵检测与预防技术综述

网络安全中的入侵检测与预防技术综述随着互联网的快速发展和普及,网络安全成为了人们越来越关心的重要问题。

网络攻击和入侵已经成为互联网世界中无可避免的挑战。

为了保护网络系统和数据的安全,入侵检测与预防技术逐渐成为了网络安全的核心领域之一。

本文将对网络安全中的入侵检测与预防技术进行综述,从理论和实践角度对这些技术进行探讨。

入侵检测与预防技术可以帮助网络管理员及时发现和阻止入侵行为,以保护系统的安全。

常见的入侵检测与预防技术包括网络入侵检测系统(NIDS)、主机入侵检测系统(HIDS)、入侵防御系统(IDS)等。

网络入侵检测系统(NIDS)是一种主动监控网络流量的系统,它可以检测和警报异常流量和攻击行为。

NIDS可以分为两种类型:基于签名的NIDS和基于行为的NIDS。

基于签名的NIDS使用预定的攻击特征来检测入侵行为,而基于行为的NIDS则通过监测网络流量和行为模式来检测潜在的入侵。

尽管基于签名的NIDS在发现已知攻击方面表现出色,但它们无法应对未知攻击,而基于行为的NIDS能够应对尚未被发现的攻击。

因此,将两种类型的NIDS结合起来使用可以提高检测能力。

主机入侵检测系统(HIDS)是一种监测单个主机上的攻击行为的系统。

与NIDS不同,HIDS主要集中在主机层面上进行监测,它通过监控系统活动、文件完整性和日志等信息来发现入侵行为。

HIDS可以及时检测到主机上的异常活动,并通过生成警报或采取其他措施来响应入侵。

与NIDS相比,HIDS可以更加精准地定位攻击来源和受害者,但也面临着资源消耗较大和主机层面防御能力受限的问题。

入侵防御系统(IDS)是一种综合了入侵检测和入侵预防功能的系统。

IDS不仅可以检测入侵行为,还可以主动采取措施来阻止和抵御攻击。

IDS通常包括入侵检测模块、防御模块和日志记录模块。

入侵检测模块负责监测网络流量和系统活动,防御模块则根据检测结果采取相应的防御措施,日志记录模块用于记录并分析入侵事件。

网络入侵检测技术综述

网络入侵检测技术综述

网络入侵检测技术综述当今社会,网络已经成为人们生活的重要组成部分。

然而,网络空间的蓬勃发展也给我们带来了诸多安全隐患,其中最为突出的问题之一就是网络入侵。

网络入侵指的是未经授权访问和操纵网络系统的行为,可能导致用户数据泄露、网络服务中断以及金融欺诈等诸多问题。

为了保护网络系统的安全,各种网络入侵检测技术应运而生。

本文将对网络入侵检测技术进行综述,介绍其原理、分类以及应用现状。

一、网络入侵检测技术原理网络入侵检测技术可分为基于特征的检测和基于行为的检测两类。

基于特征的检测通过事先收集网络入侵的特征数据,并与实时的网络流量进行对比,进而判断是否存在入侵行为。

这种方法主要依赖于规则库或者模式匹配的方式,需要不断更新特征库以应对新型的入侵手段。

相对而言,基于行为的检测则更加灵活。

它通过对网络用户行为的监测和分析,识别出异常行为,从而发现潜在的入侵行为。

这种方法不依赖于特定的特征规则,更加适用于新型入侵的检测。

然而,基于行为的检测也会带来误报的问题,因为一些合法操作可能会被误判为入侵行为。

二、网络入侵检测技术分类根据入侵检测的部署位置,网络入侵检测技术可分为主机入侵检测系统(HIDS)和网络入侵检测系统(NIDS)两类。

HIDS部署在单独的主机上,通过监测主机的操作系统和应用程序行为来检测入侵行为。

NIDS则部署在网络节点上,通过监测传入和传出的网络流量,来判断是否存在入侵行为。

另外,根据入侵检测的工作方式,网络入侵检测技术可分为基于特征的检测和基于行为的检测。

基于特征的检测技术,如Snort和Suricata等,能够识别已知的入侵特征,但对于未知的入侵行为则无能为力。

而基于行为的检测技术,如机器学习和数据挖掘等方法,能够从大量的网络数据中发现异常行为,具有更强的适应性和泛化能力。

三、网络入侵检测技术应用现状随着网络安全威胁日益严峻,网络入侵检测技术得到了广泛的应用。

在金融行业,网络入侵检测技术可以帮助银行及其他金融机构发现并防范金融欺诈。

网络安全中的入侵检测技术综述与模型比较

网络安全中的入侵检测技术综述与模型比较

网络安全中的入侵检测技术综述与模型比较随着互联网的快速普及和信息化的发展,网络安全问题日益突出。

入侵检测技术作为一种主动防御手段,不断发展和完善,以保障网络系统的安全。

在网络安全中,入侵检测技术的作用不可或缺,通过监测和分析网络流量中的异常行为,及时发现和阻止恶意入侵行为。

一、入侵检测技术综述1. 基于特征的入侵检测技术基于特征的入侵检测技术是最早出现也是应用最广泛的一种技术。

其核心思想是通过比对已知的入侵特征库,检测网络流量中是否存在已知入侵模式。

特征可以是网络数据包的内容、数据流的统计特征等。

2. 基于异常的入侵检测技术基于异常的入侵检测技术是一种主动挖掘网络流量中的异常行为的方法。

其基本思想是通过建立对正常网络流量行为的模型,当网络流量的行为与该模型相比出现偏离时,就可能存在入侵行为。

3. 混合型入侵检测技术混合型入侵检测技术是将基于特征和基于异常的技术相结合的一种方法。

它既能够应对已知入侵的检测,又能够发现未知入侵的行为,提高入侵检测的准确性和覆盖范围。

二、入侵检测模型比较1. SNORT模型SNORT是一种基于特征的入侵检测模型,它通过检测网络流量中的特定字符串、协议等内容,判断是否存在已知入侵模式。

SNORT模型的优点是简单易用,通过更新规则库可以及时应对新的入侵行为。

不过,缺点是无法检测未知的入侵模式,对于复杂的攻击可能不能有效预防。

2. NSL-KDD模型NSL-KDD是一种基于特征的入侵检测模型,与传统的KDD CUP 99数据集相比,NSL-KDD数据集更具有挑战性,包含更多未知入侵行为。

NSL-KDD模型通过对网络流量数据进行特征提取和选择,使用机器学习算法进行分类和预测,能够提高入侵检测的准确性。

3. IDS模型IDS是一种基于异常的入侵检测模型,它通过建立对正常网络流量行为的模型,当流量的行为与该模型相比出现偏离时,就可能存在入侵行为。

IDS模型的优点是能够发现未知入侵行为,缺点是误报率较高,对于复杂的攻击可能存在漏报现象。

入侵检测综述

入侵检测综述

⼊侵检测综述⼀、什么是⼊侵检测1.⼊侵检测的概念安全领域的⼀句名⾔是:“预防是理想的,但检测是必须的”。

⼊侵是任何企图破坏资源的完整性、保密性和可⽤性的⾏为集合。

只要允许内部⽹络与Internet相连,攻击者⼊侵的危险就是存在的。

新的漏洞每周都会发现,⽽保护⽹络不被攻击者攻击的⽅法很少。

如何识别那些未经授权⽽使⽤计算机系统的⾮法⽤户和那些对系统有访问权限但滥⽤其特权的⽤户就需要进⾏⼊侵检测。

⼊侵检测(Intrusion Detection)是对⼊侵⾏为的发觉,是⼀种试图通过观察⾏为、安全⽇志或审计数据来检测⼊侵的技术。

⼊侵者如何进⼊系统主要有三种⽅式:物理⼊侵:⼊侵者以物理⽅式访问⼀个机器进⾏破坏活动,例如趁⼈不备进⼊机房试图闯⼊操作系统、拿着钳⼦改锥卸掉硬盘装在另⼀台机器上进⾏研究。

系统⼊侵:⼊侵者在拥有系统的⼀个低级账号权限下进⾏的破坏活动。

通常,如果系统没有及时打补丁,那么拥有低级权限的⽤户就可能利⽤系统漏洞获取更⾼的管理特权。

远程⼊侵:⼊侵者通过⽹络渗透到⼀个系统中。

这种情况下,⼊侵者通常不具备任何特殊权限,他们要通过漏洞扫描或端⼝扫描等技术发现攻击⽬标,再利⽤相关技术执⾏破坏活动。

⼊侵检测的内容包括:试图闯⼊、成功闯⼊、冒充其他⽤户、违反安全策略、合法⽤户的泄漏、独占资源以及恶意使⽤。

进⾏⼊侵检测的软件与硬件的组合便是⼊侵检测系统(Intrusion Detection System,IDS)。

它通过从计算机⽹络或计算机系统的关键点收集信息并进⾏分析,从中发现⽹络或系统中是否有违反安全策略的⾏为和被攻击的迹象并且对其做出反应。

有些反应是⾃动的,它包括通知⽹络安全管理员(通过控制台、电⼦邮件),中⽌⼊侵进程、关闭系统、断开与互联⽹的连接,使该⽤户⽆效,或者执⾏⼀个准备好的命令等。

⼊侵检测技术是动态安全技术的最核⼼技术之⼀。

传统的操作系统加固技术和防⽕墙隔离技术等都是静态安全防御技术,对⽹络环境下⽇新⽉异的攻击⼿段缺乏主动的反应。

入侵检测技术综述

入侵检测技术综述

& 综 述 2004年第4期广东自动化与信息工程 1入侵检测技术综述 陈漫红摘要具有强大的生命力分类分析了在信息系统中布置入侵检测技术的必要性关键词信息系统它通过对运行系统的状态和活动的检测迅速发现入侵行为和企图这为系统网络信息安全增添了新的防范措施[1]1994年以后逐渐出现了一些基于入侵检测的产品NAI 公司的Cybercop和Cisco 公司的NetRanger 等但是其发展潜力和应用前景非常乐观IDS并用预定的策略分析这些信息入侵检测的一个重要假设是入侵行为和合法访问是可区分的一个基本的入侵检测系统需要解决两个问题二是高效并准确地判断行为的合法性动态策略入侵检测系统的功能结构如图1所示入侵分析3 入侵检测技术的分类 入侵检测系统根据其检测数据来源分为两类HIDSNIDSHIDS从单个主机上提取数据作为入侵分析的数据源如网络链路层的数据帧通常来说HIDS 只能检测单个主机系统多个分布于不同网段上的NIDS 可协同工作以提供更强的入侵检测能力是一种互补的关系在系统网络中基于主机的入侵检测系统 HIDS 将检测模块驻留在被保护系统上HIDS 可以有若干种实现方法检测系统设置以发现不正当的系统设置和更改通过替换服务器程序在该中间层中实现跟踪和记录远程用户的请求和操作通过分析主机日志来发现入侵行为监控特定的系统活动不需额外的硬件等优点2活动主机IDS 不通用基于网络的入侵检测系统 NIDS 通过网络监视来实现数据提取局域网普遍采用IEEE 802.3协议任何一台主机发送的数据包目前绝大部分网卡都提供这种混杂接收模式如检测主机IDS 检测不到的攻击快速检测和响应独立于操作系统等如不能预测命令的执行后果NIDS 具有较强数据提取能力,目前很多入侵检测系统倾向于采用基于网络的检测手段来实现最好同时部署基于主机的和基于网络的入侵检测系统不留安全死角4 入侵检测分析技术 入侵分析的任务就是在提取到的庞大的数据中找到入侵的痕迹从而发现入侵行为[3]系统检测能力很大程度上取决于分析策略分析策略通常定义为一些完全独立的检测规则检测时将监听到的报文与模式匹配序列进行比较入侵分析按照其检测规则可以分为两类基于特征的检测规则认为入侵行为是可以用特征代码来标识的就系统实现而言实现难度相对较大研究人员发展了一些新的分析方法可适应性等起到了一定的推动作用[4~8]软计算方法和基于专家系统[4]神经网络[6]5 入侵检测技术的研究现状 入侵技术的发展与演化主要反映如下[9]由于网络防范技术的多重化,攻击难度增加以保证入侵的成功几率,并可在攻击实施初期掩盖攻击或入侵的真实目的即实施入侵与攻击的主体的隐蔽化可掩盖攻击主体的源地址及主机位置对于被攻击对象攻击的主体是无法直接确定的对于信息战信息战的成败与国家主干通信网络的安全是和主权国家领土安全一样重要的国家安全以往常由单机执行入侵与攻击分布式拒绝服务(DDoS)在很短时间内可造成被攻击主机的瘫痪入侵与攻击常以网络为侵犯的主体由攻击网络改为攻击网络的防护系统现已有专门针对IDS 作攻击的报道特征描述然后加以攻击为解决信息网络安全问题,各网络用户安装了防火墙为保障部门信息网的安全起到了重要作用信息网络的安全问题并没有得到完全的解决[10]防火墙的局限性陈漫红对应用层的攻击防火墙的防护也不能令人满意内部人员的攻击和误用行为,防火墙也无能为力2随着安全漏洞不断被公布攻击工具与手法的日趋复杂多样化网络的防卫必须采用一种纵深的静态防御的不足但如忽略了网络系统中的安全漏洞和随时可能发生的攻击隐患在系统信息网中部署入侵检测系统恰好可以弥补防火墙及访问控制等静态安全措施上述的不足识别各种黑客攻击或入侵的方法和手段从中分析各种攻击的特征并做相应的防范2在发现入侵或误用行为之后帮助系统管理员及时发现并解决安全问题3所有的网络攻击事件的详细信息都会被记录到入侵检测系统的日志中并且所记录的日志信息可以作为对攻击者实施法律制裁的依据加强对用户信息系统的法律保护4网络管理人员利用入侵检测系统可便捷地统计分析入侵攻击5借助入侵检测系统, 网络管理员可随时了解正在访问人员的信息,在有人试图偷窥或盗取敏感数据时及时觉察入侵检测技术大致可沿着下述几个方向[3,9]发展1第一层含义第二层含义即使用分布式的方法来检测分布式的攻击智能化入侵检测所谓的智能化方法遗传算法免疫原理等方法应用层入侵检测数据库系统等其他的应用系统服务器与中间件及对象技术的大型应用,需要应用层的入侵检测保护4用户需对众多的IDS系统进行评价,评价指标包括IDS检测范围IDS系统自身的可靠性与鲁棒性全面的安全防御方案将网络安全作为一个整体工程来处理网络结构防火墙入侵检测多方位全面对网络作全面的评估8 结语 入侵检测作为一种积极主动的安全防护技术提供了对内部攻击在网络系统受到危害之前拦截和响应入侵多层次防御的角度出发这从国外入侵检测产品市场的蓬勃发展可得到答案不断跟踪入侵技术和入侵检测技术的发展动向确保信息网络真正安全下转第18页18包括单片机的初始化和上位机通信测试CAN 通信模块主要负责上包括向上位机发送数据和从上位机接收数据给出适当的输出在程序执行过程中位置信号采集采用查询方式应用于六自由度的液压关节式机械喷涂手臂喷涂手臂各关节能按给定速度状态完成特定的任务且本系统可作为其他工业机器人如推土机参考文献 [1] 阳向惠机器人. 北京徐爱卿. MCS-51/96系列单片机原理及应用. 北京航空航天大学出版社, 1996The Design and Implementation of Robot Control System Base on CAN BusSu Zhongquan Liang Ximing Lu WuyiCentral South UniversityThis papers introduces a six粟中权)研究方向现场总线技术(1967教授研究方向最优控制(1957教授智能控制[2] 郭巍, 吴承荣, 金晓耿, 张世永. 入侵检测方法概述. 计算机工程, 1999(特刊): 167~170[3] 钟玮, 石永革, 李逢庆, 冯玉华. 入侵检测分析技术的现状及IDS 发展趋势探析. 江西科学, 2004(1): 47~51 [4] 张仕山, 庄镇泉, 狄晓龙. 一种基于移动智能体的网络安全模型系统. 计算机工程与应用, 2003(14): 153~156, 176 [5] 李之棠,杨红云. 模糊入侵检测模型. 计算机工程与科学, 2000(2): 49~53[6] 李家春, 李之棠. 神经模糊入侵检测系统的研究. 计算机工程与应用, 2001(17): 37~38,101[7] 于泠, 陈波, 宋如顺. 遗传算法在基于模型推理入侵检测中的应用研究. 计算机工程与应用, 2001(13): 60~61,67 [8] 励晓健, 董隽, 黄厚宽. 基于免疫的网络入侵检测系统. 电脑与信息技术, 2001(6): 4~6[9] 李林海, 黄国策, 路惠明. 入侵检测方法的研究与发展趋势.计算机安全, 2002. 10[10] 邓少雯. 网络环境下数字图书馆的安全与防范措施. 图书馆论坛, 2004(4): 106~108[11] 黄志军, 赵皑, 徐红贤. 网络安全与防火墙技术. 海军工程大学学报,2002(1): 51~53An Overview of Intrusion-Detection TechnologiesChen Manhong(Guangzhou University)Abstract : Intrusion-detection is a novel technology for network security. It has powerful capacity for recognizing positivelyintrusion case. This paper introduces the functional structure, classification and operational principle of intrusion-detection technologies, and discusses how to embed intrusion-detection components in an information system. The future development of intrusion-detection technologies is also expected.Key words : Intrusion-Detection; Information System; Computer Security万方数据。

基于人工智能的入侵检测技术研究综述

基于人工智能的入侵检测技术研究综述

基于人工智能的入侵检测技术研究综述人工智能(Artificial Intelligence, AI)的迅猛发展已经深刻影响了各个领域,其中之一是网络安全。

随着网络攻击日益复杂和智能化,传统的入侵检测系统面临着巨大的挑战。

为了提高网络的安全性和保护用户的隐私,研究人员们开始探索基于人工智能的入侵检测技术。

基于人工智能的入侵检测技术由机器学习、深度学习和数据挖掘等技术构成。

这些技术使用了大量的数据集来构建模型,并通过学习和分析这些数据来识别潜在的网络攻击行为。

机器学习是基于人工智能的入侵检测技术中最常用的方法之一。

其核心思想是通过机器从历史数据中提取特征并构建分类器来判断新的数据是否属于正常行为还是入侵行为。

机器学习方法可以分为有监督学习和无监督学习两种。

有监督学习的方法在训练阶段需要有标记的数据集,其中包含了正常行为和入侵行为的样本。

常见的有监督学习算法有决策树、支持向量机和神经网络等。

这些算法可以利用已有的标注数据来训练模型,从而对新的数据进行分类。

与有监督学习相比,无监督学习的方法不需要有标记的数据集。

这种方法通过聚类、异常检测和关联规则挖掘等技术来从数据中发现潜在的入侵行为。

无监督学习方法往往更适用于发现未知的入侵行为,但也可能产生误报率较高的结果。

深度学习是近年来人工智能领域的热点技术,也被广泛应用于入侵检测领域。

深度学习算法可以自动学习和提取数据的特征,并构建多层神经网络来进行分类和预测。

与传统的机器学习方法相比,深度学习方法能够处理更大规模的数据集,并且在一些复杂的网络攻击行为中表现出更好的性能。

除了机器学习和深度学习,数据挖掘也被广泛应用于基于人工智能的入侵检测技术中。

数据挖掘可以从大规模的数据集中提取有用的信息,并利用这些信息来识别入侵行为。

数据挖掘方法可以包括关联规则挖掘、序列模式挖掘和频繁模式挖掘等。

尽管基于人工智能的入侵检测技术在提高网络安全性方面具有巨大潜力,但仍存在一些挑战和问题。

入侵检测系统综述

入侵检测系统综述

Company Logo
Company Logo
3.入侵检测系统的分类(7/7)
两者的比较
●误用检测系统:通过识别流量和应用数据模型发现恶意攻 击,对于已知攻击的检测很可靠,误报率较低,但缺点是 应用系统需要定义所有可能攻击的特征。
●异常检测系统:比较网络行为和正常基线的异同。可以检 测出未知攻击,但异常检测有待完善,如系统本身的复杂 性、高误报率等。
Company Logo
2.入侵检测的必要性(3/4)
基于上述几类问题的解决难度, 一个实用的方法是, 建立比较容易实现的安全系统, 同时按照一定的安全 策略建立相应的安全辅助系统, IDS 就是这样一类系 统. 现在安全软件的开发方式基本上就是按照这个思 路进行的. 就目前系统安全状况而言, 系统存在被攻 击的可能性. 如果系统遭到攻击, 只要尽可能地检测 到, 甚至是实时地检测到, 然后采取适当的处理措施。
Company Logo
3.入侵检测系统的分类(3/7)
●基于主机的IDS不足 占用所监视主机宝贵的资源,会影响到监视主机的工作 性能,需要系统提供更大的存储空间。 基于网络的IDS 目前大部分商业的入侵检测系统是基于网络的,基于 网络的IDS通过捕获并分析网络数据包来检测攻击。在 关键的网段或交换部位监听,一个基于网络的IDS可以 监控影响多个流经这个网段的主机的网络流量,从而 保护这些主机。网络中通常部署多个传感器,来监听 网络流量。
Company Logo
4.入侵检测系统Snort的安装(3/3)
adodb为ACID软件提供专用的DB接口 /ADODB apache
Company Logo
5.IDS待解决的问题
当前的入侵检测系统(IDS)主要通过模式匹配技术将收集 到的信息与已知的网络入侵和系统误用模式数据库进行比 较,来发现违背安全策略的入侵行为。还有一些 IDS 中 应用了异常检测技术。异常检测首先给系统对象创建一个 统计描述,包括统计正常使用时的测量属性,如访问次数、 操作失败次数和延时等。测量属性的平均值被用来与网络、 系统的行为进行比较,当观察值在正常值范围之外时, IDS 就会判断有入侵发生。异常检测技术在实用中会产生 误报率大的问题,而且很难定义不同网络环境中的正常流 量。 就目前而言,模式匹配技术仍然是大多成熟商用 IDS 使 用的主要技术。随着高速分布式网络的发展,对入侵检测 又提出了更高的要求。因此今后的 IDS 面临着更多的陌 生研究领域:

基于深度学习的网络入侵检测研究综述

基于深度学习的网络入侵检测研究综述

基于深度学习的网络入侵检测研究综述一、概要随着网络技术的飞速发展,网络安全问题日益严重。

传统的防御方法已经难以满足需求,而入侵检测系统作为一种有效的安全防护手段,引起了越来越多的关注。

《基于深度学习的网络入侵检测研究综述》旨在对近年来深度学习在网络入侵检测领域的研究进行概括和总结。

本文从网络入侵检测技术的发展背景、基本原理以及基于深度学习的入侵检测方法等方面进行了深入探讨,并展望了未来的发展趋势。

介绍了网络入侵检测技术的发展背景。

随着互联网的普及和应用,网络攻击手段不断演变,传统的网络安全措施已经无法有效应对。

随着大数据和人工智能等技术的发展,为网络入侵检测提供了新的解决思路。

基于深度学习的网络入侵检测技术应运而生,并得到了广泛关注和研究。

阐述了网络入侵检测的基本原理。

网络入侵检测系统通过对网络流量进行监测和分析,发现异常行为或恶意访问并及时采取防范措施。

传统的基于签名的入侵检测方法容易受到各种攻击方式的规避,而基于机器学习的入侵检测方法能够自动学习和提取特征,具有较强的自适应性。

深度学习通过多层次的神经网络结构对网络数据进行表示和学习,能够更有效地捕捉到网络中的复杂模式和内在规律。

重点介绍了基于深度学习的入侵检测方法。

研究者们针对不同类型的网络攻击和场景,提出了多种基于深度学习的入侵检测模型。

基于卷积神经网络的异常检测模型能够自动提取图像特征并识别异常行为;基于循环神经网络的路由入侵检测模型能够根据网络流量的时序特征进行入侵检测;基于生成对抗网络的注入检测模型能够生成与正常流量相似的假数据来迷惑攻击者。

这些方法在一定程度上提高了入侵检测的性能和准确性,为网络安全防护提供了有力支持。

《基于深度学习的网络入侵检测研究综述》对近年来深度学习在网络入侵检测领域的研究进行了全面的回顾和总结。

通过分析发展趋势和存在的问题,随着未来研究的不断深入和技术进步,基于深度学习的入侵检测技术将在网络安全领域发挥越来越重要的作用。

入侵检测技术总结

入侵检测技术总结

入侵检测技术总结入侵检测技术是一种用于检测和预防网络或系统受到非法攻击的方法。

它通过收集和分析网络或系统的各种信息,以检测任何可能的入侵行为或异常行为。

以下是关于入侵检测技术的总结:1. 定义:入侵检测技术是一种用于检测和预防非法攻击的方法,它通过收集和分析网络或系统的各种信息,以检测任何可能的入侵行为或异常行为。

2. 目的:入侵检测的主要目的是提供实时监控和警报,以防止潜在的攻击者对网络或系统造成损害。

3. 方法:入侵检测可以通过基于签名、异常检测和混合方法等技术来实现。

基于签名的检测方法通过匹配已知的攻击模式来检测入侵,而异常检测方法则通过监控系统的正常行为来检测任何偏离正常行为的异常行为。

混合方法则结合了基于签名和异常检测的优点,以提高检测的准确性和效率。

4. 组件:一个完整的入侵检测系统通常包括数据采集、数据分析和响应机制等组件。

数据采集组件负责收集网络或系统的各种信息,数据分析组件负责分析这些信息以检测任何可能的入侵行为,而响应机制则负责在检测到入侵时采取适当的行动,如发出警报或自动阻止攻击。

5. 挑战:虽然入侵检测技术已经取得了很大的进展,但它仍然面临着一些挑战。

例如,如何处理大量数据、如何提高检测的准确性、如何降低误报和漏报、以及如何应对复杂的攻击等。

6. 未来展望:随着技术的发展,未来的入侵检测系统可能会更加智能化和自动化。

例如,使用机器学习和人工智能技术来提高检测的准确性和效率,使用自动化响应机制来快速应对攻击,以及使用物联网和云计算等技术来扩大监控的范围和深度。

总之,入侵检测技术是网络安全领域的重要组成部分,它可以帮助保护网络和系统免受非法攻击的威胁。

然而,随着攻击者技术的不断演变,入侵检测技术也需要不断发展和改进,以应对日益复杂的网络威胁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南理工大学课程论文(2014-2015第二学年)论文题目:入侵检测技术综述学院:专业班级:学号:姓名:指导老师:日期:2015.7.31引言 12入侵行为的概念、分类和演化 13入侵检测技术的发展 33.1以Denning模型为代表的IDS早期技术 3 3.2中期:统计学理论和专家系统相结合 4 3.3基于网络的NIDS是目前的主流技术 4 4结语 5参考文献 6摘要:自从计算机问世以来,安全问题就一直存在着,使用者也一直未给予足够的重视,结果大量连接到Internet上的计算机暴露在愈来愈频繁的攻击中。

本文先介绍入侵行为的概念和演化,然后按时间顺序,沿着技术发展的脉络,回顾了入侵检测技术从20世纪70年代初到今天的发展历程。

文章以历史和实践的观点,透视入侵和入侵检测技术相互制约,相互促进的演进过程。

关键词:计算机安全;入侵检测;入侵检测系统;入侵检测系统的历史1引言自从计算机问世以来,安全问题就一直存在。

特别是随着Internet的迅速扩张和电子商务的兴起,人们发现保护资源和数据的安全,让他免受来自恶意入侵者的威胁是件相当困难的事。

提到网络安全,很多人首先想到的是防火墙,防火墙作为一种静态的访问控制类安全产品通常使用包过滤的技术来实现网络的隔离。

适当配置的防火墙虽然可以将非预期的访问请求屏蔽在外,但不能检查出经过他的合法流量中是否包含着恶意的入侵代码。

在这种需求背景下,入侵检测系统(IDS)应运而生。

入侵检测系统(IDS)是将电子数据处理、安全审计、模式匹配及统计技术等有机地融合在一起,通过分析被检测系统的审计数据或直接从网络捕获数据,发现违背安全策略或危及系统安全的行为和活动。

本文主要讨论入侵和入侵检测技术从20世纪70年代初到今天的发展历程。

这个概念出自James P.Anderson在1972年的一项报告,随后的30多年中,概念本身几乎没有改变。

2入侵行为的概念、分类和演化从最早期的计算机安全开始,人们就密切关注恶意使用者破坏保护机制的可能性。

早期系统多为多用户批处理系统。

这个时期,主要的威胁来自系统的合法使用者,他们企图得到未经授权的材料。

到了20世纪70年代,分时系统和其他的多用户系统已成气候,Willis H Ware 主持的计算机安全防御科学特别工作小组提供了一项报告,为处理多级数据的计算机系统的发展奠定了基础。

但这篇报告并没有受到应有的重视,直到70年代中期,人们才开始进行构建多级安全体系的系统研究。

1980年4月,詹姆斯·安德森(James P.Anderson)为美国空军做的题为《Computer Security Threat Monitoring and Surveillance》(计算机安全威胁监控与监视)的技术报告,第一次详细阐述了入侵检测的概念,并首先为入侵和入侵检测提出了一个统一的架构,这是该领域的开山之作。

他在论文中给出了入侵和入侵检测技术方面的概念:威胁(Threat)可能存在有预谋的、未经认可的尝试:①存取数据;②操控数据;③使系统不可靠或无法使用。

危险(Risk)意外的和不可预知的数据暴露,或者,由于硬件故障、软件设计的不完整和不正确所造成的违反操作完整性的问题。

脆弱性(Vulnerability)已知的或可疑的硬件或软件设计中的缺陷;使系统暴露的操作;意外暴露自己信息的操作。

攻击(Attack)实施威胁的明确的表达或行为。

渗透/入侵(Penetration)一个成功的攻击;(未经认可的)获得对文件和程序的使用,或对计算机系统的控制。

威胁概念中的③包括DOS(Denial Of Service)“拒绝服务攻击”。

盗用计算资源也属于这个类别之内。

一般来说,外部入侵者的首要工作是进入系统。

所外人,也可能是合法用户,但违规使用了未经授权的资源。

另一方面,除了拒绝服务攻击外,多数攻击都需要入侵者取得用户身份。

20世纪80年代中后期,网络计算已经相当普遍,渗透和入侵也更广泛。

但许多厂商和系统管理员却疏忽了这个危险。

一些厂商在售出的系统中预先定义管理账户(曾有厂商使用User name:system,Password:manager),而很多系统操作员却大意地忘记了改变这个缺省设置。

1988年11月2日,第一个大范围的Internet上的攻击和渗透事件发生了。

肇事者是“莫理斯蠕虫”,他采用多种传输技术在系统间复制,利用的是发送邮件程序的漏洞,这个漏洞允许邮寄的指令能在异地系统上执行。

除此之外,蠕虫也利用在finger守护进程溢出串变量来扩散。

蠕虫代码中还包含了一个高效的口令破解程序,他尝试破解被他传染的系统上的使用者的密码。

在“莫理斯蠕虫”之后,DARPA建立了“计算机紧急情况反应小组”,也就是现在SEI(软件工程学会)的CERT(Computer Emergency Response Team)。

1996年,在线杂志Phrack发表了一篇缓冲溢出攻击的文章,随后这种攻击事件就多了起来。

CERT的一项研究显示,从1997年开始,缓冲溢出攻击变成逐渐严重。

近年来报告给CERT/CC的攻击事件中涉及缓冲溢出的百分比上升,这种漏洞攻击流行的原因包括:系统的脆弱性;管理者(administrator)或超级用户(superuser)在目标系统中的特权,攻击行为一般都要利用这些特权;这些攻击的脚本或程序在Internet上的适用性很好,使用者只需很少的技巧。

和其他攻击方式一样,缓冲溢出已经越来越复杂和更具综合性。

早期的攻击主要是通过目标程序读数据。

后来发现,包含环境参数的变量也可能被当作攻击向量使用。

最近,基于格式串(format strings)的缓冲溢出也开始使用。

1992年,第一次大范围的“rootkits”开始出现。

入侵者会像一个平常的使用者一样进入系统,接着靠猜测、社会工程学或其他方式得到一个使用者的口令,然后他们尝试利用系统的弱点成为root。

一旦获得root权限,版本不同的系统公用程序,像是Su,就会被安装和远程执行,这使侵入者能方便地再次进入(后门技术),而且,入侵者会修改系统信息,清理入侵痕迹,让管理者和安全审计者难以察觉。

现在的攻击行为向着大规模、自动和协同方向发展。

攻击已经变得越来越复杂、越来越自动化。

图1中,实线代表攻击行为,虚线代表入侵者需要掌握的技术,他显示了从90年代起,攻击行为的发展和对入侵者技术要求降低的情况。

CERT/CC曾预言:攻击行为的自动化可能在因特网上引发大规模的入侵活动,这在今天得到了验证。

3入侵检测技术的发展审计是最早引入计算机安全领域的概念,像存取文件、变更他们的内容或分类等的活动都记录在审计数据中,安全管理员、系统操作员和维护人员和普通用户一样都要经过行为审核。

安德森提出要建立一个安全监督系统,保护那些系统敏感信息。

他还提出应该检查什么、如何分析他、以及如何保护监督系统免受攻击,这成了今天IDS研究的核心内容。

70年代后期,美国zhengfu,包括DoD(国防部)和NIST(国家标准和技术协会)支持的计算机安全研究2开始了,安全审计也被考虑在这些研究中。

1980年,安德森提出了另外一项报告,这次是针对一个空军客户,后者使用大型计算机处理大量的机密数据。

报告中,安德森提出了减少分析数据量的方法,以及比较统计数据和总的观察——也就是统计行为,以发现反常的行为。

当一个安全违例发生或(统计上)反常的事件出现时,就会提醒安全官员。

安全官员还能利用详细的观测资料做后续的评估。

安德森的报告为SRI(Stanford Research Institute)和TRW(美国着名的数据安全公司)的早期工作提供了蓝图。

在1980年代中期,入侵检测方面的许多工作都被他的思路深深影响。

3.1以Denning模型为代表的IDS早期技术1984~1985年,Sytex为SPAWAR(美国海军)开展了一个审计分析项目。

他基于Unix系统的shell级的审计数据,论证这些数据能够识别“正常”和“反常”使用的区别。

特里萨·兰特(Teresa Lunt)在Sytex为这个项目工作,后来又去了SRI,在那里她参与并领导了IDES(入侵检测专家系统)项目。

IDES项目是1984年由乔治敦大学的桃乐茜·顿宁(DorothyDenning)和彼得·诺埃曼(PeterNeumann)开始的,是IDS早期研究中最重要的成就之一。

IDES模型基于这样的假设:有可能建立一个框架来描述发生在主体(通常是用户)和客体(通常是文件、程序或设备)之间的正常的交互作用。

这个框架由一个使用规则库(规则库描述了已知的违例行为)的专家系统支持。

这能防止使用者逐渐训练(误导)系统把非法的行为当成正常的来接受,也就是说让系统“见怪不怪”。

1988年,特里萨·兰特等人改进了顿宁的入侵检测模型,并开发出了一个IDES。

该系统包括一个异常检测器和一个专家系统,分别用于异常模型的建立和基于规则的特征分析检测。

顿宁的模型假设:入侵行为明显的区别于正常的活动,入侵者使用系统的模式不同于正常用户的使用模式,通过监控系统的跟踪记录,可以识别入侵者异常使用系统的模式,从而检测出入侵者违反系统安全性的情况。

论文中的一些提法看起来很吸引人,但却并没有多少有力的证据,有些想当然。

顿宁的模型中有6个主要构件:主体、对象、审计数据、轮廓特征(或可称为“范型”profiles)、异常记录和行为规则。

范型(profiles)表示主体的行为特色,也是模型检测方面的关键。

行为规则描述系统验证一定条件后抽取的行为,他们能“……更新范型,检测异常行为,能把异常和可能的入侵关联起来并提出报告”。

审计纪录由一个行为触发,而且记录主体尝试的行为、行为本身、行动对准的目标、任何可能导致例外的情况以及行为消耗的资源和独特的时间戳标记。

审计记录会和范型进行比较(使用适当的规则),那些符合异常条件的事件将被识别出来。

这个模型独立于特定的系统平台、应用环境、系统弱点以及入侵的类型,也不需要额外的关于安全机制、系统脆弱性或漏洞攻击方面的知识,他为构建入侵监测系统提供了一个通用的框架。

桃乐茜·顿宁的“入侵检测模型”论文很有影响,但现在读起来有点令人失望,主要是因为其中许多当时没回答的问题到今天仍旧没有满意的答案。

3.2中期:统计学理论和专家系统相结合80年代末,一些其他值得注意的系统开发出来,大部分走的是将统计学理论和专家系统结合在一起的路子。

有几个系统,特别是在Haystack和NADIR中,分析引擎把几个商业数据库管理系统(比如Oracle,Sybase)聚合在一起,发挥他们各自的优势。

MIDAS由美国国家安全局下属的计算机安全中心开发,用来监控他的Multics系统——Dock master。

相关文档
最新文档