二次函数的性质
二次函数性质总结
![二次函数性质总结](https://img.taocdn.com/s3/m/d26fafc1846a561252d380eb6294dd88d0d23d21.png)
二次函数性质总结二次函数的图象是一条抛物线,它与x轴交于两个不同的点,我们称这两个点为(-b, b)(1, 0)。
1。
一般地,如果y=kx+b+c时,这个式子叫做二次函数的解析式或简称解。
2。
在x=0时,设f(x)=ax+b+c,则称二次函数解析式中的系数为y=kx+b+c时的一次函数值。
3。
当y=kx+b+c=0时,这个式子叫做二次函数的图象,图象经过点(-b, b)(1, 0)。
3。
以二次函数图象上的任意一点p为原点建立坐标系,这个平面直角坐标系就叫做函数的象限角坐标系。
4。
当k=0,即x=y=0时,称y=kx+b+c的最简二次函数为y=kx+b+c的一元二次函数,记作y=kx+b+c,称f(x)=ax+b+c的最简二次函数为f(x)=ax+b+c。
5。
判别式法和顶点式法都适用于求出y=kx+b+c的最简二次函数,由图象确定二次函数解析式是重要而常用的方法。
6。
注意:图象关于y轴对称的二次函数,图象与y轴正半轴对称,它的图象经过第一、三象限,二次函数解析式可用顶点式法写出。
图象关于x轴对称的二次函数,图象与y轴正半轴对称,它的图象经过第二、四象限,二次函数解析式可用交点式法写出。
7。
二次函数y=kx+b+c中,只有当k=0,即x=y=0,才能说f(x)是x的函数;否则称f(x)是y的函数,记作y=f(x)或y=kx+b+c。
8。
抛物线y=kx+b+c在开口向下的抛物线上最接近顶点,其图象经过点(0, c)二次函数解析式为y=kx+b+c,图象的顶点为(0, c)。
9。
二次函数y=kx+b+c的顶点坐标是(0, c)。
4。
在区间[a, b]上,一般地,当y随着x的增大而减小时,该函数在[a, b]上是减函数;当y随着x的增大而增大时,该函数在[a,b]上是增函数。
例如: y=4, 5二次函数图象的开口向上,其顶点位置与开口向下的图象完全相同。
因此,对于一个确定的自变量x,只有y与二次函数解析式的自变量x, y是没有关系的,而与x之外的条件有关,它是由一定的条件决定的。
二次函数的性质知识点
![二次函数的性质知识点](https://img.taocdn.com/s3/m/28094d9648649b6648d7c1c708a1284ac8500582.png)
二次函数的性质知识点二次函数是高中数学中的重要内容之一,它在代数学和几何学中都有广泛应用。
了解二次函数的性质是理解和掌握这一概念的关键,下面将介绍二次函数的一些基本性质知识点。
1. 二次函数的定义二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a≠0。
二次函数的图像是一个抛物线,开口方向由a的正负决定。
2. 顶点二次函数的图像是一个抛物线,其中的最高点或最低点称为顶点。
二次函数的顶点坐标可通过公式x = -b/2a和y = f(-b/2a)求得。
3. 对称轴二次函数的图像关于一条垂直于x轴的直线对称,这条直线称为对称轴。
对称轴的方程可通过公式x = -b/2a求得。
4. 开口方向当二次函数的参数a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
5. 零点和方程二次函数的零点是使得f(x) = 0的x值,可以通过解一元二次方程ax^2 + bx + c = 0来求得。
一元二次方程的解法可以使用因式分解、配方法、求根公式等方法。
6. 判别式对于一元二次方程ax^2 + bx + c = 0,判别式D = b^2 - 4ac可以用来判断方程的根的情况:- 当D > 0时,方程有两个不相等的实根;- 当D = 0时,方程有两个相等的实根;- 当D < 0时,方程无实根,但有两个共轭复根。
7. 函数的增减性和极值点二次函数的增减性与a的正负有关。
当a > 0时,函数在对称轴左侧增大,右侧减小;当a < 0时,函数在对称轴左侧减小,右侧增大。
函数的极值点即为顶点。
8. 函数的图像与平移通过调整二次函数的参数,可以实现图像的平移。
参数a决定抛物线的开口方向,参数b决定了对称轴的位置,参数c则决定了抛物线的顶点位置。
9. 辅助线与焦点二次函数的图像与抛物线相关的辅助线包括准线、焦点和准线上的直径。
焦点的横坐标是对称轴上顶点的横坐标的一半,纵坐标可以根据参数a的值求得。
二次函数图像与性质完整归纳
![二次函数图像与性质完整归纳](https://img.taocdn.com/s3/m/012622c05a8102d277a22f36.png)
二次函数图像与性质完整归纳二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2.2y ax c=+的性质:上加下减。
a的符号 开口方向 顶点坐标对称轴性质 0a > 向上()00,y轴x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0.a < 向下()00,y轴x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.a的符号 开口方向 顶点坐标对称轴性质3.()2y a x h =-的性质:左加右减。
a > 向上()0c ,y轴x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c .a < 向下()0c ,y轴x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a的符号 开口方向 顶点坐标对称轴性质 0a > 向上()0h ,X=hx h>时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0.a < 向下()0h ,X=hx h>时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.4.()2y a x h k=-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:a的符号 开口方向 顶点坐标对称轴性质 0a > 向上()h k ,X=hx h>时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k .a < 向下()h k ,X=hx h>时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .3. 两根式:12a≠,1x,2x是抛物线与=--(0y a x x x x()()x轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即240-≥时,抛物线的解析式才可以用交b ac点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2=++中,a作为二次项系数,y ax bx c显然0a≠.⑴当0a>时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;⑵当0a<时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大.总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小.2. 一次项系数b在二次项系数a确定的前提下,b决定了抛物线的对称轴.⑴在0a>的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧;当0b =时,02b a -=,即抛物线的对称轴就是y轴;当0b <时,02b a ->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02b a->,即抛物线的对称轴在y 轴右侧;当0b =时,02b a -=,即抛物线的对称轴就是y轴;当0b <时,02b a -<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab的符号的判定:对称轴a b x 2-=在y 轴左边则>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴当0c>时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当0c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当0c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a b c,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2=++关于x轴对称后,得到的解析式是y ax bx c2=---;y ax bx c()2y a x h k=-+关于x轴对称后,得到的解析式是()2=---;y a x h k2. 关于y轴对称2=++关于y轴对称后,得到的解析式是y ax bx c2y ax bx c=-+;()2=-+关于y轴对称后,得到的解析式是y a x h k()2=++;y a x h k3. 关于原点对称2=++关于原点对称后,得到的解析式是y ax bx c2y ax bx c=-+-;()2y a x h k=-+关于原点对称后,得到的解析式是()2y a x h k=-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c=++关于顶点对称后,得到的解析式是222by axbx c a=--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k=--+.5. 关于点()m n ,对称()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k=-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、【例题精讲】一、一元二次函数的图象的画法 【例1】求作函数64212++=x xy 的图象【解】 )128(21642122++=++=x x x xy2-4)(214]-4)[(21 2222+=+=x x以4-=x 为中间值,取x 的一些值,列表如下:x… -7 -6-5-4-3-2 -1…y=2(x-4)2-3y=2(x-4)2y=2x 2y=x 22y=2x y=x 2y=-2x 2y= -x 2y= -x 22y=2x 2-4y=2x +2y=2x 2y=3(x+4)2y=3(x-2)2y=3x 2y=-2(x+3)2y=-2(x-3)2y=-2x 2y (2)50 23--2 23- 0 25… 【例2】求作函数342+--=x xy 的图象。
二次函数图像与性质总结(含答案)
![二次函数图像与性质总结(含答案)](https://img.taocdn.com/s3/m/5b349f4958f5f61fb6366669.png)
二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:2. 2y ax c =+性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. 2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、2-32y=-2x 2y=3(x+4)22y=3x2y=-2(x-3)2【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象 【解】 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x x【例2】求作函数342+--=x x y 的图象。
二次函数的性质及图像分析
![二次函数的性质及图像分析](https://img.taocdn.com/s3/m/5fc143134a73f242336c1eb91a37f111f1850da6.png)
二次函数的性质及图像分析引言:二次函数是高中数学中一个重要的概念,它在数学和实际问题中都有广泛的应用。
本文将介绍二次函数的性质及图像分析,帮助读者更好地理解和应用二次函数。
一、二次函数的定义与一般形式二次函数是指形如y=ax^2+bx+c的函数,其中a、b、c为实数且a≠0。
其中,a决定了二次函数的开口方向和开口的大小,b决定了二次函数的对称轴位置,c决定了二次函数的纵轴截距。
二、二次函数的图像特点1. 开口方向:当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。
2. 对称轴:二次函数的对称轴是一个垂直于x轴的直线,其方程为x=-b/2a。
3. 零点:二次函数与x轴的交点称为零点,即使y=0的解,可以通过求解二次方程ax^2+bx+c=0得到。
4. 极值点:当二次函数开口向上时,函数的最小值称为极值点;当二次函数开口向下时,函数的最大值称为极值点。
5. 函数增减性:二次函数的增减性与a的正负有关,当a>0时,二次函数在对称轴两侧递增;当a<0时,二次函数在对称轴两侧递减。
三、二次函数图像的分析与应用1. 开口方向的影响:二次函数的开口方向决定了函数的增减性和极值点的位置。
在实际问题中,可以通过二次函数的开口方向来判断某一现象的趋势,例如物体的抛射运动中,开口向上的二次函数可以表示物体上升的高度,开口向下的二次函数可以表示物体下降的高度。
2. 对称轴的作用:二次函数的对称轴决定了函数图像的对称性。
在实际问题中,对称轴可以帮助我们找到函数图像的关键点,例如求解二次函数的最值、求解二次函数与其他图像的交点等。
3. 零点的意义:二次函数的零点表示函数与x轴的交点,即函数的解。
在实际问题中,零点可以帮助我们求解方程,解决实际问题,例如求解二次方程来确定某一物体的位置、时间等。
4. 极值点的应用:二次函数的极值点表示函数的最值,可以帮助我们求解最优解问题。
在实际问题中,可以通过求解二次函数的极值点来确定某一问题的最优解,例如求解最短路径、最大利润等。
二次函数图像与性质完整归纳
![二次函数图像与性质完整归纳](https://img.taocdn.com/s3/m/b56154155901020207409cdc.png)
二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、2-32y=-2x 2y=3(x+4)22y=3x2y=-2(x-3)2【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象 【解】 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x x【例2】求作函数342+--=x x y 的图象。
二次函数性质总结
![二次函数性质总结](https://img.taocdn.com/s3/m/c251077042323968011ca300a6c30c225901f0b8.png)
二次函数性质总结二次函数是高中数学中经常遇到的一个函数类型,它的一般形式为y=ax^2+bx+c,其中a、b、c为常数,a不等于0。
二次函数的性质有很多,下面就逐一进行总结:一、基本性质:1. 对称性:二次函数在抛物线的顶点处有对称轴,对称轴是图像的一条垂直线。
如果二次函数是y=ax^2+bx+c,则对称轴的方程为x=-b/2a。
2. 零点:二次函数的零点是函数图像与x轴的交点,即使f(x)=0的解。
对于y=ax^2+bx+c,可以用求根公式x=[-b±√(b^2-4ac)]/2a来求解。
3. 导函数:二次函数的导函数是一次函数,即f'(x)=2ax+b。
导数可以用来研究函数的变化趋势、极值等性质。
二、图像特征:1. 开口方向:当a>0时,二次函数的抛物线开口向上,称为正向抛物线;当a<0时,二次函数的抛物线开口向下,称为负向抛物线。
2. 顶点坐标:对于y=a(x-h)^2+k形式的二次函数,顶点坐标为(h,k),其中h为对称轴的横坐标,k为对称轴的纵坐标。
3. 最值:当二次函数开口向上时,最小值为顶点值;当二次函数开口向下时,最大值为顶点值。
4. 平移变换:二次函数的图像可以通过平移变换来进行位置调整,平移的方式有水平、垂直两个方向,可以通过更改常数c、h、k来实现。
三、根性质:1. 根的个数:二次函数的根的个数不会超过2个。
当判别式D=b^2-4ac大于0时,方程有两个不相等的实数根;当判别式D=0时,方程有两个相等的实数根;当判别式D小于0时,方程没有实数根。
2. 根的关系:如果一个二次函数有两个根x1和x2,则有以下性质:根的和x1+x2=-b/a,根的积x1x2=c/a。
3. 根的位置:根的位置与二次函数的开口方向有关。
当二次函数开口向上时,如果根存在,则根的值在顶点的两侧;当二次函数开口向下时,根的值在顶点的外侧。
四、函数变化:1. 单调性:二次函数的单调性与二次项系数a的正负有关。
二次函数的图像与性质
![二次函数的图像与性质](https://img.taocdn.com/s3/m/48c3f42b54270722192e453610661ed9ac515553.png)
二次函数的图像与性质二次函数是数学中一种重要的函数形式,其图像形状特殊且具有许多性质。
本文将介绍二次函数的图像特点以及与其相关的性质。
一、二次函数的标准形式二次函数的一般形式为f(x) = ax² + bx + c,其中a、b、c为实数,且a ≠ 0。
为了便于研究,我们可以将二次函数表示为标准形式f(x) =a(x - h)² + k,其中(h, k)为顶点坐标。
二、二次函数的图像特点1. 对称轴:二次函数的对称轴是与顶点坐标垂直的直线。
对称轴方程为x = h,其中h为顶点横坐标。
2. 顶点:二次函数的顶点是图像的最高点或最低点,是二次函数的关键特征。
顶点坐标为(h, k)。
3. 开口方向:二次函数的开口方向由二次项系数a的正负决定。
若a > 0,则开口向上;若a < 0,则开口向下。
4. 正定或负定:二次函数的图像在开口方向上是否有最值,与二次项系数a的符号有关。
若a > 0,则二次函数为正定;若a < 0,则二次函数为负定。
5. 零点:二次函数的零点是函数与x轴的交点,即f(x) = 0的解。
零点个数最多为2个。
三、二次函数的性质1. 零点和因式分解:二次函数的零点可以通过因式分解得到。
对于一般二次函数的标准形式f(x) = ax² + bx + c,我们可以利用求根公式或配方法将其因式分解为f(x) = a(x - x₁)(x - x₂),其中x₁、x₂为零点。
2. 最值:二次函数开口方向上的最值即为顶点,若二次函数开口向上,顶点为最小值;若二次函数开口向下,顶点为最大值。
3. 对称性:二次函数的图像关于对称轴对称,即对于任意x点,若(x, y)在图像上,则(x, -y)也在图像上。
4. 范围:二次函数的范围与二次项系数a的正负相关。
若a > 0,则函数的范围为区间(k, +∞);若a < 0,则函数的范围为区间(-∞, k),其中k为顶点纵坐标。
二次函数的性质知识点总结
![二次函数的性质知识点总结](https://img.taocdn.com/s3/m/81a73d12b5daa58da0116c175f0e7cd184251890.png)
二次函数的性质知识点总结二次函数是高中数学中重要的概念之一,它在各个领域都有广泛的应用。
了解二次函数的性质是理解和解决相关问题的关键。
本文将对二次函数的性质进行详细总结,包括定义、图像特征、导数、极值点、零点和符号规律等方面的知识点。
一、二次函数的定义二次函数是指以自变量的平方作为最高次幂的一类函数。
通常的形式为:f(x) = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。
二、二次函数的图像特征1. 开口方向:二次函数的图像是一个拱形,其开口方向取决于二次系数a的正负性。
如果a > 0,则图像开口向上;如果a < 0,则图像开口向下。
2. 对称轴:二次函数的图像关于对称轴对称。
对称轴的方程为x = -b / (2a)。
3. 零点:二次函数的零点是函数对应的方程f(x) = 0的解。
二次函数的零点可能有0个、1个或2个。
4. 极值点:如果二次函数的开口向上,那么它的最低点为最小值点;如果二次函数的开口向下,那么它的最高点为最大值点。
5. 单调性:二次函数在对称轴两侧有不同的单调性。
三、二次函数的导数对于二次函数f(x) = ax² + bx + c,其导数函数为f'(x) = 2ax + b。
导数函数的图像表示了原二次函数的斜率变化情况。
四、二次函数的极值点1. 极值点的存在性:二次函数存在极值点,当且仅当a ≠ 0。
当a > 0时,函数的最小值位于极值点上;当a < 0时,函数的最大值位于极值点上。
2. 极值点的横坐标:极值点的横坐标可以通过对称轴的方程得到,即x = -b / (2a)。
3. 极值点的纵坐标:将极值点的横坐标带入原函数得到对应的纵坐标。
五、二次函数的零点1. 零点的判定:二次函数的零点即为使函数值为零的自变量取值。
可以通过解二次方程ax² + bx + c = 0来求得零点。
2. 零点的个数:二次函数的零点个数可能为0个、1个或2个,取决于二次方程的判别式Δ = b² - 4ac的正负性。
二次函数图像与性质总结
![二次函数图像与性质总结](https://img.taocdn.com/s3/m/479d6966cc175527072208c0.png)
二次函数图像与性质总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:二、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a-=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a=-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而减小;当2bx a>-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2bx a=-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有四种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c=++关于x轴对称后,得到的解析式是2y ax bx c=---;()2y a x h k=-+关于x轴对称后,得到的解析式是()2y a x h k=---;2. 关于y轴对称2y ax bx c=++关于y轴对称后,得到的解析式是2y ax bx c=-+;()2y a x h k=-+关于y轴对称后,得到的解析式是()2y a x h k=++;3. 关于原点对称2y ax bx c=++关于原点对称后,得到的解析式是2y ax bx c=-+-;()2y a x h k=-+关于原点对称后,得到的解析式是()2y a x h k=-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c=++关于顶点对称后,得到的解析式是222by ax bx ca=--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k=--+.。
二次函数的图像性质及应用
![二次函数的图像性质及应用](https://img.taocdn.com/s3/m/421493cdcd22bcd126fff705cc17552706225e11.png)
二次函数的图像性质及应用二次函数是一种代数函数,由形如f(x) = ax^2 + bx + c 的方程定义,其中a、b、c为实数且a不等于0,x为自变量,f(x)为因变量的值。
在二次函数的图像性质及应用方面,可以从以下几个角度来进行解析。
一、图像性质1. 平移性质:二次函数的图像可以根据a、b、c的值进行平移。
当c不为0时,图像沿y轴平移c个单位;当b不为0时,图像沿x轴平移-b/2a个单位;当a 不为0时,图像的开口方向取决于a的正负性,开口向上(a>0)或者开口向下(a<0)。
2. 对称性质:二次函数的图像关于y轴对称。
这是因为二次函数的方程中只有x 的二次项没有一次项,故图像关于y轴对称。
3. 零点性质:二次函数的零点是指函数值为0的x值。
对于一般的二次函数,它将有两个零点,除非它开口向上或开口向下且顶点位于x轴上,此时则只有一个零点。
4. 首项分类:当a>0时,二次函数的图像开口向上,称为正二次函数;当a<0时,二次函数的图像开口向下,称为负二次函数。
首项a的正负性决定了二次函数的凹凸性。
二、应用1. 自然科学中的运动学问题:二次函数可以用来描述自然界中物体的运动状态。
例如,自由落体运动中物体的下落高度与时间的关系可以用二次函数来表示。
2. 经济学中的成本与收益问题:在经济学中,很多问题可以用二次函数来建模。
例如,成本与产量之间的关系、价格与需求之间的关系等。
3. 地理学中的地形分析:地理学中,二次函数可以用来描述地形的变化。
例如,山谷河流的横断面、地势的坡度等。
4. 工程学中的建模问题:在工程学中,二次函数可以应用于许多建模问题,如桥梁设计、弹道分析等。
总结起来,二次函数的图像性质包括平移性质、对称性质、零点性质和首项分类。
而其应用领域广泛,包括自然科学中的运动学问题、经济学中的成本与收益问题、地理学中的地形分析以及工程学中的建模问题等。
通过对二次函数的图像性质及应用的深入理解,可以更好地应用于实际问题的建模与求解。
二次函数的性质
![二次函数的性质](https://img.taocdn.com/s3/m/dce8604b53ea551810a6f524ccbff121dc36c56a.png)
二次函数的性质在数学中,二次函数是一种形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a不等于0。
二次函数是一种非常重要且常见的函数类型,具有多种性质和特点。
本文将就二次函数的性质展开讨论。
1. 定义二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a不等于0。
其中,a决定了二次函数的开口方向(正负),b决定了二次函数的对称轴的位置,而c决定了二次函数与y轴的交点。
2. 开口方向二次函数的开口方向由a的正负决定。
若a大于0,则二次函数开口向上;若a小于0,则二次函数开口向下。
这一性质决定了二次函数的图像是一个U形或者倒U形。
3. 对称轴二次函数的对称轴由b的取值决定。
对称轴的公式为x = -b/2a。
对称轴是二次函数的一个重要特征,它将二次函数分成两个对称的部分。
4. 顶点对称轴与二次函数的图像交于顶点,顶点的横坐标即对称轴的横坐标,可由上述公式求得。
顶点代表了二次函数的最值点,对于开口向上的二次函数,顶点是一个最小值点;对于开口向下的二次函数,顶点是一个最大值点。
5. 零点二次函数的零点是函数与x轴的交点,即使得f(x) = 0的x值。
二次函数的零点可以通过求解二次方程ax^2 + bx + c = 0来得到。
若该二次方程存在实根,则二次函数与x轴有两个交点;若该二次方程有一个实数解,则二次函数与x轴相切;若该二次方程没有实根,则二次函数与x轴没有交点。
6. 达到最值点对于开口向上的二次函数,它在对称轴的两侧的函数值逐渐增大,而在对称轴的一侧逐渐减小;对于开口向下的二次函数,则相反。
因此,通过对称轴将二次函数划分为两部分后,我们可以找到二次函数的最大值或最小值点。
7. 判别式判别式是求解二次方程的一个重要工具,它由b^2 - 4ac给出。
判别式可以判断二次方程的根的情况。
若判别式大于0,则方程有两个不相等的实根;若判别式等于0,则方程有两个相等的实根;若判别式小于0,则方程没有实根。
二次函数的性质
![二次函数的性质](https://img.taocdn.com/s3/m/6273c51c182e453610661ed9ad51f01dc28157c3.png)
二次函数的性质二次函数是一种常见的数学函数形式,它的一般表达式为f(x) =ax^2 + bx + c,其中a、b、c为实数且a ≠ 0。
二次函数具有许多独特的性质,下面将逐一阐述。
一、图像特征二次函数的图像通常是一个开口向上或向下的抛物线。
当 a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
抛物线的顶点坐标为(-b/(2a), f(-b/(2a))),其中f(-b/(2a))为抛物线的最值。
二、轴对称性二次函数具有轴对称性,即抛物线以垂直于x轴的线为轴对称。
轴对称线的方程为x = -b/(2a)。
三、零点与解析式二次函数的零点即为方程f(x) = 0的解。
通过求解二次方程ax^2 +bx + c = 0,可以得到二次函数的零点。
解析式为x = (-b ± √(b^2 -4ac))/(2a)。
四、判别式二次函数的判别式可以帮助我们判断二次方程的根的情况。
判别式的值为D = b^2 - 4ac,根据判别式的不同情况,可得到以下结论:1. 当D > 0时,方程有两个不相等的实数根;2. 当D = 0时,方程有两个相等的实数根;3. 当D < 0时,方程没有实数根,但有两个共轭复根。
五、函数的增减性与极值点对于二次函数f(x) = ax^2 + bx + c,它的增减性与a的正负有关。
当a > 0时,函数在抛物线的开口上方是递增的;当a < 0时,函数在抛物线的开口下方是递增的。
同时,函数的极值点即为抛物线的顶点,极值点的纵坐标为函数的最值。
六、对称轴与对称性二次函数的对称轴是垂直于x轴的轴线x = -b/(2a),对称轴将抛物线分为两个对称的部分。
对称性质表明,若抛物线上存在点(x, y),那么对称轴上也存在对应的点(-x, y)。
七、二次函数与二次方程的关系二次函数与二次方程紧密相关。
二次函数y = ax^2 + bx + c的图像和性质与二次方程ax^2 + bx + c = 0的解密切相关,二者是一一对应的关系。
二次函数的图像和性质总结
![二次函数的图像和性质总结](https://img.taocdn.com/s3/m/7e5fb38759f5f61fb7360b4c2e3f5727a5e924a4.png)
二次函数的图像和性质总结二次函数(Quadratic Function)是高中数学中重要的一个部分,是指一种形式为y=ax²+bx+c(a≠0)的函数。
二次函数的图像是一条抛物线,其性质包括:开口方向、顶点、对称轴、最值、零点、增减性等。
下面将对二次函数的图像和性质进行详细总结。
一、图像特征:1.开口方向:-当a>0时,抛物线开口向上;-当a<0时,抛物线开口向下。
2.顶点:-对于抛物线开口向上的情况,顶点是抛物线的最低点;-对于抛物线开口向下的情况,顶点是抛物线的最高点。
3.对称轴(y轴):- 对于一般的二次函数y=ax²+bx+c,其对称轴的方程为x=-b/2a;-对于抛物线开口向上的情况,对称轴是抛物线的最低点;-对于抛物线开口向下的情况,对称轴是抛物线的最高点。
4.最值:-对于抛物线开口向上的情况,最小值为顶点的纵坐标;-对于抛物线开口向下的情况,最大值为顶点的纵坐标。
5.零点:- 零点是指二次函数y=ax²+bx+c与x轴的交点;-二次函数可能有0个、1个或2个零点;- 当判别式D=b²-4ac>0时,有两个不相等的实数根;- 当判别式D=b²-4ac=0时,有两个相等的实数根;- 当判别式D=b²-4ac<0时,无实数根。
6.增减性:-当a>0时,抛物线开口向上,函数在对称轴两侧递增;-当a<0时,抛物线开口向下,函数在对称轴两侧递减。
二、性质总结:1.函数的解析式:- 二次函数的解析式一般形式为y=ax²+bx+c,其中a、b、c为常数,a≠0;-通过解析式可以得到函数的图像特征。
2.零点:-零点是指函数与x轴的交点;- 零点可以通过解二次方程ax²+bx+c=0来求解;- 当判别式D=b²-4ac>0时,有两个不相等的实数根;- 当判别式D=b²-4ac=0时,有两个相等的实数根;- 当判别式D=b²-4ac<0时,无实数根。
二次函数的图像和性质
![二次函数的图像和性质](https://img.taocdn.com/s3/m/f927dfbd7d1cfad6195f312b3169a4517623e54a.png)
二次函数的图像和性质一、二次函数的一般形式二次函数是一种形式为f(x)=ax2+bx+c的函数,其中a、b、c是实数且a eq0。
二、二次函数的图像1.抛物线二次函数的图像是一条抛物线。
当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。
2.判别法利用二次函数的判别式 $\\Delta = b^2 - 4ac$ 的正负性可以确定二次函数的图像开口方向和与x轴的交点情况。
3.最值点二次函数的顶点为抛物线的最值点,当a>0时,最小值在顶点处取得;当a<0时,最大值在顶点处取得。
顶点的横坐标为 $-\\frac{b}{2a}$,纵坐标为 $f\\left(-\\frac{b}{2a}\\right)$。
三、二次函数的性质1.对称轴二次函数的对称轴为直线 $x = -\\frac{b}{2a}$,即抛物线关于对称轴对称。
2.单调性当a>0时,二次函数在对称轴左侧递增,在对称轴右侧递减;当a<0时,二次函数在对称轴左侧递减,在对称轴右侧递增。
3.零点二次函数的零点为方程f(x)=0的解,可以利用求根公式 $x = \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$ 求得。
4.图像的平移如f(x)=a(x−ℎ)2+k,其中(ℎ,k)为平移后的顶点坐标,抛物线上下平移,方向与a的正负有关。
四、应用二次函数在几何、物理、经济等领域有着广泛的应用。
例如几何问题中的抛物线轨迹、物体自由落体运动方程、经济学中的成本、收益关系等均可用二次函数描述。
结语二次函数作为高中数学中重要的函数类型,在图像和性质上有着独特的表现,通过对其图像和性质的深入理解,可以更好地应用于解决实际问题。
希望本文的介绍能帮助读者更好地掌握二次函数的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学
成就英才,设计未来
二次函数
二次函数的图象及性质(学案)
一.知识巩固:
1.什么样的函数是一次函数?它有哪些性质?
2.什么样的函数是反比例函数?它有哪些性质?
二.新课学习:
㈠二次函数:
观察思考1: 写出下列关系的解析式能将所列函数式概括出一个基本形式吗?
⑴现有一组数列:2, 5, 10, 17,…… . 那么第n个数y与n的函数关系为______________.
⑵有n支球队进行单循环比赛,总比赛场次m与n的关系式为______________.
⑶某工厂一种产品现在的年产量是20万件,计划今后两年增加产量.如果每年的产量都比上一年的产量增加x倍,那么两年后这种产品的产量y(万件)与x的关系为______________________.
1.定义: 一般地,形如y= ax2+bx+c (a、b、c为常数,a≠0)的函数,叫二次函数.某中x是自变量,a,b,c分别是二次项系数、一次项系数和常数项。
注意:①二次函数是一个关于自变量的二次整式; ②含自变量x的项的最高次数是2,若当一个二次函数包含一个次数大于2的项,那么这个项的系数必为0; ③定义是用象形的手段来定义的,式子中的x、y 可代表代数式。
如y+2=k(x+1)2+x是指y+2是关于x+1 的二次函数。
2.二次函数的图像及性质:
实践与观察1: 在同一坐标系中,画出函数y=x2 , y=2x2, y =x2 , y= x2 +1, y=x2 -1 , y= -
x2 ,
y=-2x2, y = -x2 , y= -x2 +1, y=-x2-1 的图象. 从中你会发现什么规
律
y=2x
y= x
y=x
y1
2
0x
y
1234
-1
-2
-3
-4
2
3
4
-1
-2
-3
-4
x
y y=x -1
y=x +1
y=x
y
0x
y
1234
-1
-2
-3
-4
2
3
4
-1
-2
-3
-4
1
x
y
二次函数的性质:
1.二次函数的图象是一条抛物线.
2.当a>0时,抛物线的开口______,顶点是抛物线的___点; 当a<0时,抛物线的开口____,顶点是抛物
线的____点. | a | 越大,抛物线的开口越_____.
3.二次函数y= ax2的图象关于y轴对称, 顶点坐标是(0,0)
4.二次函数y=ax2+b (a≠0)的图象关于y轴对称, 顶点坐标为( 0, b) ;抛物线y=ax2 +b是抛物线y=ax2向上(下)平移| b |个单位长度得到的.
初三数学
成就英才,设计未来
5. 抛物线y= ax 2 +b (a≠0)与抛物线y= - (ax 2 +b) = -ax 2 -b 关于x 轴对称. 实践与观察2: 分别在两个坐标系中,画出y= x 2 , y =
(x+1)2 , y =
(x-1)2 ,
及y=
x 2 , y =
(x -1)2 +1, y =
(x +2)2 -1, 这两组图象,考虑它们的开口方向、对
称轴和顶点坐标以及图象之间的关系。
二次函数的性质:
1.抛物线y=ax 2 +c . y=a(x-h)2 . y=a(x-h)2 +k 与y= ax 2 形状______.开口方向______,顶点坐标和对称轴_______.并可通过上下左右平移抛物线y=ax 2 而得到其它抛物线.
2.抛物线 y=a(x-h)2 +k 有如下特征:⑴当a >0时,开口_____,函数有_____值, 当a <0时,开口_______,函数有_____值. ⑵对称轴是平行于__轴的直线x=h,⑶顶点坐标是( __ , ___) .
练习:
说出下列抛物线的开口方向、对称轴、及顶点坐标。
并指出当此图象的顶点平移到顶点时的抛物线解析式,求出函数的极值。
⑴ y =2(x+3)2+5 ⑵ y= -3(x-1)2 -2 ⑶ y = 4(x-3)2+7 ⑷ y = -5( x+2)2 -6
例1. 已知y= (m 2 -1)x 2 +(m+1)x+5是关于x 的函数, ⑴当m 为何值时,此函数是二次函数.⑵当m 为何值时,此函数是一次函数.
12
初三数学
成就英才,设计未来
例2. 将抛物线y= 2( x+1)2 -3向右平移1个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为____________________.
例3. 要建一个圆形喷水池,在池中心竖直安装 一根水管,在水管的顶端安一个喷水头,使喷出的很抛
1m 处达到最高. 高度为3m.水柱落地处离池中心3m , 水管应多长?
课后精练
⑴ m 为何值时,y=mx m - 2m -1 是二次函数,且当x >0时,y 随x 增大而减小。
⑵ 函数y=ax 2(a≠0)与直线y=2x -3交于点(1,b ),求 ① a 和b 的值
②求抛物线y=ax 2的解析式。
并求顶点坐标和对称轴 ③x 取何值时,二次函数y=ax 2中的y 随x 的增大而增大 ④求抛物线与直线y=-2的两交点及顶点所构成的三角形的面积
⑶ 如图,直线 过A (4,0)和B (0,4)两点,它与二次函数y=ax 2 的 图象在第一象限内相交于P 点,若 △ AOP 的面积为4.5, 求二次函数的解析式.
⑷ 有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.,①在图中所示的直角坐标系中,求出该抛物线的解析式;②在正常水位的基础上,当水位上升h(m)时,桥 下水面的宽度为d(m),求出将d 表示为h 的函数解析式;③设正常水位时,桥 下的水深为2m,为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下顺利航行.。